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Abstract

While recently proposed preference alignment001
algorithms for language models have demon-002
strated promising results, supervised fine-003
tuning (SFT) remains imperative for achiev-004
ing successful convergence in preference align-005
ment. In this paper, we elaborate on the cru-006
cial role of SFT within the context of pref-007
erence alignment, emphasizing that a minor008
penalty for the disfavored generation style is009
sufficient for preference-aligned SFT. Build-010
ing on this foundation, we introduce a straight-011
forward and innovative reference model-free012
monolithic odds ratio preference optimization013
algorithm, ORPO, eliminating the necessity for014
an additional preference alignment phase. Em-015
pirically and theoretically, we demonstrate that016
the odds ratio serves as a sensible choice for017
contrasting favored and unfavored styles dur-018
ing SFT. Specifically, fine-tuning Phi-2 (2.7B),019
Llama-2 (7B), and Mistral (7B) with ORPO020
on UltraFeedback alone surpasses the perfor-021
mance of state-of-the-art language models with022
more than 7B and 13B parameters, achieving023
66.2%, 81.3%, and 87.94% in AlpacaEval.024

1 Introduction025

Pre-trained language models (PLMs) with a vast026

training corpora such as web texts (Gokaslan and027

Cohen, 2019; Penedo et al., 2023) or textbooks (Li028

et al., 2023c) have shown remarkable abilities in029

diverse natural language processing (NLP) tasks030

(Brown et al., 2020; Zhang et al., 2022; Touvron031

et al., 2023; Jiang et al., 2023; Almazrouei et al.,032

2023). However, the models must undergo further033

tuning to be usable in general-domain applications034

(i.e., instruction-following), typically through in-035

struction tuning and model alignment.036

Instruction-tuning (Wei et al., 2022; Taori et al.,037

2023; Wang et al., 2023; Zhou et al., 2023a) trains038

models to follow task descriptions given in natu-039

ral language, which enables models to generalize040

well to previously unseen tasks. However, despite041
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Figure 1: AlpacaEval2.0 result of Llama-2 (7B) and
Mistral (7B) fine-tuned with ORPO (blue) in comparison
to the state-of-the-art models. Notably, Mistral (ORPO)
surpasses Zephyr β and Llama-2-Chat (13B) with a
single epoch training on the subset of UltraFeedback.

the ability to follow instructions, models may gen- 042

erate harmful or unethical outputs (Carlini et al., 043

2021; Gehman et al., 2020; Pryzant et al., 2023). 044

To further align these models with human values, 045

additional training is required with pairwise prefer- 046

ence data using techniques such as reinforcement 047

learning with human feedback (Ziegler et al., 2020; 048

Stiennon et al., 2022, RLHF) and direct preference 049

optimization (Rafailov et al., 2023, DPO). 050

Preference alignment methods have demon- 051

strated success in several downstream tasks beyond 052

reducing harm. For example, improving factuality 053

(Tian et al., 2023; Cheng et al., 2024; Chen and 054

Li, 2024), code-based question answering (Gorba- 055

tovski and Kovalchuk, 2024), and machine transla- 056

tion (Ramos et al., 2023). The versatility of align- 057

ment algorithms over a wide range of downstream 058

tasks highlights the necessity of both understanding 059

the alignment procedure and further improving the 060

algorithms in terms of efficiency and performance. 061

However, existing preference alignment methods 062

are normally a multi-stage process, as shown in Fig- 063

ure 2, typically requiring a second reference model 064

and a separate warm-up phase with supervised fine- 065
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Figure 2: General diagram of preference alignment with ORPO. ORPO aligns the pre-trained language model in a
non-segmented manner by giving a weak penalty to the rejected responses and a strong adaptation signal to the
chosen responses with a simple log odds ratio term appended to the negative log-likelihood loss.

tuning (SFT) (Ziegler et al., 2020; Rafailov et al.,066

2023; Wu et al., 2023).067

In this paper, we study the impact of SFT in068

pairwise preference datasets and propose a simple069

and novel monolithic alignment method, odds ratio070

preference optimization (ORPO), which efficiently071

penalizes the model from learning undesired gener-072

ation styles during SFT. Unlike previous works, our073

approach requires neither an SFT warm-up stage074

nor a reference model, enabling resource-efficient075

development of preference-based aligned models.076

We study the theoretical justification of using the077

odds ratio in Sections 4.3 and 4.4, and empiri-078

cally show that our method benefits from the scale079

through fine-tuning 125M to 7B models in Section080

6, including Llama-2 (7B) and Mistral (7B). As our081

best model, we present Mistral ORPO (7B), which082

is Mistral (7B) trained on the 32K subset of Ultra-083

Feedback (Tunstall et al., 2023) alone with ORPO084

for a single epoch and surpasses Llama-2-Chat (7B)085

and (13B) (Touvron et al., 2023) and Zephyr (β)086

(Tunstall et al., 2023) by achieving 87.94% and087

12.20% in AlpacaEval1.0 and AlpacaEval2.0 (Li088

et al., 2023b), as shown Figure 1.089

2 Related Works090

Alignment with Reinforcement Learning Rein-091

forcement learning with human feedback (RLHF)092

commonly applies the Bradley-Terry model093

(Bradley and Terry, 1952) to estimate the prob-094

ability of a pairwise competition between two in-095

dependently evaluated instances. An additional096

reward model is trained to score instances. Rein-097

forcement learning algorithms such as proximal098

policy optimization (PPO) (Schulman et al., 2017)099

are employed to train the model to maximize the100

score of the reward model for the chosen response, 101

resulting in language models that are trained with 102

human preferences (Ziegler et al., 2020; Stiennon 103

et al., 2022). Notably, Ouyang et al. (2022) demon- 104

strated the scalability and versatility of RLHF for 105

instruction-following language models. Extensions 106

such as language model feedback (RLAIF) could 107

serve as a viable alternative to human feedback (Bai 108

et al., 2022b; Lee et al., 2023; Pang et al., 2023). 109

However, RLHF faces challenges of extensive hy- 110

perparameter searching due to the instability of 111

PPO (Rafailov et al., 2023; Wu et al., 2023) and the 112

sensitivity of the reward models (Gao et al., 2022; 113

Wang et al., 2024). Therefore, there is a crucial 114

need for stable preference alignment algorithms. 115

Alignment without Reward Model Several 116

techniques for preference alignment mitigate the 117

need for reinforcement learning (Rafailov et al., 118

2023; Song et al., 2023; Azar et al., 2023; Etha- 119

yarajh et al., 2023). Rafailov et al. (2023) introduce 120

direct policy optimization (DPO), which merged 121

the reward modeling stage into the preference learn- 122

ing stage. Azar et al. (2023) prevented potential 123

overfitting problems in DPO through identity pref- 124

erence optimization (IPO). Ethayarajh et al. (2023) 125

and Cai et al. (2023) proposed Kahneman-Tversky 126

Optimisation (KTO) and Unified Language Model 127

Alignment (ULMA) that does not require the pair- 128

wise preference dataset, unlike RLHF and DPO. 129

Song et al. (2023) further suggests incorporation 130

of the softmax value of the reference response set 131

in the negative log-likelihood loss to merge the 132

supervised fine-tuning and preference alignment. 133

Alignment with Supervised Fine-tuning In 134

common, both preference alignment methods with 135

and without reinforcement learning mostly re- 136
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quire supervised fine-tuning (SFT) (i.e., reference137

model). In contrast, there have been approaches138

to build human-aligned language models with SFT139

exclusively (Zhou et al., 2023a; Li et al., 2023a;140

Haggerty and Chandra, 2024; Zhou et al., 2023b).141

Zhou et al. (2023a) demonstrated that SFT with142

a small amount of data with fine-grained filtering143

and curation could be sufficient for building help-144

ful language model assistants. Furthermore, Li145

et al. (2023a) and Haggerty and Chandra (2024)146

proposed an iterative process of fine-tuning the su-147

pervised fine-tuned language models with their own148

generations after fine-grained selection of aligned149

generations, while Zhou et al. (2023b) suggested150

that the selected subset of preference dataset is suf-151

ficient for alignment. While these works highlight152

the impact and significance of SFT in the context153

of preference alignment, the actual role of SFT154

and the theoretical background for incorporating155

preference alignment in SFT is still understudied.156

3 The Role of Supervised Fine-tuning157

We study the role of supervised fine-tuning (SFT)158

as an initial stage of preference alignment methods159

(Ziegler et al., 2020; Rafailov et al., 2023) through160

analysis of the loss function in SFT and empiri-161

cal demonstration of the preference comprehen-162

sion ability of the trained SFT model. SFT plays163

a significant role in tailoring the pre-trained lan-164

guage models to the desired domain (Zhou et al.,165

2023a; Dong et al., 2024) by increasing the log166

probabilities of pertinent tokens. Nevertheless, this167

inadvertently increases the likelihood of generating168

tokens in undesirable styles, as illustrated in Figure169

3. Therefore, it is necessary to explore the method170

that is capable of preserving the domain adapta-171

tion role of SFT while concurrently discerning and172

mitigating unwanted generation styles.173

Absence of Penalty in Cross-Entropy Loss The174

goal of cross-entropy loss model fine-tuning is to175

penalize the model if the predicted logits for the176

reference answers are low, as shown in Equation 2.177

L = − 1

m

m∑
k=1

logP (x(k),y(k)) (1)178

= − 1

m

m∑
k=1

|V |∑
i=1

y
(k)
i · log(p(k)i ) (2)179

where yi is a boolean value that indicates if ith to-180

ken in the vocabulary set V is a label token, pi181

refers to the probability of ith token, and m is 182

the length of sequence. Using cross-entropy alone 183

gives no penalty or compensation for the logits of 184

non-answer tokens (Lin et al., 2017) as yi will be 185

set to 0. While cross-entropy is generally effective 186

for domain adaptation (Mao et al., 2023), there are 187

no mechanisms to penalize the rejected responses 188

and compensate for the chosen responses. There- 189

fore, we can infer that the increase in the relevant 190

logits will happen invariant to the preference. 191

Generalization over Both Response Styles To 192

empirically demonstrate the miscalibration of cho- 193

sen and rejected responses with supervised fine- 194

tuning, we conduct a pilot study. We fine-tune 195

OPT-350M (Zhang et al., 2022) on the chosen re- 196

sponses only with HH-RLHF (Bai et al., 2022b). 197

Throughout the training, we monitor the log proba- 198

bility of rejected responses for each batch and plot 199

this in Figure 3.
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Figure 3: Log probabilities for chosen and rejected
responses during OPT-350m model fine-tuning on HH-
RLHF dataset. Despite only chosen responses being
used for supervision, rejected responses show a compa-
rable likelihood of generation.

200
Both the log probability of chosen and rejected 201

responses exhibited a simultaneous increase. This 202

can be interpreted from two different perspectives. 203

First, the cross-entropy loss effectively guides the 204

model toward the intended domain (e.g., multi-turn 205

conversation). However, the absence of a penalty 206

for unwanted generations results in rejected re- 207

sponses sometimes having even higher log proba- 208

bilities than the chosen ones. 209

4 Methodology 210

We introduce a novel preference alignment algo- 211

rithm, Odds Ratio Preference Optimization (ORPO), 212

which incorporates an odds ratio-based penalty to 213
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the conventional supervised fine-tuning loss for dif-214

ferentiating the generation styles between favored215

and disfavored responses.216

4.1 Preliminaries217

Given an input sequence x, the average log-218

likelihood of generating the output sequence y, of219

length m tokens, is computed as Equation 3. The220

odds of generating the output sequence y is defined221

in Equation 4:222

logPθ(y|x) =
1

m

m∑
t=1

logPθ(yt|x, y<t) (3)223

oddsθ(y|x) =
Pθ(y|x)

1− Pθ(y|x)
(4)224

Intuitively, oddsθ(y|x) = k implies that it is k225

times more likely for the model θ to generate the226

output sequence y than not generating it. Thus,227

the odds ratio of the chosen response yw over the228

rejected response yl, ORθ(yw, yl), indicates how229

much more likely it is for the model θ to generate230

yw than yl given input x, defined in Equation 5.231

ORθ(yw, yl) =
oddsθ(yw|x)
oddsθ(yl|x)

(5)232

4.2 Odds Ratio Preference Optimization233

The objective function of ORPO in Equation 6 con-234

sists of two components: 1) supervised fine-tuning235

(SFT) loss (LSFT ); 2) relative ratio loss (LRatio).236

LORPO = E(x,yw,yl) [LSFT + LRatio] (6)237

LSFT follows the conventional causal language238

modeling negative log-likelihood (NLL) loss func-239

tion to maximize the likelihood of generating the240

reference tokens as previously discussed in Sec-241

tion 3. LRatio in Equation 7 maximizes the odds242

ratio between the likelihood of generating the dis-243

favored response yw and the disfavored response244

yl. We wrap the log odds ratio with the log sig-245

moid function so that LRatio could be minimized246

by increasing the log odds ratio between yw and yl.247

LRatio = − log σ

(
log

oddsθ(yw|x)
oddsθ(yl|x)

)
(7)248

Together, LSFT and LRatio tailor the pre-trained249

language model to adapt to the specific subset of250

the desired domain, which excludes the type of251

generations in the rejected response sets.252

4.3 Why Odds Ratio? 253

The rationale for selecting the odds ratio instead 254

of the probability ratio as a penalty term lies in 255

its stability. The probability ratio for generating 256

the disfavored response yw over the disfavored re- 257

sponse yl given the input sequence x can be defined 258

as Equation 8. 259

PRθ(yw, yl) =
Pθ(yw|x)
Pθ(yl|x)

(8) 260

While this formulation has been used in previous 261

preference alignment methods that precede SFT 262

(Rafailov et al., 2023; Azar et al., 2023), the odds 263

ratio is a better choice in the setting where the 264

preference alignment is incorporated in SFT as the 265

odds ratio is more sensitive to the model’s prefer- 266

ence understanding. In other words, the probability 267

ratio leads to more extreme discrimination of the 268

disfavored responses than the odds ratio. 269

We visualize this through the sample distribu- 270

tions of the log probability ratio logPR(X2|X1) 271

and log odds ratio logOR(X2|X1). We sample 272

50,000 samples each with Equation 9 and plot the 273

log probability ratio and log odds ratio in Figure 274

4. We multiply β for the probability ratio as it is 275

practiced in the probability ratio-based methods 276

and report the cases where β = 0.2 and β = 1.0. 277

X1, X2 ∼ Unif(0, 1) (9) 278

Y ∼ β (logX1 − logX2) (10) 279

Y ∼ log
X1

1−X1
− log

X2

1−X2
(11) 280
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Figure 4: Sampled distribution of logPR(X2|X1) and
logOR(X2|X1). logOR(X2|X1) has a wider range
given the same input probability pairs (X1, X2).

281

Recalling that the log sigmoid function is ap- 282

plied to the log probability ratio and log odds ra- 283

tio, the scale of each ratio determines the amount 284
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of discrepancy between the likelihood of the fa-285

vored style and the disfavored style when the loss286

is minimized. In that sense, the contrast should287

be relatively extreme to minimize the log sig-288

moid loss when PR(X2|X1) is inputted instead289

of OR(X2|X1) to the log sigmoid function, re-290

garding the sharp distribution of logPR(X2|X1)291

in Figure 4. This results in overly suppressing the292

logits for the tokens in the disfavored responses in293

the setting where SFT and preference alignment294

are incorporated, as the model is not adapted to the295

domain. We show this through the ablation study296

in Appendix B. Therefore, the odds ratio is a better297

choice when the preference alignment is done with298

SFT simultaneously due to the mild discrimination299

of disfavored responses and the prioritizing of the300

favored responses to be generated.301

When comparing the log sigmoid loss with302

PR(X2|X1) to OR(X2|X1), In this context, it is303

essential to avoid an overly extreme contrast w.304

This caution is especially important given the sharp305

distribution of logPR(X2|X1) depicted in Figure306

4. The excessive discrepancy could lead to the307

unwarranted suppression of logits for tokens in dis-308

favored responses within the incorporated setting,309

potentially resulting in issues of degeneration.310

4.4 Gradients of ORPO311

The gradient of LRatio further justifies the use of312

the odds ratio loss. It comprises two terms: one313

that penalizes the wrong predictions and one that314

contrasts between chosen and rejected responses,315

denoted in Equation 121 for d = (x, yl, yw) ∼ D.316

∇θLRatio = δ(d) · h(d) (12)317
318

δ(d) =

[
1 +

oddsθP (yw|x)
oddsθP (yl|x)

]−1

(13)319

h(d) =
∇θ logPθ(yw|x)
1− Pθ(yw|x)

− ∇θ logPθ(yl|x)
1− Pθ(yl|x)

(14)

320

When the odds of the favored responses is rela-321

tively higher than the disfavored responses, δ(d) in322

Equation 13 will converge to 0. This indicates that323

the δ(d) will play the role of a penalty term, which324

accelerates the parameter updates if the model is325

more likely to generate the rejected responses.326

Meanwhile, h(d) in Equation 14 implies a327

weighted contrast of the two gradients from the cho-328

sen and rejected responses. Specifically, 1−P (y|x)329

1The full derivation for ∇θLRatio is in Appendix A.

in denominators amplifies the gradients of the corre- 330

sponding side of the likelihood P (y|x) is low. For 331

the chosen responses, this accelerates the model’s 332

adaptation toward the distribution of chosen re- 333

sponses as the likelihood increases. 334

5 Empirical Study 335

We study the effectiveness of ORPO through several 336

experimental settings. First, we assess the general 337

instruction-following abilities of the models com- 338

paring the preference alignment algorithms in Sec- 339

tion 6.3. Second, we measure the win rate of OPT 340

models trained with ORPO against other alignment 341

methods training OPT 1.3B as a reward model in 342

Section 6.2. We then perform further analyses to 343

demonstrate the odds ratio increasing as intended 344

while fine-tuning with ORPO in Section 6.1. And 345

finally, we measure the lexical diversity of the mod- 346

els trained with ORPO and DPO in Section 6.4. 347

5.1 Training Configurations 348

Models We train OPT (Zhang et al., 2022) series 349

with from 125M to 1.3B parameters using super- 350

vised fine-tuning (SFT), proximal policy optimiza- 351

tion (PPO), direct policy optimization (DPO), and 352

compare these to our ORPO. PPO and DPO models 353

were fine-tuned with TRL library (von Werra et al., 354

2020) on top of SFT models trained for a single 355

epoch on the chosen responses following Rafailov 356

et al. (2023) and Tunstall et al. (2023), which we no- 357

tate this by prepending "+" to each algorithm (e.g., 358

+DPO). Additionally, we train Phi-2 (2.7B) (Java- 359

heripi and Bubeck, 2023), a pre-trained language 360

model with promising downstream performance 361

(Beeching et al., 2023), as well as Llama-2 (7B) 362

(Touvron et al., 2023) and Mistral (7B) (Jiang et al., 363

2023). Further training details for each method are 364

in Appendix C. 365

Datasets We test each training method and model 366

on two datasets: 1) Anthropic’s HH-RLHF (Bai 367

et al., 2022a), 2) Binarized UltraFeedback (Tunstall 368

et al., 2023). We filtered out instances where yw = 369

yl or where yw = ∅ or where yl = ∅. 370

Reward Models We train OPT-350M and OPT- 371

1.3B on each dataset for a single epoch for reward 372

modeling with the objective function in Equation 373

15 (Ziegler et al., 2020). OPT-350M reward model 374

was used for PPO, and OPT-1.3B reward model 375

was used to assess the generations of final models. 376
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We refer to these models as RM-350M and RM-377

1.3B in Section 6.378

−E(x,yl,yw) [log σ (r(x, yw)− r(x, yl))] (15)379

5.2 Leaderboard Evaluation380

In Section 6.3, we perform evaluation using the381

AlpacaEval (Li et al., 2023b) benchmarks, com-382

paring ORPO to other instruction-tuned models re-383

ported in the official leaderboard2, including Vi-384

cuna (7B) (Chiang et al., 2023), Alpaca (7B)385

(Taori et al., 2023), Llama-2 Chat (7B) (Tou-386

vron et al., 2023), and Falcon-Instruct (40B) (Al-387

mazrouei et al., 2023). We report model perfor-388

mance using AlpacaEval1.0 and AlpacaEval2.0. Us-389

ing GPT-4 (Achiam et al., 2023) as an evaluator390

in AlpacaEval1.0, we assess if the trained model391

can be preferred over the responses generated from392

text-davinci-003. For AlpacaEval2.0, we used393

GPT-4-turbo3 as an evaluator following the default394

setting. We assess if the generated responses are395

favored over the responses generated from GPT-4.396

6 Results and Analysis397

By starting with monitoring the empirical validity398

of the odds ratio penalty in Section 6.1, we evaluate399

if the models have precisely learned the preference400

through both reward model win rate with RM-1.3B401

exclusively fine-tuned on each dataset and general402

instruction-following evaluation with GPT-4in Sec-403

tions 6.2 and 6.3. Then, we expand our analysis to404

the lexical diversity of the models in Section 6.4.405

6.1 Log Odds Ratio during Training406

We demonstrate that models trained with ORPO407

learned the preference throughout the training pro-408

cess. We monitored the log probabilities of the409

chosen and rejected responses, along with the log410

odds ratio. With the same dataset and model as411

Figure 3, Figure 5 shows that the log probability412

of rejected responses is diminishing while that of413

chosen responses is on par with Figure 3 as the log414

odds ratio increases. This indicates that ORPO is415

successfully preserving the domain adaptation role416

of supervised fine-tuning (SFT) while the penalty417

term LRatio induces the model to lower the likeli-418

hood of unwanted generations.419

2https://tatsu-lab.github.io/alpaca_eval/
3https://platform.openai.com/docs/models/

gpt-4-and-gpt-4-turbo
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Figure 5: Average log-likelihood for chosen and rejected
responses and log odds ratio per batch. The odds of
disfavored style generations consistently increase during
training with ORPO.

6.2 Reward Model Win Rate 420

We assess the win rate of ORPO over other pref- 421

erence alignment methods, including supervised 422

fine-tuning (SFT), PPO, and DPO, using RM-1.3B 423

fine-tuned for reward modeling to understand the 424

effectiveness and scalability of ORPO in Tables 1 425

and 2. Additionally, we visually verify that ORPO 426

can effectively enhance the expected reward in com- 427

parison to SFT in Figure 6. 428

HH-RLHF In Table 1, ORPO outperforms SFT 429

and RLHF across all model scales. The highest 430

win rate against SFT and RLHF across the size 431

of the model was 78.0% and 79.4%, respectively. 432

Meanwhile, the win rate over DPO was correlated 433

to the size of the model with the largest model 434

having the highest win rate: 70.9% in the OPT- 435

1.3B model. 436

ORPO vs SFT +DPO +PPO
OPT-125M 84.0 (0.62) 41.7 (0.77) 66.1 (0.26)
OPT-350M 82.7 (0.56) 49.4 (0.54) 79.4 (0.29)
OPT-1.3B 78.0 (0.16) 70.9 (0.52) 65.9 (0.33)

Table 1: Average win rate (%) and its standard deviation
of ORPO and standard deviation over other methods on
HH-RLHF dataset for three rounds. Sampling decoding
with a temperature of 1.0 was used on the test set.

UltraFeedback The win rate in UltraFeedback 437

followed similar trends to what was reported in HH- 438

RLHF, as shown in Table 2. ORPO was preferred 439

over SFT and PPO for maximum 80.5% and 85.8%, 440

respectively. While consistently preferring ORPO 441

over SFT and RLHF, the win rate over DPO grad- 442

ually increases as the size of the model increases. 443

The scale-wise trend in exceeding DPO will be 444

further shown through 2.7B models in Section 6.3. 445

446
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Figure 6: Reward distribution comparison between OPT-125M (left), OPT-350M (middle), and OPT-1.3B (right)
trained with SFT (blue), RLHF (green), DPO (orange), and ORPO (red) on the test set of UltraFeedback using the
RM-1.3B. While the rewards of the trained models are roughly normal and preference optimization algorithms
(RLHF, DPO, and ORPO) tend to move the reward distribution in the positive direction, ORPO is on par or better than
RLHF and DPO in increasing the expected reward. The same plot for HH-RLHF is in Appendix D.

ORPO vs SFT +DPO +PPO
OPT-125M 73.2 (0.12) 48.8 (0.29) 71.4 (0.28)
OPT-350M 80.5 (0.54) 50.5 (0.17) 85.8 (0.62)
OPT-1.3B 69.4 (0.57) 57.8 (0.73) 65.7 (1.07)

Table 2: Average win rate (%) and its standard deviation
of ORPO and standard deviation over other methods on
UltraFeedback dataset for three rounds. Same decod-
ing strategy with Table 1.

Overall Reward Distribution In addition to the447

win rate, we compare the reward distribution of448

the responses generated with respect to the test set449

of the UltraFeedback dataset in Figure 6 and HH-450

RLHF dataset in Appendix D. Regarding the SFT451

reward distribution as a default, RLHF, DPO, and452

ORPO shift it in both datasets. However, the magni-453

tude of reward shifts for each algorithm differs.454

In Figure 6, RLHF has some abnormal properties455

of the distribution with a low expected reward. We456

attribute this to empirical evidence of the instability457

and reward mismatch problem of RLHF (Rafailov458

et al., 2023; Gao et al., 2022; Shen et al., 2023) as459

the RLHF models were trained with RM-350M and460

assessed with RM-1.3B. Meanwhile, it is notable461

that the ORPO distribution (red) is mostly located462

on the very right side of each subplot indicating463

higher expected rewards. Recalling the intent of464

preference alignment methods, the distributions in465

Figure 6 indicate that ORPO tends to fulfill the aim466

of preference alignment for all model sizes.467

6.3 Instruction Following468

Phi-2 (ORPO) In general, ORPO improved pre-469

trained Phi-2 to be a comparable instruction-470

following language model by only using UltraFeed-471

Size AlpacaEval1.0 AlpacaEval2.0
Phi-2 + SFT 2.7B 48.37% (1.77) 0.11% (0.06)
Phi-2 + SFT + DPO 2.7B 50.63% (1.77) 0.78% (0.22)
Phi-2 + ORPO (Ours) 2.7B 66.17% (1.67) 4.24% (0.61)
Llama-2 Chat * 7B 71.34% (1.59) 4.96% (0.67)
Llama-2 Chat * 13B 81.09% (1.38) 7.70% (0.83)
Llama-2 + ORPO (Ours) 7B 81.26% (1.37) 9.44% (0.85)
Zephyr (α) * 7B 71.34% (1.59) 8.35% (0.87)
Zephyr (β) * 7B 81.09% (1.38) 10.99% (0.96)
Mistral + ORPO (Ours) 7B 87.94% (1.15) 12.20% (0.98)

Table 3: Table of instruction-following abilities of
each checkpoint measured through AlpacaEval. While
clearly showing the improvements in instruction-
following abilities after training with ORPO, it is notable
that Phi-2-ORPO either overwhelms or is on par with
the larger state-of-the-art models. (* indicates the re-
sults excerpted from the official leaderboard.)

back as the instruction-tuning dataset, as shown 472

in Table 3. Within the same model family, ORPO 473

is preferred over other training methods for OPT 474

and Phi-2. It is notable that Phi-2 (ORPO) exceeds 475

Alpaca and Vicuna with the win rate of 66.17%, 476

which are 7B instruction-following models with 477

the win rates of 26.46% and 64.41%. 478

Meanwhile, in AlpacaEval2.0, Phi-2 (ORPO) was 479

preferred for 4.24% with 2.7B parameters. It was 480

on par with the Llama-2 Chat (7B) model, which is 481

one of the state-of-the-art chat models trained with 482

RLHF in the 7B scale. 483

Llama-2 (ORPO) Notably, instruction tuning with 484

only UltraFeedback and ORPO on Llama-2-7B re- 485

sulted in higher AlpacaEval scores than the -chat 486

and version for both 7B and 13B scale, eventually 487

showing 81.26% and 9.44% in two AlpacaEval. 488

In contrast, in our controlled experimental set- 489

ting of conducting one epoch of SFT and three 490
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epochs of DPO following Tunstall et al. (2023) and491

Rafailov et al. (2023), Llama-2 + SFT and Llama-492

2 + SFT + DPO yielded models with outputs that493

could not be evaluated. This implies the efficiency494

of our method, in which the model can rapidly495

learn both the desired domain and the preference496

with a limited amount of data. This aligns with the497

examination of h(d) in the gradient of our method498

studied in Section 4.4.499

Mistral (ORPO) Finally, fine-tuning Mistral (7B)500

with only 32,000 instances UltraFeedback and501

ORPO for 5 hours with the setting in Appendix C502

outperforms Zephyr series, which are the Mistral503

(7B) models fine-tuned with SFT on 20K UltraChat504

(Ding et al., 2023) and DPO on the full UltraFeed-505

back. As shown in Table 3, Mistral (ORPO) achieves506

87.94% and 12.20%, which exceeds Zephyr β by507

6.85% and 1.21%. It is noteworthy that Zephyr508

was fine-tuned to UltraChat in the first place before509

DPO, and Misral (ORPO) was trained directly with510

Ultrafeedback only.511

6.4 Lexical Diversity512

The lexical diversity of the preference-aligned lan-513

guage models was studied in previous works (Kirk514

et al., 2024). We expand the concept of per-input515

and across-input diversity introduced in Kirk et al.516

(2024) by using the Gemini-Pro (Team et al., 2023)517

as an embedding model, which is suitable for as-518

sessing the diversity of instruction-following lan-519

guage models by encoding a maximum of 2048520

tokens. The diversity metric with the given set of521

sampled responses is defined as Equation 17.522

Oi
θ := {yj ∼ θ(y|xi)|j = 1, 2, ...,K} (16)523

D(Oi
θ) =

1

2
·
∑N−1

i=1

∑N
j=i+1 cos(hi, hj)

N · (N − 1)
(17)524

where cos(hi, hj) refers to the cosine similarity525

between the embedding hi and hj . 5 different re-526

sponses are sampled with a temperature of 1.0 to527

160 queries in AlpacaEval (i.e., K = 5, N = 160)528

using Phi-2 and Llama-2 trained with ORPO and529

DPO. We report the results in Table 4.530

Per Input Diversity (PID) We average the input-531

wise average cosine similarity between the gener-532

ated samples with Equation 18 to assess the per-533

input diversity. In Table 4, ORPO checkpoints have534

the highest average cosine similarity in the first535

column for both models, which implies the low- 536

est diversity per input. This indicates that ORPO 537

generally assigns high probabilities to the desired 538

tokens, while DPO has a relatively smoother logit 539

distribution. 540

PIDD(θ) =
1

N

N∑
i=1

D(Oi
θ) (18) 541

Across Input Diversity (AID) Using 8 samples 542

generated per input, we sample the first item for 543

each input and examine their inter cosine similarity 544

with Equation 19 for across-input diversity. Un- 545

like per-input diversity, it is noteworthy that Phi-2 546

(ORPO) has lower average cosine similarity in the 547

second row of Table 4. We can infer that ORPO 548

triggers the model to generate more instruction- 549

specific responses in comparison to DPO. 550

AIDD(θ) = D

(
N⋃
i=1

Oi,θ,j=1

)
(19) 551

Per Input↓ Across Input↓
Phi-2 + SFT + DPO 0.8012 0.6019
Phi-2 + ORPO 0.8909 0.5173
Llama-2 + SFT + DPO 0.8889 0.5658
Llama-2 + ORPO 0.9008 0.5091

Table 4: Lexical diversity of Phi-2 and Llama-2 fine-
tuned with DPO and ORPO. Lower cosine similarity is
equivalent to higher diversity. The highest value in each
column is bolded.

7 Conclusion 552

In this paper, we introduced a reference-free mono- 553

lithic preference alignment method, odds ratio pref- 554

erence optimization (ORPO), by revisiting and un- 555

derstanding the value of the supervised fine-tuning 556

(SFT) phase in the context of preference align- 557

ment. ORPO was consistently preferred by the 558

fine-tuned reward model against SFT and RLHF 559

across the scale, and the win rate against DPO in- 560

creased as the size of the model increased. Further- 561

more, we validate the scalability of ORPO with 2.7B 562

and 7B pre-trained language models by exceeding 563

the larger state-of-the-art instruction-following lan- 564

guage models in AlpacaEval. Specifically, Llama-2 565

(ORPO) and Mistral (ORPO) achieved 81.26% and 566

87.94% in AlpacaEval1.0, 9.44% and 12.20% in 567

AlpacaEval2.0, thereby underscoring the efficiency 568

and effectiveness of ORPO. We release code to aid 569

reproducability (see supplementary material). 570
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Limitations571

While conducting a comprehensive analysis of the572

diverse preference alignment methods, including573

DPO and RLHF, we did not incorporate a wider574

range of preference alignment algorithms. We575

leave the wider range of comparison against other576

methods as future work, along with scaling our577

method to over 7B models. In addition, we will ex-578

pand the fine-tuning datasets into diverse domains579

and qualities, thereby verifying the generalizability580

of our method in various NLP downstream tasks.581

Finally, we would like to study the internal im-582

pact of our method on the pre-trained language583

model, expanding the understanding of preference584

alignment procedure to not only the supervised585

fine-tuning stage but also consecutive preference586

alignment algorithms.587
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A Derivation of ∇θLRatio with Odds Ratio895

Suppose that g(x, yl, yw) =
oddsθP (yw|x)
oddsθP (yl|x)896

∇θLRatio = ∇θ log σ

(
log

oddsθP (yw|x)
oddsθP (yl|x)

)
(20)897

=
σ′ (log g(x, yl, yw))

σ (log g(x, yl, yw))
(21)898

= σ (− log g(x, yl, yw)) · ∇θ log g(x, yl, yw) (22)899

=
σ (− log g(x, yl, yw))

g(x, yl, yw)
· ∇θg(x, yl, yw) (23)900

= σ (− log g(x, yl, yw)) · ∇θ log g(x, yl, yw) (24)901

=

(
1 +

oddsθP (yw|x)
oddsθP (yl|x)

)−1

· ∇θ log
oddsθP (yw|x)
oddsθP (yl|x)

(25)902

In Equation 25, the remaining derivative can be further simplified by replacing 1 − Pθ(y|x) terms903

where P (y|x) = N

√∏N
t Pθ(yt|x, y<t in oddsθ(y|x) as follows.904

∇θ log (1− Pθ(y|x)) =
∇θ (1− Pθ(y|x))

1− Pθ(y|x)
(26)905

=
−∇θPθ(y|x)
1− Pθ(y|x)

(27)906

= − Pθ(y|x)
1− Pθ(y|x)

· ∇θ logPθ(y|x) (28)907

= oddsθ(y|x) · ∇θ logPθ(y|x) (29)908

∇θ log
oddsθP (yw|x)
oddsθP (yl|x)

= ∇θ log
Pθ(yw|x)
Pθ(yl|x)

−
(
∇θ log(1− Pθ(yw|x))−∇θ log(1− Pθ(yl|x))

)
(30)909

= (1 + oddsθP (yw|x))∇θ logPθ(yw|x)− (1 + oddsθP (yl|x))∇θ logPθ(yl|x)
(31)

910

Therefore, the final form of ∇θLRatio would be911

∇θLRatio =
1 + oddsθP (yw|x)
1 + oddsθP (yw|x)

oddsθP (yl|x)

· ∇θ logPθ(yw|x)−
1 + oddsθP (yl|x)
1 + oddsθP (yw|x)

oddsθP (yl|x)

· ∇θ logPθ(yl|x) (32)912

=

(
1 +

oddsθP (yw|x)
oddsθP (yl|x)

)−1

·
(
∇θ logPθ(yw|x)
1− P (yw|x)

− ∇θ logPθ(yl|x)
1− P (yl|x)

)
(33)913
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B Ablation on Probability Ratio and Odds Ratio 914

In this section, we continue the discussion in Section 4.3 through empirical results comparing the log 915

probabilities of chosen and rejected responses in UltraFeedback when trained with probability ratio and 916

odds ratio. Recalling the sensitivity of each ratio discussed in Section 4.3, it is expected for the probability 917

ratio to lower the log probabilities of the rejected responses with a larger scale than the odds ratio. This is 918

well-shown in Figure 7, which is the log probabilities of each batch while fine-tuning with probability 919

ratio (left) rapidly reaches under -4, while the same phenomenon happens after the over-fitting occurs in 920

the case of odds ratio (right).

Figure 7: The log probability trace when the model is trained with the probability ratio (left) and the odds ratio
(right) given the same hyperparameters. The probability ratio leads the rejected responses to have relatively lower
log probabilities in a manner.

921

C Experimental Details 922

The OPT series and Phi-2 were trained by applying Flash-Attention 2 (Dao, 2023) and DeepSpeed ZeRO 923

2 (Rasley et al., 2020) for computational efficiency, and Llama-2 models were trained with Fully Sharded 924

Data Parallel(FSDP) (Zhao et al., 2023). 7B and 2.7B models were trained with four and two NVIDIA 925

A100, and the rest were trained on four NVIDIA A6000. For optimizer, 8-bit AdamW optimizer (Dettmers 926

et al., 2022) was used, and the linear warmup with cosine decay was applied for the learning rate. For 927

input length, every instance was truncated and padded to 1,024 tokens and 2,048 tokens for HH-RLHF 928

and UltraFeedback, respectively. To guarantee that the models can sufficiently learn to generate the proper 929

response either to the conversation history or the complex instruction, we filtered instances that have 930

prompts with more than 1,024 tokens. 931

Supervised Fine-tuning (SFT) For SFT, the maximum learning rate was set to 1e-5. Following Ziegler 932

et al. (2020) and Rafailov et al. (2023), the training epoch is set to 1. 933

Reinforcement Learning with Human Feedback (RLHF) For RLHF, the hyperparameters were set 934

as Table 5 for UltraFeedback. For HH-RLHF dataset, the output_min_length and output_max_length 935

was set to 64 and 256. 936

Direct Preference Optimization (DPO) For DPO, β was set to 0.1 for every case. The learning rate 937

was set to 5e-6, and the model was trained for 3 epochs to select the best model by evaluation loss in 938

each epoch. But in most cases, the first or the second checkpoint was selected as the best model as the 939

evaluation loss got higher from the third epoch. 940

Odds Ratio Preference Optimization (ORPO) As ORPO does not require any special hyperparameter, 941

only the learning rate and epoch were the only hyperparameter to set. For ORPO, the maximum learning 942

rate was set to 8e-6 and trained for 10 epochs. The best model is selected by the lowest evaluation loss. 943
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Hyperparameter Setting
ppo_epoch 4
init_kl_coef 0.1
horizon 2,000
batch_size 64
mini_batch_size 8
gradient_accumulation_steps 1
output_min_length 128
output_max_length 512
optimizer AdamW
learning_rate 1e-05
gamma 0.99

Table 5: Hyperparameter settings for RLHF.

D Test Set Reward Distribution on HH-RLHF944

Along with Figure 8, which depicts the reward distribution of OPT2-125M, OPT2-350M, and OPT2-1.3B945

on the UltraFeedback dataset, we report the reward distribution of each pre-trained checkpoint trained on946

the HH-RLHF dataset. As discussed in Section 6.2, ORPO is consistently pushing the reward distribution947

of SFT to the right side.948

Figure 8: Reward distribution comparison between OPT-125M (left), OPT-350M (middle), and OPT-1.3B (right)
trained with SFT (blue), RLHF (green), DPO (orange), and ORPO (red) on the test set of HH-RLHF using the 1.3B
reward model. General tendency follows that of Figure 6.

E Special Instructions for Verbosity Assessment949

# Succinctness Verboseness
1 Please generate a short and concise response. Please generate an elaborative and chatty response.
2 Provide a brief and concise answer. Provide a detailed answer.
3 Keep your reply short and to the point. Keep your reply elaborative and intricate.
4 Keep your answer brief for clarity. Keep your answer detailed.
5 Generate a brief and to-the-point answer. Generate a chatty and step-wise answer.

Table 6: Instructions prepended to the queries from AlpacaEval. Each instruction set asks the model to generate
either shorter or longer responses given the query, respectively.

For the succinctness and verboseness instructions, we generated 5 different instructions each with950

ChatGPT 4. From the instructions in Table 6, we randomly sampled one prompt each for every batch to951

prevent potential word bias.952

4https://chat.openai.com/
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