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Abstract

While recently proposed preference alignment
algorithms for language models have demon-
strated promising results, supervised fine-
tuning (SFT) remains imperative for achiev-
ing successful convergence in preference align-
ment. In this paper, we elaborate on the cru-
cial role of SFT within the context of pref-
erence alignment, emphasizing that a minor
penalty for the disfavored generation style is
sufficient for preference-aligned SFT. Build-
ing on this foundation, we introduce a straight-
forward and innovative reference model-free
monolithic odds ratio preference optimization
algorithm, ORPO, eliminating the necessity for
an additional preference alignment phase. Em-
pirically and theoretically, we demonstrate that
the odds ratio serves as a sensible choice for
contrasting favored and unfavored styles dur-
ing SFT. Specifically, fine-tuning Phi-2 (2.7B),
Llama-2 (7B), and Mistral (7B) with ORPO
on UltraFeedback alone surpasses the perfor-
mance of state-of-the-art language models with
more than 7B and 13B parameters, achieving
66.2%, 81.3%, and 87.94% in AlpacaEval.

1 Introduction

Pre-trained language models (PLMs) with a vast
training corpora such as web texts (Gokaslan and
Cohen, 2019; Penedo et al., 2023) or textbooks (Li
et al., 2023c) have shown remarkable abilities in
diverse natural language processing (NLP) tasks
(Brown et al., 2020; Zhang et al., 2022; Touvron
et al., 2023; Jiang et al., 2023; Almazrouei et al.,
2023). However, the models must undergo further
tuning to be usable in general-domain applications
(i.e., instruction-following), typically through in-
struction tuning and model alignment.
Instruction-tuning (Wei et al., 2022; Taori et al.,
2023; Wang et al., 2023; Zhou et al., 2023a) trains
models to follow task descriptions given in natu-
ral language, which enables models to generalize
well to previously unseen tasks. However, despite
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Figure 1: AlpacaEval, ; result of Llama-2 (7B) and
Mistral (7B) fine-tuned with ORPO (blue) in comparison
to the state-of-the-art models. Notably, Mistral (ORPO)
surpasses Zephyr 8 and Llama-2-Chat (13B) with a
single epoch training on the subset of UltraFeedback.

the ability to follow instructions, models may gen-
erate harmful or unethical outputs (Carlini et al.,
2021; Gehman et al., 2020; Pryzant et al., 2023).
To further align these models with human values,
additional training is required with pairwise prefer-
ence data using techniques such as reinforcement
learning with human feedback (Ziegler et al., 2020;
Stiennon et al., 2022, RLHF) and direct preference
optimization (Rafailov et al., 2023, DPO).
Preference alignment methods have demon-
strated success in several downstream tasks beyond
reducing harm. For example, improving factuality
(Tian et al., 2023; Cheng et al., 2024; Chen and
Li, 2024), code-based question answering (Gorba-
tovski and Kovalchuk, 2024), and machine transla-
tion (Ramos et al., 2023). The versatility of align-
ment algorithms over a wide range of downstream
tasks highlights the necessity of both understanding
the alignment procedure and further improving the
algorithms in terms of efficiency and performance.
However, existing preference alignment methods
are normally a multi-stage process, as shown in Fig-
ure 2, typically requiring a second reference model
and a separate warm-up phase with supervised fine-



|| n

Reward Model
© l| i F Policy
Pollcy

SFT + Penalty

e /

~

Chosen Responses Sf,.o

hg A
oddsyP(yy,|z)
log ———————
oddsyP(y|x)
Rejected Responses [ d\o\“
w et

— —

Odds Ratio Preference Optimization

Figure 2: General diagram of preference alignment with ORPO. ORPO aligns the pre-trained language model in a
non-segmented manner by giving a weak penalty to the rejected responses and a strong adaptation signal to the
chosen responses with a simple log odds ratio term appended to the negative log-likelihood loss.

tuning (SFT) (Ziegler et al., 2020; Rafailov et al.,
2023; Wu et al., 2023).

In this paper, we study the impact of SFT in
pairwise preference datasets and propose a simple
and novel monolithic alignment method, odds ratio
preference optimization (ORPO), which efficiently
penalizes the model from learning undesired gener-
ation styles during SFT. Unlike previous works, our
approach requires neither an SFT warm-up stage
nor a reference model, enabling resource-efficient
development of preference-based aligned models.
We study the theoretical justification of using the
odds ratio in Sections 4.3 and 4.4, and empiri-
cally show that our method benefits from the scale
through fine-tuning 125M to 7B models in Section
6, including Llama-2 (7B) and Mistral (7B). As our
best model, we present Mistral ORPO (7B), which
is Mistral (7B) trained on the 32K subset of Ultra-
Feedback (Tunstall et al., 2023) alone with ORPO
for a single epoch and surpasses Llama-2-Chat (7B)
and (13B) (Touvron et al., 2023) and Zephyr (/)
(Tunstall et al., 2023) by achieving 87.94% and
12.20% in AlpacaEval, ; and AlpacaEval, , (Li
et al., 2023b), as shown Figure 1.

2 Related Works

Alignment with Reinforcement Learning Rein-
forcement learning with human feedback (RLHF)
commonly applies the Bradley-Terry model
(Bradley and Terry, 1952) to estimate the prob-
ability of a pairwise competition between two in-
dependently evaluated instances. An additional
reward model is trained to score instances. Rein-
forcement learning algorithms such as proximal
policy optimization (PPO) (Schulman et al., 2017)
are employed to train the model to maximize the

score of the reward model for the chosen response,
resulting in language models that are trained with
human preferences (Ziegler et al., 2020; Stiennon
et al., 2022). Notably, Ouyang et al. (2022) demon-
strated the scalability and versatility of RLHF for
instruction-following language models. Extensions
such as language model feedback (RLAIF) could
serve as a viable alternative to human feedback (Bai
et al., 2022b; Lee et al., 2023; Pang et al., 2023).
However, RLHF faces challenges of extensive hy-
perparameter searching due to the instability of
PPO (Rafailov et al., 2023; Wu et al., 2023) and the
sensitivity of the reward models (Gao et al., 2022;
Wang et al., 2024). Therefore, there is a crucial
need for stable preference alignment algorithms.

Alignment without Reward Model Several
techniques for preference alignment mitigate the
need for reinforcement learning (Rafailov et al.,
2023; Song et al., 2023; Azar et al., 2023; Etha-
yarajh et al., 2023). Rafailov et al. (2023) introduce
direct policy optimization (DPO), which merged
the reward modeling stage into the preference learn-
ing stage. Azar et al. (2023) prevented potential
overfitting problems in DPO through identity pref-
erence optimization (IPO). Ethayarajh et al. (2023)
and Cai et al. (2023) proposed Kahneman-Tversky
Optimisation (KTO) and Unified Language Model
Alignment (ULMA) that does not require the pair-
wise preference dataset, unlike RLHF and DPO.
Song et al. (2023) further suggests incorporation
of the softmax value of the reference response set
in the negative log-likelihood loss to merge the
supervised fine-tuning and preference alignment.

Alignment with Supervised Fine-tuning In
common, both preference alignment methods with
and without reinforcement learning mostly re-



quire supervised fine-tuning (SFT) (i.e., reference
model). In contrast, there have been approaches
to build human-aligned language models with SFT
exclusively (Zhou et al., 2023a; Li et al., 2023a;
Haggerty and Chandra, 2024; Zhou et al., 2023b).
Zhou et al. (2023a) demonstrated that SFT with
a small amount of data with fine-grained filtering
and curation could be sufficient for building help-
ful language model assistants. Furthermore, Li
et al. (2023a) and Haggerty and Chandra (2024)
proposed an iterative process of fine-tuning the su-
pervised fine-tuned language models with their own
generations after fine-grained selection of aligned
generations, while Zhou et al. (2023b) suggested
that the selected subset of preference dataset is suf-
ficient for alignment. While these works highlight
the impact and significance of SFT in the context
of preference alignment, the actual role of SFT
and the theoretical background for incorporating
preference alignment in SFT is still understudied.

3 The Role of Supervised Fine-tuning

We study the role of supervised fine-tuning (SFT)
as an initial stage of preference alignment methods
(Ziegler et al., 2020; Rafailov et al., 2023) through
analysis of the loss function in SFT and empiri-
cal demonstration of the preference comprehen-
sion ability of the trained SFT model. SFT plays
a significant role in tailoring the pre-trained lan-
guage models to the desired domain (Zhou et al.,
2023a; Dong et al., 2024) by increasing the log
probabilities of pertinent tokens. Nevertheless, this
inadvertently increases the likelihood of generating
tokens in undesirable styles, as illustrated in Figure
3. Therefore, it is necessary to explore the method
that is capable of preserving the domain adapta-
tion role of SFT while concurrently discerning and
mitigating unwanted generation styles.

Absence of Penalty in Cross-Entropy Loss The
goal of cross-entropy loss model fine-tuning is to
penalize the model if the predicted logits for the
reference answers are low, as shown in Equation 2.

1 m
_ = (k) (k)
L=——2 logP(x",y®) (1)
k=1
m V|
=—f§j§jyl log(p )
k=1 1=1

where y; is a boolean value that indicates if ith to-
ken in the vocabulary set V' is a label token, p;

refers to the probability of ith token, and m is
the length of sequence. Using cross-entropy alone
gives no penalty or compensation for the logits of
non-answer tokens (Lin et al., 2017) as y; will be
set to 0. While cross-entropy is generally effective
for domain adaptation (Mao et al., 2023), there are
no mechanisms to penalize the rejected responses
and compensate for the chosen responses. There-
fore, we can infer that the increase in the relevant
logits will happen invariant to the preference.

Generalization over Both Response Styles To
empirically demonstrate the miscalibration of cho-
sen and rejected responses with supervised fine-
tuning, we conduct a pilot study. We fine-tune
OPT-350M (Zhang et al., 2022) on the chosen re-
sponses only with HH-RLHF (Bai et al., 2022b).
Throughout the training, we monitor the log proba-
bility of rejected responses for each batch and plot
this in Figure 3.

Chosen

Response Type Rejected

22

[
w

Log Probability
Y ]
N

-2.5

0 5000 10000 15000
Training Step

Figure 3: Log probabilities for chosen and rejected
responses during OPT-350m model fine-tuning on HH-
RLHF dataset. Despite only chosen responses being
used for supervision, rejected responses show a compa-
rable likelihood of generation.

Both the log probability of chosen and rejected
responses exhibited a simultaneous increase. This
can be interpreted from two different perspectives.
First, the cross-entropy loss effectively guides the
model toward the intended domain (e.g., multi-turn
conversation). However, the absence of a penalty
for unwanted generations results in rejected re-
sponses sometimes having even higher log proba-
bilities than the chosen ones.

4 Methodology

We introduce a novel preference alignment algo-
rithm, Odds Ratio Preference Optimization (ORPO),
which incorporates an odds ratio-based penalty to



the conventional supervised fine-tuning loss for dif-
ferentiating the generation styles between favored
and disfavored responses.

4.1 Preliminaries

Given an input sequence x, the average log-
likelihood of generating the output sequence ¥, of
length m tokens, is computed as Equation 3. The
odds of generating the output sequence y is defined
in Equation 4:

1 m
log Py(y|z) = - Z log Py(yt|@,y<t) (3)
=1
Py(y|z)

Odng(y‘l’) = % (4)

Intuitively, oddsg(y|z) = k implies that it is &k
times more likely for the model 6 to generate the
output sequence y than not generating it. Thus,
the odds ratio of the chosen response y,, over the
rejected response y;, ORy(yy, y;), indicates how
much more likely it is for the model 6 to generate
Yw than y; given input z, defined in Equation 5.

oddsy (Y| )

ORy(Yuw, =
O(y yl) Odng(yl’.’IJ)

(&)

4.2 Odds Ratio Preference Optimization

The objective function of ORPO in Equation 6 con-
sists of two components: 1) supervised fine-tuning
(SFT) loss (Lsgr); 2) relative ratio loss (£ razio)-

Lorro = By, .y [LsFT + LRatio]  (6)

Lsrr follows the conventional causal language
modeling negative log-likelihood (NLL) loss func-
tion to maximize the likelihood of generating the
reference tokens as previously discussed in Sec-
tion 3. LRatio in Equation 7 maximizes the odds
ratio between the likelihood of generating the dis-
favored response v, and the disfavored response
y;. We wrap the log odds ratio with the log sig-
moid function so that £, could be minimized
by increasing the log odds ratio between y,, and y;.

odds(;(yw]a:)> o

L Ratio = —1 1
Ratio ogo ( og Odng(y”x)

Together, Lgpr and LRqt, tailor the pre-trained
language model to adapt to the specific subset of
the desired domain, which excludes the type of
generations in the rejected response sets.

4.3 Why Odds Ratio?

The rationale for selecting the odds ratio instead
of the probability ratio as a penalty term lies in
its stability. The probability ratio for generating
the disfavored response y,, over the disfavored re-
sponse y; given the input sequence x can be defined
as Equation 8.

By (ywlz)
Py (yilx)

While this formulation has been used in previous
preference alignment methods that precede SFT
(Rafailov et al., 2023; Azar et al., 2023), the odds
ratio is a better choice in the setting where the
preference alignment is incorporated in SFT as the
odds ratio is more sensitive to the model’s prefer-
ence understanding. In other words, the probability
ratio leads to more extreme discrimination of the
disfavored responses than the odds ratio.

We visualize this through the sample distribu-
tions of the log probability ratio log PR(X2|X1)
and log odds ratio log OR(X32|X1). We sample
50,000 samples each with Equation 9 and plot the
log probability ratio and log odds ratio in Figure
4. We multiply 3 for the probability ratio as it is
practiced in the probability ratio-based methods
and report the cases where 5 = 0.2 and 5 = 1.0.

PRy(yw, y1) = (8)

X1, Xo ~ Unif(O7 1) 9)
Y ~ B (log X1 — log X5) (10)
X1 Xo
Y ~ 1 —1 11
81y, T 8T x, (11)
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Figure 4: Sampled distribution of log PR(X3| X ) and
log OR(X2|X7). log OR(X3|X7) has a wider range
given the same input probability pairs (X1, X5).

Recalling that the log sigmoid function is ap-
plied to the log probability ratio and log odds ra-
tio, the scale of each ratio determines the amount



of discrepancy between the likelihood of the fa-
vored style and the disfavored style when the loss
is minimized. In that sense, the contrast should
be relatively extreme to minimize the log sig-
moid loss when PR(X3|X7) is inputted instead
of OR(X2|X1) to the log sigmoid function, re-
garding the sharp distribution of log PR(X2|X1)
in Figure 4. This results in overly suppressing the
logits for the tokens in the disfavored responses in
the setting where SFT and preference alignment
are incorporated, as the model is not adapted to the
domain. We show this through the ablation study
in Appendix B. Therefore, the odds ratio is a better
choice when the preference alignment is done with
SFT simultaneously due to the mild discrimination
of disfavored responses and the prioritizing of the
favored responses to be generated.

When comparing the log sigmoid loss with
PR(X2|X1) to OR(X2|X7), In this context, it is
essential to avoid an overly extreme contrast w.
This caution is especially important given the sharp
distribution of log PR(X3|X) depicted in Figure
4. The excessive discrepancy could lead to the
unwarranted suppression of logits for tokens in dis-
favored responses within the incorporated setting,
potentially resulting in issues of degeneration.

4.4 Gradients of ORPO

The gradient of L.y, further justifies the use of
the odds ratio loss. It comprises two terms: one
that penalizes the wrong predictions and one that
contrasts between chosen and rejected responses,
denoted in Equation 12! for d = (=, y;, yw) ~ D.

v19£Ratio = 5(d) : h(d> (12)
_ [y 0ddsoP(yul2)]
6(d) N odds(gP(yl\x) (13)
h(d) = Volog Py(yw|z)  Vglog Py(yi|z)
1 — Pp(ywlx) 1 — Pp(yi|x)
(14)

When the odds of the favored responses is rela-
tively higher than the disfavored responses, d(d) in
Equation 13 will converge to 0. This indicates that
the 0(d) will play the role of a penalty term, which
accelerates the parameter updates if the model is
more likely to generate the rejected responses.
Meanwhile, h(d) in Equation 14 implies a
weighted contrast of the two gradients from the cho-
sen and rejected responses. Specifically, 1 — P(y|x)

"The full derivation for Vg L rasio is in Appendix A.

in denominators amplifies the gradients of the corre-
sponding side of the likelihood P(y|x) is low. For
the chosen responses, this accelerates the model’s
adaptation toward the distribution of chosen re-
sponses as the likelihood increases.

S Empirical Study

We study the effectiveness of ORPO through several
experimental settings. First, we assess the general
instruction-following abilities of the models com-
paring the preference alignment algorithms in Sec-
tion 6.3. Second, we measure the win rate of OPT
models trained with ORPO against other alignment
methods training OPT 1.3B as a reward model in
Section 6.2. We then perform further analyses to
demonstrate the odds ratio increasing as intended
while fine-tuning with ORPO in Section 6.1. And
finally, we measure the lexical diversity of the mod-
els trained with ORPO and DPO in Section 6.4.

5.1 Training Configurations

Models We train OPT (Zhang et al., 2022) series
with from 125M to 1.3B parameters using super-
vised fine-tuning (SFT), proximal policy optimiza-
tion (PPO), direct policy optimization (DPO), and
compare these to our ORPO. PPO and DPO models
were fine-tuned with TRL library (von Werra et al.,
2020) on top of SFT models trained for a single
epoch on the chosen responses following Rafailov
etal. (2023) and Tunstall et al. (2023), which we no-
tate this by prepending "+" to each algorithm (e.g.,
+DPO). Additionally, we train Phi-2 (2.7B) (Java-
heripi and Bubeck, 2023), a pre-trained language
model with promising downstream performance
(Beeching et al., 2023), as well as Llama-2 (7B)
(Touvron et al., 2023) and Mistral (7B) (Jiang et al.,
2023). Further training details for each method are
in Appendix C.

Datasets We test each training method and model
on two datasets: 1) Anthropic’s HH-RLHF (Bai
et al., 2022a), 2) Binarized UltraFeedback (Tunstall
et al., 2023). We filtered out instances where y,, =
y; or where y,, = () or where y; = (.

Reward Models We train OPT-350M and OPT-
1.3B on each dataset for a single epoch for reward
modeling with the objective function in Equation
15 (Ziegler et al., 2020). OPT-350M reward model
was used for PPO, and OPT-1.3B reward model
was used to assess the generations of final models.



We refer to these models as RM-350M and RM-
1.3B in Section 6.

—r(zu)]  (15)

_E(x7yl7yw) [log o (T("E? yw)

5.2 Leaderboard Evaluation

In Section 6.3, we perform evaluation using the
AlpacaEval (Li et al., 2023b) benchmarks, com-
paring ORPO to other instruction-tuned models re-
ported in the official leaderboard?, including Vi-
cuna (7B) (Chiang et al., 2023), Alpaca (7B)
(Taori et al., 2023), Llama-2 Chat (7B) (Tou-
vron et al., 2023), and Falcon-Instruct (40B) (Al-
mazrouei et al., 2023). We report model perfor-
mance using AlpacaEval, ; and AlpacaEval, . Us-
ing GPT-4 (Achiam et al., 2023) as an evaluator
in AlpacaEval, ;, we assess if the trained model
can be preferred over the responses generated from
text-davinci-@03. For AlpacaEval, , we used
GPT-4-turbo’ as an evaluator following the default
setting. We assess if the generated responses are
favored over the responses generated from GPT-4.

6 Results and Analysis

By starting with monitoring the empirical validity
of the odds ratio penalty in Section 6.1, we evaluate
if the models have precisely learned the preference
through both reward model win rate with RM-1.3B
exclusively fine-tuned on each dataset and general
instruction-following evaluation with GPT-4in Sec-
tions 6.2 and 6.3. Then, we expand our analysis to
the lexical diversity of the models in Section 6.4.

6.1 Log Odds Ratio during Training

We demonstrate that models trained with ORPO
learned the preference throughout the training pro-
cess. We monitored the log probabilities of the
chosen and rejected responses, along with the log
odds ratio. With the same dataset and model as
Figure 3, Figure 5 shows that the log probability
of rejected responses is diminishing while that of
chosen responses is on par with Figure 3 as the log
odds ratio increases. This indicates that ORPO is
successfully preserving the domain adaptation role
of supervised fine-tuning (SFT) while the penalty
term L gy induces the model to lower the likeli-
hood of unwanted generations.

2https ://tatsu-lab.github.io/alpaca_eval/
3h’ctps ://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo
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Figure 5: Average log-likelihood for chosen and rejected
responses and log odds ratio per batch. The odds of
disfavored style generations consistently increase during
training with ORPO.

6.2 Reward Model Win Rate

We assess the win rate of ORPO over other pref-
erence alignment methods, including supervised
fine-tuning (SFT), PPO, and DPO, using RM-1.3B
fine-tuned for reward modeling to understand the
effectiveness and scalability of ORPO in Tables 1
and 2. Additionally, we visually verify that ORPO
can effectively enhance the expected reward in com-
parison to SFT in Figure 6.

HH-RLHF In Table 1, ORPO outperforms SFT
and RLHF across all model scales. The highest
win rate against SFT and RLHF across the size
of the model was 78.0% and 79.4%, respectively.
Meanwhile, the win rate over DPO was correlated
to the size of the model with the largest model
having the highest win rate: 70.9% in the OPT-
1.3B model.

ORPO vs SFT +DPO +PPO
OPT-125M | 84.0 (0.62) 41.7(0.77) 66.1 (0.26)
OPT-350M | 82.7 (0.56) 49.4(0.54) 79.4(0.29)
OPT-1.3B | 78.0(0.16) 70.9 (0.52) 65.9 (0.33)

Table 1: Average win rate (%) and its standard deviation
of ORPO and standard deviation over other methods on
HH-RLHF dataset for three rounds. Sampling decoding
with a temperature of 1.0 was used on the test set.

UltraFeedback The win rate in UltraFeedback
followed similar trends to what was reported in HH-
RLHF, as shown in Table 2. ORPO was preferred
over SFT and PPO for maximum 80.5% and 85.8%,
respectively. While consistently preferring ORPO
over SFT and RLHF, the win rate over DPO grad-
ually increases as the size of the model increases.
The scale-wise trend in exceeding DPO will be
further shown through 2.7B models in Section 6.3.
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Figure 6: Reward distribution comparison between OPT-125M (left), OPT-350M (middle), and OPT-1.3B (right)
trained with SFT (blue), RLHF (green), DPO (orange), and ORPO (red) on the test set of UltraFeedback using the
RM-1.3B. While the rewards of the trained models are roughly normal and preference optimization algorithms
(RLHF, DPO, and ORPO) tend to move the reward distribution in the positive direction, ORPO is on par or better than
RLHF and DPO in increasing the expected reward. The same plot for HH-RLHF is in Appendix D.

ORPO vs SFT +DPO +PPO
OPT-125M | 732 (0.12) 48.8(0.29) 71.4(0.28)
OPT-350M | 80.5 (0.54) 50.5(0.17) 85.8(0.62)
OPT-1.3B | 69.4 (0.57) 57.8(0.73) 65.7(1.07)

Table 2: Average win rate (%) and its standard deviation
of ORPO and standard deviation over other methods on
UltraFeedback dataset for three rounds. Same decod-
ing strategy with Table 1.

Overall Reward Distribution In addition to the
win rate, we compare the reward distribution of
the responses generated with respect to the test set
of the UltraFeedback dataset in Figure 6 and HH-
RLHF dataset in Appendix D. Regarding the SFT
reward distribution as a default, RLHF, DPO, and
ORPO shift it in both datasets. However, the magni-
tude of reward shifts for each algorithm differs.

In Figure 6, RLHF has some abnormal properties
of the distribution with a low expected reward. We
attribute this to empirical evidence of the instability
and reward mismatch problem of RLHF (Rafailov
et al., 2023; Gao et al., 2022; Shen et al., 2023) as
the RLHF models were trained with RM-350M and
assessed with RM-1.3B. Meanwhile, it is notable
that the ORPO distribution (red) is mostly located
on the very right side of each subplot indicating
higher expected rewards. Recalling the intent of
preference alignment methods, the distributions in
Figure 6 indicate that ORPO tends to fulfill the aim
of preference alignment for all model sizes.

6.3 Instruction Following

Phi-2 (ORPO) In general, ORPO improved pre-
trained Phi-2 to be a comparable instruction-
following language model by only using UltraFeed-

Size | AlpacaEval,, | AlpacaEval,,
Phi-2 + SFT 2.7B | 48.37% (1.77) | 0.11% (0.06)
Phi-2 + SFT + DPO 2.7B | 50.63% (1.77) | 0.78% (0.22)
Phi-2 + ORPO (Ours) 2.7B | 66.17% (1.67) | 4.24% (0.61)
Llama-2 Chat * 7B | 71.34% (1.59) | 4.96% (0.67)
Llama-2 Chat * 13B | 81.09% (1.38) | 7.70% (0.83)
Llama-2 + ORPO (Ours) | 7B | 81.26% (1.37) | 9.44% (0.85)
Zephyr (o) * 7B | 71.34% (1.59) | 8.35% (0.87)
Zephyr (B) * 7B | 81.09% (1.38) | 10.99% (0.96)
Mistral + ORPO (Ours) 7B | 87.94% (1.15) | 12.20% (0.98)

Table 3: Table of instruction-following abilities of
each checkpoint measured through AlpacaEval. While
clearly showing the improvements in instruction-
following abilities after training with ORPO, it is notable
that Phi-2-0RPO either overwhelms or is on par with
the larger state-of-the-art models. (* indicates the re-
sults excerpted from the official leaderboard.)

back as the instruction-tuning dataset, as shown
in Table 3. Within the same model family, ORPO
is preferred over other training methods for OPT
and Phi-2. It is notable that Phi-2 (ORPO) exceeds
Alpaca and Vicuna with the win rate of 66.17%,
which are 7B instruction-following models with
the win rates of 26.46% and 64.41%.

Meanwhile, in AlpacaEval, , Phi-2 (ORPO) was
preferred for 4.24% with 2.7B parameters. It was
on par with the Llama-2 Chat (7B) model, which is
one of the state-of-the-art chat models trained with
RLHF in the 7B scale.

Llama-2 (ORPO) Notably, instruction tuning with
only UltraFeedback and ORPO on Llama-2-7B re-
sulted in higher AlpacaEval scores than the -chat
and version for both 7B and 13B scale, eventually
showing 81.26% and 9.44% in two AlpacaEval.
In contrast, in our controlled experimental set-
ting of conducting one epoch of SFT and three



epochs of DPO following Tunstall et al. (2023) and
Rafailov et al. (2023), Llama-2 + SFT and Llama-
2 + SFT + DPO yielded models with outputs that
could not be evaluated. This implies the efficiency
of our method, in which the model can rapidly
learn both the desired domain and the preference
with a limited amount of data. This aligns with the
examination of h(d) in the gradient of our method
studied in Section 4.4.

Mistral (ORPO) Finally, fine-tuning Mistral (7B)
with only 32,000 instances UltraFeedback and
ORPO for 5 hours with the setting in Appendix C
outperforms Zephyr series, which are the Mistral
(7B) models fine-tuned with SFT on 20K UltraChat
(Ding et al., 2023) and DPO on the full UltraFeed-
back. As shown in Table 3, Mistral (ORPO) achieves
87.94% and 12.20%, which exceeds Zephyr S by
6.85% and 1.21%. It is noteworthy that Zephyr
was fine-tuned to UltraChat in the first place before
DPO, and Misral (ORPO) was trained directly with
Ultrafeedback only.

6.4 Lexical Diversity

The lexical diversity of the preference-aligned lan-
guage models was studied in previous works (Kirk
et al., 2024). We expand the concept of per-input
and across-input diversity introduced in Kirk et al.
(2024) by using the Gemini-Pro (Team et al., 2023)
as an embedding model, which is suitable for as-
sessing the diversity of instruction-following lan-
guage models by encoding a maximum of 2048
tokens. The diversity metric with the given set of
sampled responses is defined as Equation 17.

O == {y; ~ 0(y|z)|j =

1 XN S cos(hi,hy)
2 NN

1,2,.,K} (16)

D(O}) = (17

where cos(h;, hj) refers to the cosine similarity
between the embedding h; and h;. 5 different re-
sponses are sampled with a temperature of 1.0 to
160 queries in AlpacaEval (i.e., K = 5, N = 160)
using Phi-2 and Llama-2 trained with ORPO and
DPO. We report the results in Table 4.

Per Input Diversity (PID) We average the input-
wise average cosine similarity between the gener-
ated samples with Equation 18 to assess the per-
input diversity. In Table 4, ORPO checkpoints have
the highest average cosine similarity in the first

column for both models, which implies the low-
est diversity per input. This indicates that ORPO
generally assigns high probabilities to the desired
tokens, while DPO has a relatively smoother logit
distribution.

N
H%@:%ZM%) (18)

i=1
Across Input Diversity (AID) Using 8 samples
generated per input, we sample the first item for
each input and examine their inter cosine similarity
with Equation 19 for across-input diversity. Un-
like per-input diversity, it is noteworthy that Phi-2
(ORPO) has lower average cosine similarity in the
second row of Table 4. We can infer that ORPO
triggers the model to generate more instruction-
specific responses in comparison to DPO.

N
AIDp(6) = D (U Oi,e,jﬂ) (19)
=1

Per Input| Across Input|
Phi-2 + SFT + DPO 0.8012 0.6019
Phi-2 + ORPO 0.8909 0.5173
Llama-2 + SFT + DPO 0.8889 0.5658
Llama-2 + ORPO 0.9008 0.5091

Table 4: Lexical diversity of Phi-2 and Llama-2 fine-
tuned with DPO and ORPO. Lower cosine similarity is
equivalent to higher diversity. The highest value in each
column is bolded.

7 Conclusion

In this paper, we introduced a reference-free mono-
lithic preference alignment method, odds ratio pref-
erence optimization (ORPO), by revisiting and un-
derstanding the value of the supervised fine-tuning
(SFT) phase in the context of preference align-
ment. ORPO was consistently preferred by the
fine-tuned reward model against SFT and RLHF
across the scale, and the win rate against DPO in-
creased as the size of the model increased. Further-
more, we validate the scalability of ORPO with 2.7B
and 7B pre-trained language models by exceeding
the larger state-of-the-art instruction-following lan-
guage models in AlpacaEval. Specifically, Llama-2
(ORPO) and Mistral (ORPO) achieved 81.26% and
87.94% in AlpacaEval, ), 9.44% and 12.20% in
AlpacaEval, , thereby underscoring the efficiency
and effectiveness of ORPO. We release code to aid
reproducability (see supplementary material).



Limitations

While conducting a comprehensive analysis of the
diverse preference alignment methods, including
DPO and RLHF, we did not incorporate a wider
range of preference alignment algorithms. We
leave the wider range of comparison against other
methods as future work, along with scaling our
method to over 7B models. In addition, we will ex-
pand the fine-tuning datasets into diverse domains
and qualities, thereby verifying the generalizability
of our method in various NLP downstream tasks.
Finally, we would like to study the internal im-
pact of our method on the pre-trained language
model, expanding the understanding of preference
alignment procedure to not only the supervised
fine-tuning stage but also consecutive preference
alignment algorithms.
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A Derivation of VL., with Odds Ratio
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In Equation 25, the remaining derivative can be further simplified by replacing 1 — Py(y|x) terms

where P(y|x) = X/Hiv Py(yt|z, y<¢ in oddsy(y|z) as follows.
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B Ablation on Probability Ratio and Odds Ratio

In this section, we continue the discussion in Section 4.3 through empirical results comparing the log
probabilities of chosen and rejected responses in UltraFeedback when trained with probability ratio and
odds ratio. Recalling the sensitivity of each ratio discussed in Section 4.3, it is expected for the probability
ratio to lower the log probabilities of the rejected responses with a larger scale than the odds ratio. This is
well-shown in Figure 7, which is the log probabilities of each batch while fine-tuning with probability
ratio (left) rapidly reaches under -4, while the same phenomenon happens after the over-fitting occurs in
the case of odds ratio (right).

Positive Geometric Mean, Negative Geometric Mean Positive Geometric Mean, Negative Geometric Mean

Step Step

20k 40k 60k 80k 100k 120k 20k 40k 60k

Figure 7: The log probability trace when the model is trained with the probability ratio (left) and the odds ratio
(right) given the same hyperparameters. The probability ratio leads the rejected responses to have relatively lower
log probabilities in a manner.

C Experimental Details

The OPT series and Phi-2 were trained by applying Flash-Attention 2 (Dao, 2023) and DeepSpeed ZeRO
2 (Rasley et al., 2020) for computational efficiency, and Llama-2 models were trained with Fully Sharded
Data Parallel(FSDP) (Zhao et al., 2023). 7B and 2.7B models were trained with four and two NVIDIA
A100, and the rest were trained on four NVIDIA A6000. For optimizer, 8-bit AdamW optimizer (Dettmers
et al., 2022) was used, and the linear warmup with cosine decay was applied for the learning rate. For
input length, every instance was truncated and padded to 1,024 tokens and 2,048 tokens for HH-RLHF
and UltraFeedback, respectively. To guarantee that the models can sufficiently learn to generate the proper
response either to the conversation history or the complex instruction, we filtered instances that have
prompts with more than 1,024 tokens.

Supervised Fine-tuning (SFT) For SFT, the maximum learning rate was set to le-5. Following Ziegler
et al. (2020) and Rafailov et al. (2023), the training epoch is set to 1.

Reinforcement Learning with Human Feedback (RLHF) For RLHF, the hyperparameters were set
as Table 5 for UltraFeedback. For HH-RLHF dataset, the output_min_length and output_max_length
was set to 64 and 256.

Direct Preference Optimization (DPO) For DPO, 5 was set to 0.1 for every case. The learning rate
was set to 5e-6, and the model was trained for 3 epochs to select the best model by evaluation loss in
each epoch. But in most cases, the first or the second checkpoint was selected as the best model as the
evaluation loss got higher from the third epoch.

Odds Ratio Preference Optimization (ORPO) As ORPO does not require any special hyperparameter,
only the learning rate and epoch were the only hyperparameter to set. For ORPO, the maximum learning
rate was set to 8e-6 and trained for 10 epochs. The best model is selected by the lowest evaluation loss.
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Hyperparameter Setting
ppo_epoch 4
init_Kl_coef 0.1
horizon 2,000
batch_size 64
mini_batch_size 8
gradient_accumulation_steps 1
output_min_length 128
output_max_length 512
optimizer AdamW
learning_rate le-05
gamma 0.99

Table 5: Hyperparameter settings for RLHF.

D Test Set Reward Distribution on HH-RLHF

Along with Figure 8, which depicts the reward distribution of OPT2-125M, OPT2-350M, and OPT2-1.3B
on the UltraFeedback dataset, we report the reward distribution of each pre-trained checkpoint trained on
the HH-RLHF dataset. As discussed in Section 6.2, ORPO is consistently pushing the reward distribution
of SFT to the right side.

HH-RLHF Test Set Reward Distribution HH-RLHF Test Set Reward Distribution HH-RLHF Test Set Reward Distribution
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Figure 8: Reward distribution comparison between OPT-125M (left), OPT-350M (middle), and OPT-1.3B (right)
trained with SFT (blue), RLHF (green), DPO (orange), and ORPO (red) on the test set of HH-RLHF using the 1.3B
reward model. General tendency follows that of Figure 6.

E Special Instructions for Verbosity Assessment

Verboseness
Please generate an elaborative and chatty response.
Provide a detailed answer.
Keep your reply elaborative and intricate.
Keep your answer detailed.
Generate a chatty and step-wise answer.

Succinctness
Please generate a short and concise response.
Provide a brief and concise answer.
Keep your reply short and to the point.
Keep your answer brief for clarity.
Generate a brief and to-the-point answer.

DN AW N —|

Table 6: Instructions prepended to the queries from AlpacaEval. Each instruction set asks the model to generate
either shorter or longer responses given the query, respectively.

For the succinctness and verboseness instructions, we generated 5 different instructions each with
ChatGPT “. From the instructions in Table 6, we randomly sampled one prompt each for every batch to
prevent potential word bias.

4h'ctps ://chat.openai.com/
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