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Abstract

Large Language Model (LLM)-based judgments leverage powerful LLMs to ef-
ficiently evaluate candidate content and provide judgment scores. However, the
inherent biases and vulnerabilities of LLM-generated judgments raise concerns,
underscoring the urgent need for distinguishing them in sensitive scenarios like
academic peer reviewing. In this work, we propose and formalize the task of judg-
ment detection and systematically investigate the detectability of LLM-generated
judgments. Unlike LLM-generated text detection, judgment detection relies solely
on judgment scores and candidates, reflecting real-world scenarios where textual
feedback is often unavailable in the detection process. Our preliminary analysis
shows that existing LLM-generated text detection methods perform poorly given
their incapability to capture the interaction between judgment scores and candidate
content—an aspect crucial for effective judgment detection. Inspired by this, we
introduce J-Detector, a lightweight and transparent neural detector augmented with
explicitly extracted linguistic and LLM-enhanced features to link LLM judges’
biases with candidates’ properties for accurate detection. Experiments across
diverse datasets demonstrate the effectiveness of J-Detector and show how its
interpretability enables quantifying biases in LLM judges. Finally, we analyze key
factors affecting the detectability of LLM-generated judgments and validate the
practical utility of judgment detection in real-world scenarios.

1 Introduction

Taking advantage of the powerful Large Language Models (LLMs), the paradigm of LLM-based
judgment [Zheng et al., 2023, Li et al., 2024] has been proposed, designed to automate and scale up
various annotation and reviewing applications [Lee et al., Zhu et al., 2025, Chang et al., 2025]. By
combining powerful LLMs with well-designed prompting strategies, LLM-based judgment enables
human-like evaluation of long-form and open-ended generation in a more cost-efficient manner.
For example, LLM-based judgment has been increasingly used in the peer review of leading AI
conferences [Liang et al., 2024].

Despite this remarkable progress, many recent studies point out various biases of LLM-generated
judgment toward spurious features, such as length and affinity [Ye et al., 2024, Li et al., 2025a, Zhao
et al., 2025a]. Besides, the vulnerability of the LLM judgment system has also been revealed, that
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several maliciously-designed and hard-to-detect tokens or words can fool the LLM judges to give
much inconsistent scores despite the candidates’ genuine quality [Shi et al., 2024, Zhao et al., 2025b].
Recently, in the scenario of academic peer reviewing, some researchers sneak prompts, which are
usually concealed as white text on a white background, into their papers to instruct LLMs to only
provide positive feedback and thus trick AI reviewers1. All these challenges highlight the importance
of distinguishing LLM-generated judgments to guarantee the assessment’s fairness and reliability.
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Figure 1: Comparison between LLM-generated judgment
detection and text detection.

To address this concern, we pro-
pose the judgment detection task,
which aims at examining the de-
tectability of LLM-generated judg-
ments across diverse scenarios. Un-
like existing machine-generated text
detection task that focuses on tex-
tual content [Mitchell et al., 2023],
judgment detection targets at distin-
guishing LLM-generated from human-
produced judgments solely based on
the candidate content and judgment
scores (as illustrated in Figure 1). For
instance, in academic paper reviewing,
judgment detection will be performed
using only the candidate paper and its assigned ratings (e.g., soundness, novelty, overall score),
without accessing the full review text. This setting is particularly important for real-world scenarios
where textual feedback is often unavailable in the detection process. For example, reviewers who
adopt AI-generated reviews may intentionally submit minimal textual content, such as “N/A” to
evade detection. Moreover, in the evaluation data labeling scenario, annotators are typically required
to provide only the judgment scores. Score-based judgment detection is especially critical in these
scenarios to identify the illegal use of LLM-generated judgment and guarantee assessment reliability.

Developing a good LLM-generated judgment detector is not trivial. In our warm-up analysis
(Appendix C), we identify two key types of information for judgment detection which are not
jointly considered in existing related approaches: ❶ Judgment-Intrinsic Features, which capture
patterns within the judgment score distribution, and ❷ Judgment-Candidate Interaction Features,
which capture the interaction between judgment scores and candidate content. Building on them,
we find that existing LLM-generated text detection methods fail to capture Judgment-Candidate
Interaction Features, leading to subpar performance—especially in single-dimension settings, where
each judgment consists of a single score assessing one aspect of the candidates. To address this,
we introduce J-Detector, a lightweight and interpretable neural detector designed specifically for
LLM-generated judgment detection. J-Detector is augmented with explicitly extracted linguistic and
LLM-enhanced features to capture systematic correlations between judgment scores and candidate
features that LLM judges are often biased toward, thereby effectively leveraging these biases for
more accurate detection.

Experiments across diverse judgment datasets demonstrate the effectiveness of J-Detector and the
two types of augmented features. Besides, we showcase how to leverage the interpretability of
J-Detector to enable bias quantification in LLM judges. Finally, we analyze key factors affecting the
detectability of LLM-generated judgments and demonstrate a real-world application that integrates
judgment detection with text-based detection to identify AI-generated reviews in an academic peer
reviewing scenario. In summary, our key contributions are:

• We propose, for the first time, the judgment detection task, which aims at distinguishing human and
LLM judgments based on judgment scores and candidate content.

• We design J-Detector, a lightweight and interpretable detection method, that effectively bridges
candidate and judgment information with linguistic and LLM-enhanced features.

• Through extensive experiments, we demonstrate the advantages of J-Detector, identify key factors
driving judgment detectability, and show the utility of judgment detection in real-world applications.

1https://www.theregister.com/2025/07/07/scholars_try_to_fool_llm_reviewers/
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2 Task Statement

A judgment refers to an assessment made over one or more candidates c ∈ C, where |C| denotes the
size of the candidate set. A judgment score is denoted by j = (j1, . . . , jd) ∈ Yd. It can be either
single-dimensional (d = 1), reflecting an assessment toward a single aspect, or multi-dimensional
(d > 1), where each component Ji corresponds to a distinct evaluation aspect (e.g., relevance, fluency,
coherence). With these definitions, we formulate the task as follows:
Definition 2.1 (Judgment Detection). LLM-generated judgment detection is defined over judgment
groups. A judgment group is given by G = {(ci, ji)}ki=1, where each candidate ci ∈ C is paired
with a judgment score ji ∈ J . The task is to classify whether a group G originates from a human
judge or from an LLM. Formally, the label space is L = {0, 1}, where ℓ = 0 denotes human-
produced judgments and ℓ = 1 denotes LLM-generated judgments. The goal is to learn a function
fθ : G → [0, 1], where fθ(G) outputs the probability that G was generated by an LLM. The final
prediction is obtained as ŷ = I[fθ(G) ≥ τ ], with threshold τ ∈ [0, 1] and indicator function I[·].

When the group size is 1, i.e., |G| = 1, the task is degraded to an i.i.d. (instance-level) detection
setting, where each judgment is treated independently. When |G| > 1, the group setting better reflects
real practice, since judgments are usually produced in batches (e.g., a reviewer scores multiple papers
or an annotator evaluates a set of model outputs), and collective patterns across the group can reveal
whether the judgments are human-produced or LLM-generated.

3 J-Detector: A Lightweight and interpretable Detector

S = ∑ fθ (FBase ⊕ FLLM ⊕ FLinguistics)
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Figure 2: The overview pipeline of our J-Detector for LLM-generated judgment detection.

To address the limitation of existing text detectors and design an effective and robust approach
for LLM-generated judgment detection, we first identify three criteria that a good LLM-generated
judgment detector should embody:

• (Accurate) The detection method should be able to leverage both Judgment-Intrinsic Features and
Judgment-Candidate Interaction Features to deliver reliable detection results in various scenarios.

• (Efficient) Both the training and inference of the detector should incur minimal computational
overhead, enabling the method to be deployed in large-scale judgment detection scenarios.

• (Interpretable) The detection method should be interpretable to support bias analysis in LLM judges.

Following these principles, we design J-Detector, an accurate, lightweight and interpretable detector
involving the following components. The overview pipeline is presented in Figure 2.

Feature Augmentation. Let F denote the instance-level feature vector used by J-Detector. We
construct it by concatenating three types of features together:

F = Fbase ⊕ FLLM ⊕ Flinguistic, (1)

where Fbase contains the given judgment scores. FLLM and Flinguistic are LLM-enhanced features and
linguistic features we extract from candidates content, which act as distilled information of candidates
and are leveraged to link judgment scores with candidates’ content.
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LLM-enhanced Features. Borrowing insights from LLM-based text detection methods [Bao et al.,
2024], we propose LLM-enhanced features to produce the following types of features:

• Stylistic regularities: scores reflecting surface polish and presentation patterns of the candidates,
including style, wording, and format. These aim to capture the spurious preference LLM judges tend
to have over superficial attributes [Li et al., 2025a].

• Judgment-aligned dimensions: scores aligned to the same dimensions used in the given judgment
scores. These aim to enhance features by leveraging the similarity of biases across LLM judges.

By injecting these high-level, bias-informed signals, LLM-enhanced Features enable the detector to
better capture subtle judgment patterns that are difficult to learn from raw candidate content alone.

Linguistic Features. We further introduce linguistic features Flinguistic to capture low-level linguistic
regularities that often correlate with systematic biases of LLM judges. Specifically, we extract the
following aggregated features from the candidate content:

• Length: total token and character counts, as well as average sentence length, to capture the length
bias where LLM judges favor lengthy content and responses [Wei et al.].

• Lexical diversity: unique-token ratio and average word length, which reflect the surface beauty bias
of LLM-generated judgments compared to human-produced ones [Chen et al., 2024].

• Readability: a composite readability index (e.g., Coleman–Liau), measuring the fluency bias where
LLMs tend to favor superficially fluent texts, disregarding their true quality [Wu and Aji, 2025].

• Syntactic complexity: dependency tree depth and average dependency distance, used to identify the
complexity bias often observed in LLM judges [Ye et al., 2024].

• Discourse/hedging: the frequency of discourse markers and hedging expressions, capturing the
presentation bias of LLM, which prefer content with confident tones [Kharchenko et al., 2025].

These features provide a compact yet informative summary of linguistic cues, enabling the detector
to exploit stable and interpretable signals that are complementary to LLM-enhanced features.

Model Training. Given labeled instances (F, y), we train a lightweight binary classifier fθ (e.g.,
RandomForest [Breiman, 2001]) to output a logit z ∈ R indicating the likelihood that the judgment
was generated by an LLM (y = 1) or by a human (y = 0). The classifier is trained using the
augmented feature F and serves as the instance-level building block for group-level decisions.

Group-level Aggregation. To enable the group-level detection setting, we propose a simple ag-
gregation method to produce the group-level label give each single prediction. Given a group G
consisting of k judgments with instance-level logits {ẑ1, . . . , ẑk}, we aggregate the evidence using
sum aggregation: score(G) =

∑k
i=1 ẑi.

In summary, J-Detector is designed to satisfy the three criteria identified at the beginning of this
section. First, by incorporating both LLM-enhanced and linguistic features, it is able to capture not
only Judgment-Intrinsic Features but also critical Judgment–Candidate Interaction Features, enabling
accurate detection across single-dimensional and multi-dimensional scenarios. Second, it builds on a
lightweight binary classifier, making both training and inference highly efficient and thus suitable
for large-scale deployment. Third, since the features are semantically clear and the classifier itself
is simple, the framework offers strong interpretability, which can be leveraged to systematically
quantify and analyze the biases of LLM judges.

4 Main Experiment

4.1 Experiment Settings

Datasets. We build a comprehensive LLM-generated judgment detection dataset, JD-Bench, which
integrates four representative datasets covering three judgment types: pointwise, pairwise and list-
wise [Li et al., 2024]. Among them, HelpSteer2 provides large-scale pointwise human ratings of LLM
responses for helpfulness evaluation, while HelpSteer3 extends this with pairwise human preference
comparisons. The NeurIPS Review dataset offers expert peer reviews with multi-dimensional scores
such as soundness and novelty, representing high-stakes evaluation. Finally, ANTIQUE supplies
listwise human judgments for ranking documents in non-factoid question answering. All four datasets
contain human-labeled judgments as reliable references, and we further collect LLM-generated
judgments from a diverse pool of models. In total, JD-Bench covers a wide spectrum of model
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families, including OpenAI, Anthropic, and Google for closed-source models, and LLaMA, Qwen,
Mistral, and DeepSeek for open-source models, ensuring diversity in judgment patterns.

Compared Methods. In our main experiment, we compare our proposed J-Detector against a series
of baseline methods, all of which are listed as follows:

• SLM-based Detector. In line with SLM-based text detectors [Yu et al., 2025], this approach feeds
either the judgment scores alone or the judgment scores together with the candidate content (w/
candidates) to train a small language model-based classifier to predict whether the judgment was
produced by a human or from an LLM.

• LLM-as-a-judge-detector. Inspired by logits-based detection in AI-generated text detec-
tion [Mitchell et al., 2023], where a surrogate LLM is used to compute likelihoods, we adopt a
single LLM that first generates judgment scores and then compares them with the judgment scores to
be detected, making the detection decision based on their similarity.

• Sample-level LLM-based Analysis. Inspired by recent agent-based frameworks that maintain
guideline banks for distinguishing human and AI text [Li et al., 2025c], we let the LLM analyze
Human–LLM judgment-candidate pairs to extract concise instance-level features (e.g., length bias in
LLM judgments), which are stored in a feature bank to capture regularities useful for detection.

• Distribution-level LLM-based Analysis. Drawing inspiration from recent work that guides LLMs
in structured extraction and analysis of visual summaries [Liu et al., 2025], we provide the model
with dataset-level summaries (e.g., per-label histograms and correlations), enabling it to incorporate
global and distributional cues into the detection decision.

Implementation Details. We implement our J-Detector using three models from the Scikit-learn
library [Pedregosa et al., 2011]: LGBM [Ke et al., 2017], RandomForest [Breiman, 2001], and
XGB [Chen and Guestrin, 2016]. We employ Qwen-3-8B for both feature augmentation and as
the backbone for LLM-based baselines. For SLM-based methods, we use RoBERTa-base and
Longformer-4096. For SLM training, we use a batch size of 8 and fine-tune the SLM for 3 epochs on
each dataset. In the main experiments, the group size is fixed to k=4. More details, including the
JD-Bench construction, design of baseline methods, and implementation specifics are provided in
Section E.

4.2 Main Result

Table 1: Main experimental results on JD-Bench. We report F1 and AUROC scores, with the best
results highlighted in bold. Each experiment is repeated five times, and average scores are reported.

Method Helpsteer2 Helpsteer3 NeurIPS ANTIQUE AVG
F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC

SLM-based methods
RoBERTa 98.1 99.6 50.9 64.5 96.2 99.4 30.0 56.8 68.8 80.1
RoBERTa w/ candidates 98.1 99.6 50.0 63.4 96.3 99.3 27.6 56.6 68.0 79.7
Longformer 98.1 99.7 54.5 65.7 96.2 99.5 30.6 56.6 69.9 80.4
Longformer w/ candidates 98.1 99.7 51.4 64.3 96.2 99.4 21.8 48.8 66.9 78.0

LLM-based methods
LLM 51.5 50.3 50.3 50.1 43.9 50.2 49.6 49.9 48.8 50.1
LLM w/ Sample-level 49.8 49.7 49.6 50.2 50.5 50.4 50.9 50.3 50.2 50.2
LLM w/ Distribution-level 52.1 50.0 48.8 50.3 49.6 49.8 50.7 50.1 50.3 50.1
LLM w/ Sample-level + Distribution-level 58.7 50.4 49.4 49.6 51.2 50.2 50.2 49.9 52.4 50.0

J-Detector (ours)
LGBM 99.6 100.0 68.1 73.3 98.7 99.9 85.4 93.3 88.0 91.6
RandomForest 99.5 100.0 74.0 77.0 97.0 99.7 82.6 90.6 88.3 91.8
XGB 99.8 100.0 68.5 73.6 98.4 99.8 84.2 92.3 87.7 91.4

SLM-based Methods Analysis. As we discussed in Section C, SLM-based methods perform strongly
on multi-dimensional datasets like Helpsteer2 (98.1% F1 on RoBERTa) and NeurIPS (96.2% on
RoBERTa), but drop to around 50–55% F1 on single-dimensional datasets like Helpsteer3 and
Antique. Even adding candidates barely helps. This shows SLMs rely on inter-dimension patterns
and fail to link judgments with candidates when such distributional cues are absent.

LLM-based Methods Analysis. Furthermore, all LLM-based methods hover near 50% F1 score
across datasets, indicating almost random guessing. When combining with sample-level comparative
analysis and distribution-level chart reasoning, LLM-based detection methods yield some gains
in multi-dimensional datasets (e.g., from 51.5% to 58.7% F1 score). While this improvement
doesn’t appear in Helpsteer3 and ANTIQUE, we conclude that LLM-based detectors also suffer from
leveraging judgments-candidates interaction, with either sample- or distribution-level methods.
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J-Detector Analysis. Compared with them, J-Detector achieves the best detection performance
across all 4 datasets and 2 metrics, far surpassing all baselines. Noted that in the single-dimensional
judgment scenarios, J-Detector yields much better detection performance compared with other
baselines. This demonstrates that explicitly modeling the distributional patterns and biases of LLM
judgments is crucial for accurate detection, enabling robust performance in both single-dimensional
and multi-dimensional judgment detection scenarios.
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Figure 3: Ablation study on LLM-enhanced and linguistic
features.

Ablation Study. Figure 3 shows that
both LLM-enhanced and linguistic
features consistently improve perfor-
mance across all group sizes. Remov-
ing either feature causes the F1 score
to drop at every group size—for ex-
ample, at k = 16, removing linguistic
features lowers F1 by 5.3%, and re-
moving both leads to a 12.3% drop.
This demonstrates that the two aug-
mented features are complementary
and beneficial across all datasets and
group-size settings.

Bias Quantification with J-Detector. Additionally, we illustrate how the transparency and inter-
pretability of J-Detector can be leveraged to quantify biases in LLM-as-a-judge by analyzing which
features most strongly influence the detector’s decisions. Specifically, we select the top 20 most
important features ranked by their absolute coefficient values, and report the results on the Helpsteer2
and NeurIPS datasets in Figure 4. The analysis reveals that base judgment score features provide
strong signals for distinguishing LLM-generated judgments from human-produced ones, highlighting
the critical role of Judgment-Intrinsic Features. As shown in the figure, LLM judges exhibit the
strongest bias in the complexity and confidence dimensions for the two datasets, respectively, consis-
tent with prior findings that LLMs tend to favor more complex responses [Ye et al., 2024, Yang et al.,
2024] and often display overconfidence [Kadavath et al., 2022]. In addition, we observe common
cross-dataset biases such as length bias (captured by average_dependency_length) and beauty
bias (reflected in style-related scores), which echo broader concerns about spurious preference and
correlations in LLM-based judgments [Wang et al., 2023b, Shi et al., 2024].
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Figure 4: LLM-as-a-judge bias quantification on Helpsteer2 and NeurIPS.

5 Conclusion

In this work we introduced judgment detection as the task of distinguishing human from LLM-
generated judgments and proposed J-Detector, a lightweight, interpretable detector enhanced with
linguistic and LLM-based features. Experiments on JD-Bench show that J-Detector consistently
outperforms baselines, while our theoretical and empirical analyses reveal that detectability improves
with larger group size, richer dimensions, finer rating scales, and greater human–LLM divergence.
Using J-Detector’s transparency, we further quantified systematic biases in LLM judges, such
as complexity, confidence, and length biases, and demonstrated practical value in peer-review
authenticity checking. These findings establish LLM-generated judgment detection as a key safeguard
for ensuring fairness and accountability in LLM-as-a-judge systems.
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A The Use of LLMs for Writing

We employed Google’s Gemini 2.5 Pro and OpenAI’s GPT-5 as writing assistance tools during the
preparation of this manuscript. Their role was exclusively for language refinement, such as improving
readability and rephrasing for clarity in an academic writing style. This usage aligns with standard
academic practices for language polishing.

B Related Work

LLM-as-a-judge, first introduced by Zheng et al. [2023], leverages powerful LLMs Zhang et al.
[2024a,b], Wang et al. [2024a] to automatically evaluate candidate content and assign scores as
judgment results. This paradigm has been expanded to diverse applications to judge various types of
candidates, including paper quality assessing [Jin et al., 2024], document relevance measurement [Gao
et al., 2023, Rahmani et al., 2024], and reasoning trace correctness verification [Zhang et al.], driving
substantial progress in automatic assessment [Li et al., 2025b, Tan et al., 2025, Beigi et al., 2024, Hu
et al., 2024, Jeong et al., 2024]. Despite these advances, recent studies highlight notable limitations.
Research has uncovered systematic biases in LLM-generated judgments, where evaluations are
influenced by spurious features such as response length or superficial affinity rather than genuine
content quality [Ye et al., 2024, Li et al., 2025a, Jiang et al., 2024, Yang et al., 2024]. Moreover,
adversarial work demonstrates that LLM judges can be manipulated with a few carefully crafted,
hard-to-detect tokens or phrases, which induce disproportionately high scores misaligned with actual
candidate quality [Shi et al., 2024, Zhao et al., 2025b]. To mitigate these issues, methods such as bias
quantification [Ye et al., 2024] and human-in-the-loop calibration [Wang et al., 2023a] have been
proposed. Building on this line of research, we introduce a new task, judgment detection, that aims to
distinguish and prevent the misuse of LLM-generated judgments.

AI-generated Text Detection aims to distinguish machine-generated from human-produced text,
evolving from early stylometric and perplexity-based methods [Gehrmann et al., 2019, Zellers et al.,
2019] to supervised classifiers [Ippolito et al., 2020, Mitchell et al., 2023], and more recently toward
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robust, generalizable approaches such as zero-shot prompting and watermarking [Sun and Lv, 2025,
Mao et al., 2025]. Another relevant line of work for us is the detection of LLM-generated peer
reviews [Tao et al., Yu et al., Rao et al., 2025], where detectors are designed to distinguish machine-
written reviews from human-authored ones. However, these approaches rely on textual review content,
which is often unavailable in broader judgment settings. In this work, we borrow insights from both
fields and propose judgment detection to explore the detectability of LLM-produced judgment, using
judgment scores without accessing textual feedback.

C Warm-up Analysis: What Matters for LLM-generated Judgment
Detection?

To understand the key ingredients of a reliable judgment detector, we first conduct a warm-up
study by adapting LLM-generated text detection methods to the judgment detection setting. Specif-
ically, we employ small language models (SLM)-based detectors [Wu et al., 2024], RoBERTa
and Longformer, as fθ and evaluate them on four datasets: Helpsteer2, Helpsteer3, NeurIPS, and
ANTIQUE. More information about implementation and dataset can be found in Section 4.1.
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Figure 5: Multi- vs Single-dimension and Candidate Effect.

Multi-dimension vs Single-
dimension performance. As
shown in Figure 5 (a), both
RoBERTa and Longformer achieve
high accuracy in the multi-
dimension scenarios (Helpsteer2
and NeurIPS) but perform poorly
in the single-dimension scenarios
(Helpsteer3 and ANTIQUE). We
assume that this discrepancy arises
because, in multi-dimension set-
tings, the detectors can exploit distributional differences in how humans and LLMs assign scores
across multiple judgment dimensions, whereas in single-dimensional settings, such distributional
cues are almost absent.

Adding candidate information. We further extend the single-dimension setting by providing
candidate texts alongside their judgments, exploring whether the detectors can extract and leverage
judgment–candidate interaction information. As shown in Figure 5 (b), however, adding candidates
does not lead to any performance improvement. This suggests that SLM-based detectors are unable to
directly capture and utilize the interaction between judgments and candidate content from raw input.

Takeaway. From this warm-up study, we identify two complementary types of information that
a reliable judgment detector should exploit: ❶ Judgment-Intrinsic Features, revealed by the
large performance gap between multi-dimension and single-dimension settings, indicating that
distributional patterns within judgment scores themselves can be highly informative; and ❷ Judgment-
Candidate Interaction Features, which capture how judgment scores relate to the underlying
candidate content but remain largely unexplored by existing methods. These findings highlight that
existing SLM-based text detection methods mainly leverage judgment-intrinsic patterns but fail to
capture judgment–candidate interactions, which are especially critical in single-dimension scenarios.

D Further Analysis

In this section, we empirically analyze the key factors that influence the detectability of the LLM-
generated judgment, as well as present a real-world application to combine LLM-based judgment
detection with text detection in real-world academic peer reviewing scenarios.

D.1 Detectability Analysis

Detectability analysis across group size, judgment dimensions, and rating scale. Figure 6
shows that group size is a key factor in the detectability of LLM-generated judgments: the F1 score
consistently improves as the group size increases across all four datasets (e.g., F1 score in Helpsteer3
rises from 63.9% at k = 1 to 85.0% at k = 16). The number of judgment dimensions also plays
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Figure 6: Detectability analysis on group size, judgment dimensions and rating scale.

an important role; for instance, when only a single dimension out of the five is used in the NeurIPS
dataset, the F1 score drops substantially (from 97.2% to 72.3%). This confirms that multi-dimensional
judgments provide richer distributional signals as Judgment-Intrinsic Features for detection.
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In addition, the granularity of the rating
scale further impacts detectability: col-
lapsing to a coarse scale (e.g., merging
−3/ − 2/ − 1 into −1 and 1/2/3 into
1 in Helpsteer3) leads to degraded per-
formance (e.g., F1 drops from 72.9% to
57.7%). Overall, these results underscore
that group size, the number of dimensions,
and the rating scale collectively shape how
detectable LLM-generated judgments are.

Detectability of Various LLM Judges.
Additionally, Figure 7 summarizes the de-
tectability leaderboard across 20 LLMs, av-
eraged over different group sizes. We ob-
serve that API-based models (yellow bars)
are generally more difficult to detect than
open-source models (blue bars), indicating
that closed commercial systems such as
GPT-5-mini and Claude-Haiku-3 produce judgments that more closely resemble human annotations.

Within the same model families, larger models tend to be less detectable than smaller ones: for
instance, among LLaMA-3 and Qwen-2.5 families, larger models consistently achieve lower de-
tectability. Moreover, reasoning models (dotted bars) and specialized judge models (striped bars)
consistently achieve higher robustness than standard LLMs, suggesting that models explicitly op-
timized for reasoning or evaluation align more closely with human judgment distributions and are
therefore harder to distinguish from human judges.

As presented in Figure 8, we also study the correlation between the detectability of different LLM
judges and their LMArena score [Chiang et al., 2024], which is a proxy of LLMs’ alignment
degree with human preference and value. We find a clear negative correlation: models with higher
alignment scores are systematically less detectable. This observation reinforces our previous findings,
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supporting the hypothesis that as models become better aligned with human values, the gap between
their judgments and human annotations narrows, making their outputs increasingly difficult to
distinguish from those of human judges.

For LLM-generated judgment detectability, we also theoretically prove and demonstrate each influ-
ence factor’s effect and put it in Appendix F.

D.2 Judgment Detection with Multiple LLM Judges
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Figure 9: Detectability of LLM-
generated judgment in multiple LLM
judges setting.

In this section, we examine how the detectability of LLM-
generated judgments changes when multiple LLM judges
are involved. This setting reflects real-world scenarios
where judgments may come from a diverse pool of LLMs.
As shown in Figure 9, we randomly sample 2, 3, 5, or 10
LLMs from our JD-Bench and mix their judgments in both
the training and testing sets. We observe a substantial drop
in detection performance across all four datasets (e.g., the
F1 score decreases from 99.8% to 66.9% on Helpsteer2).
This suggests that detecting LLM-generated judgments be-
comes significantly more challenging when multiple LLM
judges are present, as detectors must learn to recognize
distinct patterns from different models. Notably, the per-
formance drop is relatively small on the NeurIPS dataset,
indicating stronger shared biases among LLM judges in
that domain. One promising direction for future work is to explore effective LLM-generated judgment
detection methods under multiple judges’ settings.

D.3 Judgment-Text Co-Detection: An Application

In this section, we explore two real-world scenarios where LLM-generated judgment detection can
support peer review authenticity checking. First, the few-shot detection setting simulates cases where
a new conference is launched or the review form has changed. Here, we set the number of training
samples to be 60. Second, the missing-text detection setting addresses the common case where
reviews lack enough textual feedback. We simulate this setting by masking 15% of the text reviews.

Table 2: An application to leverage judgment and text feedback for AI-
generated review detection in few-shot and missing review scenarios.

Method Few-shot Missing review
w/ RoBERTa-text 67.2 90.5
w/ J-Detector 64.4 86.2
w/ RoBERTa-text & J-Detector 74.6 99.3

The results in Table 2
show that combining the
J-Detector with a text-
based detector (RoBERTa-
text) achieves the best per-
formance in both settings
(74.6% vs. 67.2% in few-
shot, and 99.3% vs. 90.5%
in missing-text), outper-
forming either method alone. This demonstrates that LLM-generated judgment detection provides
complementary signals to text-based detectors and is highly valuable in real-world low-resource or
judgment score-only scenarios for robust and reliable detection.

E Experiment Implementation Details

E.1 Detailed Definition of Various Judgment Types

Depending on the evaluation protocol, judgments can take multiple forms [Li et al., 2024]: (i)
Score-based judgments: j ∈ R, such as a numerical rating on one or several dimensions; (ii) Pairwise
judgments: j ∈ {(ca ≻ cb), (cb ≻ ca)}, indicating a preference between two candidates ca, cb ∈ C;
(iii) Listwise judgments: j ∈ π(C), representing a permutation (ranking) π over a candidate set.
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E.2 JD-Bench Details

To systematically study the detectability of LLM-generated judgments, we introduce JD-Bench,
a large-scale benchmark that integrates diverse applications, judgment types, and model sources.
JD-Bench provides a unified testbed for evaluating both existing and newly proposed detectors under
realistic settings.

Dataset Selection. We construct JD-Bench by aggregating data from multiple domains and judg-
ment types, ensuring broad coverage of evaluation practices:

• HelpSteer2 [Wang et al., 2024b]: HelpSteer2 is an open-source dataset designed to train and evaluate
reward models for helpfulness assessment of LLM-generated responses. It contains large-scale
human-annotated pointwise judgments that assign numerical scores to responses across diverse
instruction-following tasks. The dataset covers multiple domains and languages, enabling robust
generalization of reward models. Its fine-grained annotations make it a strong benchmark for
pointwise/score-based evaluation.

• HelpSteer3 [Wang et al., 2025]: HelpSteer3 extends HelpSteer2 by collecting pairwise human prefer-
ence data on LLM responses. Instead of absolute scores, annotators compare two candidate responses
to the same prompt and indicate which is better, yielding high-quality comparative judgments. The
dataset spans a wide range of tasks and languages, supporting cross-lingual preference modeling and
fine-grained ranking evaluation.

• NeurIPS Review Dataset [Yu et al., 2025]: This dataset comprises a large collection of real
academic peer reviews from the NeurIPS conference, annotated with multi-dimensional scores
such as soundness, novelty, clarity, and overall rating. It represents a domain where judgments
are structured, multi-faceted, and highly consequential. The dataset captures nuanced reviewing
language and decision rationales, providing a challenging benchmark for modeling human-like expert
evaluation. It is especially valuable for studying judgment behavior in formal and high-stakes settings.

• ANTIQUE [Hashemi et al., 2020]: ANTIQUE is a benchmark for non-factoid question answering,
focused on ranking passages based on their relevance to user queries. It includes listwise relevance
judgments collected from crowdworkers, where multiple candidate documents are ordered according
to their usefulness. The questions are open-ended and require deeper understanding rather than simple
fact retrieval, making the ranking task more challenging.

Each dataset provides human-labeled judgments as a reliable reference. To complement these, we
collect LLM-generated judgments following the judging principles outlined in the respective papers,
ensuring consistency in evaluation criteria.

LLM Selection. To obtain LLM-generated judgments, we employ a diverse set of both closed-
source and open-source models across a wide range of sizes and model families. This diversity is
essential to cover heterogeneous judgment patterns and to test detector generalization. Specifically,
JD-Bench includes judgments from:

• Closed-source models:
– OpenAI series: GPT-4o, GPT-5-mini, o4-mini.
– Anthropics series: Claude-Haiku-3.5, Claude-Haiku-3, Claude-3.5-Sonnet.
– Google series: Gemini-2.0-Flash, Gemini-2.5-Flash, Gemini-1.5-Pro.

• Open-source models:
– LLaMA family: LLaMA-3.2-3B, LLaMA-3.1-8B, LLaMA-3.1-70B.
– Qwen family: Qwen-2.5-7B, Qwen-2.5-72B, RM-R1, RISE-Judge.
– Mistral family: Mistral-7B, Mistral-Small-24B.
– DeepSeek series: DeepSeek-V3, DeepSeek-R1.

This mixture of datasets and models results in a benchmark that is both large-scale and diverse:
JD-Bench covers multiple application scenarios, different judgment types (score, pairwise, listwise),
and a wide spectrum of LLM families, making it a comprehensive resource for advancing judgment
detection research. Table 3 presents the statistics of JD-Bench.

Prompt for JD-Bench Construction
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Table 3: Overview of datasets included in JD-Bench.
Dataset HelpSteer2 HelpSteer3 NeurIPS ANTIQUE
Application Resp. Eval. Resp. Eval. Peer Review Doc Ranking
Judgment Type Pointwise Pairwise Pointwise Listwise
Judgment Dims Helpfulness,

Correctness,
Coherence, Com-
plexity, Verbosity

Overall Overall, Confi-
dence, Soundness,
Presentation, Con-
tribution

Relevance

Rating Scale 0–4 –3–3 1–10 / 1–5 / 1–4 1–4
#Train / #Test 62,961 / 21,778 62,880 / 42,317 63,210 / 62,664 102,417 / 61,909

HelpSteer2 Prompt (Pointwise, 5-Dimension Scoring)

Given a prompt and a response, follow the rubric to make a judgment.

## Rubric:
Judge the response on five aspects: helpfulness, correctness, coherence,
complexity, and verbosity.
Assign each aspect a scalar score in [0, 4].

## Prompt: [PROMPT]

## Response: [RESPONSE]

Please output a valid JSON object using the following schema:
"Rationale": <explanation for the given scores>, "Helpfulness": <0–4>,
"Correctness": <0–4>, "Coherence": <0–4>, "Complexity": <0–4>,
"Verbosity": <0–4>

Formatted the abovementioned schema and produce the judgment JSON now.

HelpSteer3 Prompt (Pairwise Comparison)

Given a prompt and two responses, follow the rubric to make a comparative
judgment.

## Rubric: Compare Response 1 and Response 2 along five aspects:
helpfulness, correctness, coherence, complexity, and verbosity. Assign a
single comparative score in -3,-2,-1,0,1,2,3 using the scale: -3: R1 much
better than R2; -2: R1 better than R2; -1: R1 slightly better than R2;

0: about the same; 1: R2 slightly better than R1; 2: R2 better
than R1; 3: R2 much better than R1.

## Prompt (conversation/context): [CONTEXT AS FLATTENED TEXT]

## Response 1: [RESPONSE_1]

## Response 2: [RESPONSE_2]

Please output a valid JSON object using the following schema:
"Rationale": <explanation for the comparative score>, "Score":
<-3|-2|-1|0|1|2|3>

Formatted the abovementioned schema and produce the judgment JSON now.

NeurIPS Review Prompt (Structured JSON Review)

You are an AI researcher reviewing a paper submitted to a prestigious
AI conference. Thoroughly evaluate the paper, adhering to the provided
guidelines, and return a detailed assessment in the specified JSON format.
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## Manuscript: [MANUSCRIPT TEXT OR CONCATENATED CHUNKS]

## Reviewer Guidelines (dimensions to cover):
Summary: Briefly summarize contributions (no critique here).
Strengths & Weaknesses across: Originality, Quality, Clarity, Significance.
Provide Questions for authors (useful for rebuttal).
Discuss Limitations and potential societal impact.
Flag Ethical Concerns if applicable (per conference policy).
Assign numerical ratings: Soundness, Presentation, Contribution (1–4 each).
Provide an Overall score (1–10) and Confidence (1–5).

## Output a valid JSON object with the following fields: "Summary":
<summary for the paper>, "Questions": <questions for the author>,
"Limitations": <limitations for the paper>, "Soundness": <1–4>,
"Presentation": <1–4>, "Contribution": <1–4>, "Overall": <1–10>,
"Confidence": <1–5>

Formatted the abovementioned schema and produce the review JSON now.

ANTIQUE Prompt (3-Way Relevance Ranking)

Given a prompt and three responses, follow the rubric to assess relevance and
rank the responses.

## Rubric (per-response relevance score in [1, 4]): 4: Reasonable and
convincing; on par with or better than a likely correct answer. 3: Possibly
an answer, but not sufficiently convincing; a better-quality answer likely
exists. 2: Not an acceptable answer; unreasonable or does not address the
question, but still on-topic. 1: Completely out of context or nonsensical.

## Prompt: [QUERY]

## Response 1: [RESPONSE_1]

## Response 2: [RESPONSE_2]

## Response 3: [RESPONSE_3]

Please output a valid JSON object using the following schema:
"Rationale": <explanation for your judgment and ranking>, "Response1
Score": <1–4>, "Response2 Score": <1–4>, "Response3 Score": <1–4>,
"Ranking": <list of indices indicating best→worst, e.g., [0,1,2]>

Formatted the abovementioned schema and produce the judgment JSON now.

E.3 J-Detector Details

E.3.1 Linguistic Features

We extract a comprehensive set of surface, lexical, syntactic, and discourse indicators from each
candidate response using spaCy-based parsing pipelines.

• Length & Structure: word_count, char_count, sentence_count, avg_sentence_length,
list_count (bullet or numbered lists), paragraph_count, punctuation_count,
reference_count (e.g., URLs).

• Lexical Diversity: unique_words, vocab_diversity (unique/total word ratio),
average_word_length, noun_verb_ratio, adjective_ratio, adverb_ratio,
pronoun_ratio, contraction_rate.

• Readability: coleman_liau index.
• Syntactic Complexity: syntax_tree_depth (maximum dependency depth),
average_dependency_length, passive_voice_ratio (fraction of sentences with
nsubjpass/csubjpass), subordinate_clause_rate (rate of mark tokens).
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• Discourse/hedging: hedging_frequency (occurrence of hedge words such as “may”, “possi-
bly”), discourse_marker_rate (connectives such as “however”, “moreover”).

These features are computed for each response independently. For pairwise or listwise datasets (e.g.,
HelpSteer3, ANTIQUE), we additionally compute difference features such as r1 − r2 on each scalar
dimension when comparing two responses.

E.3.2 LLM-Enhanced Features

Beyond surface-level indicators, we harness powerful large language models (e.g., Qwen3-8B) to
derive task-aligned evaluation features. For each dataset, the model is prompted with the original
instruction or query together with its candidate responses, and asked to generate structured JSON
judgments that include detailed rationales and aspect-specific scores.

Pointwise Setting (e.g., HelpSteer2). Each response is scored independently along eight stylistic
and content dimensions:

• Style, Format, Wording

• Helpfulness, Correctness, Coherence

• Complexity, Verbosity

The model outputs both a natural language rationale and numeric scores (0–4) per dimension plus an
overall_score.

Pairwise Setting (e.g., HelpSteer3). Two responses are jointly compared under criteria such
as helpfulness, correctness, coherence, complexity, and verbosity. The LLM produces a signed
comparison score from −3 (Response 1 ≫ Response 2) to +3 (Response 2 ≫ Response 1) and a
supporting rationale.

Listwise Setting (e.g., ANTIQUE). Three responses are simultaneously ranked by relevance. The
LLM assigns a 1–4 relevance score to each response and outputs an ordered ranking list [0, 1, 2] to
indicate relative quality.

Long-form Paper Evaluation (e.g., NeurIPS Submissions). For full papers, we ask the model to
return review-like signals: style, format, wording (0–4), rating (1–10), confidence (1–5), soundness/p-
resentation/contribution (1–4 each), together with detailed reasoning.

Table 4: Example LLM-enhanced feature dimensions by dataset.
Dataset Setting LLM-Generated Feature Dimensions
HelpSteer2 (pointwise) Style, Format, Wording, Helpfulness, Correctness, Coherence, Complexity, Verbosity, Overall
HelpSteer3 (pairwise) Helpfulness, Correctness, Coherence, Complexity, Verbosity, Pairwise Score (−3 – +3)
ANTIQUE (listwise) Response relevance scores (1–4), Ranking order, Rationale
NeurIPS (pointwise) Style, Format, Wording, Rating (1–10), Confidence (1–5), Soundness, Presentation, Contribution

These LLM-enhanced features provide semantically rich, high-level signals that complement the
surface-level linguistic statistics, enabling our detector to exploit both human-interpretable cues and
task-specific, model-derived evaluations.

E.4 SLM-based Method Details

To benchmark the ability of small language models (SLMs) to discriminate between human and
LLM-generated judgments, we adapt text classification pipelines with two input configurations:
judgment-only (w/o candidates) and judgment+candidate (w/ candidates). Both settings train a binary
classifier to predict whether a group of judgments originates from a human annotator (label 0) or an
LLM (label 1). We employ roberta-base and allenai/longformer-base-4096 as backbones,
with max sequence lengths 512 and 4096, respectively.

• Judgment-Only Inspired by SLM-based text detection, this setting feeds only the judgment
artifacts into the model. Each group is represented by a textualized summary of available
signals, including:
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– Numeric scores: fields such as rating, score, confidence, soundness,
presentation, contribution, etc.

– Pairwise comparisons: keys such as pairwise, pairs, comparisons, or prefs.
– Ranking lists: an explicit ranking field if available.
– Metadata: optional question/prompt/task descriptions to provide minimal context.

The resulting text is tokenized and directly used as the classifier input.

• Judgment + Candidate In this richer setting, we augment the above judgment text with the
candidate contents being judged. Candidate responses are extracted from dataset fields such
as:

– examples[*].docs for passage-style corpora (e.g., ANTIQUE);
– examples[*].context for conversational datasets (e.g., HelpSteer3), where only

assistant turns are kept;
– top-level docs, candidates, or answers if present.

Since candidate texts can be long, we apply a head+tail trimming strategy per candidate to
respect the model’s maximum input length. Judgment tokens are prioritized to remain intact.
The final input is a concatenation:

JudgmentText || === Candidates === || Candidate1 || . . . || Candidaten.

Mode Input Composition Example Fields Used
w/o candidates Judgments only ratings, scores, pairwise, ranking, task
w/ candidates Judgments + trimmed candidate texts docs, context (assistant turns), answers

Table 5: Two input modes for SLM-based judgment detection.

During training, both settings use the HuggingFace Trainer with standard hyperparameters (AdamW,
learning rate 2×10−5, batch size 8, weight decay 0.01). Labels are mapped to {0, 1}, with Human7→ 0
and LLM7→ 1. Evaluation reports accuracy, F1, and AUROC on held-out test splits.

E.5 LLM-based Method Details

E.5.1 LLM-as-a-Judge Detector

Inspired by logits-based AI-generated text detection [Mitchell et al., 2023], we design a single-pass
detector that treats an LLM as a surrogate judge. Given a group of judgments G, we build a compact
textual payload including:

• Judgment-only signals: helpfulness, correctness, coherence, complexity, verbosity, ranking, and
pairwise preferences.

• Optional candidates: trimmed prompt/response or passage text to provide weak context.

We prompt the detector LLM with an instruction template asking it to decide whether the judgments
were written by a Human or by an LLM, based on style, consistency, and calibration artifacts:

{
"Rationale": "<brief explanation>",
"Prediction": "Human" | "LLM"

}

Two modes are supported:

• judgment_only: only judgment artifacts are provided.

• enable_candidate: judgment artifacts plus trimmed candidate texts.

This baseline does not use any explicit feature engineering but leverages the LLM’s implicit ability to
reason about stylistic and distributional cues.
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E.5.2 Sample-Level LLM-Based Analysis

We further design an agentic feature mining procedure to expose regularities in Human vs. LLM
judgments at the instance level. Given a training set of groups, we:

1. Flatten them into a table of prompt, response, label, scores, and derived metrics such as length
and average score.

2. Mine Human–LLM pairs using two strategies:
• scoring: select k pairs with the largest average-score gaps under the same prompt.
• pairwise: sample k random Human–LLM pairs.

3. Feed each pair to an LLM agent that proposes actions to maintain a Feature Bank:

Add: {"name": "...", "description": "..."}
Delete: {"name": "..."}
Merge: {"name": "...", "description": "...", "existing": "..."}

4. Typical mined features include:
• Length or verbosity bias;
• Overly smooth or formulaic score patterns;
• Deterministic tone and calibration artifacts.

The resulting Feature Bank Fsample captures diagnostic cues distilled by the LLM itself and is later
injected into the final detection prompt.

E.5.3 Distribution-Level LLM-Based Analysis

Beyond individual samples, we analyze dataset-wide statistics to extract global signals of LLM-
generated judgments:

1. Compute per-label histograms and descriptive statistics for all available judgment dimensions
(e.g., helpfulness, correctness, coherence, complexity).

2. Analyze correlations:
• Length–score Spearman correlations within Human/LLM groups;
• Cross-dimension correlations (e.g., helpfulness vs. coherence).

3. Summarize these findings as structured text and feed them to an LLM to propose additional
high-level features, such as:
• Consistent score calibration (LLM often shows smaller variance);
• Stronger length–score coupling in LLM judgments;
• Reduced inter-dimension diversity compared to human raters.

The discovered global patterns augment the feature bank as Fdist, complementing sample-level cues
with distributional regularities.

E.5.4 Final Detection

The final detector integrates:

• A Feature Bank F = Fsample ∪ Fdist;
• Group-level summaries (judgments + optional candidates).

An LLM receives this structured prompt and outputs the final label prediction:

ŷ = fLLM(summary(G),F),

where fLLM denotes the LLM-based reasoning process conditioned on both the mined features and
the group payload.

In practice, the multilevel detector (sample + distribution) consistently improves accuracy by guiding
the LLM with both fine-grained instance cues and global dataset regularities.
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Table 6: Comparison of the three LLM-based detection strategies.
Method Uses Candidates? Feature Bank Level of Analysis
LLM-as-a-Judge Optional None Per-group
Sample-level Optional Fsample Instance-level
Distribution-level Optional Fsample + Fdist Global + per-group

F Theoretically Analysis on LLM-generated Judgment Detectability

We model the detectability of whether a group of judgments G (scores, pairwise preferences, or
listwise rankings) was produced by a human or an LLM. Let m denote the group size, d the number
of attribute dimensions, and S the effective rating scale cardinality:

S =


L, for L-level scoring;

2x+ 1, for pairwise judgments with x ∈ Z≥1 superiority levels per side (including tie);

k!, for a full ranking over k candidates.

The per-judgment information is logS nats.2

Let PH and PM be the conditional distributions over judgment outcomes induced by humans and
LLMs, respectively. Denote ∆ = TV(PH , PM ) as their total variation distance.

From sample complexity to group detectability. With n i.i.d. observations, the total variation
between product distributions grows as

TV
(
P⊗n
H , P⊗n

M

)
= 1− exp{−nIc(PH , PM ) + o(n)},

where Ic is the Chernoff information, scaling quadratically with ∆. In our setting, the effective
observation budget is

neff = m · d · logS,
which accounts for group size, dimensionality, and rating resolution.

Detectability index. Thus, the detectability index becomes

Det(G) = 1− exp{−β md logS∆2},

where β > 0 is dataset- and model-dependent. The detectability increases monotonically with four
factors: (i) rating scale S, (ii) attribute dimensions d, (iii) group size m, and (iv) distribution gap ∆.

Instantiation by type. For L-level scores, use S = L. For pairwise preferences, use S = Lpair
(e.g., 7 for {-3,. . . ,3}). For listwise ranking over k items, use S = k! (or logS ≈ k log k − k). For
mixed-type groups, sum md logS across instances.

2For listwise k!, Stirling’s approximation gives log(k!) ≈ k log k − k. For continuous pairwise margins,
discretization into B bins yields S = B.
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