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ABSTRACT

A common approach to learning from unlabeled images is to train models to sat-
isfy invariances on these images, such as consistency under augmentations or
crops. Despite successes on Imagenet, these approaches struggle to learn from
larger uncurated datasets like web crawls or video, where such inductive biases
only weakly hold. How can we more effectively learn from broader datasets?
Instead of training models to be invariant across views, we study an alternative
approach encouraging model representations to be predictive of important seman-
tics of adjacent views of an image. We concurrently train a model to predict se-
mantic annotations from images (generated either self-supervised, or from auxil-
iary datasets); and bootstrap the model’s semantics by predicting, given a cropped
view of an image and the coordinates for a nearby crop, the model’s annotation
distribution for the neighboring view. A core strength of this approach is the
ability to extract information universally from both unlabelled and labelled image
data, incorporating captions, bounding boxes, and other annotations when they are
present. Our experiments show that annotation propagation improves pre-training
on unlabelled datasets in the wild, including video datasets like EpicKitchens,
scene datasets like COCO, and uncurated web-scale image datasets like CC12M.

1 INTRODUCTION

The ability to learn from large unlabelled datasets has served as the impetus for much of the recent
progress in deep learning. In natural language processing, text corpora fed into generic unsupervised
objectives like next-token or masked prediction have enabled increasingly capable NLP models.
Even though unlabelled visual data is similarly plentiful and easy to collect — on the internet,
from video, from embodied agents, and beyond — learning from such images has proven a greater
challenge, in part because they are a raw signal with redundancy, low information density and noise.

To learn useful semantics without labels, a common approach is to train models to respect certain in-
variances on images, such as consistency of representations between views of an image transformed
by augmentations, crops, or masking. By representing two different crops of an image with similar
features, models may learn high-level features insofar as guessing which crops go together requires
recognizing semantically salient objects (e.g., that a lion should be associated with the savannah).
Despite their empirical successes, these consistency objectives introduce inductive biases tailored to
pre-training datasets like Imagenet and downstream metrics like object classification. It is unclear
how to generalize these inductive biases to a broader set of images, like web crawl or video data,
and towards other downstream tasks like object detection or embodied action recognition.

In this paper, we consider a framework in which a model attempts to learn semantic relationships
between images and “annotations”, and then uses its learned model to predict these semantic anno-
tations across neighboring views of images. We call this framework annotation bootstrapping, since
the core of the pre-training process involves using a model’s predictions about semantic annotations
from one view to bootstrap the predicted semantics of other neighboring views of an image. The
annotation and bootstrapping objectives are decoupled, which means that we may flexibly steer pre-
training by curating or changing the annotation data, while still using the entire unlabelled image
corpus to “bootstrap” these semantics across nearby images. Unlike invariance-based approaches
to learning from unlabelled data, where learned features are defined opaquely by some interplay
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between augmentations or objectives, our approach offers a controllable lever to guide the features
learned through pre-training.

ViT Encoder

Decoder

`

Figure 1: In annotation bootstrapping, we
learn from unlabelled images by training a
model to predict semantic annotations asso-
ciated with one crop of an image from other
crops of the image. The key idea in our
framework is that we may learn to solve this
prediction task only using unlabeled data by
bootstrapping off the model’s own predic-
tions.

We investigate our pre-training scheme on unlabelled
data distributions where self-supervised approaches typ-
ically degrade, like web-scraped datasets used for VLM
training, video datasets, and datasets that are not object-
centric. In the completely self-supervised setting, we syn-
thesize annotations by sampling two transformed views of
an image, we find that our joint objective leads to better
representations than those that train for consistency be-
tween views, or otherwise directly predict in pixel space.
Since the annotation and propagation processes are com-
pletely decoupled in our framework, we find that we can
also improve performance by, for example, learning rela-
tionships between crops on Imagenet (where the inductive
bias of consistency fits well), and then propagating these
annotations on video or scene datasets, where it does not.
We find also that our framework is amenable to leveraging
annotations from other sources. For example, we show
that using web-scraped captions as annotation targets (ef-
fectively turning the problem into one of predicting dis-
tributions over targets) allows us to learn vision-language
models more capable than those learned by CLIP, and
other approaches that combine CLIP with self-supervised
objectives.

The primary contribution of this paper is annotation prop-
agation, an approach for pre-training on unlabelled im-
age data that jointly learns image-annotation relation-
ships and predicts distributions of these annotations across image views. Compared to other self-
supervised methods, this approach can more readily ingest uncurated image data without sacrificing
image performance and allows us to easily incorporate any (weakly-) supervised data into the pre-
training process.

2 RELATED WORK

Self-supervised learning. Self-supervised methods learn from unlabelled image data generally
in two ways: by generation or by enforcing representational consistency. Generative approaches
predict raw pixels (He et al., 2021) or other low-level features (Xie et al., 2021; Bao et al., 2021) from
a corrupted or masked image input; the quality of learned image semantics can depend significantly
on the pixel statistics of pre-training images (cite). Consistency-based approaches instead train
representations to be similar across image transformations like augmentations or masks. Consistency
can be enforced directly via instance-level discrimination (van den Oord et al., 2018; Chen et al.,
2020a) or implicitly in the limit of self-distillation (Grill et al., 2020; Caron et al., 2019; He et al.,
2019; Chen & He, 2020; Assran et al., 2023). These methods also mimic qualities of the pre-
training distribution (cite uniform prior), and degrade on atypical images and uncurated datasets.
One challenge with self-distillation in latent space admits pathological solutions (like the trivial
representation ϕ = 0), often requiring advanced techniques such as logit sharpening (Caron et al.,
2021; Oquab et al., 2023) or asymmetrical predictors (Grill et al., 2020).

Vision-language pre-training. On vision-language datasets, prior work has found gains in com-
bining weakly supervised losses (Radford et al., 2021; Jia et al., 2021; Zhai et al., 2023) with self-
supervised ones: Mu et al. (2021) combines CLIP with a SimCLR objective using an auxiliary head,
Li et al. (2021) jointly runs CLIP and SimCLR both on the same representation, Naeem et al. (2023)
combines SigLIP with a DINO objective. These methods improve the data efficiency of contrastive
vision-language training and improves performance for more fine-grained tasks like segmentation
and prediction; however, other evidence however suggests that simpler solutions also offer the same
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Figure 2: Conceptual illustration. A toy model illustrating how bootstrapping annotations can help
models propagate visual semantic understanding while pre-training on unlabeled data. By asking
the model to predict from the purple crop, the model’s outputs on the pink crop, and vice versa,
the model can learn features that better explain both crops of a scene. More generally, training
a model to predict details about the neighboring scene encourages it to acquire a better semantic
understanding of its own view, thereby improving the data used to train the model in the future.

invariances, for example by increasing augmentation in the CLIP objective (Fini et al., 2023) or by
scaling data (Weers et al., 2023).

Semi-supervised learning While our paper focuses on unlabelled image pre-training guided by
descriptive annotations like free-form text, it is adjacent to a longer line of semi-supervised ap-
proaches learning with partially annotated class labels. Two techniques are common: combining
a supervised classification loss with an self-supervised objective on unlabelled data (Pathak et al.,
2016; Chen et al., 2020b; Zhai et al., 2019a; Xie et al., 2019), and using the supervised dataset to
create pseudo-labels (Lee et al., 2013) for unlabelled images (Xie et al., 2019; Pham et al., 2020).
While both pseudo-labeling and our bootstrapping generate target predictions using the model’s out-
puts, we note one important difference: pseudolabelling creates labels for a different model to train,
while our approach is designed to enable a model to learn from its own synthetic targets.

3 PRE-TRAINING BY BOOTSTRAPPING ANNOTATIONS

We propose the annotation bootstrapping framework, which uses unlabelled image data to propagate
the model’s understanding of image semantics across “neighboring” views of an image. The core
principle is the bootstrap: that the current model’s predictions about a given image can be used to
create a prediction target for itself – just for a different image input.

In this framework, models learn in two threads; one that predicts semantic annotations from images,
and one that “bootstraps” these annotations across different views of an image to teach models how
to predict the semantics of its surroundings. Intuitively, the bootstrapped update is simple: we take
an crop of an unlabelled image and transform it (e.g. by zooming in, panning left, etc); the model
is trained to predict, given the first image and a description of the transform applied, the annotations
detected by the model in the transformed image. As we illustrate conceptually in Figure 2, these two
threads are synergistic; as the model improves its ability to predict semantics about the scene around
it, it acquires a better semantic understanding of its own scene, thereby improving the targets used
to train the model in the future.

Learning to predict annotations from images. The first step to formalizing our framework is to
specify what it means to model (and eventually predict across views) useful semantic concepts. We
co-opt the terminology of image annotations, arbitrary descriptors of useful semantic concepts in
images. A useful mental model is to imagine annotations as text descriptions of an image, although
they can be masks, captions, audio, or even other images. The learning problem is to use a dataset of
image-annotation pairs Da = {(xi, ℓi)} to predict the annotation distribution p(x, ℓ); when modeled
contrastively, yields a well-known learning problem (Poole et al., 2019; Eysenbach et al., 2024).
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Note 1 The following optimization yields the annotation distribution up to an additive constant:

log
p(ℓ|x)
p(ℓ)

+ C = argmaxE(xi,ℓi)ni=1∼p[
∑
i

log
exp(f(xi, ℓi))∑
j exp(f(xi, ℓj)

+ log
exp(f(xi, ℓi))∑
j exp(f(xj , ℓi)

] (1)

We choose this framework because it encompasses many common learning algorithms, supervised,
weakly-supervised, or self-supervised, depending on the choice of annotations. When annotations
are textual captions, this corresponds to the CLIP objective (Radford et al., 2021); when annotations
are defined to be augmented crops of the same image ℓ = augment(randomcrop(x)), this becomes
the SimCLR objective, and when annotations are discrete class labels, this corresponds to a (label-
smoothed) classification objective. In our experiments, we will consider annotations of both textual
types (corresponding to a base CLIP loss), and images (corresponding to a base SimCLR loss) to
show how our method can be applied in both fully self-supervised AND weakly supervised settings.

Learning on unlabelled data by bootstrapping annotations. For a model that is being trained
to predict semantic annotations associated with an image, we can pre-train on unlabelled data to
“bootstrap” these concepts to a broader set of images. Intuitively, the idea is that, by taking two crops
of an unlabelled image, we can use the model’s outputs to generate target responses for questions
of the form “What will be the annotations we see if we zoom out from the current view? or “what
semantic concepts exist to the right of the current view?”.

Formally, we model image transformations as a dynamical system that applies some transformation
a to an image x to realize a new image x′ from some distribution p(x′|x, a). The bootstrapping
objective is to predict the annotation distribution that is associated with the transformed image

p(ℓ|x, a) = Ex′∼p(x′|x,a)[p(ℓ|x′)]. (2)

In words, the learning problem is – given an image x and a description of an image transformation
a – to predict the annotation distribution for the transformed image x′. This captures a wide range
of image transformations – whether transforming an image self-supervised (e.g. zooming, panning,
rotating, cropping) as we study in this paper, but also includes other types of image transformations
such as “the image resulting when I step one frame forward in a video”.

We will learn to estimate this distribution by bootstrapping our predictions about transformed images
using our current model’s predictions about annotations associated with the current image:

Note 2 (Bootstrapping objective) To estimate the distribution of annotations ensuing from apply-
ing a transformation a to an image x, gθ(x, a, ℓ), we will bootstrap using our model’s predictions
fθ(x

′, ℓ) from the base contrastive prediction task:

argmax
g

E{ℓi}n
i=1∼p(ℓ),(x,a,x′)∼p

[∑
i

exp(fθ(x
′, ℓi)∑

j exp(fθ(x
′, ℓj)

log
exp(gθ(x, a, ℓi)∑
j exp(gθ(x, a, ℓj)

]
. (3)

Fully optimizing the base contrastive loss and bootstrapping loss recovers the desired distribution.

In form, this objective looks like model distillation, but has an important crucial difference: the
prediction and target are not being done on the same image. While distillation must transfer knowl-
edge from one model to another, this approach instead transfers knowledge from the model to itself,
by presenting the information in the context of a different image. Second, this objective does not
require us to have paired access to annotations, only samples from the marginal distribution. This
is the crucial step that allows us to leverage unlabelled image data: to optimize this objective, we
only need to be able to sample images, and to be able to transform these images as we desire. In the
next section, we describe a concrete instantiation of this algorithm, which will learn to propagate
annotation distributions over a very general class of bounding box transformations.

4 PRACTICAL IMPLEMENTATION OF ANNOTATION BOOTSTRAPPING

We now describe a practical implementation of annotation bootstrapping (abbreviated AB for short).
This implementation can be wrapped around any base annotation prediction task, but we will de-
scribe two corresponding to settings of increase. ABSimCLR uses SimCLR (Chen et al., 2020a) as
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Algorithm 1 Annotation Bootstrapping (AB)
▷ Base contrastive annotation update

Let fθ(x, ℓ) = ϕ(x)⊤ψ(ℓ) be the contrastive logits for the image x and annotation ℓ
Sample annotation batch Ba = {(xi, ℓi)}na

i=1 ∼ Da

Compute contrastive loss on annotation batch:

Lannotation =
∑
i

log
exp(f(xi, ℓi))∑
j exp(f(xi, ℓj)

+ log
exp(f(xi, ℓi))∑
j exp(f(xj , ℓi)

▷ Annotation bootstrapping update

Let gθ(x, a, ℓ) = ϕ̄(x, a)⊤ψ̄(ℓ) be the logits for the image x, transformation a, and annotation ℓ
Sample unlabelled images Bu = {xui }ni=1 ∼ Du and copy {ℓi} from the annotation batch
for each image x in the unlabelled image batch do

Sample and crop the images to a source bounding box bbs and target bounding box bbt

Optimize Equation 3 with x = crop(x,bbs), x′ = crop(x,bbt), a = bbs→t)

Lpropagation =
∑
i

exp(fθema(x
′, ℓi)∑

j exp(fθema(x
′, ℓj)

log
exp(gθ(x, a, ℓi)∑
j exp(gθ(x, a, ℓj)

. (4)

end for

the base loss to learn in the fully self-supervised setting (where annotations are images generated by
augmentations and crops); ABCLIP learns using CLIP (Radford et al., 2021) in the weakly-labelled
setting (where annotations are textual strings like image captions). The methods are nearly identical
in both cases, with slight implementation differences to handle text and image annotations respec-
tively.

Transformation Distribution: To instantiate the annotation bootstrapping framework, we must
specify a set of image transformations that we are interested in modelling. Rather than manually
specifying a small set of common transformations (like zooming, panning, etc), we we will con-
sider any transformation that corresponds to “changing the bounding box view” of the image. More
specifically, when we generate two views from an image I by cropping the image with different
bounding boxes: x = crop(I,bbs) and x′ = crop(I,bbt), we will say that the image transforma-
tion bbs→t is the process that transforms the view x to the view x′.

Model: We parameterize the contrastive distribution as an inner product between an image represen-
tation ϕ(x) and an annotation distribution ψ(ℓ); similarly for the prediction head, an inner product
between the image-action representation ϕ̄(x, a) and ψ̄(ℓ). In ABSimCLR, as in Chen et al. (2020a),
the annotation representation is identical to the image head; in ABCLIP, we use a standard CLIP text
transformer from Radford et al. (2021) to parameterize the annotation head.

We use the same network for the image and image-action representation: an encoder-decoder Trans-
former, using a Vision Transformer (Dosovitskiy et al., 2020) as the image encoder, and a standard
Transformer decoder architecture that attends to the ViT embeddings via cross-attention. This ar-
chitecture is a standard recipe (Tschannen et al., 2024) and allows us to flexibly parameterize action
transformations. Recalling that image transformations corresponding to changing the bounding box
view, we represent it as a set of four tokens, each corresponding to the four corners of the new bound-
ing box within the relative coordinate frame of the current. We experimented with both discrete
learned embeddings and fixed positional Fourier embeddings, and found no substantive different in
performance. For the image representation ϕ(x), we pass in the “identity action” (corresponding to
keeping the bounding box exactly the same).

Annotation Loss: Optimizing the attention loss is basically exactly the same as in CLIP / SimCLR;
we sample a batch of images and annotations Ba = {(xi, ℓi)}ni=1, and optimize the contrastive loss:

Lannotation =
∑
i

log
exp(f(xi, ℓi))∑
j exp(f(xi, ℓj)

+ log
exp(f(xi, ℓi))∑
j exp(f(xj , ℓi)

(5)
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Bootstrapping Loss: We will sample a batch of images Bu = {xi}nu
i=1, and copy (only) the anno-

tations from the labelled batch {ℓi}nℓ
i=1. For each image, we will create M views of the image by

sampling M random bounding boxes using Inception-style random cropping (in torch, using ran-
domresizedcrop) to create the set of images. Note that we do not use any color augmentations or
random flips. We find that adding these makes the prediction task harder and decreases the final
quality of learned representations, as we see in our ablations. We then use a lagging EMA network
to obtain the predicted annotation distributions at the current stage, and optimize the objective in
Equation 3 with all M2 pairs of views, (x = xi, x

′ = xj , a = bbi→j .

In practice, we found no substantive difference in training efficiency in terms of number of views
seen, but faster wall-clock speeds with multi-view training. We follow the recipe from DINO (Caron
et al., 2021) to update the lagging EMA parameters, which uses an exponential moving average with
a rate τ that is decayed from 0.004 → 0 via a cosine schedule.

5 EXPERIMENTS

In our empirical study, we measure the effectiveness of annotation propagation for learning useful
features from unlabelled image datasets found “in-the-wild”. We study both the fully unsupervised
setting (where propagation occurs in the space of image-image relationships, based on the SimCLR
loss), and in the weakly labelled setting (where propagation occurs in the space of image-caption
relationships, based on the CLIP objective). Our experiments seek to answer three main questions:

1. How does our approach compare to invariance-based and pixel-predictive approaches?
2. Can we use semantic annotations from one dataset to learn on a different unlabelled dataset?
3. What factors in the prediction objective affect the quality of learned representations?

5.1 SETUP

Datasets. We evaluate on four datasets representative of the many types of unlabelled images typ-
ically available: Imagenet (Russakovsky et al., 2014), a well-curated, balanced, and image-centric
benchmark heavily used by prior work; CC12M (Changpinyo et al., 2021), a dataset of captioned
images used for vision-language pre-training that is relatively uncurated and contains a wider range
of concepts than Imagenet; COCO (Lin et al., 2014) a dataset of scenes each containing many (po-
tentially small) objects, and Epic-Kitchens (Damen et al., 2020), a video dataset containing many
real-world scenes in homes. Note that CC12M is a dataset of links, so links deteriorate due to rot
and redirects; the version we collected (Beaumont, 2021) has 8.7 million images.

Training. We standardize training by running all methods on all datasets using ViT-S vision en-
coders (and S-sized text encoders in the weakly labeled setting) for 800M seen images (each view
is counted separately). For ImageNet, this corresponds to approximately 620 epochs. All mod-
els are trained with AdamW, weight decay, gradient clipping, and using a cosine decay schedule –
specific hyperparameters are taken from respective papers when they are provided. In the fully self-
supervised setting, we compare our approach to SimCLR (Chen et al., 2020a), DINO (Caron et al.,
2021), and MAE (He et al., 2021); we emphasize that our experimental goal is not to claim state-of-
the-art performance on unsuperivsed benchmarks, but rather to evaluate the merits and deficiencies
of prediction in “annotation” space, and how it relates to more common design patterns like consis-
tency and generative pixel prediction. In the weakly-supervised setting, we compare our approach

6
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Table 1: Downstream classification metrics when pre-training fully unlabelled on ImageNet and
CC12M, and when using weakly labelled supervision on CC12M. *Avg. Cls averages the clas-
sification accuracy over the four benchmarks in Beyer et al. (2023): Food101, Oxford IIIT Pets,
Resics45, and Sun397.

PRETRAIN DATASET METHOD IMAGENET AVG CLS* CLEVR/DEPTH CLEVR/COUNT

SimCLR 70.0 80.1 76.9 86.0
ImageNet DINO 72.2 82.8 80.0 88.1

(No Labels) MAE 65.0 77.7 81.7 88.6
I-JEPA 64.5 79.0 81.0 88.8
ABSimCLR 73.6 83.7 81.4 89.3

SimCLR 64.9 74.3 78.3 87
DINO 67.8 79.5 79.5 87.1

CC12M (No labels) MAE 60.1 74.5 81.4 88.5
I-JEPA 60.0 76.0 80.1 90.2
ABSimCLR 68.7 80.1 82.1 89.4

CLIP 70.0 82.4 73.1 84
CC12M (w/ Captions) SLIP +SimCLR (Mu et al., 2021) 69.0 81.1 77.3 88.7

SiLC +DINO (Naeem et al., 2023) 71.0 83.6 73.9 86.6
ABCLIP 74.6 84.0 78.0 92.9

to CLIP (Radford et al., 2021), SLIP (Mu et al., 2021), which combines CLIP with a SimCLR loss,
and SILC (Naeem et al., 2023), which combines CLIP with a DINO loss.

Evaluation. To avoid overfitting to benchmark numbers like Imagenet, we evaluate on a wider set
of benchmarks, building on the probing strategy introduced by Beyer et al. (2023), which probes
performance using a lightweight decoder that cross-attends with the ViT embeddings. This solution
allows us a unified interface to evaluate any downstream task that can be cast as a sequential model-
ing problem (including classification, object detection, small object classification, captioning, etc).
For Imagenet and CC12M, both which are relatively object-centric, we evaluate on downstream Ima-
geNet, the classification tasks from Beyer et al. (2023), and the Clevr (Johnson et al., 2017) counting
and distance prediction from (Zhai et al., 2019b) Images from EpicKitchens and COCO differ from
these object-centric evaluation tasks; we evaluate on tasks naturally defined in their space (action
recognition, object classification in video, and object detection). For full details about the evaluation
setup, please see Appendix A.1

5.2 RESULTS

Fully unlabelled pre-training. We first evaluate annotation propagation in the fully unlabeled set-
ting (ABSimCLR), where our approach learns by learning to match two augmented views of an image
together using a base SimCLR loss, and propagating annotations in the induced space of image-
image relationships. We make two overarching observations in our experiments. First, on datasets
and benchmarks where “invariance to crops and augmentations” holds , annotation propagation is
synergistic to the base SimCLR loss, improving performance on average. On datasets and bench-
marks where this inductive bias does not hold, SimCLR performance significantly degrades, but
annotation propagation does not, indicating that the propagation objective also enables the model to
learn a wider set of features useful for tasks beyond the base distribution.

On both Imagenet and CC12M (Table A.2, top), annotation propagation learns representations that
outperform SimCLR, DINO, and MAE for downstream classification tasks (noting that for all meth-
ods and many downstream tasks, there is a uniform drop-off on CC12M, the less curated dataset).
Our approach improves over SimCLR in downstream I1K performance by ∼4% on both datasets.
We notice that SimCLR and DINO degrade relative to MAE on the Clevr tasks, while annotation
propagation does not, indicating that our approach can avoid common failure modes associated with
invariance-based self-supervised learning. The invariance to crops imposed by SimCLR and DINO
is a particularly bad match for EpicKitchens and COCO (Table 2). On these domains, we find
that annotation propagation outperforms these invariance-based approaches, but is equal or slightly
worse than MAE across the board. While annotation propagation can enable the model to learn
features beyond the invariances, it is not a cureall for a poor base loss.
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Table 2: Downstream metrics for unlabelled pre-training on EpicKitchens and COCO.
PRETRAIN DATASET METHOD IMAGENET EK ACTION RECOGNITION EK OBJECT DETECTION EK OBJECT CLASSIFICATION

SimCLR 48.1 20.3 0.299 70.4
DINO 43.4 18.9 0.295 39.6

EpicKitchens MAE 43.5 20.8 0.387 76.5
I-JEPA 38.7 18.5 80.1 21.5
ABSimCLR 47.1 19.8 0.328 72.6

PRETRAIN DATASET METHOD IMAGENET COCO OBJECT DETECTION COCO OBJECT CLASSIFICATION

SimCLR 56.2 0.24 70.4
DINO 56.1 0.24 70.5

COCO MAE 62.3 0.31 76.5
I-JEPA 43.0 0.21 62.5
ABSimCLR 59.7 0.27 72.6

Learning with captions. We next turn to evaluating annotation propagation in the weakly labelled
setting, when the annotations are tokenized strings of text. Recall that in this setting, our approach
learns by modelling text from images using a base CLIP loss, and propagates image-text relation-
ships by modelling the distribution of captions closely associated with different crops of the image.

On CC12M (Table A.2, bottom), we see that weakly supervised methods across the board out-
perform their unsupervised equivalents; this matches empirical evidence that contrastive language-
text methods are more capable of training on lower-quality image data. As discussed by Naeem
et al. (2023), we find combining CLIP with a self-supervised objective, whether DINO or SimCLR,
improves fine-grained reasoning on the ClevR benchmark tasks, but only marginal improvement
on downstream classification tasks. In contrast, we see that annotation propagation obtains much
stronger performance relative to these other approaches on most of the downstream metrics we eval-
uated, in particular improving by 4.6% on downstream ImageNet probing performance over the base
CLIP representations. We hypothesize that a significant component of this is that annotation propa-
gation learns by making predictions about text distributions associated with other crops of an image,
whereas the “unsupervised” representations optimized to be consistent in SLIP and SILC are only
indirectly related to the CLIP representation (insofar that they use a shared backbone).

Table 3: Weakly supervised training on COCO
TYPE OF

ANNOTATIONS
METHOD

OBJECT
CLS

DETEC
-TION

CLIP 25.4 71.9
COCO SLIP 25.8 75.1

Captions SILC 21.8 71.2
ABCLIP 29.7 76.7

CLIP 31.6 76.4
Bounding SLIP 28.3 76.3

Boxes SILC 29.2 76.4
ABCLIP 34.9 82.5

Thus far, we have only considered training in
settings where the annotation and unlabelled
data distributions are the same. However, recall
that one of the conceptual strengths of annota-
tion propagation is that the contrastive annota-
tion loss and the predictive propagation loss are
entirely decoupled, and do not need to be opti-
mized on the same dataset. We now investigate
how our approach can use an annotated dataset
from an auxiliary source to improve the quality
of unsupervised pre-training.

We begin by comparing the performance of
different weakly-supervised methods for pre-
training on COCO in Table 3, a dataset where
we found invariance-based methods to struggle.
We use two auxiliary datasets sourced directly from COCO: one of captions (Karpathy & Li, 2015)
and one of bounding boxes(Lin et al., 2014). Both annotation sets are sourced directly from the
COCO dataset. First, we notice that of all the weakly supervised methods that use the auxiliary
data, ABCLIPis the only one that actually improves over CLIP, while both SLIP and SiLC on average
decrease in performance relative to CLIP.

Decoupling annotation and unlabelled data. Our findings match that of Weers et al. (2023); that
invariance-based objectives do not necessarily improve performance, but perhaps instead interpolate
between the performance of the invariance objective and the weakly supervised objective. When
the invariance objective is “stronger”, this leads to improved performance, but in situations like this,
where the invariance objective poorly matches the data, it leads to a degradation in performance.
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Another approach is to generate annotations by running SimCLR on a well-curated unlabelled
dataset like Imagenet, but then running the propagation loss in the target unlabelled image space.
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Figure 3: (top) Performance of DINO
and ABSimCLR training jointly on Ima-
genet and either COCO or EpicKitchens.
(middle) Measuring the performance of
ABSimCLRas the relative distance between
crops to predicts is varied.

In Figure 3(top), we compare the performance of this mixed ap-
proach (we write it as ABI1K+D to running DINO on a mixture of
the “clean” Imagenet dataset and the target uncurated datasetD. We
see that annotation propagation extends beyond the frontier created
by running different mixture ratios between the clean and curated
data for DINO, learning useful image representations for COCO
and EpicKitchens that cannot be acquired by any mixture trained
with DINO.

5.3 ANALYSIS AND ABLATIONS

Our results comparing annotation prediction to other self-
supervised and weakly-supervised methods indicate that our ap-
proach can learn useful semantic features using many different
types of base annotations (whether image augmentations, text cap-
tions, or bounding boxes). We now more carefully investigate the
learning process to determine 1) to what degree is the model actu-
ally able to make predictions about the semantic annotations asso-
ciated with other crops? and 2) what components of the method are
important for the obtained performance gains? We run our analy-
sis and ablatory experiments using a smaller data budget of 400M
views.

In Figure 5.2 (bottom), we plot the prediction error for the propaga-
tion objective throughout the course of training, clustering by how
far the target prediction box is in terms of IoU. Notice that predic-
tion errors increase initially in training as the annotation head is first
learned, but decreases uniformly through training. We note that the
prediction problem appears much more challenging for ABCLIPthan
for ABSimCLR; this is perhaps to be expected since the base loss
for SimCLR trains to make the prediction distributions for different
bounding boxes as similar as possible.

We next investigate how the choice of bounding boxes affects
the performance of the algorithm, by sampling source and target
bounding boxes that are closer (or further) apart while keeping the
marginal distribution over bounding boxes fixed. In Figure 5.2,
we see that performance increases steadily as the average IoU be-
tween the source and target distributions is decreased; this is per-
haps not surprising, as further apart bounding boxes are the hardest
to predict, and so training on the most difficult examples offers the
strongest learning signal.

Finally, we ablate different components of the method in Table 5.3.
As with other self-supervised methods, we find that not using a
lagging EMA target network removes all performance gains from
the prediction objective (the learning curves entirely mimic that of
SimCLR); removing the base loss, which grounds annotation dis-
tributions in a semantically meaningful space, also nulls out perfor-
mance. We also perform an ablation replacing action tokens with
null tokens (thereby forcing the model to predict the average an-
notation distribution across nearby images); this reduces the effec-
tiveness of the propagation objective. Perhaps surprisingly, we see
that adding image augmentations to either the source or target views
actually hurts performance; the general heuristic appears to be that
one should select as challenging target images as possible, without
introducing any additional stochasticity into the prediction targets
(e.g by adding image augmentations or removing action tokens).
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DESCRIPTION
IMAGENET

PERFORMANCE

Base 63.0 −0.0

Adding augmentations 62.5 −0.5

No action tokens 60.8 −2.2

No propagation loss
(SimCLR only) 59.4 −3.6

No target network 59.4 −3.6

No grounding loss 39.0 −24.0

Table 4: Ablating different components of ABSimCLR

6 DISCUSSION

Our paper introduced annotation bootstrapping, a framework for
bootstrapping visual representations using unlabeled data that learns by predicting image semantics
of the nearby scene. Two qualities make annotation propagation particularly interesting: first, that it
cleanly partitions the pre-training process into the specification of image semantics and bootstrap-
ping, allowing us to learn useful details using curated or labeled datasets, while still being able to
pre-train on general corpora that do not have the same inductive biases as the curated data. As we
saw across a number of datasets, annotation propagation learns useful semantic representations be-
yond those that are learned from common objectives like pixel prediction, CLIP, or models that learn
invariances to crops and augmentations. Our approach is not without limitation; relative to the scale
that current CLIP models are being trained on, we were only able to train on relatively small datasets
(CC12M – our largest dataset – only has 8 million images) and with relatively small networks (ViT-
S), and at limited training durations; some of the conclusions in our paper may weaken at larger
scales. Second, while the propagation objective does reduce the dependency on curated datasets and
specific inductive biases compared to invariance-based or pixel-predictive approaches, we found the
choice of crops to still introduce a form of bias (as we found larger crops to be better). Understand-
ing how we may generalize our approach to more general distortions beyond predicting crops will
also be an interesting future direction. Nonetheless, our work takes a step towards understanding
how we may pre-train on visual data in a self-sufficient bootstrapped manner using vast swaths of
unlabeled data. Already at the larger scales of model pre-training today, we are beginning to see
methods bump into the data wall, and we must soon answer the question – how will we improve our
models when the data runs out?
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A APPENDIX

A.1 EVALUATION

We use the multi-task decoder-based probe from Beyer et al. (2023) for all of the evaluations in this
paper. The probe is defined as a 4-layer transformer decoder with an autoregressive decoding pattern
that attends to the final outputs of the Vision Transformer through cross-attention. We choose this
architecture so that we can do all of our modelling tasks, whether image recognition or bounding
box prediction, or classification of the object in a bounding box using a unified framework; this also
represents (albeit to a much smaller scale) how vision transformers are being used in VLM models.
We adopt all hyperparameters for training this model from Beyer et al. (2023). Unlike in Beyer et al.
(2023), we train probes for individual tasks separately.

When pre-training on Imagenet and CC12M, we probe the model on ImageNet, the Clevr/{Count,
Distance} tasks from Zhai et al. (2019b), and then on four tasks used by Beyer et al. (2023):
Food101, Oxford IIIT Pets, Resics45, and Sun397.

When pre-training on COCO, we evaluate on small object classification (in which the model is
provided the coordinates of a bounding box, and asked to predict the identity of the object within
that bounding box), and the corresponding detection task (in which the model must simply identify
all bounding boxes corresponding to relevant objects in a scene).

We treat EpicKitchens as a standard dataset of images, considering individual frames independently,
and not incorporating the temporal dimension. When pre-training on EpicKitchens, we probe the
model also on object classification (predicting the label of an object given its bounding box) and ob-
ject detection (predicting bounding boxes), which we source from the ViSOR annotation set (Dark-
halil et al., 2022). We also probe the model’s ability to predict the action a human is taking given
one frame of context. This problem is not exactly solvable from one frame of context, but the
relative performance differences between methods nonetheless informs the quality of the learned
representations.

A.2 ALTERNATIVE PROBING STRATEGIES

METHOD LINEAR PROBE ATTENTIVE PROBE DECODER PROBE 10-EPOCH FINETUNING

SimCLR 67.0 68.7 70.0 75.0
ImageNet DINO 68.5 70.0 72.2 74.2

(No Labels) MAE 55.0 60.5 65.0 74.0
I-JEPA 58.5 61.5 64.5 72.0
ABSimCLR 68.0 71.5 73.6 75.5

Table 5: Evaluating models pre-trained on unlabelled Imagenet using different types of probing
strategies. We match the evaluation protocol from (Caron et al., 2021), but use a smaller probing
length of 10 epochs.
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