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Abstract

Multimodal large language models (MLLMs) contribute a powerful mechanism
to understanding visual information building on large language models. How-
ever, MLLMs are notorious for suffering from hallucinations, especially when
generating lengthy, detailed descriptions for images. Our analysis reveals that
hallucinations stem from the inherent summarization mechanism of large language
models, leading to excessive dependence on linguistic tokens while neglecting
vision information. In this paper, we propose NoiseBoost, a broadly applicable and
simple method for alleviating hallucinations for MLLMs through the integration of
noise feature perturbations. Noise perturbation acts as a regularizer, facilitating a
balanced distribution of attention weights among visual and linguistic tokens. De-
spite its simplicity, NoiseBoost consistently enhances the performance of MLLMs
across common training strategies, including supervised fine-tuning and reinforce-
ment learning. Further, NoiseBoost pioneerly enables semi-supervised learning
for MLLMs, unleashing the power of unlabeled data. Comprehensive experiments
demonstrate that NoiseBoost improves dense caption accuracy by 8.1% with human
evaluation and achieves comparable results with 50% of the data by mining unla-
beled data. Code and models are available at https://kaiwu5.github.io/noiseboost.

1 Introduction

Recent Large language models (LLMs) [1, 2, 3, 4] have demonstrated significant potential in approx-
imating human intelligence and can serve as sophisticated assistants for intricate tasks. Building
on the foundational LLMs, Multimodal Large Language Models (MLLMs) [5, 6, 7] are designed
to transfer LLM’s zero-shot understanding ability to vision, extending the advantages of LLMs to
the realm of multi-modality comprehension. Despite the significant progress made in recent MLLM
research, no MLLM method can be immune to hallucinations [8, 9] which limits their applicability in
real-world applications.

Recent studies on mitigating hallucination predominantly concentrate on the development of a
tailored decoder or the annotation of hallucination-specific data. OPERA [10], utilizing a discovery
and re-decoding loop, implements a language over-trust penalty to discard hallucinated results and
progressively regenerate them. By introducing visual contrastive decoding, [11] subtracts the decoded
logits of hallucinated visual inputs from those of the original input. Despite these re-decoding-based
methods do not require training, they achieve performance improvements by doubling or even tripling
the inference time, rendering MLLMs challenging for deployment on personal devices. Conversely,
HallDoctor [8, 12] establish a preference dataset annotation pipeline that distorts the ground truth
answer with errors to form hallucinated pairs, which is later trained to align the model’s honesty.
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Figure 1: MLLMs suffer from hallucinations due to the over-reliance on language priors. In (a), the
hallucination tokens are overly dependent (0.27) on previous language tokens, and later tokens are all
hallucinations. Meanwhile, in (b), NoiseBoost helps MLLMs distribute the attention weights evenly
among visual and language tokens by noise perturbation, leading to honest results.

Without distorting the training response, Fine-grained PPO [13] annotates the model response on a
word-by-word basis to train a reward model and align the model’s generation with proximal policy
optimization [14]. However, these manually curated reward datasets differ in distribution from real-
world usage and cannot encompass all scenarios. In this paper, we aim to identify the fundamental
reasons for hallucination and enhance MLLM’s training without additional datasets or training costs.

Upon diving into the attention mechanism of MLLMs, we discovered that the occurrence of halluci-
nation could be attributed to an excessive dependence on language priors. During the LLM response
generation process, certain language tokens are automatically selected as anchors [15], causing
subsequent generations to rely more heavily on the summarization of anchor token information, rather
than on the comprehensive set of preceding visual and linguistic tokens in the context. As depicted
in Fig. 1(a), MLLM’s information flow is unevenly distributed from visual and language tokens.
Furthermore, MLLM’s visual and language tokens are from separately pre-trained visual encoder
and LLMs [5, 6, 7], leading to a significant disparity in features even after training. Since MLLM’s
anchor token selection frequency is correlated with generation length, the hallucination phenomenon
gets worse when generating long, detailed descriptions. Without appropriate training methodologies,
the flow of information from visual tokens to linguistic tokens is hindered, leading to a neglect of
visual information and an over-reliance on language priors.

In this paper, we propose NoiseBoost, a simple and widely applicable noise perturbation method
designed to mitigate hallucination across various MLLM training stages. NoiseBoost disrupts the
excessive dependence on language priors, facilitating a balanced distribution of the model’s attention
between visual and linguistic tokens. Specifically, we increase the hardship in MLLM’s learning
process by incorporating noise feature perturbation, achieved by injecting noise into visual tokens.
This approach complicates visual understanding, necessitating more evenly distributed attention
weights in LLM. Our extensive experiments demonstrate that the injection of Gaussian noise to
projected visual tokens consistently enhances performance with negligible additional training costs.
As depicted in Fig.1(b), token correlation is evenly distributed, significantly reducing overconfidence
induced by summary tokens in LLMs. To further exhibit NoistBoost’s generalizability, we conducted
experiments across two MLLM training stages: supervised fine-tuning and reinforcement learning.
NoiseBoost consistently improves performance in both training methods across hallucination and
question-answer datasets, validating the efficacy of feature perturbation. To verify the results of long
description generations, we evaluated 1k images by annotators for dense captions, which NoiseBoost
shows an 8.1% improvement in accuracy.

By integrating NoiseBoost, we pioneer the incorporation of semi-supervised learning (SSL) architec-
ture for MLLM models. Current MLLM training relies on noisy web corpus, incurring substantial
labeling costs for data cleaning without harnessing the potential of unlabeled data. The challenge is
that MLLM does not have a mechanism for teacher-student learning with pseudo labels, which is
a crucial element in traditional SSL architecture. We generate pseudo labels using original images
and use NoiseBoost to be the noisy student, learning to produce consistent and robust results. Our
experiments show that NoiseBoost can unleash the power of unlabeled data and achieve similar
performance with 50% of labeled data.
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In summary, our contributions are as follows:

• With analyzing the cause of hallucination, We propose a simple and well-generalized method,
NoiseBoost, which effectively alleviates hallucination for MLLM at negligible additional cost
without introducing extra data.

• We are the pioneers in facilitating semi-supervised learning for MLLMs with NoiseBoost and
reach the same performance with 50% of training data by mining the power of unlabeled data.

• Extensive experiments indicate the effectiveness of NoistBoost as a general training enhancement
method, providing consistent performance improvement for MLLMs.

2 Related Work

2.1 Multimodal Large Language Foundation Models

Recent advancements in MLLMs research are primarily attributed to the evolution of large language
models (LLMs). To integrate vision models with LLMs, existing MLLMs typically utilize lightweight
layers such as QFormer [16] or linear projection [5]. Notably, LLaVA [5] integrates a vision encoder
and an LLM to facilitate general-purpose visual and language understanding. This is achieved
using multi-modal language-image instruction-following data, with the vision encoder designed to
project image features into language token representations. MiniGPT-4 [17] incorporates a pretrained
ViT and Q-Former and an LLM for multi-modal generation and understanding. Mini-gemini [18]
enhances multi-modal reasoning capabilities through high-resolution visual tokens, employing an
additional visual encoder for high-resolution refinement. However, directly bridging visual and
language modalities causes hallucinations from over-reliance on the language priors. We propose
NoiseBoost to redistribute attention weight to both visual and linguistic tokens by injecting feature
perturbations to visual features.

2.2 Hallucinations in MLLMs

Hallucination in MLLMs has significantly impeded their usage in the real world, especially for tasks
that rely on precise captions. Previous works focus on two perspectives: dataset construction and
decoding schemes to alleviate the hallucination in MLLMs. For dataset construction, HallDocter [8]
proposes a pipeline to annotate the hallucination dataset with the help of GPT4V. To enable rein-
forcement learning, [19, 20] propose object substitution using GPT4V and labor checking to create a
hallucinated response pair. However, rectifying large models like MLLM with small curated data
is contrary to the scaling law. With decoder scheme optimization, [21] proposes to achieve an
un-hallucinated response by subtracting the hallucinated response decoded simultaneously using
only language prompts. OPERA [10] proposes a penalty-based found and re-decoding method to
reduce hallucinations. Although effective, decoding-based methods require iterative decoding, which
incurs computational burden and impedes MLLM’s deployment on personal devices. In this paper,
we design a simple and well-generalized noise perturbation method for alleviating hallucinations
without introducing additional datasets or inference costs.

3 Method

In this section, we first introduce the preliminaries of MLLM in Sec.3.1. Then we show how
NoiseBoost is applied to different MLLM training methods, including Supervised Fine-tuning in
Sec.3.2 and reinforcement Learning in Sec. 3.3. Finally, we incorporate Semi-Supervised Learning
into MLLM by using NoiseBoost in Sec.3.4.

3.1 Preliminaries

Multimodal large language models (MLLMs) attain visual comprehension capabilities by integrating
two well-established technologies—vision encoder and large language model (LLM). The process of
using MLLM starts with an input image 𝑋𝑣 and a question prompt 𝑋𝑞 from multi-turn conversation
data (𝑋1

𝑣 , 𝑋
1
𝑞 , 𝑋

1
𝑎, ..., 𝑋

𝑛
𝑣 , 𝑋

𝑛
𝑞 , 𝑋

𝑛
𝑎 ) where the turn number is 𝑛 and 𝑋 𝑖

𝑎 is the 𝑖-th turn’s answer. Fig.2(a)
illustrates a classic MLLM architecture [5], which employs a projection layer W𝑝 to align the channel
dimension of visual tokens extracted via a pre-trained vision encoder 𝑔𝑣 to language embeddings, as
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Figure 2: Framework of NoiseBoost. We add noise perturbation to visual tokens to mitigate the
over-reliance on language tokens and thus fewer hallucinations. For SFT, we directly inject noise to
visual features. We only inject perturbation to preferred response since that can make MLLMs harder
to learn and achieve better results. For semi-supervised learning, we use freezed MLLM as a teacher
to generate pseudo labels and NoiseBoost as students for consistency regularization.

follow:
𝑧 = (𝑧𝑞 ,W𝑝 (𝑔𝑣 (𝑋𝑣)) (1)

,where z is the input embedding of MLLM, 𝑧𝑞 is the language instruction embedding convert from
𝑋𝑞 by a word to vector model and 𝑋𝑣 is the input image.

It is easy to notice that the vision encoder and LLM are pre-trained separately, with the projector being
the only newly introduced component. Consequently, MLLMs take shortcuts to be excessively depen-
dent on language priors, neglecting the visual aspect because of the disparity in features. NoiseBoost
introduces noise perturbation to visual tokens, thereby complicating the visual understanding process
and compelling the MLLM to allocate more attention to the visual aspect, reducing its reliance on
language priors.

3.2 Supervised Noise Boosting Fine-tuning

Supervised Fine-tuning(SFT) is a widely used training technology, in Fig.2(a). Given an image
and a language prompt, the MLLM model directly predicts the linguistic results autoregressively
following LLM’s convention. Without specialized for multi-modality training, MLLM inherited the
characteristics of LLM with over-reliance on language priors, as depicted in the token correlations
matrix in Fig.4. To help MLLM redistribute attention evenly, we propose a noise feature perturbation
method 𝜙𝑣 to disturb pre-trained visual features. Based in Eq. 1, the noise feature perturbation can be
represented as 𝑧 = 𝑧𝑞 + 𝜙𝑣 (𝑊𝑝 (𝑔𝑣 (𝑋𝑣))), where 𝑧 is the perturbed visual tokens. So the SFT loss is
as follows:

L𝑠 𝑓 𝑡 = −𝐻 (𝑦𝑤 |𝜙𝑣 (𝑧), 𝑋𝑞), (2)

where 𝐻 represents the cross-entropy operation used in SFT.The vision feature disturbance makes it
hard for MLLM to discern the visual information and pay more attention to image understanding. We
found that adding Gaussian Noise perturbation as 𝜙𝑣 to the projected vision tokens can effectively
reduce the overreliance on language tokens.

3.3 Reinforcement Noise Boosting Learning

Reinforcement learning has emerged as an essential technology with the rise in popularity of
LLMs [14]. However, the direct application of reinforcement learning techniques from LLMs
to MLLMs without adaptation has proven to be unstable due to data limitations, as also observed
in [19]. To address this, we propose the integration of noise feature perturbation for visual tokens
to augment visual understanding and SFT into reinforcement learning to enhance training stability
as illustrated in Fig.2(b). The noise feature perturbation is added directly to visual tokens but in a
different training corpus. We employ the DPO [22], a classical reinforcement learning algorithm, to
illustrate the loss equation:

L𝑑𝑝𝑜 = −E(𝑥,𝑦𝑤 ,𝑦𝑙 )∼D

[
𝑙𝑜𝑔𝜎

(
𝛽𝑙𝑜𝑔

𝜋𝜃 (𝑦𝑤 |𝜙𝑣 (𝑋𝑉 ), 𝑋𝑞)
𝜋𝑟𝑒 𝑓 (𝑦𝑤 |𝑋𝑉 , 𝑋𝑞)

−𝛽𝑙𝑜𝑔
𝜋𝜃 (𝑦𝑙 |𝜙𝑣 (𝑋𝑉 ), 𝑋𝑞)
𝜋𝑟𝑒 𝑓 (𝑦𝑙 |𝑋𝑣 , 𝑋𝑞)

)]
. (3)
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In this equation, the random feature perturbation function 𝜙𝑣 is incorporated into the projected
visual tokens 𝜙𝑣 (𝑋𝑣). The variables 𝑦𝑤 and 𝑦𝑙 represent the preferred and less preferred outputs,
respectively. The model’s objective is to maximize the probability of the preferred output and
minimize that of the less preferred one. The function 𝜋𝜃 denotes the model’s policy, while 𝜋𝑟𝑒 𝑓
signifies the reference policy. The sigmoid function 𝜎, compresses its input into the range (0, 1), and
𝛽 is a temperature parameter controlling the distribution’s sharpness. The final reinforcement loss
is defined as L𝑟𝑙 = L𝑠 𝑓 𝑡 + L𝑑𝑝𝑜. In experiments, we observed that a larger noise perturbation on
𝑦𝑤 and less on 𝑦𝑙 resulted in superior performance. This aligns with our intuition that a challenging
visual feature enables MLLM to learn a better attention weight distribution, which the less preferred
output 𝑦𝑙 does not need.

3.4 Semi-Supervised Noise Boosting Learning

Semi-supervised learning is a mature technology for mining the ability of unlabeled data but has not
been applied to MLLMs. The reason is that MLLM’s training strategy prevents it from creating a weak
augmentation for pseudo labels generation and a strong augmentation for consistency regularization.
Particularly, MLLMs have no visual augmentation methods, with the assumption that pixel-level
image disturbance can mislead understanding of the image content. Thanks to NoiseBoost, we can
incorporate noise feature perturbations to provide weak and strong distortions for MLLMs without
affecting visual understanding and comply with semi-supervised mechanism at the same time. The
unlabeled loss for semi-supervised learning is

L𝑢 =
1
𝜇𝐵

𝜇𝐵∑︁
𝑖=1

𝟙(max(𝜋𝑟𝑒 𝑓 (𝑋𝑣 , 𝑋𝑞)) ≥ 𝑡)𝐻 (𝑞𝑖 , 𝜋𝜃 (𝜙𝑣 (𝑋𝑣), 𝑋𝑞)) (4)

,where the reference model 𝜋𝑟𝑒 𝑓 generate pseudo labels without feature distortion and 𝜋𝜃 keep train-
ing on noise distorted data for consistency regularization. 𝑡 is the threshold for filtering noisy pseudo
labels, 𝜇 is the ratio of label and unlabeled data, 𝐵 is the batch size and 𝑞𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜋𝑟𝑒 𝑓 (𝑋𝑣 , 𝑋𝑞))
for artificial labels generation. The final semi-supervised loss is L𝑠𝑒𝑚𝑖 = L𝑢+L𝑠 𝑓 𝑡 . With NoiseBoost,
we can mine the unlabeled data power without waiting for labor-intensive trillions of data cleaning.

4 Experiments

4.1 Setup

Baseline and Data. We have chosen LLaVA-1.5 [5] and QwenVL [7], two recently released state-
of-the-art MLLMs, as our baseline. In addition to the data incorporated in LLaVA-1.5, we have
supplemented our dataset with COCO captions and ShareGPT4v [23] to reach a total of 800K
entries, thereby matching the performance of LLaVA-1.5 because thousands of images could not be
downloaded from the original 665K meticulously curated dataset [6]. The data serves as a comparable
baseline for LLaVA-1.5-7B, but it falls short for QwenVL-Chat [7]. Given that QwenVL [7] has
not released its data for retraining, we only evaluate QwenVL for human evaluation to establish a
relatively fair comparison. Reinforcement learning datasets for MLLM are limited, we use HA-DPO
dataset [19] which contains 18k images. Although the dataset is limited in scale, NoiseBoost can
also achieve performance gain compared to previous methods. Semi-supervised learning datasets
are constructed by splitting the SFT data into 30% and 50% with others used for unlabeled data
learning. In summary, with the data managed to maintain a fair comparison, we tested NoiseBoost on
LLaVA-1.5 using Llama7B and Llama13B to assess backbone generalizability and on QwenVL to
evaluate performance across different LLM styles.

Implementation Details. For supervised fine-tuning, We use a batch size of 192 with accumulation
steps setting to 2 for training, similar to [6], with 24 V100 training for 16 hours, about 384 GPU
hours. For reinforcement learning and semi-supervised learning 30% setting, the training only needs
around 90 GPU hours and 150 GPU hours to finish because of not much data. We set the learning rate
to 2e-5 in for SFT and semi-supervised learning. Reinforcement learning uses a small learning rate
2e-6 because of data deficiency resulting in unstable training. The weight decay and warmup ratio are
set to 0.0 and 0.03 respectively. The model length is 2048, the same as [6] but 1024 for QwenVL [7]
for fewer training hours. All of our experiments are conducted on float16 with deepspeed due to
GPU memory limitations. For noise perturbation, we set the noise scale to 0.5 with a 50% chance of
triggering perturbation for all experiments if not specified without tuning the parameters.
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Table 1: Supervised Fine-tuning results. NoiseBoost consistently improves the performance of
MLLM on hallucinated and question-answer datasets. For the caption dataset Flickr30k, we achieve
comparable performance since the traditional caption dataset cannot manifest the long, dense captions
generated by NoiseBoost. * means trained on our collected dataset.

Method Backbone POPE GQA VixWiz Text-
VQA MME SEED

Bench Flickr30K

Existing Methods
Flamingo 80B - - 31.6 - - - 67.2
VLIP-2 Vicuna-13B - 32.3 19.6 - - - 71.6
InstructBLIP Vicuna-13B - 49.5 33.4 - - - 82.8
mPLUG-Owl2 - - 56.1 54.5 - - - 85.1
Qwen-VL Qwen-7B - 59.3 35.2 - - - 85.8
Qwen-VL-Chat Qwen-7B - 57.5 38.9 - - - 81.0
LLaVA-1.5 Llama-13B 87.1 63.3 56.6 48.69 1523 68.2 79.5
LLaVA-1.5 Llama-7B 86.9 61.9 54.3 46.07 1507 66.2 74.9

NoiseBoost
LLaVA-1.5* Llama-13B 88.3 64.0 59.8 49.5 1540 69.2 81.2
+ NoiseBoost Llama-13B 88.4 64.2 61.5 49.8 1580 69.1 80.8

LLaVA-1.5* Llama-7B 87.2 62.3 54.6 47.18 1501 66.9 73.3
+ NoiseBoost Llama-7B 88.4 63.4 57.1 47.8 1531 67.7 73.8

Figure 3: Human evaluation of dense captions for 1k images with prompt "Describe the image and
its style in detail". The correct category means the totally accurate image with other categories are
errors identified by human annotators. NoiseBoost consistently reduce error on nearly all categories.

Evaluations. We conduct an evaluation of various datasets, including the hallucination dataset
POPE [24], question-answer datasets [25, 26, 27, 28], and the caption dataset [29]. Given the
inherent difficulty in assessing long captions using automated tools, we supplement our study with
a collection of 1,000 images for human evaluation. For automated evaluations, we utilized [30],
a publicly available tool designed to facilitate the evaluation of all MLLM datasets. However, we
observed suboptimal performance when assessing QwenVL-Chat using [30], attributable to a minor
modification in the evaluation prompt can lead to significant discrepancies in the MLLM results. To
ensure a fair evaluation, we maintained uniformity in all evaluations, refraining from prompt tuning
for a single model and only evaluating QwenVL on human evaluation. For human-labeled captions,
we ask annotators to select reasons for captioning results other than the binary right or wrong.

4.2 Quantative Experiments

In this section, we analyze NoiseBoost’s performance gain in SFT, reinforcement learning and
semi-supervised learning.

Supervised Fine-tuning. We conduct experiments on LLaVA-1.5 7B/13B and QwenVL to test
variations in backbone and architecture. As demonstrated in Tab.1, NoiseBoost consistently enhances
performance across nearly all datasets, with gains exceeding 1% over most datasets, no matter
whether the datasets are hallucination-based or question-answer-based. For the LLaVA-1.5 with the
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Table 2: Reinforcement learning result. NoiseBoost consistently improves over all datasets.
Model POPE GQA VizWiz MME SeedBench ScienceQA

LLaVA-1.5 DPO 86.3 60.1 53.9 1516 66.3 66.9
+ NoiseBoost 87.2 61.8 54.7 1528 66.5 70.3

Table 3: Semi-supervised learning experiments, NoiseBooost enables MLLM mining unlabeled data
and achieve similar performance with 50% data.

POPE GQA VizWiz MME Seedbench ScienceQA
30% Data 86.0 60.3 44.1 1426 67.0 67.9
+ NoiseBoost 87.4 62.5 54.9 1509 67.2 69.1
50% Data 86.9 62.4 54.3 1490 66.8 70.0
+ NoiseBoost 88.0 62.5 55.2 1553 67.0 71.0

Llama 13B model, the MME [27] reached 1580, 40 points higher than the original model. Notably,
we only achieve performance comparable to the baseline on Flickr30K [29] because NoistBoost is
more likely to generate rich caption data, which differs from traditional caption evaluation datasets.
However, most MLLM automatic evaluations are notorious for not aligning with human feelings.

We further assessed the dense caption performance using human labeling, as depicted in Fig. 3.
NoiseBoost achieves an accuracy of 540/1000, which is 8.1% higher than the QwenVL-Chat baseline.
With human labeling, error categories are classified. A detailed explanation of each category can
be found in the supplementary material Sup. A.1. Our improvements primarily stem from object
error and hallucinations, which refer to the description of erroneous objects or non-existent objects,
respectively. The results indicate that noise feature perturbation can redistribute the attention weights
of the MLLM, leading to more pronounced improvements in object-related information in the image.

Figure 4: Analysis of the cause of hallucination
is the over-reliance on language tokens circled in
read which NoiseBoost doesn’t have.

Reinforcement Learning. To align the be-
haviour of MLLM with actual human responses,
DPO [22] serves as a prevalent reinforcement
learning technique that requires only paired
data for training. However, the DPO is first
proposed in LLM and has no adaptation for
MLLMs. We inject the noise perturbation to
the preferred visual features with the assump-
tion that harder consistency learning achieves
better results. Upon testing with HA-DPO [19]
as shown in Table 2, NoiseBoost improve Sci-
enceQA with 3.4% and consistently enhances
performance by approximately 1% on both the
hallucination dataset [24] and various question-
answer datasets [25, 26, 27, 28, 31]. However,
it is noteworthy that the degree of improvement is relatively less in comparison to SFT. This can be
attributed to two primary factors: the limited scale of HA-DPO, which restricts the full potential of
NoiseBoost due to fewer training steps, and the lack of proper tuning of the noise scale injected into
the features, which prevents a fair comparison.

Semi-Supervised Learning. To unleash the power of unlabeled data, we incorporate NoiseBoost
to create teacher-student architecture as in MeanTeacher [32], which is a classic semi-supervised
learning technique. The teacher produces pseudo labels, and the student learns with strong augmented
images for consistency regularization. With noise perturbation, we inject Gaussian noise during
student learning and keep the original model frozen as a teacher. The experiments in Tab.3 show that
LLaVA-1.5 can reach similar performance with only 50% of the data, which sheds light on mining
the power of unlabeled data.
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Figure 5: Qualitative evaluation shows that NoiseBoost can generate long detailed captions without
hallucinations.

Table 4: Different noise probability and noise scale. With an increase in noise prob and scale, the
MLLM’s performance is robust, but too much noise may affect the learning process.

Noise
Prob

Noise
Scale POPE GQA Viz

Wiz
Text
VQA

Seed
bench MME Text

Caps
Flickr
30K

0 0 87.2 62.3 54.6 47.6 66.9 1501 96.9 73.3
0.1 0.1 88.1 63.4 56.4 47.9 67.2 1506 98.4 73.1
0.5 0.1 88.2 63.4 54.4 47.5 66.9 1504 97.2 73.2
0.5 0.5 88.4 63.4 57.1 47.8 67.7 1531 100.6 73.8
0.5 0.9 87.9 63.0 55.2 47.0 66.6 1517 98.6 73.1
0.7 0.5 87.8 63.0 54.0 47.7 66.6 1532 96.8 72.3
0.9 0.5 87.9 62.9 55.8 47.1 66.8 1522 96.8 72.7

4.3 Qalitative Experiments

We conduct a series of experiments using a street image, which is prone to cause hallucinations of
"people" due to the common association of people walking in streets in language. As illustrated
in Fig. 5, the original model tends to hallucinate during response generation, primarily due to an
over-reliance on language priors. To substantiate our hypothesis, we visualized the token correlation
map, using the final layer attention maps from LLM’s last token generation. The column attention,
highlighted in red in Fig. 4 (a), indicates that the subsequently generated tokens are overly dependent
on a specific language anchor token, leading to a neglect of visual tokens. The column phenomenon
emerges in the middle, coinciding with the occurrence of hallucination. The tendency for hallucination
becomes severe during the generation of longer responses. NoiseBoost, however, disrupts the
overconfidence in specific hallucination tokens and is capable of generating extended captions
without errors. After the introduction of noise feature perturbation, the LLM redistributes attention
weights more evenly, as shown in Fig. 4 (b).

5 Ablations

Different Feature Perturbation Scale. We choose Gaussian noise with upper and lower bound [0, 1]
in our paper. To test the robustness of feature perturbation on different scales and probabilities, we
conduct extensive experiments. As in Tab.4, NoiseBoost is robust to the scale of noise-injected with
not much variation with changing the hyperparameters, duo to page limits see full table in Sup.A1.
An interesting phenomenon is that with the increasing of noise scale, the performance first increase
and then decrease, which can be explained by the fact that the MLLM training process needs noise to
break the language reliance, but too much noise can harm the learning process.

Other Perturbation Methods. Perturbation methods can be broadly classified into pixel-level and
feature-level categories. In the case of pixel-level perturbations, we evaluate the efficacy of conven-
tional image augmentations. For feature-level perturbations, we opt for dropout as a comparative
measure, given the absence of alternative feature augmentation techniques.

As demonstrated in Table 5, pixel-level distortions such as RandomCrop and GaussianNoise induce
more hallucinations in POPE [24], as these distortions impact the appearance or even the existence
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Table 5: Comparision with pixel level and feature level perturbations.
Perturbation
Methods POPE GQA Scien

ceQA
Viz
Wiz MME Seed

bench
Flickr
30K

ColorJitter 88.6 62.5 69.9 58.7 1485 67.3 70.5
RandomCrop 86.4 63.1 69.5 56.6 1516 66.7 74.6
GaussianNoise 86.0 62.4 69.5 55.4 1507 65.4 70.7

Dropout 88.0 63.3 69.7 55.8 1489 67.3 71.4
Dropout + NoiseBoost 88.1 63.3 69.5 57.9 1491 67.4 74.3
Ours 88.4 63.4 69.9 57.1 1531 67.7 73.8

Table 6: Comparision with noise perturbation on language tokens.
POPE GQA ScienceQA VizWiz TextVQA MME Seedbench

+ Lan 87.9 61.1 59.7 46.6 45.1 1477 65.1
+ Lan Vis 88.1 62.7 66.8 56.3 46.4 1507 67.1
Ours 88.4 63.4 69.9 57.1 47.8 1531 67.7

of the object. ColorJitter, which solely alters the image’s colour, does not increase incorrect object
hallucinations in POPE, but it does degrade performance in visual understanding datasets like
MME [27] due to the disparity in colour. Pixel-level distortions, therefore, either crop images, induce
object hallucinations, or disrupt the colour space, thereby affecting visual comprehension.

Since the inception of the Deep Learning era, Dropout has been a widely used feature perturbation
method. We incorporate dropout into visual features post-projection, akin to NoiseBoost, and adhere
to the convention by setting the dropout rate at 0.1. As per Table 5, Dropout only yields performance
comparable to the baseline, which can be attributed to the fact that MLLM training methods already
employ this technology for backbone training. The performance can be enhanced with NoiseBoost,
thereby validating the effectiveness of our method.

Feature Perturbation on Language. NoistBoost only adds feature perturbation to visual features
to align with LLM feature space and break the over-reliance on language priors. We also study
whether the perturbation is effective vice versa. By adding noise to language embeddings before LLM
backbone, we found a performance degradation among nearly all benchmarks. From Tab.6, we can
conclude that the foundation LLM has a strong pre-trained knowledge, which should not be affected
during training. However, with visual token noise perturbation in NioseBoost, the performance can
also be enhanced.

5.1 Limitations and Societal Impacts

NoiseBoost serves as a fundamental method capable of mitigating the hallucination phenomenon in
MLLM throughout all stages of training. The feature perturbation technique employed by NoiseBoost
is a rudimentary training strategy that not only avoids negative societal impacts but also propels the
advancement of multi-modal AI assistants. However, it is important to note that while NoiseBoost
does not necessitate any additional costs or modifications to the MLLM structure, it doesn’t change
the existing methods. Presently, MLLM incorporates large language models without any module
resembling the human brain, which should be developed at the architecture level.

6 Conclusions

Recent advancements in MLLM have been swift, yet these models can induce hallucinations, thereby
limiting their practical applications. This paper introduces a simple, broadly applicable method,
termed NoiseBoost, designed to enhance visual comprehension and mitigate hallucinations in MLLM
without incurring additional costs. Specifically, NoiseBoost incorporates Gaussian noise into visual
tokens to diminish the excessive reliance on language priors, a characteristic inherited from LLMs.
Through comprehensive experimentation, we demonstrate that feature perturbation can augment
MLLM performance without extra expenditure, and that NoiseBoost currently stands as the most
efficacious feature perturbation technique. Moreover, we equip MLLM with semi-supervised learning
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capabilities by employing NoiseBoost to establish teacher-student networks. Collectively, we posit
that NoiseBoost can serve as a fundamental method for training MLLMs and illuminate the path
towards exploiting unlabeled data for large language models.
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A Appendix

A.1 Human Evaluation Guidance for Dense Captions.

To align the MLLM’s evaluation with human preferences, we ask human annotators to evaluate the
dense captions with detailed error category labeling, including errors about object, number, name,
posture, position, color, relation, hallucination, style, text, and others.

Object Error. Errors of object descriptions. For example, describing a phone when it’s actually an
iPad, or describing short hair as long hair, short sleeves as padded jackets

Number Error. Errors of number. For example, if there are two people dancing in the picture, the
MLLM says three people.

Name Error. Error for proper noun. Such as incorrect descriptions of a person’s name, place of
interest, or idiom.

Posture Error. Errors of posture or movement. The object is not doing the described action.

Position Error. Errors of object position. The object is not in the described position, such as in the
picture’s top, bottom, left, or right.

Color Error. Errors of color descriptions.

Relation Error. Errors for relations among subjects. such as the description of "two people, one on
the other’s shoulder," but in the image is a left-right or front-back relationship.

Hallucination Error. Error of hallucinations. The object described in the picture does not exist.

Style Error. The described style is wrong, such as light black and white, the actual picture is colorful
and heavy, etc.

Text Error. Error of the text descriptions in the image.

Other Errors. Errors not listed in the above such as repetition of MLLM response.

Correct. The descriptions not labeled into any categories of errors are considered correct.

A.2 Noise Perturbation Scale and Probability Variations

The full table shows changing the scale and probability of noise feature perturbation for NioseBoost.
We found that NoiseBoost is robust with the variation of hyperparameters.

Table A1: Different noise probability and noise scale. With an increase in noise prob and scale, the
MLLM’s performance is robust, but too much noise may affect the learning process.

Noise
Prob

Noise
Scale POPE GQA Viz

Wiz
Text
VQA

Seed
bench MME Text

Caps
Flickr
30K

0 0 87.2 62.3 54.6 47.6 66.9 1501 96.9 73.3
0.1 0.1 88.1 63.4 56.4 47.9 67.2 1506 98.4 73.1
0.3 0.5 88.0 63.1 54.5 47.4 66.8 1517 98.9 72.8
0.5 0.1 88.2 63.4 54.4 47.5 66.9 1504 97.2 73.2
0.5 0.3 88.2 63.2 54.0 47.5 67.0 1522 97.9 72.8
0.5 0.5 88.4 63.4 57.1 47.8 67.7 1531 100.6 73.8
0.5 0.7 88.1 63.2 55.4 47.2 66.9 1525 98.4 73.2
0.5 0.9 87.9 63.0 55.2 47.0 66.6 1517 98.6 73.1
0.7 0.5 87.8 63.0 54.0 47.7 66.6 1532 96.8 72.3
0.9 0.1 88.3 63.2 57.1 47.7 67.1 1524 97.8 72.2
0.9 0.5 87.9 62.9 55.8 47.1 66.8 1522 96.8 72.7

A.3 Hard Cases Qualitative Examples

We test NoiseBoost on hard captioning cases with various categories. NoiseBoost shows honest
performance on test casts.
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Figure A1: Animal Captioning

Figure A2: Generated Image Captioning
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Figure A3: Human Captioning

Figure A4: Scenary Captioning
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