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A Context-Aware Framework for Integrating Ad Auctions and
Recommendations

Anonymous Author(s)

ABSTRACT
Recently, many e-commerce platforms have favored presenting a

mixed list of ads and organic content to users. The widely-used

approach separately ranks ads and organic items, then sequentially

inserts ads into the list of organic items. However, this method

yields sub-optimal results. Firstly, it only ensures that each gener-

ated ad and organic item list achieves local optimality, while the

predetermined insertion order fails to guarantee global optimal-

ity. Secondly, this approach overlooks the mutual effect between

organic items and ads, resulting in an incomplete utilization of con-

textual information. Besides, it cannot prevent strategic behavior

by advertisers. Therefore, we propose a context-aware integrated

framework to address these issues. This framework applies auto-

mated mechanism design to integrated ad auctions for the first

time. Specifically, it models ads and organic items simultaneously

along with their contextual information and employs a learning-

based approach to prevent advertisers from engaging in strategic

behavior. Afterward, the framework directly generates a mixed list,

enhancing the overall performance. We also propose Transformer

encoder-based Integrated Contextual Network (TICNet) to gener-

ate the optimal integrated contextual ad auction. Finally, we validate

the effectiveness of TICNet on synthetic and real-world datasets.

Our experimental results demonstrate that TICNet significantly

outperforms baseline models across multiple metrics.
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1 INTRODUCTION
Selling advertisements is one of the core revenue sources for e-

commerce platforms. Platforms place ads in prominent positions
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to attract users’ attention and increase their willingness to make

purchases. As display space on the platform is limited, it is usually

auctioned off to advertisers with marketing intentions to generate

profits. Advertisers benefit from getting display resources to attract

potential users and increase their revenue.

However, the content on e-commerce platforms not only includes

advertisements but also organic items generated by recommenda-

tion systems. Although organic items do not directly bring profits

to the platform, they often provide users with a better browsing

experience due to the recommendation system’s strong ability to

understand user behavior. This, in turn, enhances the platform’s

user engagement and retention rates, helping the platform build

a good reputation and ultimately have greater long-term value.

Therefore, current e-commerce platforms generate a mixed list that

includes both ad content and native content to ensure the platform’s

revenue while providing users with a high-quality experience.

So, what rules should be followed to mix advertisements and

organic content? Themainstream approach is to consider the ad sys-

tem and recommendation system separately. Each system generates

ad lists and organic content lists from their respective candidate

pools based on specific rules. The ads from the ad list are then

sequentially inserted into the organic items list to create the final

mixed list for display to users. However, this paradigm has the

following issues:

• It can only achieve the suboptimal solutions for individual lists

and cannot achieve the overall optimal solution. Since the order

within the ad list and the order within the organic items list are

fixed, only the relative sequence of ads and organic items can be

changed when merging the lists, limiting the solution space and

failing to attain the theoretically best solution.

• This method often does not consider the mutual influence be-

tween ads and organic items. The model does not incorporate

contextual information from the other side when constructing

ad lists or organic item lists, resulting in suboptimal items and

sequences in each generated list, leading to suboptimal content

presentation in the final combined list.

• It may cause advertisers to engage in strategic behavior. By

designing reasonable allocation rule and payment scheme, the

ad auction system can incentivize advertisers to bid truthfully,

which is guaranteed to be their optimal strategy. However, when

the ad list and organic content list are merged, the original ad

positions change, causing truthful bidding by advertisers to no

longer be their optimal strategy. This can lead to strategic behav-

ior by advertisers, affecting the stability of the system, thereby

harming long-term revenue.

1.1 Main Contributions
To address these issues, we propose a context-aware integrated

framework. This framework characterizes both advertisements and

organic items simultaneously in the context of global information

1
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and takes platform revenue and user experience as core metrics of

objective, forming a constrained optimization problem with DSIC

and IR as constraints. We leverage the automatic mechanism de-

sign (AMD) methods to find the optimal desirable mechanisms by

proposing the Transformer encoder-based Integrated Contextual
Network (TICNet). Additionally, we conduct a series of experi-

ments on both synthetic and real-world datasets to showcase the

efficiency of TICNet, compared to some baseline models. The main

contributions of this paper are summarized as follows:

(1) Unified context-aware mechanism to realize integration
of ads and organic items. Different from current methods of

inserting ads into list of organic items, we model this process as

a mechanism design problem, instead. We execute a mechanism

directly on the candidate set of both advertisements and or-

ganic items, and decide the allocation of ads and organic items

simultaneously. Additionally, necessary contextual information

is taken into account to reflect the mutual influence between

ads and organic items, while designing mechanisms.

(2) Automatic mechanism design and sample complexity.
Due to the vast input space and high complexity of the solution

space, it is much difficult to directly find the optimal mechanism.

Therefore, we first exploit the concept of regret to characterize

DSIC condition. Then we transform this mechanism design

problem into a learning problem and adopt the techniques

of AMD to seek the optimal mechanism. To demonstrate the

efficiency of this transformation, we theoretically provide the

sample complexity to bound the gap between the empirical and

expected values on revenue, user experience and regret.

(3) Transformer encoder-based Integrated Contextual Net-
work.We construct TICNet, a neural network framework based

on transformer encoder structure, to generate the optimal mech-

anism. This framework can effectively capture implicit corre-

lations among contextual information while also possessing

properties such as permutation equivariance, allowing us to

ignore input order.

(4) Numerical experiments on synthetic and real data. We

conducted multiple experiments on synthetic and real datasets.

In comparison with common-used and theoretical baseline

mechanisms, we find that the mechanism generated by TICNet

outperforms across multiple metrics.

1.2 Related Work
1.2.1 Integrating Recommendation System with Ad Auctions. For
a long time, ad auctions have been the primary source of revenue

for e-commerce platforms. Pioneered by the seminal work [28],

a series of theoretical research focus on enhancing the revenue

through designing auction mechanism. For instance, generalized

second price auction and its variants [13, 18, 26, 33, 34] have been

employed as the core mechanisms of multiple online platforms,

due to their simplicity and scalability. On the other hand, some

works [21, 25, 40] opt for leveraging advanced machine learning

technique, like deep learning, to surpass revenue limitations.

Recently, platforms are aware of the mutual effect between ads

and organic items and try to integrate ads into the list of organic

items. A main focus is modeling this problem as a linear program-

ming [4, 5, 38]. Furthermore, a line of works model the allocation

of slots as a Markov decision process, employing reinforcement

learning for resolution [22, 36, 37, 41, 42]. Nevertheless, these meth-

ods all view ads and organic items separately, not resulting in a

global optimal mixed list. From theoretical perspective, there are

a few of works taking ads and organic items into consideration

simultaneously. Li et al. [20] introduce an optimally truthful mecha-

nism aiming at balancing revenue and user experience. Li et al. [19]

focus on the scenario where products can be selected as either ad

or organic item, and propose two simple mechanisms within this

setting. However, these methods do not consider the contextual

information, ignoring the influence between ads and organic items.

1.2.2 Automated Mechanism Design. In our work, different from

traditional methods, we adopt automated mechanism design to gen-

erate optimal integrated contextual ad auction mechanism. AMD

can swiftly generate optimal auctions for different settings. Dütting

et al. [12] propose the first neural network based structure, Regret-

Net, to handle multi-item auction, which can achieve high revenue

and guarantee approximately DSIC. A series of works stemming

from RegretNet has extended to various scenarios [8, 14, 15, 29–31,

39]. Additionally, based on the structure of Vickery-Clark-Groves

(VCG) mechanism [6, 16, 35], another kind of approaches aim to de-

sign the optimal auction mechanisms that automatically adapt DSIC

and IR in different settings [9, 10, 23, 24, 27, 32]. Notably, there are

lots of works devoting to analyzing the sample complexity [1–3, 7],

guaranteeing the performance of generated mechanisms. Since we

mainly focus on the design of optimal integrated ad auction with

contextual information in this paper, the relevant works are CIT-

ransNet [11], utilizing transformer to design optimal contextual

auction and RegretFormer [17], taking advantage of attention mech-

anism to achieve the optimal revenue performance with restricted

IC violation budget. However, these methods do not consider the

externality from recommendation system, and cannot apply to the

integrated scenarios. In contrast, our work proposes a brand new

architecture to capture contextual information, suitable for organic

items, and finally generate the optimal integrated context-aware

mechanisms.

2 MODEL AND PRELIMINARIES
In this section, we mainly introduce the basic setup of integrated ad

auctions with contextual information. Later on, we formalize the

optimal mechanism design as a constrained optimization problem

and transform it into a learning problem.

2.1 Contextual Integrated Ad Auction
On the internet platform, after a user initiating a search request,

the platform will return a mixed list containing organic content and

advertising content to the user. W.l.o.g, we consider a webpage con-

taining 𝐾 advertisement slots. For each slot 𝑘 ∈ [𝐾] = {1, · · · , 𝐾},
we denote 𝛼𝑘 by the click-through rate (CTR) of the slot 𝑘 . For sim-

plicity, we assume that the CTRs of the ad slots are in descending

order, that is, 1 > 𝛼1 ≥ · · · ≥ 𝛼𝐾 ≥ 0. Consider that there are𝑚

advertisers and 𝑛 organic items competing for these 𝐾 ad slots.

Every advertiser 𝑖 ∈ [𝑚] possesses an ad-context denoted by

𝑥𝑖 ∈ X ⊂ R𝑑𝑐 . Similarly, each organic item 𝑗 ∈ [𝑛] is associated
with an organic-context represented as 𝑦 𝑗 ∈ Y ⊂ R𝑑𝑐 , and every
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slot 𝑘 ∈ [𝐾] comes with a slot-context denoted by 𝑧𝑘 ∈ Z ⊂ R𝑑𝑧 .
Specifically, 𝑑𝑐 represents the dimension of ad-context and organic-

context information, while 𝑑𝑧 represents that of slot-context in-

formation. Then we denote x = (𝑥1, · · · , 𝑥𝑚) as the ad contexts,

y = (𝑦1, · · · , 𝑦𝑛) as the organic contexts and z = (𝑧1, · · · , 𝑧𝐾 ) as
the slot contexts. 𝑥,𝑦 and 𝑧 are sampled from publicly known dis-

tributions D𝑥 ,D𝑦 and D𝑧 .
For each advertiser 𝑖 , her private value for each click by user is de-

noted by 𝑣𝑖 . Assume that the value 𝑣𝑖 is sampled from a distribution

F𝑣𝑖 |𝑥𝑖 ,𝑧 , which depends on her ad-context and other slot-contexts

information, over the domain set V𝑖 . Let v = {𝑣1, · · · , 𝑣𝑚} repre-
sent the value profile andV = V1 ×V2 × · · ·V𝑚 stand for the joint

value domain set. Besides, we use v−𝑖 to express the value profile

of all advertisers except for 𝑖 andV−𝑖 to represent the joint value

profile domain set except for 𝑖 . Due to the reason that advertisers

may submit their bids strategically, we utilize 𝑏𝑖 as the bid of ad-

vertiser 𝑖 , depending on her private value 𝑣𝑖 . Similarly, we define

b, b−𝑖 as related bid profiles accordingly.

Besides, we assume that showing ads or organic items to the user

has a known effect on the user. Specifically, after the user receives a

mixed list including ads or organic items from the platform, she will

form distinct impressions about each item. These impressions are

influenced by various factors such as the perceived value, creativity,

and other attributes of the items, as well as the user’s preferences for

different items. We model this impression as user experience, which

can reflect the user’s click intentions and purchasing tendencies.

For each advertiser 𝑖 ∈ [𝑚] and organic item 𝑗 ∈ [𝑛], we use 𝑔𝑖 and
𝑔 𝑗 to denote the expected user experience, respectively. The user

experience profile, denoted by g = {𝑔1, · · · , 𝑔𝑚, 𝑔𝑚+1, · · · , 𝑔𝑚+𝑛},
encompasses both advertisers and organic items. To be specific, the

user experience profile 𝑔𝑖 of advertiser 𝑖 is sampled from a distri-

bution F𝑞
𝑔𝑖 |𝑥𝑖 ,𝑧 and 𝑔 𝑗 of organic item 𝑗 is sampled from another

distribution F 𝑜
𝑔𝑗 |𝑦 𝑗 ,𝑧 . Similar to the definition of joint value distri-

bution, let G = G1 × G2 × · · · × G𝑚 × G𝑚+1 × · · · × G𝑚+𝑛 be the

joint user experience domain set of ads and organic items.

Now we formally introduce the integrated contextual ad auction,

i.e.,M = (a, p), consisting of the allocation rule a(b, g, x, y, z) =
{𝑎𝑖 (b, g, x, y, z)}𝑖∈𝑀∪𝑁 and the payment scheme p(b, g, x, y, z) =
{𝑝𝑖 (b, g, x, y, z)}𝑖∈𝑀 . To be specific, 𝑎𝑖 (b, g, x, y, z) : V ×G ×X𝑚 ×
Y𝑛 ×Z𝐾 → [0, 1] stands for the expected CTR that ad (or organic

item) 𝑖 can derive from showing to user. That is, 𝑎𝑖 (b, g, x, y, z) =∑𝐾
𝑘=1

𝑎𝑖𝑘 (b, g, x, y, z)𝛼𝑘 , where 𝑎𝑖𝑘 (b, g, x, y, z) ∈ {0, 1} indicates
whether item 𝑖 is allocated to slot 𝑘 or not. As for the payment

rule, 𝑝𝑖 (b, g, x, y, z) specifies the payment amount that advertiser 𝑖

is required to charge when her ad is clicked.

In the setting of integrated contextual ad auction, each item only

can obtain at most one slot and each slot is allocated to just one

item. We will now formally outline the constraints of the allocation

rule, called feasibility,∑︁
𝑘∈[𝐾 ]

𝑎𝑖𝑘 (b, g, x, y, z) ≤ 1, ∀𝑖 ∈ [𝑚] ∪ [𝑛],∑︁
𝑖∈[𝑚]∪[𝑛]

𝑎𝑖𝑘 (b, g, x, y, z) = 1, ∀𝑘 ∈ [𝐾],

𝑎𝑖𝑘 (b, g, x, y, z) ∈ {0, 1}, ∀𝑖 ∈ [𝑚] ∪ [𝑛], 𝑘 ∈ [𝐾] .

Under the setting of integrated contextual ad auction, each ad-

vertiser 𝑖 pursues optimizing her quasi-linear utility, defined as

𝑢𝑖 (𝑣𝑖 ; b, g, x, y, z) = 𝑣𝑖 · 𝑎𝑖 (b, g, x, y, z) − 𝑝𝑖 (b, g, x, y, z)

for all 𝑖 ∈ [𝑚], 𝑣𝑖 ∈ V𝑖 , b ∈ V, g ∈ G, x ∈ X𝑚, y ∈ Y𝑛, z ∈ Z𝐾 .
In this paper, we focus on the mechanisms satisfying dominant

strategy incentive compatibility (DSIC) and individual rationality

(IR). DSIC guarantees that bidder’s optimal strategy is to truthfully

reveal her private value, and IR ensures that bidder always can

obtain non-negative utility. Now we formally introduce these two

economic properties:

Definition 1 (Dominant Strategy Incentive Compatibil-

ity). An integrated contextual ad auction (a, p) is dominant strategy
incentive compatible, if for any advertiser, her utility is maximized
by truthfully telling no matter what the others report. Formally, it
holds that, for all 𝑖 ∈ [𝑚], 𝑣𝑖 ∈ V𝑖 , 𝑏′𝑖 ∈ V𝑖 , b−𝑖 ∈ V−𝑖 , g ∈ G, x ∈
X𝑚, y ∈ Y𝑛, z ∈ Z𝐾 ,

𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z) ≥ 𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) .

Definition 2 (Individual Rationality). An integrated con-
textual ad auction (a, p) is individual rational, if for any advertiser,
her utility will be non-negative if she truthfully bids. Formally, it
holds that, for all 𝑖 ∈ [𝑚], 𝑣𝑖 ∈ V𝑖 , 𝑏′𝑖 ∈ V𝑖 , b−𝑖 ∈ V−𝑖 , g ∈ G, x ∈
X𝑚, y ∈ Y𝑛, z ∈ Z𝐾 ,

𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z) ≥ 0.

In an integrated contextual ad auction satisfying DSIC and IR,

advertisers will truthfully bid. Denote Fv,g,x,y,z by the joint distri-

bution of value profile v, user experience profile g, ad contexts x,
organic contexts y and slot contexts z. The platform mainly con-

centrates on two core metrics: revenue and user experience. The

expected revenue of the platform is defined as:

Rev ≔ E(v,g,x,y,z)∼Fv,g,x,y,z

[ ∑︁
𝑖∈[𝑚]

𝑝𝑖 (v, g, x, y, z)
]
,

while the expected user experience of the platform is defined as:

UE ≔ E(v,g,x,y,z)∼Fv,g,x,y,z

[ ∑︁
𝑖∈[𝑚]∪[𝑛]

𝑔𝑖 · 𝑎𝑖 (v, g, x, y, z)
]
.

We aim to design an optimal contextual integrated ad auction

which optimizes the blend of revenue and user experience while

maintaining DSIC and IR. In order to balance the relationship of

revenue and user experience, we introduce a hyperparameter 𝛾 > 0.

Formally, our problem can be expressed as a constrained optimiza-

tion problem:

max

(a,p)
E(v,g,x,y,z)∼Fv,g,x,y,z

[ ∑︁
𝑖∈[𝑚]

𝑝𝑖 (v, g, x, y, z)+

𝛾 ·
∑︁

𝑖∈[𝑚]∪[𝑛]
𝑔𝑖 · 𝑎𝑖 (v, g, x, y, z)

]
s.t. DSIC, IR, Feasibility.

3
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2.2 Integrated Contextual Ad Auction Design as
a Learning Problem

Now we formulate the problem of designing the optimal integrated

contextual ad auction as a learning problem. For the sake of achiev-

ing DSIC, we introduce the metric of ex-post regret. For advertiser 𝑖 ,
her regret is themaximum utility she can gain throughmisreporting

while keeping the bids of other advertisers fixed, i.e.,

𝑟𝑔𝑡𝑖 (v, g, x, y, z) = max

𝑏′
𝑖
∈V𝑖

[
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)−

𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z)
]
.

We can draw such conclusion that an integrated contextual ad

auction achieves DSIC if and only if its regret equals to 0.

Then, we can reformulate the problem of designing the optimal

integrated contextual ad auction as a constrained optimization:

min

(a,p) ∈M
− E(v,g,x,y,z)∼Fv,g,x,y,z

[ ∑︁
𝑖∈[𝑚]

𝑝𝑖 (v, g, x, y, z)+

𝛾 ·
∑︁

𝑖∈[𝑚]∪[𝑛]
𝑔𝑖 · 𝑎𝑖 (v, g, x, y, z)

]
s.t. E(v,g,x,y,z)∼Fv,g,x,y,z

[ ∑︁
𝑖∈[𝑚]

𝑟𝑔𝑡𝑖 (v, g, x, y, z)
]
= 0,

whereM is the set of all contextual integrated ad auctions that sat-

isfy IR and feasibility. However, the problem remains intractable due

to the high complexity of the constraints. To solve this problem, we

parameterize the auction mechanism asM𝑤 (a𝑤 , p𝑤) ⊆ M(a, p),
where𝑤 ∈ R𝑑𝑤 (with dimension 𝑑𝑤 ) are the parameters. Then we

aim to find an contextual integrated ad auctionM𝑤
that minimizes

the negated objective:−E(v,g,x,y,z)∼Fv,g,x,y,z [
∑
𝑖∈[𝑚] 𝑝

𝑤
𝑖
(v, g, x, y, z)+

𝛾 · ∑𝑖∈[𝑚]∪[𝑛] 𝑔𝑖 · 𝑎𝑤𝑖 (v, g, x, y, z)], while ensuring DSIC, IR and

feasibility constraints through optimizing the parameters𝑤 .

Given a sample L, containing 𝐿 samples of (v, g, x, y, z) drawn
from the distribution Fv,g,x,y,z, we can estimate the ex-post regret

underM𝑤 (a𝑤 , p𝑤) as:

𝑟𝑔𝑡𝑖 (𝑤) =
1

𝐿

𝐿∑︁
ℓ=1

𝑟𝑔𝑡𝑖 (v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) ) .

To sum up, we can formulate our constrained optimization problem

as a learning problem as follows:

min

𝑤∈R𝑑𝑤

− 1

𝐿

𝐿∑︁
ℓ=1

[ ∑︁
𝑖∈[𝑚]

𝑝𝑤𝑖 (v
(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )+

𝛾 ·
∑︁

𝑖∈[𝑚]∪[𝑛]
𝑔𝑖 · 𝑎𝑤𝑖 (v

(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )
]

s.t. 𝑟𝑔𝑡𝑖 (𝑤) = 0, 𝑖 = 1, · · · ,𝑚.

(1)

Additionally, we guarantee that our auction mechanism satisfies

IR through the structure of our architecture. We will offer related

details in Section 4.

3 SAMPLE COMPLEXITY
In practice, the observed results (such as revenue, user experience)

often deviate from the predicted expectations. By analyzing the

sample complexity, we can estimate the required scale of samples to

keep these deviations within an acceptable range, thereby guaran-

teeing the stability and reliability of the mechanism’s performance.

Therefore, in order to assess to what size of samples used in the

transformed learning problem can solve the original problem, in

this section, we delve deeper into providing a sample complexity

concerning the contextual integrated ad auction classM to bound

three gaps. The first one is the gap between the empirical revenue

and the expected revenue; The second one is the gap between the

empirical user experience and the expected user experience; The

last one is the gap between the empirical ex-post regret and the

expected ex-post regret.

Basically, we measure the capacity ofM through covering num-

bers. We define the ℓ∞,1-distance between two auction mechanisms

(a, p), (a′, p′) ∈ M as

max

v,g,x,y,z

∑︁
𝑖∈[𝑚]∪[𝑛],𝑘∈[𝐾 ]

����𝑎𝑖𝑘 (v, g, x, y, z) − 𝑎′𝑖𝑘 (v, g, x, y, z)����
+

∑︁
𝑖∈[𝑚]

����𝑝𝑖 (v, g, x, y, z) − 𝑝′𝑖 (v, g, x, y, z)����.
For any 𝑟 > 0, consider N∞,1 (M, 𝑟 ) as the minimum number of

balls with radius 𝑟 that cover all the mechanisms inM under ℓ∞,1-
distance (referred to as the 𝑟 -covering number ofM). We have the

following result. The detailed proofs can be found in Appendix A.

Theorem 1. For each advertiser 𝑖 , assume that the valuation func-
tion satisfies 𝑣𝑖 (𝑆) ≤ 1, and for each advertiser (or organic item) 𝑗 ,
assume that the user experience function satisfies 𝑔 𝑗 (𝑆) ≤ 1,∀𝑆 ⊆ 𝑀 .
Fix 𝛿, 𝜖 ∈ (0, 1), for any (a𝑤 , p𝑤), when

𝐿 ≥ 9(𝑚 + 𝑛)2
2𝜖2

(
ln

6

𝛿
+ lnN∞,1 (M,

𝜖

6(𝑚 + 𝑛) )
)
,

with probability at least 1−𝛿 over draw of training set 𝑆 of 𝐿 samples
from Fv,g,x,y,z, we have following conclusions:����� 𝑛∑︁

𝑖=1

(
E(v,g,x,y,z)∼Fv,g,x,y,z𝑝

𝑤
𝑖 (v, g, x, y, z)−

𝐿∑︁
ℓ=1

𝑝𝑤
𝑖
(v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )

𝐿

)����� ≤ 𝜖,
(2)

�����𝑚+𝑛∑︁
𝑖=1

(
E(v,g,x,y,z)∼Fv,g,x,y,z𝑔𝑖 · 𝑎

𝑤
𝑖 (v, g, x, y, z)−

𝐿∑︁
ℓ=1

𝑔𝑖 · 𝑎𝑤𝑖 (v
(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )

𝐿

)����� ≤ 𝜖,
(3)

and����E(v,g,x,y,z)∼Fv,g,x,y,z [ 𝑛∑︁
𝑖=1

𝑟𝑔𝑡𝑤𝑖 (v, g, x, y, z)
]
−

𝑛∑︁
𝑖=1

𝑟𝑔𝑡𝑖 (𝑤)
���� ≤ 𝜖. (4)

4 TICNET
In this section, we formally introduce the Transformer encoder-

based Integrated Contextual Network (TICNet), to design the

optimal integrated contextual ad auction.

4
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Figure 1: The Architecture of TICNet.

4.1 Architecture of TICNet
As illustrated in Figure 1, TICNet comprises three main components:

the input layer, the information sharing layer, and the output layer.

The input layer is responsible for receiving representations from

ads, organic items, and slots, preprocessing and combining them

to generate an aggregated matrix, which is subsequently fed into

the information sharing layer. Information sharing layer performs

a series of transformations on the aggregated matrix to model the

implicit relationships among ads, organic items, and slots with

contextual information. The outcome from the information sharing

layer is then received by the output layer, which can calculate the

allocation of ads and organic items, as well as the payment of each

advertiser.

4.2 Input Layer
First of all, we apply embedding layers to obtain a representation

𝑡𝑖 ∈ R𝑑
′
𝑐 for each ad-context 𝑥𝑖 , 𝑡 𝑗 ∈ R𝑑

′
𝑐 for each organic-context

𝑦 𝑗 and 𝑜𝑘 ∈ R𝑑
′
𝑧 for every slot-context 𝑧𝑘 from the raw state.

Afterward, as mentioned before, each advertiser 𝑖 has bid pro-

file and user experience profile, while each organic item 𝑗 is only

equipped with user experience profile. We assume that organic

item 𝑗 can also submit a bid to the platform, with its bid set to 0.

Different from advertisers, every organic item 𝑗 cannot misreport

its bid intentionally. With the assumption above, we transfer bid

profile and user experience profile into e = (𝑒𝑖𝑘 )𝑖∈[𝑚]∪[𝑛],𝑘∈[𝐾 ]
and q = (𝑞 𝑗𝑘 ) 𝑗∈[𝑚]∪[𝑛],𝑘∈[𝐾 ] , where 𝑒𝑖𝑘 and 𝑞 𝑗𝑘 are defined as:


𝑞 𝑗𝑘 = 𝑔 𝑗𝛼𝑘 , ∀𝑗 ∈ [𝑚] ∪ [𝑛], ∀𝑘 ∈ [𝐾];
𝑒𝑖𝑘 = 𝑏𝑖𝛼𝑘 , ∀𝑖 ∈ [𝑚], ∀𝑘 ∈ [𝐾];
𝑒𝑖𝑘 = 0, ∀𝑖 ∈ [𝑛], ∀𝑘 ∈ [𝐾] .

Notably, CTRs of different slots is included in the slot context z.

With the representation above, we then obtain the ad-organic-

slot triple representation 𝑅 = (𝐻𝑖,𝑘 )𝑖∈[𝑚]∪[𝑛],𝑘∈[𝐾 ] , in which:

𝐻𝑖,𝑘 = [𝑒𝑖𝑘 | |𝑞𝑖𝑘 | |𝑡𝑖 | |𝑜𝑘 ] ∈ R2+𝑑 ′𝑐+𝑑 ′𝑧 ,

where “| |” stands for concatenation.
In order to enhance the efficiency of TICNet, we utilize two linear

layers with a ReLU activation to reduce the last dimension of 𝐻

from 2 + 𝑑′𝑐 + 𝑑′𝑧 to 𝑑 − 2, i.e.,

𝐻 ′ = Linear2 (ReLU(Linear1 (𝐻 ))) ∈ R(𝑚+𝑛)×𝐾×(𝑑−2)

After concatenating 𝐻 ′ with transferred bidding profile and user

expeirence profile, we can obtain the output of the input layer:

𝑂 = [𝐻 ′ | |e| |q] ∈ R(𝑚+𝑛)×𝐾×𝑑 ,

in which 𝑂𝑖 𝑗 ∈ 𝑂 provide the joint representation of bid, volume

and corresponding context information for ad (or organic item)

taking place of slot 𝑗 .

4.3 Information Sharing Layer
With the triple representation 𝑂 ∈ R(𝑚+𝑛)×𝐾×𝑑 from input layer,

we then focus on digging in the inner relationship among ads,

organic items and slots. Basically, we adopt the transformer-based

encoder to capture complex interactive information among different

items and and slots.

To be specific, we employ a transformer-based encoder to model

the interactions between ad (or organic item) 𝑖 and different slots

by operating row-wisely on 𝑂 :

𝑂row

𝑖 · = Transformer(𝑂𝑖 ·) ∈ R(𝑚+𝑛)×𝑑ℎ , ∀𝑖 ∈ [𝑚] ∪ [𝑛],

where 𝑑ℎ represents the dimension of the hidden layer of the MLP

in the encoder. Similarly, we apply column-wise encoder on the

𝑘-th column of 𝑂 to model the interactions between slot 𝑘 and all

5
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ads and organic items:

𝑂column

·𝑘 = Transformer(𝑂 ·𝑘 ) ∈ R𝐾×𝑑ℎ , ∀𝑘 ∈ [𝐾] .

In addition, we conduct averaging on 𝑂 to obtain the global repre-

sentation:

𝑂
global

𝑖𝑘
=

1

(𝑚 + 𝑛) · 𝐾
∑︁

𝑖∈[𝑚]∪[𝑛]

∑︁
𝑘∈[𝐾 ]

𝑂𝑖 𝑗 ∈ R𝑑 .

Then we concatenate𝑂row,𝑂column
and𝑂global

together on the last

dimension and obtain 𝑂 ′ = (𝑂 ′
𝑖𝑘
)𝑖∈[𝑚]∪[𝑛],𝑘∈[𝐾 ] :

𝑂 ′
𝑖𝑘

= [𝑂row

𝑖𝑘
| |𝑂column

𝑖𝑘
| |𝑂global

𝑖𝑘
] ∈ R2·𝑑ℎ+𝑑 .

Afterward, we apply two linear layers with a ReLU activation to

reduce the last dimension of 𝑂 ′ from 2 · 𝑑ℎ + 𝑑 to 𝑑𝑜𝑢𝑡 , i.e.,

𝑆 ′ = Linear4 (ReLU(Linear3 (𝑂 ′))) ∈ R(𝑚+𝑛)×𝐾×𝑑𝑜𝑢𝑡 ,

where 𝑃 is the output of the information sharing block. We can

stack multiple information sharing blocks together to enhance the

representation capability of joint ad-organic-slot information.

4.4 Output Layer
Given the last information sharing block, we set 𝑑𝑜𝑢𝑡 = 4 and

obtain the joint ad-organic-slot representation 𝑆 = (𝑆𝑟 , 𝑆𝑐 , 𝑆𝑎, 𝑆𝑝 ) ∈
R(𝑚+𝑛)×𝐾×4

, which will be used to calculate the allocation result

and the corresponding payment for winning advertisers.

Now we move on to calculate the allocation output 𝑎𝑤
𝑖𝑘
, repre-

senting the probability that ad (or organic item) 𝑖 being allocated

to slot 𝑘 .

To ensure feasibility, we apply row-wise softmax on 𝑆𝑟 to get 𝑆𝑟 ,

which satisfies each ad (or organic item) 𝑖 will obtain no more than

one slot. Similarly, we apply column-wise softmax on 𝑆𝑐 to get 𝑆𝑐 ,

which guarantees that no slot is over-allocated. Formally, 𝑆𝑟 and

𝑆𝑐 are defined as:{
𝑆𝑟
𝑖 · = Softmax(𝑆𝑟

𝑖 ·), ∀𝑖 ∈ [𝑚] ∪ [𝑛]
𝑆𝑐·𝑘 = Softmax(𝑆𝑐·𝑘 ), ∀𝑘 ∈ [𝐾]

Then we obtain the original allocation probability by:

𝑎𝑤
𝑖𝑘

= min

{
𝑆𝑟
𝑖𝑘
, 𝑆𝑐
𝑖𝑘

}
, ∀𝑖 ∈ [𝑚] ∪ [𝑛],∀𝑘 ∈ [𝐾] .

Afterward, due to some ads and organic items may fail to obtain

any slot, however, they could still retain a certain portion of the

original allocation result. It is important to reduce the impact of

failed ads or organic items on the final allocation results. To address

this, we employ 𝑆𝑎 to adjust the original allocation probability.

Essentially, we conduct sigmoid activation on 𝑆𝑎 to derive 𝑆𝑎 , which

is then multiplied by 𝑎𝑤
𝑖𝑘

to yield the final allocation result 𝑎𝑤
𝑖𝑘
:{

𝑆𝑎
𝑖𝑘

= Sigmoid(𝑆𝑎
𝑖𝑘
), ∀𝑖 ∈ [𝑚] ∪ [𝑛],∀𝑘 ∈ [𝐾]

𝑎𝑤
𝑖𝑘
(v, g, x, y, z) = 𝑎𝑤

𝑖𝑘
(v, g, x, y, z) · 𝑆𝑎

𝑖𝑘
(v, g, x, y, z)

Then we move on to calculate the payment. Initially, we cal-

culate the auxiliary payment scalar based on 𝑆𝑝 through sigmoid

activation:

𝑝𝑤𝑖 = Sigmoid( 1

𝐾

∑︁
𝑘∈𝐾

𝑆𝑝 ), ∀𝑖 ∈ [𝑚],

Given the auxiliary payment scalar andfinal allocation result, we

then obtain the final payment result as:

𝑝𝑤𝑖 (v, g, x, y, z) = 𝑝
𝑤
𝑖 (v, g, x, y, z) ·


∑︁
𝑘∈[𝐾 ]

𝑎𝑤
𝑖𝑘
(v, g, x, y, z) · 𝑒𝑖𝑘

 .
Since 𝑝𝑤

𝑖
∈ (0, 1), the quasi-linear utility of advertiser 𝑖 , denoted

as 𝑢𝑤
𝑖

=
∑
𝑘∈[𝐾 ] 𝑎

𝑤
𝑖𝑘
· 𝑒𝑖𝑘 − 𝑝𝑤𝑖 remains non-negative, thereby

ensuring IR of our mechanism.

4.5 Permutation Equivariant
Till now, we have introduced the structure of each component of

TICNet. Reviewing the overall structure, TICNet meets important

property, i.e., permutation-equivariant. Thus, TICNet offers sev-
eral benefits. Firstly, it ensures that the allocation and payment

outcomes for the same ad (organic item) remain unaffected regard-

less of how these candidates are ordered in the input. Secondly, it

reduces ex-post regret while maintaining the platform’s revenue.

Moreover, TICNet requires fewer samples to achieve high perfor-

mance because it exploit the symmetry in the integrated ad auction

setting, reducing the hypothesis space and making it easier for the

model to learn the underlying structure of the problem, thereby

enhancing its generalization capability.

Theorem 2 (Permutation Eqivariant). With bid profile, user
experience profile, ad contexts, organic contexts and slot contexts as
input, TICNet keeps permutation-equivariant.

Due to the space limitation, the detailed proof of Theorem 2 is

provided in Appendix B.

4.6 Training Procedure
As for the training process of TICNet, we have optimized the Equa-

tion (1) using the augmented Lagrangian method, and correspond-

ing formula is:

C𝜌 (𝑤 ;𝝀) = − 1

𝐿

𝐿∑︁
ℓ=1

[ ∑︁
𝑖∈[𝑚]

𝑝𝑤𝑖 (v
(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )+

𝛾 ·
∑︁

𝑗∈[𝑚]∪[𝑛]
𝑔 𝑗 · 𝑎𝑤𝑗 (v

(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )
]

+
𝑚∑︁
𝑖=1

𝜆𝑖 · 𝑟𝑔𝑡𝑖 (𝑤) +
𝜌

2

𝑚∑︁
𝑖=1

(𝑟𝑔𝑡𝑖 (𝑤))2,

During optimization, we first calculate the optimal misreports

and then alternately update model parameters and Lagrange multi-

pliers. We have provided the detailed description in Appendix C,

containing training settings in Appendix C.1 and corresponding

Algorithm 1 in Appendix C.2.

5 EXPERIMENTS
In this section, we conduct a series of experiments on synthetic and

real-world datasets to validate the superiority of TICNet.
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Method
A: 2 × 3 × 2 B: 3 × 2 × 2 C: 3 × 5 × 2

SW Rev UE Rev+𝛾UE SW Rev UE Rev+𝛾UE SW Rev UE Rev+𝛾UE

GSP and Fixed Positions 0.590 0.233 0.441 0.453 0.595 0.302 0.484 0.545 0.642 0.351 0.449 0.576

IAS 0.513 0.422 0.362 0.603 0.601 0.517 0.300 0.667 0.611 0.505 0.280 0.645

TICNet 0.467 0.376 0.517 0.634† 0.516 0.417 0.520 0.677† 0.596 0.484 0.466 0.717†

Table 1: The notation𝑚 × 𝑛 × 𝐾 represents a setting where𝑚 advertisers and 𝑛 organic items compete for 𝐾 slots. In the metric
Rev+𝛾UE, the hyperparameter 𝛾 is set to 0.5 across different settings. For the GSP and Fixed Positions mechanism, the first slot
is reserved for advertisements. The regret of mechanism generated by the TICNet is less than 0.001. The best performance is
highlighted in bold. “†” indicates a statistically significant improvement in a paired 𝑡-test at 𝑝 < 0.05 level.

5.1 Experimental Settings
5.1.1 Baseline Methods. We compare the TICNet with the follow-

ing two representative mechanisms that can be applied to integrate

advertising auction and recommendation system:

• GSP [13] with Fixed Positions, a well-known method, which

is implemented sequentially. First, we determine the number

and specific positions of ad slots. Next, organic items are ranked

based on their user experience profiles. The order of ads is then

established using the GSP mechanism. Finally, the winning ads

are placed in the predetermined slots and charged accordingly.

• IAS [20], a Myerson-based mechanism, ranks ads and organic

items using a ranking score of 𝜙𝑖 (𝑣𝑖 ) + 𝛾𝑔𝑖 , where 𝜙𝑖 (𝑣𝑖 ) = 𝑣𝑖 −
(1 − 𝐹𝑖 (𝑣𝑖 ))/𝑓𝑖 (𝑣𝑖 ) is the virtual value. Payments are determined

according to the Myerson payment rule [28].

5.1.2 Evaluation Metrics. To assess the performance of TICNet

and other baselines, we evaluate the empirical social welfare: SW =
1

𝐿

∑𝐿
ℓ=1

∑𝑚
𝑖=1

𝑣
(ℓ )
𝑖
· 𝑎𝑤
𝑖
(v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) ), the empirical rev-

enue: Rev = 1

𝐿

∑𝐿
ℓ=1

∑𝑚
𝑖=1

𝑝𝑤
𝑖
(v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) ), the empiri-

cal user experience: UE = 1

𝐿

∑𝐿
ℓ=1

∑𝑚+𝑛
𝑖=1

𝑔𝑖 ·𝑎𝑤𝑖 (v
(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )

and the empirical combination of revenue and user experience with

coefficient𝛾 : Rev+𝛾UE = 1

𝐿

∑𝐿
ℓ=1
[∑𝑚𝑖=1

𝑝𝑤
𝑖
(v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )+

𝛾
∑𝑚+𝑛
𝑖=1

𝑔𝑖 · 𝑎𝑤𝑖 (v
(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) ].

5.2 Synthetic Data
For the synthetic data, we generate datasets under various settings,

each consisting of a training sample of 100,000 profiles and a testing

sample of 5,000 profiles.

Contexts can be categorized into two types based on their fea-

tures: continuous and discrete. For continuous features, we sample

contextual information from a multi-dimensional uniform distri-

bution. For discrete features, we preset a finite number of discrete

contextual types. We generate the bid profiles of advertisers and

the user experience profiles of advertisers and organic items based

on their corresponding contextual information.

We then conduct several experiments comparing TICNet with

baseline methods in the following settings:

(A) 2 ads, 3 organic items and 2 slots with CTR 𝛼 = (0.7, 0.3),
continuous ad-contexts, organic-contexts and slot-contexts,

where X = [−1, 1]5,Y = [0, 2]5 and Z = [−2, 2]5. The raw
value of each ad is independently drawn from𝑈 [0, 1]. The raw

user experience of these 2 ads and 3 organic items is indepen-

dently drawn from𝑈 [0, 0.5] and𝑈 [0.5, 1], respectively. Given
contextual information 𝑥𝑖 ∈ X, 𝑦 𝑗 ∈ Y and 𝑧𝑘 ∈ Z, slot-wise

value profile 𝑣 ′
𝑖𝑘

is derived from raw value profile 𝑣𝑖 according

to 𝑣𝑖 · Sigmoid(𝑥𝑇
𝑖
𝑧𝑘 ), slot-wise user experience profile 𝑔′

𝑗𝑘

is obtained from raw user experience profile 𝑔 𝑗 according to

𝑔 𝑗 · Sigmoid(𝑦𝑇
𝑗
𝑧𝑘 ).

(B) 3 ads, 2 organic items and 2 slots with CTRs 𝛼 = (0.7, 0.3). The
context information, raw profiles and corresponding trans-

ferred profiles are drawn similarly to Setting A.

(C) 3 ads, 5 organic items and 2 slots with CTRs 𝛼 = (0.7, 0.3). The
context information, raw profiles and corresponding trans-

ferred profiles are drawn similarly to Setting A.

The results of Settings A, B and C are outlined in Table 1. No-

tably, the integrated mechanism generated by TICNet consistently

attains a notably higher value for the Rev+𝛾UE metric compared to

other mechanisms, while maintaining a regret of less than 0.001.

This demonstrates the effectiveness of the TICNet architecture in

blending ads and organic items.

To further validate the superiority of TICNet, we carry out ex-

periments across various settings. These include different value

distributions, different hyperparameter 𝛾-values, different numbers

of slots, and different ratios of candidate ads to organic items. The

results for the first two experiments are presented in the main body

of the paper, while the results for the latter two are provided in

Appendix D. Below are the detailed experimental setups.

5.2.1 Different Value Distributions. To showcase the generaliza-

tion capability of TICNet across various value distributions, we

select Setting B and perform three sets of experiments with dif-

ferent distributions. We sample the raw values from three distinct

distributions: a uniform distribution 𝑈 [0, 1]; a normal distribution

𝑁 (0.5, 0.5) truncated to the [0, 1] interval, and a lognormal dis-

tribution 𝐿𝑁 (0.2, 1.69) also truncated to the [0, 1] interval. The
contextual information and corresponding transferred profiles are

obtained in a similar manner as outlined in Setting B.

The experimental results in Table 2 indicate that TICNet consis-

tently achieves the highest Rev+𝛾UE across three different value

distributions. This performance significantly exceeds that of the

other two mechanisms, highlighting TICNet’s stability and robust-

ness in handling various value distributions.

5.2.2 Hyper-parameter Analysis. To assess the impact of the hy-

perparameter 𝛾 on the experimental outcomes, we adjust 𝛾 within
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Method
Uniform Normal Lognormal

SW Rev UE Rev+𝛾UE SW Rev UE Rev+𝛾UE SW Rev UE Rev+𝛾UE

GSP and Fixed Positions 0.595 0.302 0.485 0.545 0.596 0.303 0.484 0.546 0.387 0.224 0.488 0.467

IAS 0.601 0.518 0.299 0.668 0.582 0.485 0.246 0.608 0.394 0.332 0.284 0.474

TICNet 0.516 0.416 0.519 0.675† 0.527 0.402 0.439 0.621† 0.433 0.319 0.512 0.575†

Table 2: The results of experiments for different value distributions. The setting is 3 ads and 2 organic items with 2 slots. The
regret of mechanism generated by the TICNet is less than 0.001. The best performance is highlighted in bold. “†” indicates a
statistically significant improvement in a paired 𝑡-test at 𝑝 < 0.05 level.

the interval [0.2, 2.0] based on Setting A. We plot the Pareto-curves

for various mechanisms, with the results illustrated in Figure 2.
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Figure 2: The Pareto curves of TICNet and other baseline
mechanisms on synthetic dataset.

Figure 2 shows that the TICNet curve is positioned in the upper

right compared to the other curves. This indicates that, across a

wide range of 𝛾 values, TICNet effectively balances revenue and

user experience, resulting in a more desirable blended list than the

baseline methods.

5.3 Real-world Dataset
In addition to the synthetic dataset, we also conducted experiments

using real log data from an online platform in August 2024. In the

environment of feed, the system returns a ranked list containing

ads and organic items. We split the dataset into training and test

sets with a 9:1 ratio. Additionally, since the number of advertisers,

organic items, and slots varies across different auction logs, we

trimmed the dataset to ensure appropriate settings.

We present the experimental results on the test set of the real-

world dataset in Table 3. Compared to the two baseline methods,

the mechanism generated by TICNet achieves a significantly higher

Rev+𝛾UE value, with paired 𝑡-tests at the 𝑝 < 0.05 level. Addition-

ally, TICNet’s mechanism demonstrates approximate DSIC, with a

regret of less than 0.001. These results highlight the effectiveness

of TICNet in real-world auction scenarios.

We also conduct hyperparameter analysis using a real-world

dataset by adjusting 𝛾 within the interval [0.2, 2.0] interval. The re-

sulting Pareto curves for different mechanisms are plotted in Figure

3. As seen in the figure, the Pareto curve of TICNet is positioned

Method SW Rev UE Rev+𝛾UE

GSP and Fixed Positions 1.184 0.728 1.294 1.375

IAS 1.196 0.922 1.201 1.522

TICNet 1.282 1.018 1.384 1.710†

Table 3: The results of experiments for real-world dataset.
The best performance is highlighted in bold. The regret of
mechanism generated by the TICNet is less than 0.001. Sym-
bol “†” indicates a statistically significant improvement in a
paired 𝑡-test at 𝑝 < 0.05 level.
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Figure 3: The Pareto curves of TICNet and other baseline
mechanisms on real-world dataset.

above those of the other mechanisms, indicating that TICNet effec-

tively balances revenue and GMV, thereby generating the optimal

mixed list.

6 CONCLUSION
In this paper, we focus on designing the optimal integrated con-

textual mechanism, which blends sponsored advertisements and

organic items into a mixed list. To address this problem, we propose

TICNet, a transformer encoder-based neural network thatmaintains

permutation equivariance and exhibits strong generalization per-

formance, supported by theoretical proof. We then conduct a series

of experiments to demonstrate TICNet’s effectiveness compared

to baseline mechanisms. In the future, it would be delightful to

explore other mechanisms in the realm of integrated mechanisms.
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A PROOF OF THEOREM 1
The proof of Theorem 1 combines covering numbers with a con-

centration inequality from [11].

A.1 Basic Definitions
Definition 3 (𝑙∞,1-distance). Let Q be a feature space andW

be a space of functions from Q to R𝑛 . The 𝑙∞,1-distance on the space
F is defined as 𝑙∞,1 (𝑓 , 𝑐) = max𝑞∈Q (

∑𝑛
𝑖=1
|𝑓𝑖 (𝑥) − 𝑐𝑖 (𝑥) |).

Definition 4 (𝑙∞-distance). Let Q be a feature space andW
be a space of functions from Q to R𝑛 . The 𝑙∞-distance on the space
F is defined as 𝑙∞ (𝑓 , 𝑐) = max𝑞∈Q |𝑓𝑖 (𝑥) − 𝑐𝑖 (𝑥) |.

Definition 5 (Covering number). Let N∞,1 (W, 𝑟 ) be the min-
imum number of balls with radius 𝑟 that can coverW under 𝑙∞,1-
distance, andN∞ (W, 𝑟 ) be the minimum number of balls with radius
𝑟 that can coverW under 𝑙∞-distance.

LetU𝑖 be the class of utility functions for advertiser 𝑖 ∈ [𝑚], i.e.,

U𝑖 =
{
𝑢𝑖 :V𝑖 ×V × G × X𝑚 × Y𝑛 ×Z𝐾 → R

���
𝑢𝑖 (𝑣𝑖 ; b, g, x, y, z) = 𝑣𝑖 · 𝑎𝑖 (b, g, x, y, z) − 𝑝𝑖 (b, g, x, y, z)

}
.

Similarly, let U be the class of utility profiles of all advertisers

overM. Define the ℓ∞,1-distance between two utility profiles 𝑢

and 𝑢′ according to Definition 3 and N∞,1 (U, 𝑟 ) as the covering
number under such ℓ∞,1-distance. We also define the ℓ∞-distance
and N∞ (U𝑖 , 𝑟 ) as the 𝑟 -covering number ofU𝑖 under ℓ∞-distance.

Let RGT𝑖 ◦ U𝑖 be the class of all regret functions for advertiser
𝑖 ∈ [𝑚], i.e.,

RGT𝑖 ◦ U𝑖 =
{
𝑟𝑔𝑡𝑖 : V𝑖 ×V × G × X𝑚 × Y𝑛 ×Z𝐾 → R

���
𝑟𝑔𝑡𝑖 (𝑣𝑖 ; b, g, x, y, z) = max

𝑏′
𝑖
∈V𝑖

𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−i), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 , b, g, x, y, z)
}
.

Similarly, we denote RGT ◦U by the class of regret functions of all

advertisers overM. Define the ℓ∞,1-distance between two regret

profiles 𝑟𝑔𝑡 and 𝑟𝑔𝑡 ′ according to Definition 3 andN∞,1 (RGT◦U, 𝑟 )
as the covering number under such ℓ∞,1-distance.

Let P be the class of all the profiles of payment functions for

advertiser 𝑖 ∈ [𝑚], i.e.,
P𝑖 = {𝑝𝑖 : V × G × X𝑚 × Y𝑛 ×Z𝐾 → R≥0 |𝑝 ∈ P}

Similarly, we denote P by the class of payment functions of all ad-

vertisers overM. Then letN∞,1 (P, 𝑟 ) be the 𝑟 -covering number of

P under the ℓ∞,1-distance andN∞ (P𝑖 , 𝑟 ) be the 𝑟 -covering number

of P𝑖 under the ℓ∞-distance.
LetG be the class of all the profiles of user experience forwinning

advertiser (or organic item) 𝑖 ∈ [𝑚] ∪ [𝑛], i.e.,
G𝑖 = {𝑔𝑖 : V × G × X𝑚 × Y𝑛 ×Z𝐾 → R≥0 |

𝑔𝑖 (b, g, x, y, z) = 𝑔𝑖 · 𝑎𝑖 (b, g, x, y, z)}
Similarly, we denote G by the class of winning user experience

functions of all advertisers and organic items overM. Then let

N∞,1 (G, 𝑟 ) be the 𝑟 -covering number of G under the ℓ∞,1-distance
andG∞ (G𝑖 , 𝑟 ) be the 𝑟 -covering number ofG𝑖 under the ℓ∞-distance.

A.2 Technical Lemmas
With the definitions above, we then introduce a few of important

lemmas. Notably, the Lemma 1 has been proved by [11]. We recall

it here to make our paper completed.

Lemma 1 ([11]). Let S = {𝑧1, · · · , 𝑧𝐿} be a set of i.i.d. samples
drawn from the distribution D over Z. Assume that F is a set of
functions from Z to R such that 𝑓 (𝑧) ∈ [𝑎, 𝑏] for all 𝑓 ∈ F and
𝑧 ∈ Z. Then we have

P
[
∃𝑓 ∈ F :

��� 1
𝐿

𝐿∑︁
𝑖=1

𝑓 (𝑧𝑖 ) − E[𝑓 (𝑧)]
��� > 𝜖]

≤ 2N∞ (F ,
𝜖

3

) exp

(
− 2𝐿𝜖2

9(𝑏 − 𝑎)2

)
Proof. Let F𝑟 be the minimum function class that 𝑟 -covers F .

Then for any 𝑓 ∈ F , there exists 𝑓𝑟 ∈ F𝑟 such that |𝑓 (𝑧)− 𝑓𝑟 (𝑧) | ≤ 𝑟 .
For the simplicity, we denote

1

𝐿

∑𝐿
𝑖=1

𝑓 (𝑧𝑖 ) by ES [𝑓 (𝑧)]. Then for

all 𝜖 > 0, set 𝑟 = 𝜖
3
, we can get

P
[
∃𝑓 ∈ F ,

���ES [𝑓 (𝑧)] − E[𝑓 (𝑧)]��� > 𝜖]
=P

[
∃𝑓 ∈ F ,

���ES [𝑓 (𝑧)] − ES [𝑓𝑟 (𝑧)] + ES [𝑓𝑟 (𝑧)] − E[𝑓𝑟 (𝑧)]+
E[𝑓𝑟 (𝑧)] − E[𝑓 (𝑧)]

��� > 𝜖]
≤P

[
∃𝑓 ∈ F ,

���ES [𝑓 (𝑧)] − ES [𝑓𝑟 (𝑧)]��� + ���ES [𝑓𝑟 (𝑧)] − E[𝑓𝑟 (𝑧)]���+���E[𝑓𝑟 (𝑧)] − E[𝑓 (𝑧)]��� > 𝜖]
≤P

[
∃𝑓 ∈ F , 𝑟 +

���ES [𝑓𝑟 (𝑧)] − E[𝑓𝑟 (𝑧)]��� + 𝑟 > 𝜖]
≤P

[
∃𝑓𝑟 ∈ F𝜖

3

,

���ES [𝑓𝑟 (𝑧)] − E[𝑓𝑟 (𝑧)]��� > 1

3

𝜖

]
,

≤N∞ (F ,
𝜖

3

)P
[���ES [𝑓 (𝑧)] − E[𝑓 (𝑧)]��� > 1

3

𝜖

]
≤2N∞ (F ,

𝜖

3

) exp

(
− 2𝐿𝜖2

9(𝑏 − 𝑎)2

)
,

(5)

where the last inequality is supported by Hoeffding Inequality. □

The following three lemmas provide the covering numbers bound

for payment, regret and user experience.

Lemma 2. N∞,1 (P, 𝜖) ≤ N∞,1 (M, 𝜖).

Proof. By the definition of the covering number for the auction

classM, there exists a cover
ˆM forM of size | ˆM| ≤ N∞,1 (M, 𝜖)

such that for any (a, p) ∈ M, there is a (â, p̂) ∈ ˆM for all v, g, x, y, z,
𝑚+𝑛∑︁
𝑖=1

��a𝑖 (b, g, x, y, z) − â𝑖 (b, g, x, y, z)��+
𝑚∑︁
𝑖=1

��p𝑖 (b, g, x, y, z) − p̂𝑖 (b, g, x, y, z)�� ≤ 𝜖.
As a result, we can have

ˆP = {p̂| (â, p̂) ∈ ˆM}, then for any p ∈ P,
there exist a p̂ ∈ ˆP, for all b, g, x, y, z,∑︁

𝑖

��p𝑖 (v, g, x, y, z) − p̂𝑖 (v, g, x, y, z)�� ≤ 𝜖
Therefore, we have N∞,1 (P, 𝜖) ≤ N∞,1 (M, 𝜖). □

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

A Context-Aware Framework for Integrating Ad Auctions and Recommendations Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Lemma 3. N∞,1 (RGT ◦ U, 𝜖) ≤ N∞,1 (M, 𝜖
2𝑚 ).

Proof. By the definition of covering numberN∞,1 (U, 𝑟 ), there
exists a cover

ˆU with size at most N∞,1 (U, 𝜖/2) such that for any

𝑢 ∈ U, there is a 𝑢 ∈ ˆU with

max

v,g,x,y,z

𝑛∑︁
𝑖=1

���𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)−𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)��� ≤ 𝜖
2

.

For any 𝑢 ∈ U, taking 𝑢 ∈ ˆU satisfying the above condition,

then for any v, g, x, y, z, we have��� max

𝑏′
𝑖
∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z)

)
−

max

¯𝑏𝑖 ∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z)

) ���
≤
��� max

𝑏′
𝑖
∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − max

¯𝑏𝑖 ∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏𝑖 , b−𝑖 ), g, x, y, z)

+ 𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z)
���

≤
����� max

𝑏′
𝑖
∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − max

¯𝑏𝑖 ∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏𝑖 , b−𝑖 ), g, x, y, z)

�����
+
���𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z)���

≤
����� max

𝑏′
𝑖
∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − max

¯𝑏𝑖 ∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏𝑖 , b−𝑖 ), g, x, y, z)

�����
+ max

𝑏′
𝑖
∈V𝑖

���𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)���.
Then we denote 𝑏∗

𝑖
∈ arg max𝑏′

𝑖
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) and

ˆ𝑏∗
𝑖
∈ arg max𝑣𝑖 𝑢𝑖 (𝑣𝑖 , (𝑣𝑖 , 𝑣−𝑖 ), 𝑥,𝑦), then

max

𝑏′
𝑖
∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − max

¯𝑏𝑖 ∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏𝑖 , b−𝑖 ), g, x, y, z)

=𝑢𝑖 (𝑣𝑖 ; (𝑏∗𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏
∗
𝑖 , b−𝑖 ), g, x, y, z)

≤𝑢𝑖 (𝑣𝑖 ; (𝑏∗𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑏
∗
𝑖 , b−𝑖 ), g, x, y, z)

≤ max

𝑏′
𝑖
∈V𝑖

���𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)���
max

¯𝑏𝑖 ∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏𝑖 , b−𝑖 ), g, x, y, z) − max

𝑏′
𝑖
∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)

=𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏∗𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑏
∗
𝑖 , b−𝑖 ), g, x, y, z))

≤𝑢𝑖 (𝑣𝑖 ; (𝑏∗𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑏
∗
𝑖 , b−𝑖 ), g, x, y, z)

≤ max

𝑏′
𝑖
∈V𝑖

���𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)���.
Thus,

max

𝑏′
𝑖
∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z)

)
− max

¯𝑏𝑖 ∈V𝑖

(
𝑢𝑖 (𝑣𝑖 ; ( ¯𝑏𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑣𝑖 , b−𝑖 ), g, x, y, z)

)
≤2 max

𝑏′
𝑖
∈V𝑖

���𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 ; (𝑏′𝑖 , b−𝑖 ), g, x, y, z)���.
Summing the inequalities by 𝑖 , we can conclude that N∞,1 (RGT ◦
U, 𝜖) ≤ N∞,1 (U, 𝜖

2
).

Then we prove that N∞,1 (U, 𝜖) ≤ N∞,1 (M, 𝜖𝑛 ).
Then by the definition of the covering number for the auction

classM, there exists a cover
ˆM forM of size | ˆM| ≤ N∞,1 (M, 𝜖𝑛 )

such that for any (a, p) ∈ M, there is a (â, p̂) ∈ ˆM for all v, g, x, y, z,∑︁
𝑖

[��a𝑖 (v, g, x, y, z)−â𝑖 (v, g, x, y, z)��+��p𝑖 (v, g, x, y, z) − p̂𝑖 (v, g, x, y, z)��] ≤ 𝜖

𝑛
.

For all v ∈ V, 𝑏′
𝑖
∈ V𝑖 ,���𝑢𝑖 (𝑣𝑖 , (𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑢𝑖 (𝑣𝑖 , (𝑏′𝑖 , b−𝑖 ), g, x, y, z)���

=

���𝑣𝑖 · 𝑎𝑖 ((𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑝𝑖 ((𝑏′𝑖 , b−𝑖 ), g, x, y, z)
− 𝑣𝑖 · 𝑎𝑖 ((𝑏′𝑖 , b−𝑖 ), g, x, y, z) + 𝑝𝑖 ((𝑏

′
𝑖 , b−𝑖 ), g, x, y, z)

���
≤
���𝑣𝑖 · [𝑎𝑖 ((𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑎𝑖 ((𝑏′𝑖 , b−𝑖 ), g, x, y, z)]���
+
���𝑝𝑖 ((𝑏′𝑖 , b−𝑖 ), g, x, y, z) − 𝑝𝑖 ((𝑏′𝑖 , b−𝑖 ), g, x, y, z)���

≤ 𝜖
𝑚
.

Thus,

𝑚∑︁
𝑖=1

���𝑢𝑖 (𝑣𝑖 , (𝑏′𝑖 , b−𝑖 ), g, x, y, z)−𝑢𝑖 (𝑣𝑖 , (𝑏′𝑖 , b−𝑖 ), g, x, y, z)��� ≤ 𝑚· 𝜖𝑚 = 𝜖.

This completes the proof that N∞,1 (U, 𝜖) ≤ N∞,1 (M, 𝜖𝑚 ).
Therefore,

N∞,1 (RGT ◦ U, 𝜖) ≤ N∞,1 (U,
𝜖

2

) ≤ N∞,1 (M,
𝜖

2𝑚
).

This completes the proof of Lemma 3. □

Lemma 4. N∞,1 (RGT ◦ U, 𝜖) ≤ N∞,1 (M, 𝜖
2𝑚 ).

Proof. Similar to the proof of Lemma 2, there exists a cover

ˆM forM of size | ˆM| ≤ N∞,1 (M, 𝜖) such that for any (a, p) ∈ M,

there is a (â, p̂) ∈ ˆM for all v, g, x, y, z,
𝑚+𝑛∑︁
𝑖=1

��a𝑖 (b, g, x, y, z) − â𝑖 (b, g, x, y, z)��+
𝑚∑︁
𝑖=1

��p𝑖 (b, g, x, y, z) − p̂𝑖 (b, g, x, y, z)�� ≤ 𝜖.
As a result, we can have

ˆG = {p̂| (â, p̂) ∈ ˆM}, then for any g ∈ G,
there exist a ĝ ∈ ˆG, for all b, g, x, y, z,

𝑚+𝑛∑︁
𝑖

��[a𝑖 (v, g, x, y, z) − â𝑖 (v, g, x, y, z)]𝑔𝑖 ��
≤
𝑚+𝑛∑︁
𝑖

��[a𝑖 (v, g, x, y, z) − â𝑖 (v, g, x, y, z)]��
≤𝜖

Therefore, we have N∞,1 (G, 𝜖) ≤ N∞,1 (M, 𝜖).
□
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A.3 Proof of Theorem 1
Proof of Theorem 1. For all 𝜖, 𝛿 ∈ (0, 1), when

𝐿 ≥ 9𝑛2

2𝜖2

(
ln

4

𝛿
+ lnN∞,1 (M,

𝜖

6𝑛
)
)
,

Combining Lemma 1 and Lemma 2 together, we get

P
[
∃(𝑔𝑤 , 𝑝𝑤) ∈ M,

����E(v,g,x,y,z)∼Dv,g,x,y,z

[ 𝑚∑︁
𝑖=1

𝑝𝑤𝑖 (v, g, x, y, z)
]
−

1

𝐿

𝐿∑︁
ℓ=1

𝑚∑︁
𝑖=1

𝑝𝑤𝑖
(
v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ )

) ���� > 𝜖]
≤2N∞ (P,

𝜖

3

) exp (−2𝐿𝜖2

9𝑚2
)

≤2N∞ (M,
𝜖

3

) exp (−2𝐿𝜖2

9𝑚2
)

≤2N∞ (M,
𝜖

6𝑚
) exp (−2𝐿𝜖2

9𝑚2
)

≤2N∞ (M,
𝜖

6(𝑚 + 𝑛) ) exp (− 2𝐿𝜖2

9(𝑚 + 𝑛)2
)

≤𝛿
3

.

(6)

Similarly, combining Lemma 1 and Lemma 3 together, we have

P
[
∃(𝑔𝑤 , 𝑝𝑤) ∈ M,

����E(v,g,x,y,z)∼Dv,g,x,y,z

[ 𝑚∑︁
𝑖=1

𝑟𝑔𝑡𝑖 (𝑤)
]
−

𝑚∑︁
𝑖=1

𝑟𝑔𝑡𝑖 (𝑤)
���� > 𝜖]

≤2N∞ (RGT ◦ U, 𝜖
3

) exp (−2𝐿𝜖2

9𝑚2
)

≤2N∞ (M,
𝜖

6𝑚
) exp (−2𝐿𝜖2

9𝑚2
)

≤2N∞ (M,
𝜖

6(𝑚 + 𝑛) ) exp (− 2𝐿𝜖2

9(𝑚 + 𝑛)2
)

≤𝛿
3

.

(7)

Combining Lemma 1 and Lemma 4 together, we get

P
[
∃(a𝑤 , p𝑤) ∈ M,

����E(v,g,x,y,z)∼Dv,g,x,y,z

[𝑚+𝑛∑︁
𝑖=1

𝑔𝑖 · 𝑎𝑤𝑖 (v, g, x, y, z)
]
−

1

𝐿

𝐿∑︁
ℓ=1

𝑚+𝑛∑︁
𝑖=1

𝑔𝑖 · 𝑎𝑤𝑖
(
v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ )

) ���� > 𝜖]
≤2N∞ (G,

𝜖

3

) exp (− 2𝐿𝜖2

9(𝑚 + 𝑛)2
)

≤2N∞ (M,
𝜖

3

) exp (− 2𝐿𝜖2

9(𝑚 + 𝑛)2
)

≤2N∞ (M,
𝜖

6(𝑚 + 𝑛) ) exp (− 2𝐿𝜖2

9(𝑚 + 𝑛)2
)

≤𝛿
3

.

(8)

Combining Equation (6), Equation (7), Equation (8) and the Union

Bound, with probability at most
𝛿
3
+ 𝛿

3
+ 𝛿

3
= 𝛿 , one of the three

events of Equation (6), Equation (7) and Equation (8) happens. There-

fore, with probability at least 1 − 𝛿 , Equation (2), Equation (3) and

Equation (4) hold. We complete the proof of Theorem 1. □

B PROOF OF THEOREM 2
Definition 6 (Permutation-eqivariant [30]). An auction

mechanism (a𝑤 , p𝑤) is permutation-equivariant if for any two per-
mutation matrices Π𝑛 ∈ {0, 1}𝑛×𝑛 and Π𝑚 ∈ {0, 1}𝑚×𝑚 , and any
input 𝑉 , both a𝑤 (Π𝑛𝑉Π𝑚) = Π𝑛a(𝑉 )Π𝑚 and p𝑤 (Π𝑛𝑉Π𝑚) =

Π𝑛p(𝑉 ) hold.

Proof of Theorem 2. With the bidding profile b ∈ R𝑚 , the

TICNet’s input layer in Section 4.2 transfers bids b ∈ R𝑚 into

e ∈ R(𝑚+𝑛)×𝐾 through:{
𝑒𝑖𝑘 = 𝑏𝑖𝛼𝑘 , ∀𝑖 ∈ [𝑚], ∀𝑘 ∈ [𝐾];
𝑒𝑖𝑘 = 0, ∀𝑖 ∈ [𝑛], ∀𝑘 ∈ [𝐾] .

Similarly, with the user experience profile g ∈ R𝑚+𝑛 , the TIC-
Net’s input layer transfers user experience g ∈ R𝑚+𝑛 into q ∈
R(𝑚+𝑛)×𝐾 through:

𝑞 𝑗𝑘 = 𝑔 𝑗𝛼𝑘 , ∀𝑗 ∈ [𝑚] ∪ [𝑛], ∀𝑘 ∈ [𝐾]
Notably, matrices e and q contain information about both adver-

tisers and organic items. Correspondingly, we combine ad-contexts

x ∈ R𝑚×𝑑𝑐 and organic-contexts y ∈ R𝑛×𝑑𝑐 along the first dimen-

sion into participant-contexts s ∈ R(𝑚+𝑛)×𝑑𝑐 .
Thenwith above generatedmatrices and slot-contexts z ∈ R𝐾×𝑑𝑧 ,

we have

a𝑤 (Π𝑚+𝑛eΠ𝐾 ,Π𝑚+𝑛qΠ𝐾 ,Π𝑚+𝑛s,Π𝑇𝐾 z) = Π𝑚+𝑛a𝑤 (e, q, s, z)Π𝐾 ,
and

p𝑤 (Π𝑚+𝑛eΠ𝐾 ,Π𝑚+𝑛qΠ𝐾 ,Π𝑚+𝑛s,Π𝑇𝐾 z) = Π𝑚+𝑛a𝑤 (e, q, s, z) .
In addition, we adopt the transformer encoder architecture, ex-

cluding the positional encoding layer. It consists of multiple layers,

each of which contains multi-head attention and a feed-forward

neural network. These two components are not affected by the

order of input, thus maintains permutation-equivariant.

To sum up, TICNet is permutation-equivariant. □

C DETAILED TRAINING PROCEDURE
C.1 Traning Settings
We adopt the augmented Lagrangian algorithm to convert original

constrained optimization problem into an unconstrained optimiza-

tion problem within the space of parameter𝑤 ∈ 𝑑𝑤 :

C𝜌 (𝑤 ;𝝀) = − 1

𝐿

𝐿∑︁
ℓ=1

[ ∑︁
𝑖∈[𝑚]

𝑝𝑤𝑖 (v
(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )+

𝛾 ·
∑︁

𝑗∈[𝑚]∪[𝑛]
𝑔 𝑗 · 𝑎𝑤𝑗 (v

(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )
]

+
𝑚∑︁
𝑖=1

𝜆𝑖 · 𝑟𝑔𝑡𝑖 (𝑤) +
𝜌

2

𝑚∑︁
𝑖=1

(𝑟𝑔𝑡𝑖 (𝑤))2,
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Algorithm 1: TICNet Training

1 Input:Minibatches L1, ...,L𝑇 of size 𝐵;

2 Parameters:
∀𝑡 ∈ {1, . . . ,𝑇 }, 𝜌𝑡 > 0, 𝜑 > 0, 𝜂 > 0, Γ ∈ N,𝑇 ∈ N, 𝐻 ∈ N;

3 Initialize:𝑤0 ∈ R𝑑 , 𝜆0 ∈ R𝑚 ;

4 for 𝑡 = 0 to 𝑇 do
5 Receive minibatch L𝑡 =

{(v(1) , g(1) , x(1) , y(1) , z(1) ), · · · , (v(𝐵) , g(𝐵) , x(𝐵) , y(𝐵) , z(𝐵) )};

6 Initialize misreport 𝑏
′(ℓ )
𝑖
∈ V𝑖 ,∀ℓ ∈ {1, . . . , 𝐵}, 𝑖 ∈ [𝑚];

7 for 𝑟 = 0 to Γ do
8 ∀ℓ ∈ {1, . . . , 𝐵}, 𝑖 ∈ [𝑚];
9 𝑣

′(ℓ )
𝑖

= 𝑣
′(ℓ )
𝑖
+

𝜑∇𝑣′
𝑖

[
𝑢𝑤
𝑖

(
𝑣
(ℓ )
𝑖

;

(
𝑏′
𝑖
, v(ℓ )−𝑖

)
, g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ )

)] ���
𝑣′
𝑖
=𝑣
′(ℓ )
𝑖

;

10 end
11 Compute regret gradient:∀ℓ ∈ [𝐵], 𝑖 ∈ 𝑀 :

12 ℎℓ,𝑖 =

∇𝑤
[

max𝑏′
𝑖
∈𝑉𝑖 𝑢

𝑤
𝑖
(𝑣 (ℓ )
𝑖

; (𝑏′
𝑖
, v(ℓ )−𝑖 ), g

(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )−

𝑢𝑤
𝑖
(𝑣 (ℓ )
𝑖

; v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )
]
;

13 Compute Lagrangian gradient and update𝑤𝑡 :

14 𝑤𝑡+1 ← 𝑤𝑡 − 𝜂∇𝑤C𝜌𝑡
(
𝑤𝑡 , 𝜆𝑡

)
;

15 Update Lagrange multipliers once in 𝐻 iterations:

16 if 𝑡 is a multiple of 𝐻 then
17 𝜆𝑡+1

𝑖
← 𝜆𝑡

𝑖
+ 𝜌𝑡𝑟𝑔𝑡𝑖

(
𝑤𝑡+1

)
, ∀𝑖 ∈ 𝑀

18 else
19 𝝀𝑡+1 ← 𝝀𝑡

20 end
21 end

where 𝝀 = (𝜆1, 𝜆2, · · · , 𝜆𝑛) ∈ R𝑛 stands for the Lagarangian multi-

pliers and 𝜌 > 0 is the hyperparameter that control the quadratic

term.

Afterward, we move on to divide the dataset L into minibatches

of size 𝐵. We denote the total number of epoches by 𝑇 . For each

epoch 𝑡 ∈ {1, 2, · · · ,𝑇 }, we randomly select a minibatch L𝑡 , i.e.,
L𝑡 = {(v(1) , g(1) , x(1) , y(1) , z(1) ), · · · , b(𝐵) , g(𝐵) , x(𝐵) , y(𝐵) , z(𝐵) )}
and feed it to TICNet to train, until all the minibatches have been

trained in this epoch. We will then redivide the dataset L into

minibatches of size 𝐵 and repeat training procedure until 𝑇 .

For each minibatch, we first calculate the optimal misreports

through gradient ascent. It is worth noting that since organic items

do not engage in strategic behavior, we only take advertisers into

account when computing the optimal misreports. Specifically, we

compute the optimal misreport, for each advertiser 𝑖 and corre-

sponding profile ℓ , by taking Γ updates from a randomly initialized

valuation, each update of the form

𝑏
′(ℓ )
𝑖

= 𝑏
′(ℓ )
𝑖
+ 𝜇∇𝑏′

𝑖

[
𝑢𝑤𝑖

(
𝑣
(ℓ )
𝑖

;

(
𝑏′𝑖 , v

(ℓ )
−𝑖

)
, g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ )

)] ���
𝑏′
𝑖
=𝑏
′(ℓ )
𝑖

,

with hyperparameter 𝜇 > 0. We then update the Lagrange multipli-

ers and model parameters alternately:{
𝑤new ∈ arg min𝑤 C𝜌 (𝑤old, 𝝆old)
𝜆new
𝑖

= 𝜆old
𝑖
+ 𝜌𝑟𝑔𝑡𝑖 (𝑤new), 𝑖 ∈ [𝑛]

We denote 𝑟𝑔𝑡𝑖 as the empirical regret value calculated onminibatch

L𝑡 . Then for fixed 𝝀𝑡 , the gradient of C𝜌 w.r.t.𝑤 is defined as:

∇𝑤C𝜌 (𝑤 ;𝝀𝑡 )

= − 1

𝐵

𝐵∑︁
ℓ=1

[ ∑︁
𝑖∈[𝑚]

∇𝑤𝑝𝑤𝑖 (v
(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )+

𝛾 ·
∑︁

𝑗∈[𝑚]∪[𝑛]
𝑔 𝑗∇𝑤𝑎𝑤𝑗 (v

(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )
]

+
𝐵∑︁
ℓ=1

[
𝑚∑︁
𝑖=1

𝜆𝑡𝑖ℎℓ,𝑖 + 𝜌
𝑚∑︁
𝑖=1

𝑟𝑔𝑡𝑖 (𝑤)ℎℓ,𝑖 ],

where

ℎℓ,𝑖 =∇𝑤

[
max

𝑏′
𝑖
∈𝑉𝑖

𝑢𝑤𝑖 (𝑣
(ℓ )
𝑖

; (𝑏′𝑖 , v
(ℓ )
−𝑖 ), g

(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )−

𝑢𝑤𝑖 (𝑣
(ℓ )
𝑖

; v(ℓ ) , g(ℓ ) , x(ℓ ) , y(ℓ ) , z(ℓ ) )
]
.

C.2 Training Algorithm of TICNet
D EXTENSIVE EXPERIMENTS ON SYNTHETIC

DATASET
For the synthetic data, we have conducted one extensive experiment

to validate the performance of TICNet and other baselines. The

details of the setting is:

(D) 1 ad, 4 organic items and 3 slots with CTRs 𝛽 = (0.6, 0.3, 0.1),
continuous ad-contexts, organic-contexts and slot-contexts,

in which X = [−1, 1]5,Y = [0, 2]5 andZ = [−2, 2]5. The raw
value profile of each ad is independently drawn from 𝑈 [0, 1].
The raw user experience profiles of these 2 ads and 3 organic

items are independently drawn from𝑈 [0, 0.5] and𝑈 [0.5, 1],
respectively. Given contextual information 𝑥𝑖 ∈ X, 𝑦 𝑗 ∈ Y
and 𝑧𝑘 ∈ Z, slot-wise value profile 𝑣 ′

𝑖𝑘
is transferred from raw

value profile 𝑣𝑖 according to 𝑣𝑖 · Sigmoid(𝑥𝑇
𝑖
𝑧𝑘 ), slot-wise user

experience profile 𝑔′
𝑗𝑘

is obtained from raw user experience

profile 𝑔 𝑗 according to 𝑔 𝑗 · Sigmoid(𝑦𝑇
𝑗
𝑧𝑘 ).

The experimental results are shown in Table 4. We can conclude

that the integrated mechanism generated by TICNet are capable of

achieving higher value for the Rev+𝛾UE metric compared to other

baseline mechanisms, while keeping the regret value less than 0.001.

These results demonstrate that TICNet is competent to integrate

ads and organic items effectively.

To further validate the superiority of TICNet, we conduct exper-

iments across various settings. These include different numbers of

slots, different ratios of candidate ads to organic items and large

scale. The detailed settings and corresponding results for these

three experiments are outlined below:
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Method
D: 1 × 4 × 3

SW Rev UE Rev+𝛾UE

GSP and Fixed Positions 0.582 0 0.498 0.299

IAS 0.270 0.215 0.581 0.506

TICNet 0.303 0.222 0.630 0.537†

Table 4: The notation 1 × 4 × 3 represents a setting where
1 advertiser and 4 organic items compete for 3 slots. In the
metric Rev+𝛾UE, the hyperparameter 𝛾 is set to 0.5 across
different settings. For the GSP and Fixed Positions mecha-
nisms, the first slot is reserved for candidate ads. The regret
of mechanism generated by the TICNet is less than 0.001.
The best performance is highlighted in bold. “†” indicates
a statistically significant improvement in a paired 𝑡-test at
𝑝 < 0.05 level.

D.1 Different Number of Slots
To demonstrate the performance of TICNet compared to other

baseline methods with different slots, we use Setting C as the basic

setting and adjust the number of slots and their corresponding CTR

values. We conduct a total of four experiments for validation. The

specific setup is as follows: Setting C1. two slots with CTRs 𝛼 = (0.7,
0.3); Setting C2. three slots with CTRs 𝛼 = (0.6, 0.3, 0.1); Setting
C3. four slots with CTRs 𝛼 = (0.5, 0.3, 0.15, 0.05); Setting C4. five
slots with CTRs 𝛼 = (0.4, 0.3, 0.15, 0.1, 0.05). The other settings
keep unchanged compared with initial Setting C. The curves of the

combination of final revenue and user experience as the number of

slots varying are presented in Figure 4.

C1(slot=2) C2(slot=3) C3(slot=4) C4(slot=5)
Different Number of Slots

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

Re
v 

+ 
UE

Performance on Different Number of Slots
TICNet
IAS
GSP with Fixed Slots

Figure 4: The performance of TICNet and other baseline
mechanisms across different numbers of slots.

From Figure 4, we observe that TICNet outperforms all other

mechanisms, indicating that TICNet maintains strong adaptability

even when the number of slots changes.

D.2 Different Ratios of Candidate Ads to
Organic Items

Based on Setting (D), we keep the total number of candidates con-

stant while varying the ratio of ads to organic items to observe

the changes in revenue and user experience. We conduct four ex-

periments for validation, with the experimental setups as follows:

Setting D1. one ad and four organic items; Setting D2. two ads and

three organic items; Setting D3. three ads and two organic items;

Setting D4. four ads and one organic item. The raw user experience

profiles of these ads and organic items are independently drawn

from 𝑈 [0, 0.5] and 𝑈 [0.5, 1], respectively. The other settings re-

main unchanged compared with initial Setting C. In all these four

settings, we set 𝛾 =0.5. The curves showing the final revenue and

user experience as functions of the ratio of ads to organic items are

presented in Figure 5.

D1(ad:org=1:4) D2(ad:org=2:3) D3(ad:org=3:2) D4(ad:org=4:1)
Different Ratios

0.20

0.25

0.30

0.35

0.40

0.45
Re

v 
+ 

UE

Performance on Different Ratios of Candidate Ads to Original Items

TICNet
IAS
GSP with Fixed Slots

Figure 5: The performance of TICNet and other baseline
mechanisms across different ratios of candidate ads to or-
ganic items.

From Figure 5, we can observe that TICNet outperforms other

baseline mechanisms in terms of the Rev+𝛾UE metric, demonstrat-

ing its superiority to generate mixed list.
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