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Abstract

We contribute towards resolving the open question of how many hidden layers are
required in ReLU networks for exactly representing all continuous and piecewise
linear functions on Rd. While the question has been resolved in special cases,
the best known lower bound in general is still 2. We focus on neural networks
that are compatible with certain polyhedral complexes, more precisely with the
braid fan. For such neural networks, we prove a non-constant lower bound of
Ω(log log d) hidden layers required to exactly represent the maximum of d numbers.
Additionally, we provide a combinatorial proof that neural networks satisfying this
assumption require three hidden layers to compute the maximum of 5 numbers;
this had only been verified with an excessive computation so far. Finally, we show
that a natural generalization of the best known upper bound to maxout networks is
not tight, by demonstrating that a rank-3 maxout layer followed by a rank-2 maxout
layer is sufficient to represent the maximum of 7 numbers.

1 Introduction

Among the various types of neural networks, ReLU networks have become particularly prominent
[Glorot et al., 2011, Goodfellow et al., 2016]. For a thorough theoretical understanding of such neural
networks, it is important to analyze which classes of functions we can represent with which depth.
Classical universal approximation theorems [Cybenko, 1989, Hornik, 1991] ensure that just one
hidden layer can approximate any continuous function on a bounded domain with arbitrary precision.
However, establishing an analogous result for exact representations remains an open question and is
the subject of ongoing research [Arora et al., 2018, Hertrich et al., 2023, Haase et al., 2023, Valerdi,
2024, Averkov et al., 2025].

While in practical settings approximate representations are often sufficient, studying the exact
piecewise linear structure of neural network representations enabled deep connections between neural
networks and fields like tropical and polyhedral geometry [Huchette et al., 2023]. These connections,
in turn, are important for algorithmic tasks like neural network training [Arora et al., 2018, Goel et al.,
2021, Khalife and Basu, 2022, Froese et al., 2022, Froese and Hertrich, 2023, Bertschinger et al.,
2023] and verification [Li et al., 2019, Katz et al., 2017, Froese et al., 2025b,a, Stargalla et al., 2025],
including understanding the computational complexity of the respective tasks.

Arora et al. [2018] initiate the study of exact representations by showing that the class of functions
exactly representable by ReLU networks is the class of continuous piecewise linear (CPWL) functions.
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Specifically, they demonstrate that every CPWL function defined on Rd can be represented by a
ReLU network with ⌈log2(d + 1)⌉ hidden layers. This result is based on Wang and Sun [2005],
who reduce the representation of a general CPWL function to the representation of maxima of d+ 1
affine terms. By computing pairwise maxima in each layer, such a maximum of d+ 1 terms can be
computed with logarithmic depth overall in the manner of a binary tree. Very recently, Bakaev et al.
[2025b] improved the upper bound by proving that every CPWL function can be represented with
⌈log3(d − 1)⌉ + 1 hidden layers. Their results refute the conjecture of Hertrich et al. [2023] that
⌈log2(d+ 1)⌉ hidden layers are indeed necessary to compute all CPWL functions.

Based on the result by Wang and Sun [2005], Hertrich et al. [2023] deduced that it suffices to
determine the minimum depth representation of the maximum function. While it is easy to show that
max0, x1, x2 cannot be represented with one hidden layer [Mukherjee and Basu, 2017], Bakaev
et al. [2025b] showed that two hidden layers are sufficient to represent max0, x1, x2, x3, x4.
However, it remains open if there exists a CPWL function on Rd that really needs logarithmic many
hidden layers to be represented. In particular, it is already open whether there is a function that needs
more than two hidden layers to be represented.

Understanding depth lower bounds is important for clarifying the potential advantages of architectural
choices. In particular, proving depth lower bounds on computing the max function helps formally
explain why elements like max-pooling layers are powerful and cannot be easily replaced by shallow
stacks of standard ReLU layers, regardless of their width.

In order to identify tractable special cases to prove lower bounds on the necessary number of hidden
layers to compute the max function, two approaches have been pursued so far. The first restricts the
possible breakpoints of all neurons in a network computing x → max0, x1,    , xd. A breakpoint
of a neuron is an input for which the function computed by the neuron is non-differentiable. A
neural network is called B0

d-conforming if breakpoints only appear where the ordering of some
pair of coordinates changes (i.e., all breakpoints lie on hyperplanes xi = xj or xi = 0). While
B0
d-conforming networks can compute the max function with ⌈log2(d+ 1)⌉ hidden layers, Hertrich

et al. [2023] show that 2 hidden layers are insufficient to compute the functionmax0, x1, x2, x3, x4,
using a computational proof via a mixed integer programming formulation of the problem. The second
approach restricts the weights of the network. Averkov et al. [2025] show that, if all weights are
N -ary fractions, the max function can only be represented by neural network with depth Ω( log d

log logN )

by extending an approach of Haase et al. [2023]. Furthermore, Bakaev et al. [2025a] proved lower
bounds for the case when some or all weights are restricted to be nonnegative. To the best of our
knowledge, the two approaches of restricting either the breakpoints or the weights are incomparable.

Our contributions We follow the approach from Hertrich et al. [2023] and prove lower bounds on
B0
d-conforming networks. On one hand, following Hertrich et al. [2023], we believe that understanding

B0
d-conforming networks might also shed light on the expressivity of general networks, for example,

by studying different underlying fans instead of focusing on the braid fan as an intermediate step. On
the other hand, B0

d-conforming also appears in Brandenburg et al. [2025] and Froese et al. [2025b]
due to the connection to submodular functions and graphs.

In Section 4 we prove for d = 22
ℓ−1 that the function x → max0, x1,    , xd is not representable

with a B0
d-conforming ReLU network with ℓ hidden layers. This means that depth Ω(log log d) is

necessary for computing all CPWL functions, yielding the first conditional non-constant lower bound
without restricting the weights of the neural networks.

To prove our results, the first observation is that the set of functions that are representable by a
B0
d-conforming network forms a finite-dimensional vector space (Proposition 2.2). While one would

like to identify subspaces of this vector space representable with a certain number of layers, taking the
maximum of two functions does not behave well with the structure of linear subspaces. To remedy
this, we identify a suitable sequence of subspaces FL(k) for k = 1, 2,    that can be controlled
through an inductive construction. These auxiliary subspaces arise from the correspondence between
B0
d-conforming functions and set functions. This allows us to employ the combinatorial structure

of the collection of all subsets of a finite ground set. This is also reflected in the structure of the
breakpoints of B0

d-conforming functions. Hence, we are able to show that applying a rank-2-maxout-
layer to functions in FL(k) yields a function in FL(k2+k). Iterating this argument yields the desired
bounds.
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In Section 5, we focus on the case d = 4. We provide a combinatorial proof of the result of
Hertrich et al. [2023] showing that the function x → max0, x1, x2, x3, x4 is not representable by
a B0

d-conforming ReLU network with two hidden layers.

Finally, in Section 6, we study maxout networks as natural generalization of ReLU networks. A
straightforward generalization of the upper bound of Arora et al. [2018] shows that B0

d-conforming
maxout network with ranks ri in the hidden layers i = 1,    , ℓ can compute the maximum of

ℓ
i=1 ri

numbers. We prove that this upper bound is not tight: a maxout network with one rank-3 layer and one
rank-2 layer can compute the maximum of 7 numbers, that is, the function x → max0, x1,    , x6.

Further Related Work In light of the prominent role of the max function for neural network
expressivity, Safran et al. [2024] studied efficient neural network approximations of the max function.

In an extensive line of research, tradeoffs between depth and size of neural networks have been
explored, demonstrating that deep networks can be exponentially more compact than shallow ones
[Montúfar et al., 2014, Telgarsky, 2016, Eldan and Shamir, 2016, Arora et al., 2018, Ergen and
Grillo, 2024]. While most of these works also involve lower bounds on the depth, they are usually
proven under assumptions on the width. In contrast, we aim towards proving lower bounds on
the depth for unrestricted width. The opposite perspective, namely studying bounds on the size of
neural networks irrespective of the depth, has been subject to some research using methods from
combinatorial optimization [Hertrich and Skutella, 2023, Hertrich and Sering, 2024, Hertrich and
Loho, 2024].

One of the crucial techniques in expressivity questions lies in connections to tropical geometry via
Newton polytopes of functions computed by neural networks. This was initiated by Zhang et al.
[2018], see also Maragos et al. [2021], and subsequently used to understand decision boundaries,
bounds on the depth, size, or number of linear pieces, and approximation capabilities [Montúfar et al.,
2022, Misiakos et al., 2022, Haase et al., 2023, Brandenburg et al., 2024, Valerdi, 2024, Hertrich and
Loho, 2024].

2 Preliminaries

In Appendix A, the reader can find an overview of the notation used in the paper and in Appendix B
detailed proofs of all the statements.

Polyhedra We review basic definitions from polyhedral geometry; see Schrijver [1986], Ziegler
[2012] for more details.

A polyhedron P is the intersection of finitely many closed halfspaces and a polytope is a bounded
polyhedron. A hyperplane supports P if it bounds a closed halfspace containing P , and any
intersection of P with such a supporting hyperplane yields a face F of P . A face is a proper face
if F ⊊ P and F ̸= ∅ and inclusion-maximal proper faces are referred to as facets. A (polyhedral)
cone C ⊆ Rn is a polyhedron such that λu+ µv ∈ C for every u, v ∈ C and λ, µ ∈ R≥0. A cone is
pointed if it does not contain a line. A cone C is simplicial, if there are linearly independent vectors
v1,    , vk ∈ Rn such that C = k

i=1 λivi  λi ≥ 0.
A polyhedral complex P is a finite collection of polyhedra such that (i) ∅ ∈ P , (ii) if P ∈ P then all
faces of P are in P , and (iii) if P, P ′ ∈ P , then P  P ′ is a face both of P and P ′. A polyhedral
fan is a polyhedral complex where all polyhedra are cones. The lineality space of a polyhedron P is
defined as v ∈ Rd  x+ v ∈ P for all x ∈ P. The lineality space of a polyhedral complex P is the
lineality space of one (and therefore all) P ∈ P .

Neural networks and CPWL functions A continuous function f : Rn → R is called continuous
and piecewise linear (CPWL), if there exists a polyhedral complex P such that the restriction of f to
each full-dimensional polyhedron P ∈ Pn is an affine function. If this condition is satisfied, we say
that f and P are compatible with each other. We denote the set of all CPWL functions from Rd to R
by CPWLd.

For a number of hidden layers ℓ ≥ 0, a neural network with rectied linear unit (ReLU) activation
is defined by a sequence of ℓ + 1 affine maps Ti : Rni−1 → Rni , i ∈ [ℓ + 1]. We assume that
n0 = d and nℓ+1 = 1. If σ denotes the function that computes the ReLU function x → maxx, 0
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in each component, the neural network is said to compute the CPWL function f : Rd → R given by
f = Tℓ+1 ◦ σ ◦ Tℓ ◦ σ ◦ · · · ◦ σ ◦ T1.

A rank-r-maxout layer is defined by r affine maps T (q) : Rd → Rn for q ∈ [r] and computes the
function x → (max(T (1)x)j ,    , (T

(r)x)j)j∈[n]. For a number of hidden layers ℓ ≥ 0 and a
rank vector r = (r1,    , rℓ) ∈ Nℓ, a rank-r-maxout neural network is defined by maxout layers
fi : Rni−1 → Rni of rank ri for i ∈ [ℓ] respectively and an affine transformation Tout : Rnℓ → R.
The rank-r-maxout neural network computes the function f : Rd → R given by f = Tout◦fℓ◦· · ·◦f1.
LetMr

d be the set of functions representable by a rank-r-maxout neural network with input dimension
d. Moreover, let M2

d(ℓ) be the set of functions representable with networks with ℓ rank-2-maxout
layers.

The braid arrangement and set functions

Denition 2.1. The braid arrangement in Rd is the hyperplane arrangement consisting of the

d
2


hyperplanes xi = xj , with 1 ≤ i < j ≤ d. The braid fan Bd is the polyhedral fan induced by the
braid arrangement.

Sometimes we will also refer to the fan given by the

d+1
2


hyperplanes xi = xj and xi = 0 for

1 ≤ i < j ≤ d, which we denote by B0
d.

We summarize the properties of the braid fan that are relevant for this work. For more details see
Stanley [2007]. The k-dimensional cones of Bd are given by

cone(1S1
,    ,1Sk

) + span(1[d])  ∅ ⊊ S1 ⊊ S2 ⊊ · · · ⊊ Sk ⊊ [d],

where 1S =


i∈S ei. The braid fan has span(1[d]) as lineality space. Dividing out the lineality
space of Bd yields B0

d−1. See Figure 1a for an illustration of B0
d.

Using the specific structure of the cones of Bd in terms of subsets of [d] allows to relate the vector
space VBd

of CPWL functions compatible with the braid fan Bd with the vector space of set functions
Fd := R2[d] : restricting to the values on 1SS⊆[d] yields a vector space isomorphism Φ : VBd

→ Fd

whose inverse map is given by interpolating the values on 1SS⊆[d] to the interior of the cones of
the braid fan. Detailed proofs of all statements can be found in Appendix B.

Proposition 2.2. The linear map Φ : VBd
→ Fd given by F (S) := Φ(f)(S) = f(1S) is an

isomorphism.

This implies that VBd
has dimension 2d. Another basis for VBd

is given by σM  M ∈ 2[d], where
the function σM : Rd → R is defined by σM (x) = maxi∈M xi [Danilov and Koshevoy, 2000,
Jochemko and Ravichandran, 2022]. We have the following strict containment of linear subspaces:

VBd
(0) ⊊ VBd

(1) ⊊    ⊊ VBd
(d) = VBd

where VBd
(k) := spanσM  M ⊆ [d], M  ≤ k. In order to describe the linear subspaces

Φ(VBd
(k)), we now describe the isomorphism Φ with respect to the basis σM  M ∈ 2[d].

Let X and Y be finite sets such that X ⊆ Y , then the interval [X,Y ] := S ⊆ [Y ]  X ⊆ S
is a Boolean lattice with the partial order given by inclusion. The rank of [X,Y ] is given by
Y \X. Sometimes we also write x1 · · ·xn for the set x1,    , xn ∈ L and x1 · · ·xn for the set
X  (Y \ x1,    , xn). For a Boolean lattice L = [X,Y ] of rank n, the rank function r : L → [n]0
is given by r(S) = S − X  and r(S) is called the rank of S. Moreover, we define the levels of a
Boolean lattice by Li := r−1(i) and introduce the notation L≤i :=


j≤i Lj for the set of elements

whose rank is bounded by i. For S, T ∈ L with S ⊆ T , we call [S, T ] a sublattice of L and define
the vector αS,T ∈ RL by αS,T :=


S⊆Q⊆T (−1)r(Q)−r(S)1Q. The set FL := (RL)∗ of real-valued

functions on L is a vector space, and for any fixed S, T ∈ L, the map F → ⟨αS,T , F ⟩ is a linear
functional of FL. Furthermore, let

RL(k) = spanαS,T  S, T ∈ L, S ⊆ T such that r(T )− r(S) = k + 1

and FL(k) := (RL(k))⊥ = F ∈ FL  ⟨αS,T , F ⟩ = 0 for all αS,T ∈ RL(k) be a linear
subspace of FL. To simplify notation, we also set Fd(k) := F2[d](k).
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Proposition 2.3. The isomorphism Φ : VBd
→ Fd maps the function f =


M⊆[d] λM · σM

to the set function dened by F (S) :=


M⊆[d]
MS ̸=∅

λM · σM  The inverse Φ−1 : Fd → VBd
of Φ is

given by the Möbius inversion formula F → 
M⊆[d] −⟨α[d]\M,[d], F ⟩. In particular, it holds

that Φ(VBd
(k)) = Fd(k) for all k ≤ d and dim(Fd(k)) = dim(VBd

(k)) =
k

i=1


d
i


. See also

Figure 1b for an illustration of Proposition 2.3.

3 Neural networks conforming with the braid fan

For a polyhedral complex P , we call a maxout neural network P-conforming, if the functions at
all neurons are compatible with P . By this we mean that for all i ∈ [ℓ] and all coordinates j of
the codomain of fi, the function πj ◦ fi ◦    ◦ f1 is compatible with P , where πj is the projection
on the coordinate j. We denote by Mr

P the set of all functions representable by P-conforming
rank-r-maxout networks. For the remainder of this article, we only consider the cases Mr

Bd
and

Mr
B0

d

Lemma 3.1. The function x → max0, x1,    , xd−1 can be represented by a B0
d−1-conforming

rank-r-maxout network if and only if the function x → maxx1,    , xd can be represented by a
Bd-conforming rank-r-maxout network.

By computing ri maxima in each layer, we can compute the basis functions of VBd
(
ℓ

i=1 ri) with a
Bd-conforming rank-r-maxout network.

Proposition 3.2. For any rank vector r ∈ Nℓ, it holds that all functions in VBd
(
ℓ

i=1 ri) are
representable by a Bd-conforming rank-r-maxout network.

Most of the paper is concerned with proving that Mr
Bd

is contained in certain subspaces of VBd
.

Let Fr
L =


i∈[r] FL be the r-fold direct sum of FL with itself. In order to model the application

of the rank-r-maxout activation function for a set function under the isomorphism Φ, we define
for (F1,    , Fr) ∈ Fr

L the function maxF1,    , Fr ∈ FL given by maxF1,    , Fr(S) =
maxF1(S),    , Fr(S).
For f1,    , fr ∈ VBd

, the function maxf1,    , fr is Bd-compatible if taking the maximum does
not create breakpoints that do not lie on the braid arrangement, that is, on every cone C of the
braid arrangement, it holds that maxf1,    , fr = fq for a q ∈ [r]. Next, we aim to model the
compatibility with the braid arrangement for set functions. We call a tuple (F1,    , Fr) ∈ Fr

L
conforming if for every chain ∅ = S0 ⊊ S1 ⊊    ⊊ Sn ⊆ [n] there is a j ∈ [r] such that
Fj(Si) = maxF1,    , Fr(Si) for all i ∈ [n]0. Then, the set Cr

L ⊆ Fr
L of conforming tuples are

exactly those tuples of CPWL functions such that applying the maxout activation function yields a
function that is still compatible with the braid fan as stated in the next lemma. Again, to simplify
notation, we also set Cr

d := Cr
2[d]

.

Lemma 3.3. For (F1,    , Fr) ∈ (Fd)
r, the function maxΦ−1(F1),    ,Φ

−1(Fr) is Bd-
conforming if and only if (F1,    , Fr) ∈ Cr

d . In this case,

maxΦ−1(F1),    ,Φ
−1(Fr) = Φ−1(maxF1,    , Fr)

The statement ensures that taking the maximum of the set functions is the same as taking the maximum
of the piecewise-linear functions exactly for compatible tuples.

4 Doubly-logarithmic lower bound

In this section, we prove that for any number of layers ℓ ∈ N, the function max0, x1,    , x22ℓ−1
is not computable by a B0

d-conforming rank-2-maxout neural network (or equivalently ReLU neural
network) with ℓ hidden layers. Due to the equivalence of Bd and B0

d, we will prove that M2
Bd

(ℓ) ⊆
VBd

(22
ℓ−1) for d ≥ 22

ℓ−1 + 1.

First, we define an operationA on subspaces of VBd
that describes rank-2-maxout layers that maintain

compatibility with Bd. For any subspace U ⊆ VBd
, let A(U) ⊆ VBd

be the subspace containing all
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0 ≤ x1 ≤ x2

0 ≤ x2 ≤ x1

x1 ≤ 0 ≤ x2

x2 ≤ 0 ≤ x1

x2 ≤ x1 ≤ 0

x1 ≤ x2 ≤ 0

(a) The braid arrangement B0
2 .

1234

4 3 2 1

12 13 23 23 24 34

1 2 3 4

∅
(b) Illustration of Proposi-
tion 2.3. The coefficient of
the function σ{2,4} in the lin-
ear combination for F is given
by −⟨α13,1234, F ⟩.

abcd

abc abd acd bcd

ab ac ad bc bd cd

a b c d

∅
(c) Illustration of Lemma 4.5.
If F ∈ FL(2) ∩ CL and
F ({b, c, d}) < 0, then there is
a S ⊊ {b, c, d} with F (S) < 0
since ⟨α∅,bcd, F ⟩ = 0.

Figure 1

the functions computable by a Bd-conforming rank 2-maxout layer that takes functions from U as
input. Formally,

A(U) = spanmaxf1, f2  f1, f2 ∈ U,maxf1, f2 ∈ VBd


Clearly, A(U1) is a subspace of A(U2) whenever U1 is a subspace of U2. We recursively define
Aℓ(U) = A(Aℓ−1(U)). This recursive definition allows to describe the set of Bd-conforming
network with ℓ rank-2-maxout layers M2

Bd
(ℓ).

Lemma 4.1. It holds that (1) M2
Bd

(1) = A(VBd
(1)) = VBd

(2), and (2) for all ℓ ∈ N,
M2

Bd
(ℓ) = A(M2

Bd
(ℓ− 1)) = Aℓ(VBd

(1)).

Since it holds that maxf1, f2 = max0, f1 − f2 + f2, we can assume wlog that one of the
functions is the zero map, as stated in the following lemma.
Lemma 4.2. It holds that A(U) = spanmax0, f  f ∈ U,max0, f ∈ VBd

.

To prove that M2
Bd

(ℓ) = Aℓ(VBd
(1)) is a proper subspace of VBd

for d ≥ 22
ℓ−1 + 1, we perform a

layerwise analysis and inductively bound nk depending on k such that A(VBd
(k)) ⊆ VBd

(nk) for
all k ∈ N. In this attempt, we translate this task to the setting of set functions on Boolean lattices
using the isomorphism Φ. Recall that the pairs (F1, F2) ∈ C2

L are precisely the functions such that
the maximum of the corresponding CPWL functions f1 and f2 is still compatible with Bd. Moreover,
it is easy to observe, that the pair (0, F ) ∈ F2

L is conforming if and only if F is contained in the set

CL := F ∈ FL  F (S) and F (T ) do not have opposite signs for S ⊆ T
Again, to simplify notation, we also set Cd := C2[d] and use the notation F+ = max0, F. By
slightly overloading notation, for any subspace U ⊆ FL, let A(U) = spanF+  F ∈ U  CL.
Lemma 3.3 justifies this notation and allows us to carry out the argumentation to the world of set
functions on Boolean lattices, as we conclude in the following lemma.
Lemma 4.3. It holds that A(Φ(U)) = Φ(A(U)) for all subspaces U ⊆ VBd

. In particular, for any
lattice L = [X,Y ], it holds that A(FL(1)) = FL(2).

In the following, we prove thatA(FL(k)) ⊆ FL(k2+k) by an induction on k and Lemma 4.3 serves
as the base case.

Next, we describe properties of the vector space RL that will be useful for the induction step. Every
sublattice of L of rank k + 1 is of the form [S, S  T ], where S  T = ∅ and T  = k + 1. For
any T ⊆ Y \X , one can decompose L = [X,Y ] into the sublattices [S, S  T ] for all S ⊆ Y \ T ,
resulting in the following lemma.
Lemma 4.4. Let L = [X, Y ] be a lattice of rank n. Then, (1) for every T ⊆ Y \X , it holds that
αX,Y ∈ spanαS,ST  S ⊆ Y \ T, and (2) for every T ⊆ Y \ X with T  = k, it holds that
αS,ST − αS′,S′T ∈ RL(k) for all S, S′ ∈ [X,Y \ T ].

See Figure 2 for a visualization of Lemma 4.4. Lemma 4.4 implies that it suffices to find a T ⊆ Y
such that ⟨αS,ST , F

+⟩ = 0 for all S ⊆ Y \ T , in order to prove that FL(n − 1). The idea of the

6



abcd

abc abd acd bcd

ab ac ad bc bd cd

a b c d

∅
(a) α∅,abc = α∅,bc − αa,abc

abcd

abc abd acd bcd

ab ac ad bc bd cd

a b c d

∅
(b) α∅,bcd = α∅,bc − αd,bcd

abcd

abc abd acd bcd

ab ac ad bc bd cd

a b c d

∅
(c) αd,bcd − αa,abc =
α∅,bcd − α∅,abc

Figure 2: Illustration of Lemma 4.4. The solid line in Figure 2a, decomposes the lattice in [∅, abc] 
[d, abcd], which implies that α∅,abcd = α∅,abc − αd,abcd. The dashed line further decomposes
[∅, abc] = [∅, bc]  [a, abc]. The 3 figures illustrate that αS,S{b,c} − αS′,S′{b,c} ∈ RL(2) for all
S, S′ ⊆ a, d.

abcde

e d c b a

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅
(a)

abcde

e d c b a

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅
(b)

Figure 3: An illustration of the induction step. Let Y = a, b, c, d, e, X = ∅,L = [X,Y ] and
F ∈ FL(2)  CL. If F (a) < 0 and F (b) > 0, then it follows that F (R) for all R ∈ [S, S  T ] for
S = ab and T = cde (Figure 3a). In particular, F ∈ FS,ST (1) and thus, by Lemma 4.4, it holds
that F ∈ FS′,S′T (1) for all S′ ⊆ Y \ T .
Figure 3b shows the decomposition of the lattice L = [X,Y ] for T = c, d, e into the sublattices
[S, S  T ] for all S ⊆ Y \ T . For every such sublattice we have that F ∈ F[S,ST ](1)  C[S,ST ]

and thus by induction ⟨αS,ST , F
+⟩ = 0.

induction step is to find a T of cardinality at least (k−1)2+(k−1)+1 such that F ∈ F[S,ST ](k−1)
for all S ⊆ Y \ T . Then, applying the induction hypothesis to each sublattice [S, S  T ] yields
⟨αS,ST , F

+⟩ = 0 and hence F+ ∈ FL(n− 1).

If F ∈ FL(k), Lemma 4.4 implies that for any T ′ ⊆ Y \X of cardinality k, the value ⟨αS′,S′T ′ , F ⟩
is independent of S′ ⊆ Y \T ′. Hence, in this case, it suffices to find a T such that F ∈ F[S,ST ](k−1)
for only one S ⊆ Y \ T , since it is equivalent to F ∈ F[S,ST ](k − 1) for all S ⊆ Y \ T .
Given F ∈ FL(k)  CL, it remains to find such S and T . We define the support of F ∈ FL by
supp(F ) = S ∈ L  F (S) ̸= 0 and the positive and negative support by supp+(F ) = S ∈ L 
F (S) > 0 respectively supp−(F ) = S ∈ L  F (S) < 0. In particular, F ∈ CL implies that for
X+ ∈ supp+(F ) and X− ∈ supp−(F ), it holds that F (R) = 0 for all R ⊇ X+ X−.

Lemma 4.5 says that, given that the positive and negative support are not empty, we can always “push
the elements X+ and X− in the support down in the lattice”, that is, we can find elements in the
supports that are of relatively low rank. See Figure 1c for an illustration.

Lemma 4.5. Let L = [X,Y ] be a lattice of rank n. Let F ∈ FL(k)  CL such that F ̸≥ 0
and F ̸≤ 0. Then, there are X− ∈ L≤k  supp−(F ) and X+ ∈ L≤k  supp+ as well as
Y − ∈ L≥n−k  supp−(F ) and Y + ∈ L≥n−k  supp+(F ).

Let S = X+  X−, then F ∈ CL implies that for T = Y \ S, we have that F (R) = 0 for all
R ∈ [S, ST ]. In particular, it holds that F ∈ F[S,ST ](k−1). Thus, by Lemma 4.4, if F ∈ FL(k),
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abcde

e d c b a

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅

abcde

e d c b a

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅

Figure 4: An illustration of Lemma 5.1 (left) and Lemma B.1 (right). If supp(F ) ⊆ L2  L3,
then we can match every S ∈ L2 with a T ∈ L3 such that F (T ) = F (S) which implies
⟨α∅,abcde, F+⟩ =


S∈L2

F+(S) − 
T∈L3

F+(T ) = 0. If F (a) < 0 and F (bcde) > 0, then
it holds that ⟨α∅,abcde, F ⟩ = ⟨α∅,bcde, F ⟩ = 0.

it follows that F ∈ F[S′,S′T ](k − 1) for all S′ ⊆ Y \ T ′. Since S is at most 2k it follows by
counting that if n ≥ (k2 + k+1), the cardinality of T is at least (k− 1)2 + (k− 1) + 1. This allows
to apply the inductions hypothesis to all sublattices [S′, S′  T ] for S′ ⊆ Y \ T , resulting in the
following proposition. See also Figure 3b for an illustration of the induction.

Proposition 4.6. For k ∈ N, let L = [X,Y ] be a lattice of rank n ≥ k2+k+1 and F ∈ FL(k)CL.
Then it holds that ⟨αX,Y , F

+⟩ = 0

Applying Proposition 4.6 to every sublattice of rank k2 + k + 1 allows to sharpen the bound.

Proposition 4.7. Let L be a lattice and k ∈ N, then it holds that A(FL(k)) ⊆ FL(k2 + k).

Translating this result back to the CPWL functions and applying the argument iteratively for a
rank-2-maxout network, layer by layer, we obtain the following theorem.

Theorem 4.8. For a number of layers ℓ ∈ N, it holds that M2
Bd

(ℓ) ⊆ VBd
(22

ℓ−1).

Corollary 4.9. The function x → 0, x1,    , x22ℓ−1 is not computable by a B0
d-conforming ReLU

neural network with ℓ hidden layers.

5 Combinatorial proof for dimension four

In this section, we prove that the function max0, x1,    , x4 cannot be computed by a B0
d-

conforming rank-(2, 2)-maxout networks or equivalently ReLU neural networks with 2 hidden
layers. This completely classfies the set of functions computable by Bd-conforming ReLU neural
networks with 2 hidden layers.

If L is a lattice of rank 5 and F ∈ FL(2)  CL, we know by Lemma 4.5, given that the supports of
F are not empty, that there are X+ ∈ L2  supp+(F ) and X− ∈ L2  supp−(F ). We first argue
that in the special case of rank 5 we can even assume that there are X+ ∈ L1  supp+(F ) and
X− ∈ L1 supp−(F ). Then, with analogous arguments as in Section 4, we prove that F+ ∈ FL(4),
resulting in the sharp bound for rank-(2, 2)-maxout networks.

If the positive support of a function F ∈ FL(2)  CL is contained in the levels L2 and L3, then for
every S ∈ supp+(F )L2 there must be a T ∈ supp+(F )L3 such that T ⊇ S and F (S) ≤ F (T )
since ⟨αS,Y , F ⟩ = 0. Applying the same argument to T , we conclude that F (S) = F (T ) and
that there are no further subsets in supp+(F ) that are comparable to S or T . Thus, we can match
the subsets S ∈ L2 with the subsets T ∈ L3 such that F (S) = F (T ) and hence it follows that
⟨αX,Y , F

+⟩ = 
S∈L2

F+(S)−
T∈L3

F+(T ) = 0. By symmetry, the same holds if supp−(F ) ⊆
L2  L3. See Figure 4 for an illustration. Following this idea, we state the lemma for a more general
case.

Lemma 5.1. Let L = [X,Y ] be a lattice of rank n and F ∈ FL(k)  CL with n ≥ 2k + 1. If
there are i, j ∈ [n]0 such that supp+(F ) ⊆ Li  Lj or supp−(F ) ⊆ Li  Lj , then it holds that
F+ ∈ FL(n− 1).
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If there is a X+ ∈ L1  supp+(F ) and a X− ∈ L4  supp−(F ), then it holds that ⟨αX,Y , F
+⟩ =

⟨αX+,Y , F ⟩ = 0 (Figure 4 and Lemma B.1 in the appendix). Thus we can assume that there are
X+ ∈ L1  supp+(F ) and X− ∈ L1  supp−(F ). By proceeding analogously as in Section 4, we
prove the following theorem.
Theorem 5.2. It holds that M2

Bd
(2) = VBd

(4). In particular, the function x → 0, x1,    , x4 is
not computable by a B0

d-conforming ReLU neural network with 2 hidden layers.

6 The unimaginable power of maxouts

By Proposition 3.2, all functions in VBd
(
ℓ

i=1 ri) are representable by a Bd-conforming rank-r-
maxout network. In Section 5, we have seen that this bound is tight for the rank vector (2, 2). In
this section, we prove that this bound in general is not tight by demonstrating that the function
x → 0, x1,    , x6 is computable by a B0

d-conforming rank-(3, 2)-maxout network.
Proposition 6.1. Let f1, f2 ∈ VB7

(3) be the functions given by

f1 = 2 · σ{1,2} + σ{1,4,5} + σ{1,6,7} + σ{2,4,6} + σ{2,5,7}
f2 = σ{3,4,5} + σ{3,6,7} + σ{1,2,4} + σ{1,2,5} + σ{1,2,6} + σ{1,2,7}

Then it holds that maxf1, f2 ∈ VB7
(7) \ VB7

(6).

Proof Sketch. Let F1 = Φ(f1) and F2 = Φ(f2). We write i1 · · · in for i1,    , in and
i1 · · · in for [7] \ i1,    , in and note that the sublattices [12, 3], [13, 2], [23, 1], [3, 12], [2, 13],
[1, 23], [∅, 123], [123, [7]] form a partition of [∅, [7]].
We first show that on any of the above sublattices except [1, 23], either F1 or F2 attains the maximum
on all elements of the sublattice and that for F := F1−F2 it holds that supp+(F ) ⊆ [1, 23]146167
and ⟨α[∅,[7]], F+⟩ = ⟨α12,3, F ⟩ − F (146) − F (167) = −2 and thus F+ ∈ FL \ FL(6). Then by
looking at the partition into sublattices, we argue that F ∈ CL and thus by Lemma 3.3, we conclude
that maxf1, f2 ∈ VB7

\ VB7
(6).

Hence maxf1, f2 =


M⊆[7] λmσM with λ[7] ̸= 0 and since all functions in VBd
(6) are com-

putable by a rank-(3, 2)-maxout network, we conclude that x → x1,    , x7 is computable by a
rank-(3, 2)-maxout network or equivalently:
Theorem 6.2. The function x → 0, x1,    , x6 is computable by a rank-(3, 2)-maxout network.

Remark 6.3. One can check (e.g., with a computer) that x → 0, x1,    , x6 is computable by a
rank-(3, 2)-maxout network with integral weights. This is particularly interesting in light of Haase
et al. [2023], who prove a ⌈log2(d + 1)⌉ lower bound for the case of integral weights and ReLU
networks.

7 Conclusion and Limitations

Characterizing the set of functions that a ReLU network with a fixed number of layers can compute
remains an open problem. We established a doubly-logarithmic lower bound under the assumption
that breakpoints lie on the braid fan. This assumption allowed us to exploit specific combinatorial
properties of the braid arrangement. In the specific case of four dimensions, we reprove the tight
bound for B0

d-conforming networks of Hertrich et al. [2023] with combinatorial arguments. Given that
Bakaev et al. [2025b] showed that one can compute the maximum of 5 numbers with 2-layers, this
implies that considering B0

d-conforming networks is a real restriction. While this indicates that the
doubly-logarithmic lower bound may not extend to all networks, our approach provides a foundation
for adapting these techniques toward more general depth lower bounds, for example, by looking at
different underlying fans instead of just the braid fan.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are mentioned in the statements. All proofs are given in the
main text or appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical signicance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: No experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Purely theoretical research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Purely theoretical research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

16



generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Purely theoretical research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No assets used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: No non-standard LLM usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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