
Electronic Journal of Statistics
Vol. 15 (2021) 1695–1742
ISSN: 1935-7524
https://doi.org/10.1214/21-EJS1825

Multicarving for high-dimensional

post-selection inference∗

Christoph Schultheiss and Claude Renaux and Peter Bühlmann
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Abstract: We consider post-selection inference for high-dimensional (gen-
eralized) linear models. Data carving from Fithian, Sun and Taylor [10] is
a promising technique to perform this task. However, it suffers from the
instability of the model selector and hence, may lead to poor replicability,
especially in high-dimensional settings. We propose the multicarve method
inspired by multisplitting to improve upon stability and replicability. Fur-
thermore, we extend existing concepts to group inference and illustrate the
applicability of the methodology also for generalized linear models.
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1. Introduction

We consider post-selection inference in high-dimensional (generalized) linear
models. Statistical inference in high-dimensional models is challenging: in a fre-
quentist setting, the main methods use some bias-corrected estimators of the
Lasso [37, 35, 14] or of Ridge regression [5], and Cai and Guo [8] provide refined
optimality results for such techniques. On the other hand, post-selection infer-
ence provides a very different approach for constructing confidence statements
in high-dimensional models. Post-selection inference is attractive as it is closer
in some vague sense to what practitioners like to do, namely to apply first some
model selection in order to restrict the set of covariates and make the problem
feasible. Post-selection inference has long been viewed as rather ill-posed [17]
until Berk et al. [3] provided a conservative approach to improve its image. More
recent work by Fithian, Sun and Taylor [10], Tian and Taylor [30], Taylor and
Tibshirani [28] and others lead to interesting new inferential tools. The current
work is building on those contributions.

The instability of post-selection inference. Post-selection inference deals
with the problem of inference statements, after having selected a set of covariates
using a data-driven algorithm or method. For post-selection inference in high-
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dimensional (generalized) linear models, a very popular model selection method
is the Lasso [31]; and in fact, in this work, we only focus on the Lasso as model
selector. Among the main concerns when using the Lasso or any other variable
selection method is its instability. The selected model, say, by the Lasso, has low
degree of replicability due to its instability arising from correlated covariates
and/or high noise scenarios. Thus, the inference after model selection might
be very non-replicable if the model selector leads to different results for small
perturbations of the data. Take getting new realizations from the same data
generating process as an example. Our new multicarving proposal is a possible
remedy to make post-selection inference more reproducible.

A variety of approaches to get valid tests and confidence intervals after model
selection have been developed. In order to put our proposal in some context, we
discuss briefly the ones most relevant to our work in the following.

A simple approach for valid inference is to split the data into two parts and
use the first half for selection and the second half for inference [36]. Thus, the
idea is very similar to any validation scheme using data splitting.

This simple single data splitting method has certain drawbacks. Since split-
ting the data is a random process, the inference statements change if a different
split is chosen. If we repeat this process multiple times, we observe that the ob-
tained p-values per predictor change a lot: Meinshausen, Meier and Bühlmann
[21] call this phenomenon the “p-value lottery”. For the Lasso selector, this is
especially accentuated as it is highly non-stable and potentially selects quite dif-
ferent models depending on the split. Therefore, results obtained through this
method are not replicable at all unless one fixes the split. In order to receive
more stable and replicable p-values, Meinshausen, Meier and Bühlmann [21]
suggest splitting the data multiple times, say, B = 50 times leading to p-values

P
(b)
j for each split b = 1, . . . , B and each predictor j = 1, . . . , p. The p-values

per predictor are aggregated using quantile functions and adequate correction
terms. Although there is still randomness involved, the results should become
more stable with increasing B in the spirit of the law of large numbers. This
technique is referred to as multisplitting.

To avoid confusion, we save the term post-selection inference for techniques
that perform inference on the same data as used for selection and refer to the
methods from [36] and [21] as (multi)splitting. Post-selection inference for a
(generalized) linear model can be achieved by calculating or simulating a con-
strained null distribution, where the constraints reflect the selected model.

Lee et al. [16] analyze the case of Lasso selection in a linear model. They
show that the Karush-Kuhn-Tucker (KKT) criteria, which are necessary con-
ditions for the Lasso solution, lead to a polyhedral constraint on the observed
response vector. Using this constraint, they derive a truncated normal distri-
bution which allows for valid inference. A drawback of this method is a loss in
power introduced by those polyhedral constraints. Similar constraints have been
derived in [32] for sequential regression problems: compared to Lasso selection
for fixed value of λ, those constraints increase in dimensionality rather quickly,
since every step of the procedure results in additional constraints.
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Somewhere in between data splitting and post-selection inference is a tech-
nique called data carving [10]. In order to distinguish data carving from methods
as in [16], we refer to the latter as pure post-selection inference in the following.
Due to the loss in power introduced by pure post-selection inference, Fithian,
Sun and Taylor [10] prefer not to use all observations for the selection pro-
cess. Further, they prove that completely discarding the fraction of data used
for model selection in the inference stage leads to inadmissible tests. Instead,
one should use as much information of the selection data as is still usable and
should only discard the information that was actually needed to obtain the given
selection. This means that one “carves” the data. One can reuse the selection
constraints introduced for pure post-selection inference but imposes them on the
selection data only. This method outperforms pure post-selection inference and
simple sample splitting with respect to power. Though, it is computationally
much more involved under certain model assumptions. Naturally, pure post-
selection inference can be seen as a special case of data carving, and Fithian,
Sun and Taylor [10] refer to it as Carve100.

Barber et al. [1] introduce the concept of knockoff filters for model selection
and inference. Their main idea is to compare the measurable effect of the re-
gressor covariates to the corresponding effect of their “knockoff copies” which
should behave statistically equivalent for covariates with no true underlying ef-
fect. Barber et al. [2] adapt this methodology to the high-dimensional setting
and post-selection inference. The data is split into two parts for that purpose,
one for selection and one for inference only. The authors also suggest a method
which can “recycle” some of the information from the selection data in the in-
ference stage, which resembles the data carving idea. However, they condition
not only on the selection event but on the full observation of the selection data.
This has the advantage that the selection process on the first part of the data
can be arbitrarily and is not restricted to methods for which one can sample
from the data conditional on the selection event.

Berk et al. [3] provide an inference technique that is valid given any pre-
ceding model selection procedure, potentially, inspecting all of the data. This
is possible by using the so-called PoSI (post-selection inference) constant K.
This constant is defined as the minimal value such that the maximal absolute
t-statistic maximized overall possible predictor variables and submodels is at
most equal to K with probability at least 1− α. The advantage of this method
is that it leaves all freedom to the practitioner for the selection process with-
out losing validity. For example, visual inspection of the data through a human,
which is done quite often in practice, is allowed. On the other hand, this method
is quite conservative by construction. Furthermore, calculating the constant K
gets computationally involved such that the authors only suggest to use their
method for up to p ≈ 20. Despite the nice theoretical framework, the method is
not suited for high-dimensional statistics, which is our focus.

Recent developments by Kuchibhotla et al. [15] lead to computationally ef-
ficient procedures with similar guarantees. They derive a method to construct
confidence regions such that they contain the true parameter in any submodel
simultaneously with probability at least 1 − α. Due to this simultaneous cov-



1698 C. Schultheiss et al.

erage any possible model selection can be applied and the true parameter is
still contained in the constructed region. Naturally, this method is also rather
conservative. Especially, it cannot gain power from a sparsity assumption due
to the simultaneous coverage in all submodels.

1.1. Relation to other work and contribution

Meinshausen, Meier and Bühlmann [21] as well as Fithian, Sun and Taylor [10]
emphasize different drawbacks of the simple idea of data-splitting for inference
in high-dimensional statistics and show how to improve on them. Therefore, we
focus on how to optimally combine those improvements leading to our “multi-
carving” method. Since we work with the Lasso as model selector, we also build
on the results of Lee et al. [16].

We further elaborate two more extensions of data carving in a linear model
that can be combined with multisplitting in the same fashion. The first one con-
cerns group testing. There are many developments in high-dimensional statistics
for testing groups of covariates for significance instead of single covariates, see
for example [34], [23], and [12]. Group tests are of particular use as with many
(highly correlated) covariates, it might be overly ambitious to correctly detect
the individual active variables, whereas groups of variables might be more real-
istic to detect. Hierarchical testing schemes are particularly attractive for this
task; see for example [18] and [26]. Secondly, we provide extensions of multicarv-
ing to generalized linear models. Pure post-selection inference in logistic linear
regression is discussed in Taylor and Tibshirani [28] who rely on asymptotic
Gaussianity. As for the linear model, pure post-selection inference is suboptimal
regarding power, thus, we extend their argument to the data carving approach.
We only provide a detailed discussion for the case of logistic linear regression.
Though, similar adjustments could be done for other generalized linear models.

2. Methodology for high-dimensional post-selection inference

We first consider the methodological framework for linear models and summa-
rize multisplitting (Section 2.2.1) as well as data carving (Section 2.2.2). This
serves as a basis to develop our novel multicarving procedure for single covari-
ates (Section 2.3) and an extension to group inference (Section 2.5) and logistic
regression or other generalized linear models (Section 2.6). While those develop-
ments focus on hypothesis testing, we discuss confidence intervals in Section 2.4.

2.1. High-dimensional linear model and inference for single
variables

We assume to have a response vector Y = (Y1, . . . , Yn)
�

and a (fixed) design
matrix X ∈ R

n×p, where p � n. This yields a linear model of the form

Y = Xβ + ε, (1)
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where ε = (ε1, . . . , εn)
�

consists of i.i.d. N
(
0, σ2

)
entries with known or un-

known variance σ2 and β ∈ R
p is the unknown parameter of interest. We rep-

resent vectors in boldface, whereas scalars and matrices are written in usual
letters. We write y for a given realization of the random vector Y. We use index
1 (X1, Y1 and y1) and index 2 (X2, Y2 and y2) to denote selection data and
data used for inference only, respectively. Further, we assume that the active set
S = {j;βj �= 0} is sparse, i.e., s = |S| � n such that inference using ordinary
least squares would be possible on the data if the true active set was known.

After data-driven model selection, we deal with a subset S̃ of size s̃ =
∣∣S̃∣∣.

We aim to perform inference based on this subset S̃. We write XS̃ for the matrix
X restricted to the selected columns. Likewise, X1,S̃ and X2,S̃ denote selection
and inference data restricted to the selected columns. Generally, a distinction
has to be made whether we test

H0,j : βj = 0 versus HA,j : βj �= 0 (2)

for the entries of the full β ∈ R
p or if the test is made with respect to

H S̃
0,j : βS̃

j = 0 versus H S̃
A,j : βS̃

j �= 0. (3)

Here, βS̃ ∈ R
s̃ corresponds to the selected submodel and is defined as

βS̃ ≡ arg min
bS̃

E

∥∥∥Y −XS̃b
S̃
∥∥∥2 = X+

S̃
Xβ, (4)

the best linear predictor in the given model. We write X+

S̃
for
(
X�

S̃
XS̃

)−1
X�

S̃
,

i.e., the generalized inverse of XS̃ . We introduce corresponding null hypotheses
for groups of variables in Section 2.5.

Typically, an inference statement for (2) would be more favorable, since we
are interested in the true underlying model. Though, tests for (3) are valid under
weaker assumptions.

Of particular interest is the screening property. Screening is defined as S̃ ⊇ S
or in words, screening asks for all active variables being part of the selected

model. If this holds, we have βS̃
j = βj ∀j ∈ S̃. Thus, tests valid for (3) are also

unbiased for (2) assuming screening. Importantly, screening is a requirement on
the initial model selection process and not on the following inference calculation.

We focus on model selection using the Lasso. The screening property for the
Lasso is rather delicate to achieve in the finite sample case. Though, it can
be guaranteed with probability 1 for n → ∞ under adequate conditions. Such
conditions are discussed in [20], [22] and [4], see also the book by Bühlmann
and van de Geer [7].

2.2. Previously proposed methods

We first review some earlier work which serves as a basis for our new proposal
in Section 2.3.
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2.2.1. Multisplitting for inference

In this section, we briefly summarize the multisplitting method introduced in
[21]. Multisplitting works as follows:

For each b = 1, . . . , B:

1. Randomly split the data into two disjoint groups of sizes n1 and n2.
2. Find S̃(b) using X1 and y1.

3. For j ∈ S̃(b), calculate p-values p
(b)
j using X2,S̃(b) and y2 with ordinary

least-squares; for j /∈ S̃(b), set p
(b)
j = 1.

4. Adjust the p-values to P
(b)
j = min

(
p
(b)
j s̃(b), 1

)
to correct for multiplicity

using Bonferroni adjustment.

The fourth step is designed to control the family-wise error rate (FWER).
Throughout this work, we use lower case letters (p) for raw p-values that result
from a test and upper case letters (P,Q) for p-values resulting from any correc-
tion or aggregation. The default value for splitting is n1 =

⌊
n
2

⌋
. It remains to

aggregate the B p-values for covariate j. Valid aggregation is possible by using
a quantile of fixed fraction γ ∈ (0, 1] as

Qj (γ) = min
{
1, qγ

({
P

(b)
j /γ; b = 1, . . . , B

})}
, (5)

with qγ being the empirical quantile function. Since a good choice of γ might
not be known a priori, one can also optimize γ over a range [γmin, 1] where
γmin ∈ (0, 1]. This yields a different p-value

Pj = min
{
1, (1− log (γmin)) min

γ∈[γmin,1]
Qj (γ)

}
. (6)

The additional factor (1− log (γmin)) corrects for optimizing over all possi-
ble quantiles. A typical choice is γmin = 0.05, yielding a correction factor of
(1− log (0.05)) ≈ 3.996.

Without any screening assumption, those p-values actually test the following
null hypothesis for some given covariate j

H S̃(1),...,S̃(B)

0,j : βS̃(b)

j = 0 ∀b versus H S̃(1),...,S̃(B)

A,j : ∃b s.t. βS̃(b)

j �= 0.
(7)

Given two conditions, Meinshausen, Meier and Bühlmann [21] derive asymp-
totic (for n → ∞) FWER control with respect to null hypothesis (2). The
conditions are:

Asymptotic screening: limn→∞ P
[
S̃ ⊇ S

]
= 1.(A1)

Sparsity: s̃ < n2.(A2)

The screening condition, as argued before, leads to βS̃(b)

j = βj ∀j ∈ S̃(b) and
makes the inference statement valid for the true underlying parameter vector.
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The sparsity condition enables us to do least-squares inference, implicitly as-
suming that X2,S̃(b) has full column rank for all b.

If screening held in the finite sample case as well, the error control could be
formulated in a non-asymptotic sense. Although this is usually not the case, the
simulations in [21] as well as ours show that multisplitting controls the type-I
error with respect to (2) clearly better than single-splitting when screening can-
not be guaranteed. This can be explained by the “p-value lottery”: Every split
results in different p-values for the selected variables. There are chances that
some true non-active variables are significant for some splits. After aggregation,
only variables that are significant in a decent number of splits remain significant
overall. Due to the variability of these p-values over different splits, chances are
that fewer non-active variables get rejected after aggregation than in the average
single split. Thus, multisplitting leads to better error control.

2.2.2. Data carving

In this section, we discuss the idea of data carving introduced in [10]. We focus on
the special case of the linear model (1) with Lasso selection, which we will later
extend to logistic regression and other generalized linear models. We emphasize
that they provide a theoretical framework that could be applied to a much
broader spectrum of problems.

The main conceptual idea of data carving is summarized in the following
statement [10]: “The answer must be valid, given that the question was asked.”
Thus, one should control the selective type-I error rate

P
HS̃

0

[
reject H S̃

0

∣∣∣ (S̃,H S̃
0

)
selected

]
≤ α. (8)

The hypothesis H S̃
0 is a general notation for a hypothesis as, e.g., in (3). De-

fine the event M (Y1) as
{(

S̃,H S̃
0

)
selected

}
, the selection event using data

{X1,Y1}. We write M (Y1) since X1 is assumed to be fixed. Then, the require-
ment (8) can be equivalently stated as

P
HS̃

0

[
reject H S̃

0

∣∣∣M (Y1)
]
≤ α. (9)

Simple data splitting on the other hand controls the following error

P
HS̃

0

[
reject H S̃

0

∣∣∣Y1

]
at level α. Thus, more conditioning is done than would theoretically be needed,
since M (Y1) does not contain all information about Y1 but only guarantees
that it results in the observed selection event.

To perform inference controlling the error in (9), one needs to understand the
distribution of Y

∣∣M (Y1). The first step is to understand the selection event
M (Y1). We focus on our case of interest, inference in the linear model (1) using
Lasso selection. More precisely, let Lasso selection be defined as follows

β̂ = arg min
β

1
2 ‖y1 −X1β‖22 + λ ‖β‖1 (10)
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S̃ =
{
j : β̂j �= 0

}
.

There exist different definitions of the Lasso that are equivalent after rescaling.
We use definition (10) following [16] where this selection event is fully character-
ized. The set of Y1 that would lead to the same S̃ forms a union of polyhedra in
R

n1 . If we additionally condition on the signs of the parameters’ Lasso estimates,
sign

(
β̂j

)
∀j ∈ S̃, this union is shrunk to a single polyhedron. Dealing with a

single polyhedron is easier both computationally as well as from a theoretical
perspective. Hereafter, we additionally condition on the signs at the price of a
small loss in power. This single polyhedron can easily be described by linear in-
equality constraints, e.g., AY ≤ b. Those constraints can be split into “active”
(A1Y ≤ b1) and “inactive” (A0Y ≤ b0) constraints which define statistically
independent events. Further, X+

S̃
Y is independent of the inactive constraints

such that it is also independent while conditioning on the active constraints,

i.e.,
(
X+

S̃
Y
∣∣A1Y ≤ b1

)
⊥ (A0Y ≤ b0). Therefore, we can ignore the inactive

constraints for inference purposes which are based on X+

S̃
Y. For simplicity, we

refer to AY ≤ b as being the active constraints only.
Fithian, Sun and Taylor [10] elaborate how to handle Y

∣∣M (Y1) = Y
∣∣AY ≤

b in a given model. As βS̃ is unknown, the conditional distribution is not
tractable yet. To deal with this problem, one can treat the unknown param-
eters as nuisance parameters in an exponential family which one can get rid of
by conditioning accordingly. Generally, one has to decide between the “saturated
model” and the “selected model”:

• Saturated model: μ = E [Y] has n degrees of freedom and βS̃ = X+

S̃
μ is

the best linear predictor based on the selected model (cf. Equation (4)).

• Selected model: μ = E [Y] = XS̃β
S̃ has s̃ degrees of freedom and βS̃

completely defines the distribution.

If we consider the saturated model, which includes more parameters than the
selected model, more conditioning has to be done. This leads to a drop in power
but with the advantage that tests are valid for (3) without any screening assump-
tion. The selected model view is generally more powerful since less conditioning

is done but it needs stronger assumptions to hold. The existence of βS̃ such

that E [Y] = XS̃β
S̃ is exactly the screening condition. If screening holds, ei-

ther approach is valid to test (2). Since we are mainly interested in this null
hypothesis, we focus on the selected model leading to more powerful tests under
screening. In Section 2.4, we elaborate further on the saturated method and its
advantages.

Consider the selected model. To perform inference for covariate j, one has to

condition onto
(
XS̃\j

)�
Y. After applying this conditioning, the random vector

of interest
(
X+

S̃

)
j
Y is independent from the unknown parameters βS̃

−j . This

leads to a degenerate truncated multivariate Gaussian distribution with no more
unknown nuisance parameters. The truncation is defined by the selection event.

To test the null hypothesis, one further assumes βS̃
j = 0.
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Thus, one is interested in

pj (y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P

[(
X+

S̃

)
j
Y≥

(
X+

S̃

)
j
y
∣∣∣βS̃

j =0,
(
XS̃\j

)�
Y=

(
XS̃\j

)�
y,

AY≤b

]
if β̂j>0

P

[(
X+

S̃

)
j
Y≤

(
X+

S̃

)
j
y
∣∣∣βS̃

j =0,
(
XS̃\j

)�
Y=

(
XS̃\j

)�
y,

AY≤b

]
if β̂j<0.

(11)

Note that we can use one-sided tests, since we implicitly condition on the sign of
β̂j by restricting ourselves to the single polyhedron AY ≤ b. If we have selected
a correct model such that the selected model view is applicable, σ is known,
and j /∈ S is not a true active variable, then we have pj (Y) ∼ Unif [0, 1].
This null distribution is not easily tractable and thus the probability is hard
to calculate. Though, it can be sampled from using MCMC. This means that
data carving achieves higher power compared to sample splitting at the price
of a substantially higher computational cost. We present an applicable MCMC
sampling scheme in Appendix B.

In the saturated viewpoint, only one degree of freedom remains after condi-
tioning (cf. Section 2.4). Therefore, one can deal with a univariate truncated
normal such that the exact probability, the analogue of (11), can be calculated
efficiently using the CDF of a Gaussian. Thus, the trade-off between the selected
and the saturated model also involves a computational component.

So far, we assumed σ to be known. If this is not the case, σ2 could be handled
as further nuisance parameter, which is resolved by additionally conditioning on
‖Y‖2. However, this nonlinear constraint disables some of the computational
shortcuts which all linear constraints allow for. In our simulations, we use some
estimate σ̂ wherever the variance is assumed to be unknown and proceed as if
it was known initially. For completeness, we mention that the distribution when
additionally conditioning on ‖Y‖2 is not Gaussian anymore. The corresponding
null distribution can still be approximated using a different MCMC sampling
technique. Note that this is only possible for the selected model. In the saturated
model, one would end up imposing one quadratic and n − 1 linear equality
constraints onto an n-dimensional vector. This would only leave two points to
sample from such that no inference is possible.

2.3. Novel multicarving for valid inference

Meinshausen, Meier and Bühlmann [21] have theoretically argued and empiri-
cally shown that splitting several times and aggregating is to be preferred over
a single-split approach. On the other hand, Fithian, Sun and Taylor [10] have
shown that discarding all selection data in a splitting set-up is mathematically
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inadmissible and typically less efficient. To overcome this problem, they intro-
duce the idea of data carving. Nevertheless, their approach potentially suffers
from a similar p-value lottery as discussed in [21] since it is initiated by randomly
splitting the data into two disjoint groups of given sizes; one for selection and
inference, and the other one for inference only. Therefore, it is often difficult to
replicate. Thus, we advocate the idea of applying data carving multiple times in
order to a) overcome the p-value lottery and b) avoid the proven inadmissibility
of any splitting procedure. We use the following procedure:

For b = 1, . . . , B:

1. Randomly split the data into two disjoint groups of sizes n1 and n2.
2. Find S̃(b) using X1 and y1 with Lasso selection.

3. For j ∈ S̃(b), calculate p-values p
(b)
j for the given split and selected model

according to (11), for j /∈ S̃(b), set p
(b)
j = 1.

4. Adjust the p-values to P
(b)
j = min

(
p
(b)
j s̃(b), 1

)
to correct for multiplicity

using Bonferroni adjustment.

As in multisplitting, we include the fourth step in order to control the FWER.
Different corrections could be applied to obtain some less restrictive error control
such as the false discovery rate (FDR) as discussed in [21]. There is a trade-off
involved in choosing n1 and n2. The higher we set n1, the higher the probability
of screening gets, which is required for valid tests. On the other hand, more power
remains for the second stage, namely, the inference calculation, for higher values
of n2. We empirically analyze this trade-off in our simulations in Section 4.
To get one p-value per predictor, we use the same aggregation techniques as
presented in Section 2.2.1, resulting in a single p-value Qj (γ) or Pj . In our
simulations, we focus on optimizing over the quantiles as described in (6) instead
of using a fixed predefined quantile γ. To distinguish the different methods,
we call this procedure multicarving and the method described in Section 2.2.2
single-carving.

2.4. Saturated view and confidence intervals

Naturally, one wants to perform inference without the screening assumption.
As mentioned in Section 2.2.2, we can use the saturated model from [10] for
this purpose. In the saturated view, we do not assume the selected submodel to
completely define the mean parameter μ but only to approximate it as in (4). In
order to get rid of the unknown parameters and create a tractable distribution,
we have to condition on to P⊥

η Y = P⊥
η y. Here, we define η ≡

(
X+

S̃

)
j
, leading

to η�μ = βS̃
j . As P

⊥
η has rank n− 1, there remains only one degree of freedom

after conditioning, namely, in the direction of η. Therefore, one deals with a
univariate truncated Gaussian where the truncation comes from invoking the
selection event AY ≤ b. Inference statements can be calculated efficiently using
the CDF of a univariate Gaussian. A detailed explanation of this procedure can
be found in [16].
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This can be done regardless of the quality of the selected submodel. There-
fore, the saturated viewpoint leads to valid tests for null hypotheses (3) (single-
carving) and (7) (multicarving) without any screening assumption. However, if
screening fails, the best linear predictor in the submodel is generally non-sparse.

This means that there is no j ∈ S̃ s.t. βS̃
j = 0 and there cannot be any false

positives with respect to those null hypotheses. Therefore, such tests for null
hypotheses without any screening assumption are not of particular interest.

Nevertheless, those tests can be used to determine confidence intervals. As
for any test, confidence intervals for multicarving can be found by inverting
it. Dezeure et al. [9] give a detailed explanation of how to compute confidence
intervals for multisplitting. We refrain from giving a full theoretical result for
our derived method, but remark that their construction does not require the
individual p-values to origin from a sample splitting procedure as long as they
are valid. Therefore, this approach can be directly adopted to multicarving by
calculating carving p-values but keeping the remaining scheme the same. We
focus on the construction without multiplicity correction. For covariate j, this
leads to a (1− α)-confidence interval (CI) such that

P
[
βS̃(b)

j ∈ CI ∀b
]
≥ 1− α, (12)

where βS̃(b)

j are defined through (4). This is of particular interest when βS̃(b)

j

differ for different splits b. Therefore, it appears natural to omit the screen-
ing assumption and to adopt the saturated model for our confidence intervals.
Further, the use of the saturated model leads to more efficient computation.

We focus on two-sided confidence intervals for two reasons. First, having
both a lower and an upper bound might be more informative for a practitioner.

Second, sign
(
βS̃(b)

j

)
is not necessarily the same for all splits b in which covariate j

is selected such that combining different splits to a one-sided confidence interval
is not appropriate. Thus, the confidence intervals in this case are not the exact
inversion of the hypothesis tests.

Notably, if one were to apply simultaneous tests for different null hypotheses
in the selected model, this could be done by just calculating a single MCMC
chain and relying on the idea of importance sampling afterwards. However,
to get a precise enough statement for such simultaneous tests, more MCMC
samples might be required than for just calculating a p-value such that this
extra statement is not for free.

2.5. Extension to group testing

In a high-dimensional set-up with potentially correlated predictors, finding in-
dividual active variables is often too ambitious. Especially, the Lasso selector
struggles with distinguishing between two or more highly correlated variables.
Therefore, one might prefer to test several variables as a group. We define the
null hypothesis for a given group G as

H0,G : βj = 0 ∀j ∈ G versus HA,G : ∃j ∈ G, s.t. βj �= 0 (13)
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for the full model coefficients. Let G̃ = S̃ ∩G be the variables in our group that
have been selected then we define the null hypothesis in the selected model as

H S̃
0,G : βS̃

j = 0 ∀j ∈ G̃ versus H S̃
A,G : ∃j ∈ G̃, s.t. βS̃

j �= 0. (14)

The practitioner often wants to test multiple groups or test groups in a hier-
archical fashion, say, in a data-driven way. Of course, a multiplicity correction
has to be applied which is possible for any valid group test which controls the
type I error. We refer to [19] for a detailed explanation of a hierarchical testing
procedure and corresponding multiple-testing correction.

2.5.1. (Multi)splitting for group inference

Groups of variables can be tested for significance in the same way as single
variables by splitting the data. The extension to groups follows naturally as
in the low-dimensional case by applying partial F-tests instead of t-tests. This
can be done either with a single split or multiple splits using the previously
mentioned aggregation techniques (5) and (6).

2.5.2. (Multi)carving for group inference

The above mentioned (multi)splitting techniques for group inference suffer from
the same inadmissibility issue as in the single variable case as more conditioning
than necessary is applied. Therefore, we suggest a slight transformation of the
data carving idea which makes it applicable to testing for group significance. We
focus on the selected viewpoint meaning that our derivation will actually only
be valid if a correct model has been found. We emphasize that the saturated
model could be extended to inference for groups with very similar adjustments.

Inference for a group follows the single variable case closely. Firstly, note
that the selection event is completely unchanged by the idea of testing group
significance afterwards as we still apply Lasso for model selection. Thus, we
can still invoke the selection event by conditioning on AY ≤ b. Based on [10],

one can see that
(
X+

S̃

)
G̃
Y
∣∣((XS̃\G̃

)�
Y, AY ≤ b

)
does not depend on βS̃

−G̃

such that there are no more unknown parameters in our model under the null
hypothesis (14). Due to this independence from the nuisance parameters, we
can base the inference on

(
X+

S̃

)
G̃
Y or functions thereof. We advocate the use

of the following test statistic∑
j∈G̃

sign
(
β̂j

)(
X+

S̃

)
j
Y.

In words, it is a directed sum of projections in to all directions corresponding to
the group’s variables. Including sign

(
β̂j

)
in our test statistic is valid, since we

additionally condition on having observed the parameters’ signs for the sampling
procedure. This additional conditioning is not mandatory for valid inference but
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simplifies the computation (cf. Section 2.2.2). The success of the sum can be
intuitively justified as potentially no variable has a significant effect by itself,
but the group as a whole could have.

There are two main reasons to perform such a group test instead of aggre-
gating p-values of single variables in the group. First, since we are interested
in the null hypothesis for the group, it seems more appropriate to conduct a
test that treats all the variables within in the group in the same way instead of
applying and aggregating multiple tests each of which focussing on a different
variable. Second, as the calculation of any null distribution requires to sample
a MCMC chain, fewer chains have to be created when looking at a group simul-
taneously. Though, this comes at the price of a higher dimensionality to sample
from compared to treating covariates individually.

We need to sample from the (approximate) null distribution to perform tests.
As in the single variable case, the carving procedure leads to a Gaussian dis-
tribution subject to linear equality and inequality constraints, which can be
sampled from as presented in Appendix B with few adjustments.

In contrast to testing of single variables, the group problem remains multi-
dimensional in the saturated view (for

∣∣G̃∣∣ > 1) as one conditions on all but
the group’s variables. To sample from this saturated model, some more changes
would be needed, especially the conditioning in B.1 has to be adjusted, while B.2
has to be omitted.

In Section 3.2, we establish the validity of our group test on a single split.
This validity is enough to enable multicarving using standard aggregation tech-
niques (5) or (6). When testing for several groups, the fourth step of the multi-
carving procedure given in Section 2.3 must be adapted to a suitable multiplicity
correction factor. The factor which enlarges the p-values naturally depends on
the construction of the different groups. Some possible choices for disjoint groups
are p/

∣∣G∣∣ and ∣∣S̃[b]
∣∣/∣∣S̃[b] ∩G

∣∣, where the latter can be different for every split.
For a more elaborate description of this procedure as well as an extension to
hierarchical testing, see [18] and [26].

2.6. Extension to logistic regression

Not all data can be described and approximated well by the linear model given
in (1). We extend the inference method to be applicable to generalized linear
models and focus on logistic regression only in the following. Many of the ideas
could be carry over to different generalized linear models too, after applying the
right transformations.

In logistic regression, we have a binary response vector Y ∈ {0, 1}n and some
matrix of predictor variables X ∈ R

n×p. For every entry Yi of Y, the probability
of being 1 is modelled as

P
[
Yi = 1

∣∣Xi

]
= π (Xi) = πi =

exp (Xiβ)

1 + exp (Xiβ)
(15)

for some unknown parameter vector β ∈ R
p, the target of our inference. We

denote the i-th row of X by Xi.
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In a classical low-dimensional setting with p < n, this would be fitted using
the MLE or equivalently by minimizing the negative of the log-likelihood for an
observation y. The log-likelihood l (β) is defined as

l (β) =

n∑
i=1

log
(
P
[
Yi = yi

∣∣Xi

])
=

n∑
i=1

yilog (πi) + (1− yi) log (1− πi)

=

n∑
i=1

yiXiβ − log (1 + exp (Xiβ)).

The negative of the above formula can be minimized, for example, by using a
Newton algorithm, which leads to solving an iteratively reweighted least squares

(IRLS) problem as derived in [13]. Starting with some initial estimate β̂
0
, one

iterates

β̂
t+1

=
(
X�WX

)−1
X�Wyadj = arg min

β

1

2
(yadj −Xβ)

�
W (yadj −Xβ) ,

where we define

W =

⎛⎜⎜⎜⎜⎝
π̂t
1 (1− π̂t

1) 0 · · · 0

0 π̂t
2 (1− π̂t

2)
. . . 0

...
. . .

. . . 0
0 · · · 0 π̂t

n (1− π̂t
n)

⎞⎟⎟⎟⎟⎠ ,

yadj = Xβ̂
t
+W−1

(
y − π̂t

)
.

Thus, in every step a weighted least-squares problem with weight matrix W ,
which iteratively changes, is solved. This explains the name of the procedure.

By further defining

yw =
√
Wyadj , Xw =

√
WX,

this can be reformulated as a usual least-squares problem [9]

β̂
t+1

= arg min
β

1

2
(yw −Xwβ)

�
(yw −Xwβ) .

In the low-dimensional case, Dezeure et al. [9] suggest to perform the inference
as if the final iterate follows Yw ∼ N (Xwβ, I). This approach is asymptotically
valid because if this was the case, one would have

β̂ =
(
X�

wXw

)−1
X�

wYw ∼ N
(
β,
(
X�

wXw

)−1
)
,

which is the limiting distribution of the MLE. This can be seen by noting that
the covariance matrix is the plug-in estimate of the inverse Fisher information.

As for the linear model (1), the MLE cannot be uniquely found for p > n
since X�WX is not invertible anymore. Therefore, one also depends on some
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sort of shrinkage. One can use the Lasso, i.e., an 	1-penalty, in the same fashion
as for the linear model and solve the following minimization

β̂ = arg min
β

− l (β) + λ ‖β‖1 .

This minimizer can be found similarly as in the non-penalized case by adding
the penalty term in every update [11]

β̂
t+1

= arg min
β

1

2
(yadj −Xβ)

�
W (yadj −Xβ) + λ ‖β‖1

= arg min
β

1

2
(yw −Xwβ)

�
(yw −Xwβ) + λ ‖β‖1 .

Thus, the final Lasso estimate will (approximately) fulfil

β̂ = arg min
β

1

2
(yw −Xwβ)

�
(yw −Xwβ) + λ ‖β‖1 ,

where Xw and yw are functions of the estimate β̂ itself. As this is exactly a
Lasso fit as in (10), the estimate β̂ will also fulfil the KKT criteria defined by
Xw and yw. Therefore, we can formulate the constraint AYw ≤ b, which the
observed adjusted response is required to fulfil.

In the high-dimensional case with Lasso selection, it is an obvious approach
to calculate inference statements as if Yw ∼ N (Xwβ, I)

∣∣AYw ≤ b inspired
by the inference techniques in the low-dimensional setting. Or in other words,
proceed as in the usual Gaussian case using our new transformed data Xw and
Yw. This can be done likewise for either pure post-selection inference or data
carving.

Taylor and Tibshirani [28] provide an argument for the first case. Their main

assumption is
√
n-consistency of the Lasso estimator β̂. This condition is dis-

cussed, for example, in [7]. Under this assumption, the “one-step estimator”
β̄ ≡ X+

w,S̃
Yw would have the same limiting Gaussian distribution as the usual

low-dimensional MLE if no selection was applied. After some technicalities,
which we do not want to recite here, they are able to derive the corresponding
constrained limiting distribution from this non-selective CLT.

Importantly, this theory was derived for the fixed-p case. Especially,
√
n-

consistency of the Lasso estimator typically only holds for fixed p. An argument
for the high-dimensional case p � n → ∞, if any exists, is yet to be found.
Recent developments by Sur and Candès [27] and Zhao, Sur and Candes [38] re-
garding the limiting distribution of the MLE suggest that one has to additionally
assume at least s = O (n) in order to derive such an argument.

We empirically test the adaption of pure post-selection inference for logistic
regression to data carving in our simulations without giving a full theoretical
argument. Presumably, such an argument, at least for the fixed-p case, could
follow using similar concepts as in [28].
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Other types of generalized linear models are often fitted in the same fashion
using (penalized) IRLS. Whenever this is the case, one can apply our carving
method to the transformed data, i.e., Xw and yw, which behave asymptotically
Gaussian.

Multicarving and aggregation. As in Section 2.3, we apply this method of
calculating p-values to various splits and aggregate as described in Section 2.2.1.
Those aggregation techniques are proven to be unbiased given screening. Obvi-
ously, assuming that aggregation is performed over p-values that are all valid
themselves given screening.

Here, the p-values are only asymptotically valid even under screening. Asymp-
totic validity of the aggregation over asymptotically valid p-values has not yet
been theoretically studied in depth. Therefore, we cannot restate the same theo-
retical results for logistic regression as were derived in [21] for multisplitting and
which we adapt in Section 3.1 for multicarving in a linear model. Nevertheless,
applying multicarving to logistic regression does not result in any problem with
type-I error control in our simulations so that we can advocate its use.

3. Theoretical properties

We elaborate here the theoretical properties of multicarving and the extension
to group testing for (multi)carving in the selected view, requiring the screening
assumption in (A1). Without the screening assumption, (multi)carving is still
valid controlling the type I error in great generality when taking the saturated
view. Then, at the price to be often overly conservative, confidence intervals
with guaranteed coverage should be preferred over tests, see also Sections 2.2.2
and 2.4. Throughout this section, we assume that the data follow the linear
model (1) with Gaussian errors.

3.1. Multicarving for the linear model

Validity of our multicarve method follows naturally from validity of single-
carving and multisplitting. Assuming screening in split b and known variance,

we know from the theory of data carving that p
(b)
j as defined in (11) follows

p
(b)
j ∼ Unif [0, 1] for j ∈ S̃ but j /∈ S. Basically, this uniformity of the p-value is

the only thing needed to construct the proofs of Theorems 3.1 and 3.2 in [21].
Therefore, we can restate their theoretical result for the aggregation methods.
Though, we slightly alter the assumptions on the model selection procedure. We
assume

Asymptotic screening: limn→∞ P
[
S̃ ⊇ S

]
= 1 (as in Section 2.2.1).

(A1)

Sparsity: s̃ < n1.(Ã2)
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The difference in the second condition yields from the fact that one has to invert
X�

2 X2 to perform inference using splitting, while X�
1 X1 has to be inverted

for data carving. Actually, the condition is rank
(
X1,S̃

)
= s̃ and we implicitly

assume this to follow from the sparsity condition. Our simulations suggest to
use n1 > n2, thus this altered sparsity assumption is less restrictive. Using those
two conditions, we establish FWER control for our multicarve procedure.

Theorem 1. Let Y be generated by the linear model (1) with Gaussian errors.

Assume that (A1) and (Ã2) apply. Let α, γ ∈ (0, 1]. Let P
(b)
j be calculated as

in Section 2.3 with known σ and let Qj (γ) be the aggregated value according
to (5) with finite B. Then, it holds

lim sup
n→∞

P

[
min
j /∈S

Qj (γ) ≤ α

]
≤ α,

where the probability is with respect to the data sample. The statement holds
regardless of the B random sample splits.

The analogue result holds when aggregation is not done with a fixed quantile
γ but with the optimized quantile and the adequate correction term.

Theorem 2. Let Y be generated by the linear model (1) with Gaussian errors.

Assume that (A1) and (Ã2) apply. Let α, γmin ∈ (0, 1]. Let P
(b)
j be calculated

as in Section 2.3 with known σ and let Pj be the aggregated value according
to (6) with finite B. Then, it holds

lim sup
n→∞

P

[
min
j /∈S

Pj ≤ α

]
≤ α,

where the probability is as in Theorem 1.

For proofs, we refer to the appendix of [21] invoking the fact that p
(b)
j is

stochastically larger than Unif [0, 1] under our assumptions.
Some more technicalities have to be considered for error control in a practical

set-up. First, in order for the uniformity assumption to hold, we depend on a
good convergence of the MCMC approximation. Second, since we refrain from
conditioning on ‖Y‖2, we need to know the variance, which is often rather
unrealistic. Though, we emphasize that the same theoretical result would hold in
the unknown variance case when actually using the conditioning trick. Further,
when using an overestimate of σ, tests become likely more conservative such that
type-I error control is given at least as good as with the true variance parameter.
However, this cannot be guaranteed in all cases. A discussion on this issue can
for example be found in the supplemental materials of [33]. Third, since we
work with finite data, there is no way to guarantee the screening assumption
in general. For analogous reasons as argued in Section 2.2.1, chances are that
multicarving corrects the type-I error better than single-carving in such set-
ups. However, if screening becomes too unlikely, breaches in the error rate are
likely to happen for multicarving as well. This is especially an issue for highly
correlated covariates which make the Lasso selection very difficult. We analyze
this effect in our simulations in Section 4.1 and Appendix C.1.
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3.2. Data carving for group testing

In this section, we focus on the theoretical properties of our group test applied
to a single group using a single split. Using Theorem 3, results for multicarving
then follow from standard arguments.

At the base of our group test is the following lemma, which is proven in
Appendix A.

Lemma 1. Let Y be generated by the linear model (1) with Gaussian errors.
Let G be some group with

∣∣G̃∣∣ > 0, where G̃ = G∩S̃. Assume that the screening

property (S̃ ⊇ S) and (Ã2) hold, and σ is known. Then, the probability law of(
X+

S̃

)
G̃
Y
∣∣∣ (XS̃\G̃

)�
Y, AY ≤ b

is completely defined by our parameter of interest βS̃
G̃
.

Using this lemma, we can base our inference statement on the conditional

distribution of
(
X+

S̃

)
G̃
Y. Let y be some observation, then we define our selected

group p-value as

pG̃ (y) = P

[ ∑
j∈G̃

sign
(
β̂j

)(
X+

S̃

)
j
Y ≥

∑
j∈G̃

sign
(
β̂j

)(
X+

S̃

)
j
y

∣∣∣∣
βS̃
G̃
= 0,

(
XS̃\G̃

)�
Y =

(
XS̃\G̃

)�
y, AY ≤ b

]
. (16)

This probability can be calculated since we additionally condition on the only
remaining unknowns in the model. Notably, this exactly defines the “probability
of observing a value at least as extreme as the observed statistic” under null
hypothesis (14). Thus, it fulfils the desired property of a p-value, which leads to
the following theorem.

Theorem 3. Let Y be generated by the linear model (1) with Gaussian errors.
Assume that the screening property (S̃ ⊇ S) and (Ã2) hold, and σ is known. Let
y be a realization of Y and pG̃ (y) for some group G with

∣∣G̃∣∣ > 0 be calculated
as in (16). Then, under null hypothesis (14), it holds

pG̃ (Y) ∼ Unif [0, 1] .

Now further define a general group p-value for group G as

pG (y) =

{
pG̃ (y) if

∣∣G̃∣∣ > 0

1 else.
(17)

Then, we can establish error control of our procedure.

Theorem 4. Let Y be generated by the linear model (1) with Gaussian errors.
Assume that the screening property

(
S̃ ⊇ S

)
and (Ã2) hold, and σ is known.
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Let y be a realization of Y and pG (y) for some group G be calculated as in (17).
Then, under null hypothesis (13) and for any α ∈ (0, 1], it holds

P [pG (Y) ≤ α] ≤ α.

The proof is available in the Appendix A. The technicalities mentioned at
the end of Section 3.1 apply in the same fashion for our group test.

4. Numerical results

In this section, we provide detailed results of the performance of our proposed
methods in simulation studies. All results were obtained using the programming
language R [29]. As an overall summary, we find that multicarving exhibits often
an advantage, sometimes being substantial, over multisplitting or single-carving
methods.

4.1. Multicarving for the linear model

We tested our multicarve method testing for single variables in the linear model
on several simulation set-ups and we present here the results for two of them. In
the Appendix C.1, we add further results for variations of these set-ups where
we also show the limitations of (multi)carving.

We do not restrict ourselves to successful screening, we assume the variance
to be unknown and estimate it, and lastly, we select our model through cross-
validated Lasso with regularization parameter λ1se. All these choices are (in
part only slightly) deviating from our theoretical assumptions. In particular, by
choosing λ through cross-validation, more information of Y is used than invoked
in the selection event, making the inference biased. There are first approaches
to correct for this additional bias, for example, in [30]. However, we refrain
from applying any of these, since they will get computationally more involved
and because our empirical results do not show any significant violation of the
selective type-I error rate (8) using cross-validation. Perhaps though, this should
be done with a certain precaution as, e.g., Taylor and Tibshirani [28] report
bad error control using a cross-validated λ for post-selection inference in a Cox
model.

We vary the number of splits B in {1, 10, 20, 30, 40, 50} and the fraction f
of data used for selection in {0.5, 0.75, 0.9, 0.95, 0.99, 1}. In order to keep this
section well-arranged, we restrict ourselves to reporting results for B = 1 and
B = 50. Generally, results for different values of B > 1 are qualitatively similar
with a tendency to get slightly better with increasing B. Naturally, f = 1 does
only make sense for a single split.

For aggregation over the different splits, we optimize over quantiles as in (6).
Starting with the default value in the multisplitting literature, γmin = 0.05, we
noticed that this makes the procedure sometimes overly optimistic leading to
poor error control. For some intuition of this effect, assume that there is a true
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active predictor Xj and a decently correlated predictor Xk for which the null
hypothesis holds true. In order to falsely reject this null hypothesis, Xk must
be selected as a proxy for Xj in at least γminB of the random sample splits.
Of course, this is more likely the lower we set γmin. Therefore, we additionally
consider γmin = 0.3 to have a comparison. Using a larger γmin is also favorable
for computational reasons since less MCMC samples are required to be able to
find a significant aggregated p-value for the smallest possible quantile, namely
the γmin-quantile; see Appendix C.3 for more details.

4.1.1. Toeplitz design

In a first scenario, we sample X once from a multivariate Gaussian distribution
with mean zero and a Toeplitz covariance matrix Σ with Σij = ρ|i−j| with
ρ = 0.6, and we then treat it as fixed design. The coefficient vector β is 5-
sparse, and the active predictors are {1, 5, 10, 15, 20}, each of which having a
coefficient equal to 1. The standard deviation is set to σ = 2, leading to a
signal-to-noise ratio (SNR) of approximately 1.71. For each simulation run, the
variance estimate σ̂2 is calculated through cross-validated Lasso on the entire
data set and is used globally for all splits and inference methods.

In Figure 1, we present the outcome of the simulations for the Toeplitz design.
Each performance measure represents 200 simulation runs. Although screening
cannot always be guaranteed, FWER and power are calculated with respect
to (2) with rejection level α = 0.05. Carving using the entire data for selection,
i.e., f = 1, is performed using a different algorithm, namely, the exact calculation
from [16]. We emphasis this using a cross in the figures.

The left-hand side of Figure 1 illustrates that neither single-splitting nor
single-carving controls the error at 5% for f = 0.5 and f = 0.75. Though, this
is not a violation of our theoretical result, error control would hold when only
looking at successful screening. For carving, the power initially increases in f
and decreases in the larger values of f . This can be explained by the trade-off
between more successful screening of the true active set and losing power for the
inference stage as more constraints are imposed. The same holds for splitting
and multicarving when looking at lower values of f as eventually too few active
variables are selected in the first stage such that no decent power remains. As
indicated by the inadmissibility statement in [10], carving outperforms splitting
with respect to power. The important question is now whether multicarving
introduces some improvement over single-carving. The single-carve method has
the highest power starting from f = 0.75, where f = 0.5 can be basically ignored
as error control is not given at all. The multicarve method with γmin = 0.3
performs best among all carving methods regarding FWER for all values of
f . Multicarving with γmin = 0.05 seems to be inferior in this scenario. Thus,
there is a trade-off between higher power and better error control. The highest
power with FWER ≤ 5% is obtained at f = 0.9 for all carving methods with a
value of 0.59 (single-carving), 0.51 (γmin = 0.3) and 0.50 (γmin = 0.05). So, the
single-carve method is favorable in this situation.
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Fig 1. Results for the Toeplitz design. Results using a single split on the left, results using
multiple splits on the right. On the x-axis: fraction of data f used for the selection. On the
y-axis: FWER depicted by symbols and power depicted by lines. For f = 1, the power is
represented by a cross and the FWER is represented by a circle including a cross. Symbols
for the FWER are slightly horizontally offset for better visibility. The horizontal line indicates
the target level of the FWER at α = 0.05. The parameter γmin for aggregation is defined in
(6).

Fig 2. Results for the Toeplitz design for the adjusted power. Results using a single split on
the left, results using multiple splits on the right. On the x-axis: fraction of data f used for
the selection. On the y-axis: adjusted power such that all methods have FWER of exactly 5%.
For f = 1, the power is represented by a cross. The parameter γmin for aggregation is defined
in (6).

However, this comparison is not quite fair since the methods have different
FWER. Therefore, we additionally look at an adjusted power, i.e., the rejection
level of the underlying hypothesis tests is adjusted such that each method has an
FWER of exactly 5% for each value of f ; see Figure 2. Carving is still superior
to splitting although the multisplit method with γmin = 0.3 is now competitive
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for lower values of f . All three carving methods reach their optimum at f = 0.9,
with an adjusted power of 0.67 (single-carving), 0.73 (γmin = 0.3) and 0.61
(γmin = 0.05).

In Appendix C.1.1, we present further results for Toeplitz designs where ρ is
changed to 0.3 and 0.9 respectively. Our assumption that the correlation level
highly affects the performance is confirmed. Especially, none of the methods in
scope performs particularly well for the scenario with ρ = 0.9 since the initial
selection using the Lasso is very unlikely to screen successfully.

Saturated viewpoint. As discussed in Section 2.4, testing for null hypothe-
ses (3) (single-carving) and (7) (multicarving) while omitting the screening

assumption is not particularly meaningful as βS̃(b)

is fully dense. Therefore,
the saturated viewpoint without the screening assumption has no advantage
for testing null hypotheses. However, in order to assess the power drop men-
tioned in Section 2.2.2, we test for null hypothesis (2) using inference in the
saturated model. For the set-up discussed above, this leads to the following
performance measures. The highest power with FWER ≤ 5% is 0.44 for single-
carving (f = 1), 0.44 for multicarving with γmin = 0.05 (f = 0.9) and 0.41
for multicarving with γmin = 0.3 (f = 0.95). The corresponding highest ad-
justed power is 0.50 (single-carving), 0.61 (γmin = 0.05) and 0.71 (γmin = 0.3),
all of which obtained at f = 0.9. Thus, the saturated approach leads to lower
power and adjusted power as anticipated. Though, this drop is less distinct for
the adjusted power as the additional conservatism also leads to better type-I
error control. Furthermore, we see that for multicarving the differences are less
pronounced than for single-carving. For computational reasons, the saturated
viewpoint might, therefore, be an interesting alternative for our multicarve pro-
cedure.

In Section 2.4, we further introduced the idea of multicarving confidence
intervals, where omitting the screening assumption and using the saturated
method appears to be more natural. We present a corresponding analysis in
Section 4.2.

PoSI. In Section 1, we mentioned the work by Kuchibhotla et al. [15] which
generally provides stronger guarantees at the price of increased conservatism. In
order to assess this conservatism, we executed a small simulation study applying
their method to this Toeplitz design. For this, we use the software available in
the GitHub repository cited in [15].

For the model selection, we use cross-validated Lasso on all data. Thus, the
models on which we perform inference are the same as for pure post-selection

inference used above. After calculating the 95% confidence regions for βS̃ in all
s̃ dimensions, we reject the null-hypothesis for covariates j for which 0 is not
within the region. With this technique, we did not receive a single rejection over
1000 simulation runs. Thus, the expectation that the inference method is very
conservative is confirmed.
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Since their method is not restricted to Lasso selection but allows for any
possible method in the selection step, we tried a different approach. Namely,
we applied an “oracle” selection that always selects the correct submodel, i.e.,
S̃ = S. However, not a single rejection was observed even using this best possible
selection. This further confirms the assumption that guaranteeing simultaneous
coverage in all submodels is too restrictive for this simulation set-up.

4.1.2. Semi-synthetic Riboflavin data

Since simulated data sometimes behaves somewhat more nicely than real data,
we also test the methods on “semi-synthetic” set-ups, meaning that the X ma-
trix comes from some real data set. We simulate the response Y from (1) with
known β.

We use the Riboflavin data set with n = 71 and p = 4088, which was made
publicly available by Bühlmann, Kalisch and Meier [6]. The original response
measures the Riboflavin production rate for 71 samples of strains of Bacillus
subtilis and gives the data its name. The X matrix contains the log-expression
level of 4088 genes for each of these strains.

For our simulations, we set β to be 2-sparse and use an SNR of 16. The active
variables are chosen at random for every simulation run and their respective
coefficient is set to 1. Since this can result in very different signal strength
depending on the correlation between the 2 variables, we fix the SNR on a

per run basis by always adjusting σ such that V̂ar(Xβ)
σ2 = 16. Here, V̂ar (Xβ)

denotes the empirical variance of the true underlying signal. We choose this
rather sparse set-up with high SNR since otherwise Lasso selection works very
poorly in this high-dimensional set-up and none of the inference methods has
good performance. To illustrate this, we repeat the same simulation with 4 active
predictors; compare with Appendix C.1.2.

For the selection, we again perform cross-validation on the given split. To
be more realistic, we stick to the unknown σ assumption. With the estimation
technique described before, we realized that P [σ̂ ≥ σ] is empirically quite low in
this scenario. Therefore, we choose the more conservative approach of calculating
a new σ̂ for every split as

σ̂b =

√∥∥y −Xβ̂
b∥∥2

n− s̃
, (18)

where β̂
b
is calculated on the selection data only but y and X are the full data.

The results obtained for the Riboflavin data with a sparsity of 2 are shown in
Figures 3 (FWER and power) and 4 (adjusted power). This set-up is now highly
in favor of our multicarve method. Especially, the highest power obtained for
FWER ≤ 5% is 0.42 (single-carving), 0.60 (γmin = 0.3) and 0.69 (γmin = 0.05);
see Figure 3. The multicarve methods reach this maximum at f = 0.9, while



1718 C. Schultheiss et al.

Fig 3. Results for the Riboflavin X with sparsity 2. See caption of Figure 1.

Fig 4. Results for the Riboflavin X with sparsity 2 for the adjusted power. See caption of
Figure 2.

single-carving only obtains error control starting from f = 0.95 and higher.
There is a power versus FWER trade-off between the two different values of
γmin.

The adjusted power is slightly in favor of the lower value γmin = 0.05 as
illustrated in Figure 4. More precisely, the highest adjusted power is 0.75 (γmin =
0.05) and 0.71 (γmin = 0.3) for the multicarve method. Both these values are
obtained for f = 0.95. Single-carving reaches its maximum of 0.46 at f = 0.9.
Thus, the adjusted power clearly prefers multicarving as well.

We note that although we increase both SNR and sparsity, the adjusted
power is not (much) better than in the previous set-up. This can be intuitively
explained by the following two reasons: First, p

n ≈ 58 in the Riboflavin design
is much larger than p

n = 2 in our Toeplitz design. Second, there are variables
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with a very high empirical correlation of up to around 99%, making them hardly
distinguishable in the selection stage.

4.2. Confidence intervals

We apply our method for confidence intervals to the same set-up with X simu-
lated from a multivariate normal distribution with Toeplitz ρ = 0.6 covariance
matrix as in Section 4.1.1. As we explicitly omit the screening assumption, we

use a different estimate σ̂ for every split as in (18). The target parameters βS̃(b)

j

in (12) are defined including an intercept. Naturally, whenever screening works,
this intercept term vanishes.

We use B = 50 splits and aggregate according to (6) with γmin = 0.05. The
obtained intervals are targeted to be 95%-confidence intervals (95%-CI).

In Tables 1 and 2, we compare the performance of our carving confidence
intervals to the ones obtained using multisplitting implemented in [9]. Those
results are based on 200 simulation runs.

The obtained intervals are generally rather conservative as the false coverage
rate is always far below the theoretical bound of 5%. Notably, for f = 0.5,
the intervals obtained through carving are not actually shorter than those from
splitting. The advantage of carving is that the intervals get shorter in a first
phase when increasing f . By increasing f , the selected models become more

stable and likewise, βS̃(b)

j differs less over different splits, b = 1, . . . , 50. Due

to more stable βS̃(b)

j , shorter intervals are theoretically possible with higher f .
Though, multisplitting cannot profit from this as too little information for the
inference stage remains after increasing f . The same holds for carving when
f becomes too large. The best performing method is carving with a selection

Table 1

Median length for active variables and average false coverage rate of the confidence
intervals. The left-hand side displays the median interval length obtained for the true active
predictors, i.e., {1, 5, 10, 15, 20}. The average false coverage rate of the obtained confidence
intervals is shown on the right-hand side. This rate is calculated either with respect to all

p = 200 variables or only with respect to variables that are actually tested for, i.e., variables
that are at least selected once within the 50 splits. In this analysis, variables not selected at

all are assigned an infinite confidence interval such that no false coverage can occur.

Median interval length for 95%-CI Average false coverage
number of active variables among

f Method 1 5 10 15 20 all
[
10−3

]
tested

[
10−3

]
0.5

Splitting 1.76 1.98 1.92 1.79 1.69 2.93 6.31
Carving 1.88 2.41 2.14 1.95 1.85 1.6 3.47

0.75
Splitting 2.42 2.77 2.7 2.44 2.3 0.23 1.07
Carving 1.70 2.18 1.95 1.75 1.63 0.68 2.65

0.9
Splitting 27.16 28.03 27.15 23.32 21.12 0 0
Carving 1.64 2.10 1.99 1.72 1.66 0.18 1.17

0.95
Splitting – – – – – – –
Carving 1.68 2.31 2.05 1.73 1.64 0.18 1.41

0.99
Splitting – – – – – – –
Carving 2.97 2.78 2.37 1.77 1.70 0.15 1.36
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fraction of f = 0.9 which outperforms every other configuration with respect to
at least three interval lengths. Further, it also performs comparably well with
respect to the false coverage rate as every configuration with lower false coverage
rate suffers from substantially longer intervals.

In a further analysis, we look at the length of the confidence intervals of all
covariates that were selected at least once within the B = 50 splits. For the
other variables, there is no real interpretation of the coverage in Equation (12).
Further, not selecting a covariate at all in 50 splits is a rather strong indication
for the variable generally being inactive such that treating it as if it has an
infinite confidence interval length does not seem appropriate. However, there
are still many variables obtaining an infinite interval length, namely, those that
are selected at least once but less than γminB times, i.e., once or twice in this
set-up.

In Table 2, we report the median over the 200 simulation runs over sev-
eral quantiles of the interval lengths among the selected variables. Due to the
possibility of infinite interval lengths, we focus on quantiles instead of aver-
ages.

Again, we note that for f = 0.5, the intervals obtained through multicarving
are longer than those from multisplitting. However, the power of multicarving
comes from the ability to raise the selection fraction without losing all infor-
mation for the inference stage. The 50 selected models become more stable for
larger values of f and fewer covariates are selected in total over the B splits.
The total number of distinct variables selected over all the splits is 96 and 20 on
average for f = 0.5 respectively f = 0.99. With fewer features under consider-
ation, a higher fraction of those is selected sufficiently often such that powerful
inference is possible. Those effects are visible in Table 2 as the quantiles of the
intervals using multicarving mostly become shorter when increasing f . For carv-
ing, there is also a natural countereffect as information for the inference stage
is lost, thus the quantiles of interval lengths are not strictly decreasing.

In summary, our confidence intervals obtain the desired coverage stated in
Equation (12). Further, multicarving brings an advantage compared to mul-

Table 2

Results of length of confidence intervals. Median is taken over simulation runs of several
quantiles over lengths of 95%-CI of variables that were selected at least once in B = 50

splits.

Quantile
f Method 10% 20% 30% 40% 50%

0.5
Splitting 2.37 3.09 4.26 ∞ ∞
Carving 4.49 12.46 44.59 ∞ ∞

0.75
Splitting 3.1 4.22 5.86 12.19 ∞
Carving 2.63 5.05 10.53 26.79 ∞

0.9
Splitting 31.54 905.75 ∞ ∞ ∞
Carving 2.08 3.25 4.99 9.47 19.33

0.95
Splitting – – – – –
Carving 1.89 2.78 3.84 5.36 8.11

0.99
Splitting – – – – –
Carving 1.94 2.53 3.44 4.69 6.13
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tisplitting because of the possibility to perform well using a higher selection
fraction f .

4.3. Data carving for group testing

In order to see how well our group test performs, we compare it with results
presented in [12]. The authors consider two scenarios testing either a small
or large group based on data simulated using different covariance structures.
Testing a large group in a dense scenario is described below. Results of group
testing for a small group in a sparse and high correlation scenario are illustrated
in the Appendix C.2.

The dense alternative with many small non-zero coefficients is a set-up where
testing single variables is difficult. More precisely, p is 500 and n is varied
in {250, 350, 500, 800}. The feature matrix X is generated from normally dis-
tributed features having a Toeplitz covariance matrix with ρ = 0.6. The pa-
rameter vector is defined as βj = δ for 25 ≤ j ≤ 50 and βj = 0 otherwise. We
vary δ over {0, 0.02, 0.04, 0.06} where δ = 0 corresponds to the global null. The
response vector Y follows our linear model (1) with σ = 1. This leads to SNR
in {0, 0.039, 0.154, 0.347}. We are interested in testing null hypothesis (13) for
the group G = {30, 31, . . . , 200}.

4.3.1. Single-carving for group testing

We perform inference using our group test introduced in Section 2.5. As in Sec-
tion 4.1, we vary the fraction of data used for selection f in {0.5, 0.75, 0.9, 0.95,
0.99, 1}. We start with just using a single split, i.e., B = 1, for inference. Notably,
for the group test, inference using f = 1 is obtained with MCMC sampling as
well. Since we condition on all but the covariates of interest, we generally have
more than 1 degree of freedom such that an easy calculation as in [16] is not
possible. The only exception to that is if

∣∣G̃∣∣ = 1, which is algorithmically
equivalent to single variable testing.

For the selection, we perform cross-validation. Based on the assumption that
Lasso might eliminate many of the covariates with weak signal, we use λmin

instead of λ1se. To assess the variance parameter σ, we use a global estimate
obtained with cross-validation and λmin on all data.

In Table 3, we show the results for the dense alternative. For each combination
of δ, n, and f , we report the empirical rejection rate (ERR), i.e., the fraction out
of 200 simulation runs in which the null hypothesis is rejected at level α = 5%.
For δ = 0, this measures the type-I error, for δ > 0, this measures the power.

For fixed δ > 0 and f , the power increases in the number of observations n,
and for fixed n and f , it increases in the signal strength δ. This conclusion is to
be expected.

The FWER is controlled for all combinations of f and n, for most combi-
nations even conservatively. The fraction f = 0.5 has always the lowest power
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Table 3

Empirical rejection rate at level 5% for the dense alternative using single-carving.

δ n f = 0.5 f = 0.75 f = 0.9 f = 0.95 f = 0.99 f = 1

0

250 0.04 0.075 0.035 0.045 0.05 0.075
350 0.025 0.045 0.08 0.055 0.035 0.05
500 0.025 0.045 0.08 0.045 0.04 0.035
800 0.025 0.03 0.045 0.05 0.03 0.03

0.02

250 0.1 0.155 0.16 0.12 0.18 0.145
350 0.105 0.185 0.175 0.205 0.18 0.19
500 0.16 0.23 0.255 0.275 0.25 0.24
800 0.455 0.485 0.55 0.455 0.5 0.485

0.04

250 0.46 0.6 0.62 0.59 0.68 0.6
350 0.66 0.795 0.845 0.82 0.815 0.74
500 0.88 0.945 0.96 0.965 0.97 0.93
800 0.98 0.995 1 1 1 0.995

0.06

250 0.88 0.935 0.97 0.955 0.955 0.925
350 0.96 1 0.995 1 1 0.985
500 0.995 1 1 1 1 0.995
800 1 1 1 1 1 1

because selection works not overly well. In many settings, f = 1 is also subop-
timal with respect to power as too little power remains for the inference stage.
Fractions f = 0.9 to f = 0.99 are all competitive and perform similar. This is
in good accordance with our results testing for single variables in Section 4.1.

Table 3 can be compared to [12, Table 1] for δ in {0, 0.04, 0.06} and n in
{250, 300, 500}, where six different methods are evaluated in this scenario. Our
method with fractions between f = 0.75 and f = 0.99 is amongst the best with
respect to power in each set-up. Especially, it has clearly higher power than
their method φΣ (1) for δ = 0.04, whereas the power is similar for δ = 0.06. The
power of the method φΣ (0.5) is comparable to the power of our group test but
their method attains slightly lower values. Though, their method φΣ controls the
error more conservatively such that a clear statement in favor of either method
is not possible.

If we summarize the results from the dense scenario in this section and the
results from the sparse scenario in Appendix C.2, we can state that our method
does not have the best performance in all possible set-ups. Though, it is com-
petitive in all of them, while all competitors have some set-ups where they do
not work well at all. Thus, our group test, which results from a very simple
adjustment of the data carving idea, offers some valuable results.

4.3.2. Multicarving for group testing

In Section 4.1, we see that the multicarve method usually has better error control
than single-carving. Based on this observation, it is to be expected that multi-
carving could further improve on group inference in scenarios where the error
is not controlled conservatively (cf. Table 3). Therefore, we test multicarving
for group testing as well. Indeed, with multicarving, no ERR above the target
level 5% occurs for δ = 0 in either alternative. However, the ERR for δ > 0,
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i.e., the power, is sensitive to the choice of the tuning parameters f , γ or γmin,
and B. Especially, in the two scenarios under consideration, aggregation using
a fixed quantile clearly outperforms the use of an optimized quantile according
to Equation (6).

In the following, we present results obtained using B = 20 splits and a fixed
quantile for aggregation of γ = 0.05 in order to show the possibilities of mul-
ticarving. We emphasize that these choices work comparably well such that in
general, when no such comparison is possible, one could expect slightly lower
power using multicarving for group testing. Those results are shown in Table 4.

We consider the dense alternative. For multicarving, the highest ERR for
δ = 0 is 5%, whereas it is 8% for single-carving. Naturally, there is some fluctu-
ation involved in those empirical values. Nevertheless, this difference indicates
an improvement of multicarving over single-carving. For most scenarios with
δ > 0, a selection fraction of f = 0.5 is favorable. The intuitive explanation
is that although

∣∣S̃[b] ∩G
∣∣ might on average be smaller than with higher frac-

tions f , it is still “big enough” in a decent number of splits. In these splits, the
lower f allows for a more powerful inference statement making the method more
powerful overall after aggregation. Notably, using B = 20 and γ = 0.05 (fixed
quantile for aggregation) is equivalent to a Bonferroni corrected minimum p-
value (cf. Equation (5)). Thus, only the most significant split is of importance.
We now compare the power in Table 4 to that for single-carving in Table 3.
Using a selection fraction of 0.5, multicarving outperforms any single-carving
configuration in all scenarios unless δ = 0.02 and n = 250. Thus, using multiple
splits and aggregating can bring a clear improvement. Though, this is rather
sensitive to the choice of the tuning parameters as mentioned above.

In summary, the natural extension of our group test using multiple splits
leads to a performance boost. Especially, the error can be controlled on a more
conservative level using multiple splits. A drawback of the method is its sensi-

Table 4

Empirical rejection rate at level 5% for the dense alternative using multicarving.

δ n f = 0.5 f = 0.75 f = 0.9 f = 0.95 f = 0.99

0

250 0.045 0.04 0.045 0.035 0.03
350 0.04 0.05 0.04 0.03 0.03
500 0.025 0.03 0.05 0.02 0.02
800 0.005 0.03 0.03 0.035 0.02

0.02

250 0.16 0.15 0.13 0.12 0.12
350 0.28 0.185 0.165 0.155 0.12
500 0.31 0.24 0.225 0.215 0.195
800 0.61 0.515 0.55 0.435 0.42

0.04

250 0.75 0.765 0.65 0.62 0.615
350 0.885 0.865 0.89 0.83 0.83
500 1 0.97 0.98 0.96 0.945
800 1 1 1 1 1

0.06

250 0.985 0.99 0.975 0.97 0.975
350 1 1 1 1 1
500 1 1 1 1 1
800 1 1 1 1 1



1724 C. Schultheiss et al.

tivity to tuning parameters. If those happen to be chosen poorly, power might
be lower compared to single-carving.

4.4. Multicarving for logistic regression

We conduct a similar simulation study as in Section 4.1 for the logistic model (15).
We reuse the matrix X coming from a Toeplitz covariance design from Sec-
tion 4.1 with dimensions n = 100 and p = 200. The active variables are
{1, 5, 10, 15, 20}, each of which having a coefficient of 2. After having noticed
that cross-validated Lasso tends to select overly sparse models in logistic re-
gression, at least in this set-up, we alter the selection technique. Namely, we
select a Lasso model with a given number of selected variables or if there is no
such model, the largest model with fewer variables. Inspired by [21], we choose
this number to be

⌊
n
6

⌋
= 16. Just as for cross-validated Lasso, this introduces

a slight bias to our test as λ is determined in a data-dependent fashion and
is not predefined. We stick to our usual tuning parameters, i.e., B is varied in
{1, 10, 20, 30, 40, 50} and f in {0.5, 0.75, 0.9, 0.95, 0.99, 1}. The target level for
the FWER remains at α = 5%.

Figures 5 (FWER and power) and 6 (adjusted power) illustrate the same
performance statistics as for the simulation examples in Section 4.1. Every per-
formance measure corresponds to 200 simulation runs.

All methods are rather conservative in this set-up. Especially, no value of
the FWER above the 5% level occurs. Furthermore, no significant findings are
observed for splitting which results in a power of 0. There exist probably better
algorithms for calculating low-dimensional p-values in logistic regression than
the ones used for splitting here. Though, as it is not of primary interest to our
work, we did not investigate this further. Single-carving has clearly higher power
than multicarving, whereas the latter controls the error on a more conservative
level. The highest power obtained is 0.28 (single-carving), 0.16 (γmin = 0.3)
and 0.14 (γmin = 0.05). All these maxima are reached at f = 0.75. Pure post-
selection inference has a power of 0.088. Thus, the conjecture that the constraints
might be too restrictive is confirmed.

For the trade-off between power and error control, we consider the adjusted
power as defined in Section 4.1. Interestingly, multisplitting is now quite com-
petitive. The interpretation is that although p-values are generally larger than
5%, there is still a distinction between active and non-active variables. The best
adjusted power of the multisplit method is 0.54. As the curve seems to increase
towards lower values of f , we further tested f = 0.3 and f = 0.4. Neither
leads to an increase in the adjusted power for multisplitting such that we can
assume that the optimum is reached around f = 0.5. Multicarving clearly out-
performs single-carving with the respective maxima being at 0.67 (γmin = 0.3),
0.64 (γmin = 0.05) and 0.49 (single-carving). Pure post-selection obtains an
adjusted power of 0.16.

In summary, we can state for this data that either of the carving methods
improves on pure post-selection inference. The choice between multicarving and
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Fig 5. Results for the Toeplitz design in logistic regression. See caption of Figure 1. Note that
the range of values on the y-axis is different compared to all the other figures.

Fig 6. Results for the Toeplitz design in logistic regression. See caption of Figure 2.

single-carving is a trade-off between power and FWER. Our definition of ad-
justed power, which makes the different methods have equal FWER, is in favor
of multicarving.

4.5. Runtime considerations

Our method is computationally quite involved while performing empirically well.
Details are discussed in the Appendix C.4. The computational bottleneck is the
MCMC sampling required to calculate p-values and therefore, we ignore the
other steps for our considerations. An approximate bound is O

(
BE

[
s̃4
])

for
multicarving, where the expectation is due to the fact that s̃ is non-constant
over splits.
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Another popular inference technique for high-dimensional statistics is the
de-biased Lasso [35]. A total of p + 1 Lasso fits have to be calculated on the
entire data. Thus, it scales as O

(
p2
)
. For high-dimensional data with p � n

and the standard assumption s̃ ≤ n1 ≤ n on the Lasso, we have accordingly
s̃ � p. Then, our multicarve method is more efficient than the de-biased Lasso
for p → ∞ if n = O

(
p1/2

)
.

5. Discussion and conclusions

We provide new developments based on the idea of data carving [10]. Particu-
larly for high-dimensional scenarios, we improve upon standard data carving.

First, we introduce multicarving in the spirit of multisplitting. Our simula-
tion study shows that multicarving generally leads to better error control and
its adjusted power is better than for the single-carve method. Furthermore, mul-
tisplitting and multicarving not only aim to reduce the FWER but also to make
results more replicable. It is very plausible that our multicarve method clearly
increases replicability compared to single-carving, due to the instability of the
Lasso model selector.

Second, we present group inference, a natural extension of single variable test-
ing. Such a group test can be applied using single-carving or using the advocated
multicarving. In simulation examples, either variant appears to be competitive
to several methods discussed in [12].

Last, we adapt data carving to make it applicable to logistic linear regres-
sion and other generalized linear models. Those adjustments are based on the
central limit theorem and follow from similar ideas as already introduced for
low-dimensional data and for pure post-selection inference. Our simulation study
leads to the same conclusions as for the linear model. In particular, data (multi)-
carving in the logistic case leads as well to a performance increase compared to
pure post-selection inference.

User-friendly R-software for all of the described (multi)carving methods is
available on GitHub, see https://github.com/cschultheiss/Multicarving.

Appendix A: Proofs

Proof of Lemma 1 We require Assumption (Ã2) such that
(
X�

1,S̃
X1,S̃

)−1
is

defined. As in Section 3.1, we implicitly assume rank
(
X1,S̃

)
= s̃ to follow from

the sparsity condition. This inverse is implicitly included in A and b. Using

the screening assumption, we know E [Y] = XS̃β
S̃ . Thus, we can write the

unconditional distribution of Y as follows

Y ∼ exp

{
1

σ2

(
XS̃β

S̃
)�

y − 1

2σ2
‖y‖2 − c

(
XS̃β

S̃ , σ2
)}

,

where c
(
XS̃β

S̃ , σ2
)

denotes the normalizing constant of the Gaussian distri-

bution. We see that X�
S̃
Y is the sufficient statistic, while βS̃ is the natural

https://github.com/cschultheiss/Multicarving
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parameter as σ is assumed to be known. Conditioning on the selection event
Y
∣∣AY ≤ b leads to a different exponential family with the same sufficient

statistic X�
S̃
Y and natural parameter βS̃ but different normalizing constant,

say, c′, compare with [10, Section 3].

Y
∣∣AY ≤ b ∼ exp

{
1

σ2

(
XS̃β

S̃
)�

y − 1

2σ2
‖y‖2 − c′

(
XS̃β

S̃ , σ2
)}
1Ay≤b

= exp

{
1

σ2

(
XG̃β

S̃
G̃

)�
y +

1

σ2

(
XS̃\G̃β

S̃
−G̃

)�
y − 1

2σ2
‖y‖2 −

c′
(
XS̃β

S̃ , σ2
)}
1Ay≤b

= exp

{
1

σ2

(
βS̃
G̃

)�
X�

G̃
y +

1

σ2

(
βS̃
−G̃

)�(
XS̃\G̃

)�
y − 1

2σ2
‖y‖2 −

c′
(
XS̃β

S̃ , σ2
)}
1Ay≤b.

Here, we split into the parameter that we want to perform inference for βS̃
G̃

and the nuisance parameter in the model βS̃
−G̃

. From the theory of exponen-

tial families, we know that the conditional law X�
G̃
Y
∣∣∣((XS̃\G̃

)�
Y, AY ≤

b
)

does not depend on βS̃
−G̃

. We now want to establish the same result for(
X+

S̃

)
G̃
Y
∣∣∣((XS̃\G̃

)�
Y, AY ≤ b

)
. For simplicity, we assumeXS̃ =

(
XS̃\G̃ XG̃

)
such that it can be separated into variables being part of the group and the oth-
ers. The result holds w.l.o.g., since permutations of the matrix’ columns do not
change our inference statement. Then, we get

X+

S̃
Y =

(
X�

S̃
XS̃

)−1
X�

S̃
Y

=
(
X�

S̃
XS̃

)−1 (
XS̃\G̃ XG̃

)�
Y

=
(
X�

S̃
XS̃

)−1

((
XS̃\G̃

)�(
XG̃

)�
)
Y

=
(
X�

S̃
XS̃

)−1

((
XS̃\G̃

)�
Y(

XG̃

)�
Y

)
.

Thus,
(
X+

S̃

)
G̃
Y
∣∣∣((XS̃\G̃

)�
Y, AY ≤ b

)
is a fixed affine transform of

X�
G̃
Y
∣∣∣((XS̃\G̃

)�
Y, AY ≤ b

)
, making it independent from βS̃

−G̃
as well. Nat-

urally, the subset
(
X+

S̃

)
G̃
Y is conditionally independent too. Based on our two

assumptions, the only parameters in the model are βS̃
−G̃

and βS̃
G̃
. Thus, after

establishing independence from the former, the only parameter left in the model
is the latter, which is exactly the lemma’s statement.
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Proof of Theorem 4 For a group G, we either have
∣∣G̃∣∣ > 0 or

∣∣G̃∣∣ = 0.

Assume the former case first. Due to screening, we know βS̃
j = βj ∀j ∈ S̃, which

leads to βS̃
j = βj ∀j ∈ G̃ as G̃ ⊆ S̃. Null hypothesis (13) then directly implies

βj = 0 ∀j ∈ G → βj = 0 ∀j ∈ G̃ → βS̃
j = 0 ∀j ∈ G̃,

which corresponds to null hypothesis (14). Therefore, all assumptions of The-
orem 3 are fulfilled, leading to the uniform distribution of the p-value. Error
control can thus be stated as

P [pG (Y ) ≤ α] = P [pG̃ (Y ) ≤ α] = α ≤ α.

In the other case (
∣∣G̃∣∣ = 0) we have

P [pG (Y ) ≤ α] = 0 ≤ α.

Thus, we obtain error control in either case, which closes the proof.

Appendix B: Sampling from a linearly constrained Gaussian

The algorithm presented in this section is strongly based on the GitHub repos-
itory cited in [10] for their simulations. However, since there seems to be no
written documentation of the algorithm itself and the theory behind, we pro-
vide it for the interested reader.

For simplicity, we will suppress index S̃, since we implicitly assume to work
in a selected submodel throughout this section.

In order to do inference for variable j, the goal is to sample from Y ∼
N
(
Xβ, σ2In

)
subject to AY ≤ b, (X−j)

�
Y = (X−j)

�
y ≡ d and βj = 0.

The first condition leads to boundaries on the sampling region, the second one
changes both the mean parameter and the covariance matrix, and the last one
further changes the mean and creates a null distribution.

B.1. Change of mean and covariance

Let Z be a Gaussian random vector with mean μ and covariance Σ. We are

interested in E

[
Z
∣∣∣CZ = d

]
≡ μ̃ and Cov

(
Z
∣∣∣CZ = d

)
≡ Σ̃. To find those,

split Z into

Z = ΣC� (CΣC�)−1
CZ+

(
I − ΣC� (CΣC�)−1

C
)
Z.

One can see (e.g., by calculating the covariance) that the second term is in-
dependent of CZ, thus unchanged by the conditioning, while the first part is
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completely defined by the conditioning. Thus, we have

μ̃ = E

[
Z
∣∣∣CZ = d

]
= E

[
ΣC� (CΣC�)−1

CZ+
(
I − ΣC� (CΣC�)−1

C
)
Z
∣∣∣CZ = d

]
= ΣC� (CΣC�)−1

d+ E

[(
I − ΣC� (CΣC�)−1

C
)
Z
]

= ΣC� (CΣC�)−1
d+

(
I − ΣC� (CΣC�)−1

C
)
μ

and similarly

Σ̃ = Cov
(
Z
∣∣∣CZ = d

)
= Cov

(
ΣC� (CΣC�)−1

CZ+
(
I − ΣC� (CΣC�)−1

C
)
Z
∣∣∣CZ = d

)
= Cov

(
ΣC� (CΣC�)−1

CZ
∣∣∣CZ = d

)
+

Cov
((

I − ΣC� (CΣC�)−1
C
)
Z
∣∣∣CZ = d

)
+

2Cov
(
ΣC� (CΣC�)−1

CZ,
(
I − ΣC� (CΣC�)−1

C
)
Z
∣∣∣CZ = d

)
= 0 + Cov

((
I − ΣC� (CΣC�)−1

C
)
Z
)
+ 0

= Σ− ΣC� (CΣC�)−1
CΣ.

In our problem of interest, we have μ = X−jβ−j (after setting βj = 0),

Σ = σ2In, and C = (X−j)
�
. This yields

μ̃ = X−j

(
X�

−jX−j

)−1
d = PX−jy

and
Σ̃ = σ2

(
In −X−j

(
X�

−jX−j

)
X�

−j

)
= σ2P⊥

X−j
.

Most importantly, the mean term does not have any dependence on β−j such
that we can calculate an inference statement without knowing the other coeffi-
cients.

B.2. Computational shortcuts: linear transformations

Since all constraints are linear, they can also be guaranteed for linear transfor-
mations of Y if not too much dimensionality reduction is applied.

Define the least squares solution on all data as

β̂ =
(
X�X

)−1
X�Y

and the one on the selection data only as

β̂1 =
(
X�

1 X1

)−1
X�

1 Y1.
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Then, two vectors which are well suited to fulfil all constraints after transfor-
mation are

U =

(
β̂

β̂1

)
∈ R

2s̃ or V =

(
β̂1

Y2

)
∈ R

s̃+n2 .

Since those are linear transformations, they will still be Gaussian with mean
and covariance that can be easily derived from those of Y.

Further, the constraints transform to

X�
−jY = d ↔

(
X�X 0s̃×s̃

)
[{1,...,s̃}\j, {1,...,2s̃}] U = d

X�
−jY = d ↔

(
X�

1 X1 X�
2

)
[{1,...,s̃}\j, {1,...,(s̃+n2)}] V = d.

We use the bracket notation for the indices to indicate that row j of the resulting
matrix has to be omitted. And, by using the active constraints from [16], we
have

A = −diag
(
ξ̂
) (

X�
1 X1

)−1
X�

1 , b = −λdiag
(
ξ̂
) (

X�
1 X1

)−1
ξ̂,

where ξ̂ denotes the signs of the parameters’ Lasso estimates. This can be trans-
formed to

AY1 ≤ b ↔
(
0s̃×s̃ −diag

(
ξ̂
))

U ≤ b

AY1 ≤ b ↔
(
−diag

(
ξ̂
)

0s̃×ñ2

)
V ≤ b.

Thus, we have transformed the linear equality and inequality constraints and
can proceed as if we were to sample from Y by firstly adjusting the mean and
the covariance matrix as described in Section B.1.

The choice of whether to sample from U or V is rather simple: just use
whichever has lower dimensionality in order to increase efficiency. As stated in
Section 2.2.2, one would further condition on ‖Y‖2 in the unknown variance
case. Though, this constraint is not transformable to U or V, thus the dimen-
sionality could not be reduced. Therefore, we use an estimate of the variance
instead of the (theoretically beautiful) conditioning idea for our simulations.

B.3. Whitening

In order to make the MCMC algorithm simpler, we would like to always sample
from zero mean unit variance independent Gaussians (i.e., white Gaussians).
This can be achieved by applying a further linear transformation. We need a
forward map transforming the initial point and an inverse map transforming
back the MCMC sample.

Assume that we sample from Y ∼ N (μ,Σ)
∣∣AY ≤ b which is achieved by

applying the transformations from the previous two sections. Here, Σ ∈ R
n×n

has rank r = n + 1 − s̃, i.e., Σ is not full-ranked whenever s̃ > 1. This is as
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we lose some degrees of freedom after conditioning (cf. Section B.1). Further,

define matrices Σ
1
2 ∈ R

n×r and Σ− 1
2 ∈ R

r×n such that

Σ
1
2

(
Σ

1
2

)�
= Σ, Σ− 1

2Σ
1
2 = I.

These can be found, e.g., by using the eigenvalue decomposition of Σ. Then, our
forward map is

Y′ = W
(
Y
)
= Σ− 1

2 (Y − μ) ,

and accordingly, the inverse map is

Y = W−1
(
Y′) = Σ

1
2Y′ + μ.

Note that W
(
W−1

(
Y′)) = Y′ ∀Y′ and further W−1

(
W
(
Y
))

for all Y fulfilling
the equality constraints, thus all Y we are interested in.

Importantly, the boundary constraint AY ≤ b has to be transformed as well.
This is possible by

AY ≤ b ↔ A (Y − μ) ≤ b−Aμ ↔ AΣ
1
2Y′ ≤ b−Aμ,

which leads to
A′ = AΣ

1
2 , b′ = b−Aμ,

i.e., the constraints in the whitened space. With these whitened constraints at
hand, the only thing left is to sample from a white Gaussian subject to linear
inequality constraints.

Notably, since Σ− 1
2 is a wide matrix (r < n unless s̃ = 1), we transform

into a lower-dimensional space. Therefore, the transformation into the withened
space leads to a further dimensionality reduction, which makes the sampling
more efficient.

B.4. Sampling from a linearly constrained white Gaussian

The MCMC algorithm presented in this section is as well based on the mentioned
GitHub repository. Though, we emphasize that any algorithm approximating a
white Gaussian with linear inequality constraints could be invoked in this place
using the same preprocessing steps (cf. Sections B.1–B.3).

For simplicity, reuse all initial names, thus we want to sample from Y ∼
N (0, I) subject to AY ≤ b and let y0 be a point fulfilling the constraints.
More precisely, y0 is the preprocessed version of the observed vector.

The idea is to move in every step t in a given random direction ηt, while
keeping the projections into its orthogonal complement fixed, i.e.,

P⊥
ηtYt = P⊥

ηtyt−1.

Or in other words, we want to sample from

Yt ∼ N (0, I) subject to AYt ≤ b, P⊥
ηtYt = P⊥

ηtyt−1.
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This is in exact analogy to the set-up in [16] for pure post-selection inference
using ηt as direction of interest and yt−1 as observation to base the inference
on. Thus, the boundary derived for pure post-selection inference can be reused,

making
(
ηt
)�

Yt a univariate truncated Gaussian with known mean and vari-
ance. One can easily sample from this leading to a new point yt. For every
Yt, this can be repeated for a new random direction ηt such that the whole
constrained space should be explored. After enough steps, the samples should
approximate the null distribution sufficiently well.

An alternative algorithm that could be used for the actual MCMC sampling
is the Hamiltonian Monte Carlo algorithm described in [25]. An implementation
thereof is available in the R-package tmg [24].

Appendix C: Additional numerical results

This section contains additional numerical results and details about runtime
considerations.

C.1. Multicarving for the linear model

We consider slight variations of the simulation set-ups in Section 4.1. Especially,
we look at scenarios where the selection stage is rather hard leading to low prob-
ability of screening. This can have a negative impact on the performance of the
inference methods for multiple reasons. First, without screening the theoretical
validity for the error control is not given anymore. Second, selecting less true
active predictors leads to less potential for true rejections such that the power
drops.

C.1.1. Toeplitz design with different correlation parameter

As we mention in Section 3.1, the correlation between predictors has a high
impact on the success of screening in the finite data set-up and accordingly, on
the performance of our procedure. To analyze this effect, we redo our simulation
for the Toeplitz design in Section 4.1.1 with different correlation parameter ρ.
We test the values ρ = 0.3 and ρ = 0.9 and otherwise proceed as before. We
sample the predictor matrix X once for each value of ρ. To make things as

comparable as possible, we fix the noise level such that V̂ar(Xβ)
σ2 = 1.71 as it was

in the set-up in Section 4.1.1.
We first consider ρ = 0.3 for which we show the obtained FWER and power

in Figure 7 and the obtained adjusted power in Figure 8. Comparing this to our
base case in Section 4.1.1, we see that the curves for power and adjusted power
are much higher while as the FWER are at a lower level. Thus, this problem
is a lot easier to handle by all the inference methods at hand as one would
expect. Our conclusions are similar to the set-up with ρ = 0.6 comparing the
different methods. Single-carving obtains the highest power with FWER ≤ 5%
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Fig 7. Results for the Toeplitz design with ρ = 0.3. See caption of Figure 1.

Fig 8. Results for the Toeplitz design with ρ = 0.3 for the adjusted power. See caption of
Figure 2.

with a maximum of 0.79 whereas the multicarving methods reach 0.74 (γmin =
0.05) and 0.75 (γmin = 0.3). Though, multicarving controls the error more
conservatively leading to better adjusted power with respective maxima of 0.90
for either carving method and 0.84 for single-carving. Two things shall be noted:
First, f = 0.75 is now competitive with higher selection fractions which can be
explained by the empirical success rate of screening that is already rather high
(76.5%) for f = 0.75. Second and related, multisplitting is also more competitive
since screening works reasonably well for selection fractions for which there is
still some power left using only the second part of the data for inference.

For the high-correlation case with ρ = 0.9, the results are displayed in Fig-
ures 9 and 10. Note that the plotting range is restricted to a more representative
area and that some FWER symbols above the level 40% are thus missing. As
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Fig 9. Results for the Toeplitz design with ρ = 0.9. See caption of Figure 1.

Fig 10. Results for the Toeplitz design with ρ = 0.9 for the adjusted power. See caption of
Figure 2.

expected, those results now look much worse. Especially, neither carving method
is able to control the FWER at 5% for any selection fraction. Of course, this
relates to the low probability of screening which is only at 7.9% even when using
all the data for the selection stage. Nevertheless, we still see that multicarving
leads to better error control than single-carving except for f = 0.5, where the
FWER for single-carving is 43% and for γmin = 0.05 it is even 71%. Accord-
ingly, the best adjusted power is also better for multicarving. Though, all the
values are on a very low level with respective maxima of 0.052 for either value
of γmin and 0.045 for single-carving. Further, we note that multisplitting with
γmin = 0.3 performs roughly as well as multicarving with respect to the adjusted
power for f = 0.5 and f = 0.75. We think that this is because the performance
of each method is mainly driven by the selection quality in this scenario such
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that the blessings of multiplicity are more pronounced than those of carving.

In summary, our assumption that lower correlation leads to better perfor-
mance and vice-versa is confirmed in this analysis. Especially, none of the in-
ference techniques in scope works well in a scenario where the selection stage is
very difficult and screening is very unlikely. Nevertheless, we can still see some
positive effect of using multiple splits in this scenario.

C.1.2. Semi-synthetic Riboflavin data for sparsity 4

We redo the simulation as in Section 4.1.2 setting the sparsity to 4 with-
out changing anything else. The respective results are presented in Figures 11
(FWER and power) and 12 (adjusted power).

Note that we restrict the plotting area of the y-axis to a maximum of 0.2 such
that some values of the FWER are non-visible. At first glance, one sees that the
power is generally quite low for all methods while as the error is above the 5%
level for many set-ups leading also to low adjusted power. As in Appendix C.1.1,
this relates to the difficulty for the selection stage. Screening only worked in
9.8% of the simulation runs using all data for selection and naturally even less
for any subset. For comparison, screening worked in 81.3% of the instances in
the sparser alternative, which makes the problem much easier.

In this set-up, multicarving with γmin = 0.05 has the highest power for all
f , while γmin = 0.3 has the lowest FWER amongst the three carving methods.
The highest power obtained controlling the FWER at 5% is in favor of using
γmin = 0.3 with a value of 0.065. The other two methods obtain respective
maxima of 0.055 (γmin = 0.05) and 0.026 (single-carving). Especially, single-
carving only reaches error control at f = 1 which is pure post-selection inference.
The adjusted power is slightly higher for γmin = 0.05 than for γmin = 0.3 with
maximal values of 0.078 and 0.069. For single-carving, the maximal value is

Fig 11. Results for the Riboflavin X with sparsity 4. See caption of Figure 1.
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Fig 12. Results for the Riboflavin X with sparsity 4 for the adjusted power. See caption of
Figure 2.

0.048. In summary, multicarving is to be preferred over single-carving in this
difficult set-up.

As one of the main difficulties in this scenario is the bad screening property,
a natural adaption is the use of λmin instead of λ1se for selection with cross-
validation. This leads to larger selected models and could potentially increase
the probability of screening. Our simulation confirms that this leads to a perfor-
mance boost with the highest adjusted power for multicarving now being 0.148.
For simplicity, we refrain from showing the results in detail. It has to be men-
tioned though that the use of λmin leads to a substantial increase in runtime as
more variables are selected. We elaborate this effect further in Section C.4.

C.2. Data carving for group testing: sparse scenario

We refer to Section 4.3 for more details about the implementation and further
discussion.

For the sparse scenario, we choose β to be sparse and the active covariates
are strongly correlated with other covariates. The number of covariates p is as
well 500, and X is simulated using the following covariance structure

Σjl =

{
0.8 if 1 ≤ j �= l ≤ 5

0.6|j−l| otherwise.

Thus, Σ is the same Toeplitz matrix as in the dense alternative described in
Section 4.3 unless for the first five variables. The parameter vector is defined as
β1 = β3 = δ and βj = 0 otherwise, meaning that the active variables are within
the highly correlated set. This time δ is varied over {0, 0.1, 0.2, 0.3, 0.4, 0.5} and
n over {250, 350, 500}. The response Y is generated as before, leading to SNR
in {0, 0.036, 0.144, 0.324, 0.576, 0.9}. In this scenario, we are interested in the
null hypothesis (13) for the group G = {1, 2, . . . , 5}.
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C.2.1. Single-carving for group testing: sparse scenario

In Table 5, we report the empirical rejection rate for the scenario with very
sparse β and highly correlated features. This scenario seems to be easier to
handle than the dense scenario. Especially, the error is controlled at a more
conservative level, with the highest error being 1.5%. For the power, the ten-
dencies are similar as before. For δ ∈ [0.1, 0.2], f = 0.5 and f = 1 have generally
the lowest power, while the highest power is obtained with f ∈ [0.75, 0.95].
Starting from δ = 0.3, f = 1 leads to the lowest power, while the other ERR
are mostly exactly 1. These results are to be compared to [12, Table 3] for δ
in {0, 0.2, 0.3}, where they test the six methods in the sparse scenario. Their
proposed methods φΣ (0.5) and φΣ (1) have lower power than our method for
δ = 0.2, while error control works very reliably for all three methods. The power
is (almost) at 1 for all methods (except for their method φI) for δ = 0.3. The
methods φhdi and φFD obtain values of power comparable to our method at a
price of clearly higher error.

C.2.2. Multicarving for group testing: sparse scenario

The results for multicarving are illustrated in Table 6. As for single-carving,
error control in the highly correlated sparser alternative is no issue with the
multicarve method. Namely, no ERR above 1.5% occurs for δ = 0 for multi-
carving either. Again, using a selection fraction of f = 0.5 seems to be favorable
for multicarving.

Looking at Table 5, one sees that none of the single-carving configurations
outperforms multicarving with f = 0.5 in any scenario with δ > 0. Therefore,

Table 5

Empirical rejection rate at level 5% for the sparse alternative using single-carving.

δ n f = 0.5 f = 0.75 f = 0.9 f = 0.95 f = 0.99 f = 1

0
250 0 0 0.005 0 0.005 0.01
350 0.005 0 0.005 0 0.005 0.005
500 0.015 0.005 0 0 0.005 0

0.1
250 0.2 0.32 0.275 0.285 0.28 0.215
350 0.385 0.445 0.54 0.45 0.445 0.43
500 0.575 0.705 0.735 0.77 0.72 0.6

0.2
250 0.845 0.975 0.955 0.94 0.955 0.895
350 0.96 1 1 1 0.995 0.935
500 0.985 1 1 1 1 0.955

0.3
250 1 1 1 0.995 0.995 0.97
350 1 1 1 1 1 0.97
500 1 1 1 1 1 0.975

0.4
250 1 1 1 1 0.985 0.965
350 1 1 1 1 1 0.975
500 1 1 1 1 1 0.98

0.5
250 1 1 1 1 0.995 0.98
350 1 1 1 1 1 0.99
500 1 1 1 1 1 0.995
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Table 6

Empirical rejection rate at level 5% for the sparse alternative using multicarving.

δ n f = 0.5 f = 0.75 f = 0.9 f = 0.95 f = 0.99

0
250 0.005 0 0.005 0 0
350 0.015 0 0.005 0 0
500 0.005 0 0.005 0 0

0.1
250 0.33 0.325 0.265 0.24 0.245
350 0.57 0.495 0.42 0.38 0.37
500 0.785 0.765 0.69 0.675 0.605

0.2
250 0.99 0.985 0.98 0.945 0.955
350 1 1 0.995 1 0.99
500 1 1 1 1 1

0.3
250 1 1 1 1 1
350 1 1 1 1 1
500 1 1 1 1 1

0.4
250 1 1 1 1 1
350 1 1 1 1 1
500 1 1 1 1 1

0.5
250 1 1 1 1 1
350 1 1 1 1 1
500 1 1 1 1 1

we can state that multicarving brings an improvement in this alternative as well
when choosing the tuning parameters properly

C.3. Effect of the aggregation parameter on the runtime

Using a larger γmin for the aggregation in (6) is favorable for computational
reasons. First, only variables present in at least γminB models have to be
tested for. The higher this threshold is, the more variables can be omitted
directly, reducing computing time. Second, if we account for the multiplicity
correction that we impose through considering multiple variables and aggre-

gating over multiple splits, raw p-values of
αγmin

s̃ (1− log (γmin))
or smaller should

be possible. Otherwise, one can never observe a significant effect occurring from
Pj = (1− log (γmin))Qj (γmin) (cf. Section 2.2.1). Accordingly, we need at least

s̃ (1− log (γmin))

αγmin
(19)

MCMC samples to use the method to full capacity. This requirement decreases
in γmin and is about 11 times higher for γmin = 0.05 than for γmin = 0.3.

C.4. Details for runtime considerations

We discuss what influences the runtime of multicarving and how to further speed
it up. Especially, we want to assess how the runtime behaves as p � n → ∞.

We first review the structure of our method. For a total of B times, the data
is split into two parts, a model is selected on the first part, and p-values are
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calculated using the carving idea. For those p-values, a separate calculation for
all of the s̃ selected variables is necessary. Lastly, the B p-values of the different
splits are aggregated per covariate. We ignore splitting the data, the initial selec-
tion stage, and the aggregation for our considerations since the computational
bottleneck is the MCMC sampling required to calculate p-values.

Naturally, the runtime scales linearly in B. For every split, s̃ MCMC chains
have to be sampled and one needs O (s̃/α) samples in order to have the possi-

bility to observe a significant result. Multicarving takes B (1−log(γmin))
γmin

times as
long as single-carving due to using multiple splits and the aggregation over the
different splits (cf. Equation (19)). Though, in practice convergence of the chain
is another issue such that for single-carving more than the minimally required
samples are likely to be generated and the difference between the two meth-
ods is slightly reduced. For single-carving and multicarving, there is a factor of
s̃2 involved as one needs s̃ chains of size O (s̃/α). Lastly, sampling happens in
a min (s̃+ 1, n2 + 1)-dimensional space subject to s̃ inequality constraints (cf.
Appendix B). We discuss two algorithms in the Appendix B.4 and the choice of
the MCMC algorithm influences the runtime.

Pakman and Paninski [25] state that for their algorithm the exact run time
also depends on the shape of the constraint such that a general statement
cannot be made. There are steps of complexity O

(
min (s̃+ 1, n2 + 1)

2 )
and

O
(
min (s̃+ 1, n2 + 1) s̃

)
involved, which can be bounded by O (s̃)

2
. However,

the number of such calculations needed depends on the selection event’s geom-
etry.

For the hit-and-run algorithm adapted from the GitHub repository cited
in [10], every step involves solving a problem of the complexity of pure post-
selection inference as in [16]. Due to the matrix equation involved in calculating
the bounds, this leads to a complexity of O (min (s̃+ 1, n2 + 1) s̃) ≤ O

(
s̃2
)
.

For both algorithms, we come up with an approximate bound of O
(
BE

[
s̃4
])

for multicarving where the expectation is due to the fact that s̃ is non-constant
over splits.

In comparison, if we use the saturated viewpoint instead, p-values for every
variable are determined by calculating bounds once taking at mostO (n1s̃) steps.
Assuming s̃ = O (n1), the inference process can be bounded byO

(
BE

[
s̃3
])

such
that a factor of s̃ is saved. Though, it might be less appropriate to ignore the
initial Lasso selection for runtime considerations in the saturated model.

Notably, there are several ways to speed up multicarving algorithmically.
We want to state the two most obvious. As mentioned in Section C.3, not all
covariates have to be tested for but only the ones selected in at least γminB
of the splits. This means that the algorithm described in Section 2.3 has to
be adjusted to selecting B models first and performing inference afterwards,
while the final outcome is not altered by this change. This improvement is more
pronounced for higher values of γmin. The exact same adjustment could also
be applied to multisplitting. Second, not every MCMC chain has to be run to
the full extent as in Equation (19). If it is already clear with fewer iterates that
a covariate cannot be shown to be significant, the chain can be aborted in an
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earlier stage as for p-values clearly above the significance level the precision is
less important.
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[18] Mandozzi, J. and Bühlmann, P. (2016). Hierarchical testing in the high-
dimensional setting with correlated variables. Journal of the American Sta-
tistical Association 111 331–343. MR3494663

[19] Meinshausen, N. (2008). Hierarchical testing of variable importance.
Biometrika 95 265–278. MR2521583
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