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Abstract
Large language models (LLMs) are increasingly1

used for decision-making tasks where fairness is an2

essential desideratum. But what does fairness even3

mean to an LLM? To investigate this, we conduct4

a comprehensive evaluation of how LLMs perceive5

fairness in the context of resource allocation, using6

both synthetic and real-world data.7

We observe that various state-of-the-art LLMs,8

when asked to be fair, prioritize improving col-9

lective welfare over distributing benefits equally.10

Their perception of fairness is somewhat sensitive11

to how user preferences are provided, but less so to12

the real-world context of the decision-making task.13

Finally, we show that the best strategy for align-14

ing an LLM’s perception of fairness to a specific15

criterion is to provide it as a mathematical objec-16

tive, without referencing “fairness”, as this prevents17

the LLM from mixing the given criterion with its18

prior notions of fairness. Our results provide prac-19

tical insights regarding when to use LLMs for fair20

decision-making and when using traditional algo-21

rithms may be more appropriate.22

1 Introduction23

The concept of fairness has captivated human thought for cen-24

turies, shaping the foundations of our core institutions, such25

as democracy, law, and healthcare. But what does fairness26

truly entail? While universally appealing, fairness is far from27

universally defined, and its interpretation often depends on28

the lens through which it is examined.29

Fairness is a quintessential sociotechnical concept, ex-30

plored extensively across disciplines. Philosophy delib-31

erates the underlying principles of fairness, comparing32

Rawls’ [1971] egalitarianism to Harsanyi’s [1975] utilitari-33

anism, and examining concepts such as desert, the right to34

a minimum, and fair equality of opportunity. Meanwhile,35

the machine learning literature takes a mathematical perspec-36

tive on fairness, and often narrows its focus to deal with37

the most practically relevant issues such as mitigating race-38

or gender-based discrimination [Mehrabi et al., 2021]. The39

fair division literature, at the intersection of economics and40

computer science, also takes a mathematical perspective, but 41

formalizes individual and group fairness principles in an ab- 42

stract resource allocation context devoid of specific attributes 43

such as race or gender [Amanatidis et al., 2022; Shah, 2023]. 44

Finally, studies on human perceptions of fairness provide 45

a descriptive counterpart to these normative approaches to 46

fairness [Grgic-Hlaca et al., 2018; Srivastava et al., 2019; 47

Saxena et al., 2019]. 48

Recently, researchers have begun bridging these disci- 49

plinary silos by, e.g., applying the fairness criteria from the 50

fair division literature to machine learning applications [Bal- 51

can et al., 2019; Hossain et al., 2020; Chen et al., 2019; 52

Micha and Shah, 2020; Kellerhals and Peters, 2024; Cara- 53

giannis et al., 2024], or connecting fairness definitions in 54

machine learning to those from moral and political philoso- 55

phy [Binns, 2018]. However, a complete integration of these 56

diverse perspectives has remained elusive, partly due to dis- 57

ciplinary boundaries and methodological divides. 58

Enter large language models (LLMs)! The advent of highly 59

competent LLMs has been one of the most profound tech- 60

nological disruptions in recent years. These models are in- 61

creasingly driving decision-making by sitting at the core of 62

powerful AI agents that can autonomously act in the real 63

world [News, 2025]. These models exhibit social under- 64

standing gleaned from their pretraining on vast repositories 65

of human-generated data, ethical considerations learned from 66

academic research and post-training techniques such as rein- 67

forcement learning from human feedback (RLHF), and math- 68

ematical reasoning abilities. This unique blend of sociotech- 69

nical abilities has enabled breakthrough performance across 70

domains such as healthcare, education, finance, engineering, 71

and programming [Hadi et al., 2023]. This makes LLMs par- 72

ticularly intriguing for exploring the multifaceted nature of 73

fairness. 74

In this work, we investigate the perceptions of fairness ex- 75

hibited by LLMs using fair division — specifically, fair allo- 76

cation of indivisible goods to a set of agents — as our exam- 77

ple domain. We choose fair division because there are several 78

reasons that make LLMs aptly suited for adoption in real- 79

world fair division applications. They are wildly popular, 80

easy to use, and often freely available. Further, their unique 81

ability to understand contextual nuance can give them an edge 82

over traditional algorithms (see Section 7 for further discus- 83

sion). Our objectives are threefold: 84



1. What is fair in the eyes of LLMs? When LLMs are asked85

to be “fair”, what metrics do they prioritize?86

2. What influences fairness perception? How does an87

LLM’s understanding of fairness depend on factors such88

as the nature of agents and goods involved, and the fram-89

ing of the agents’ preferences?90

3. To what extent can we steer LLMs? Do the LLMs have91

the reasoning abilities to optimize user-specified fairness92

criteria?93

Under the first two objectives, our goal is to identify pat-94

terns that are common across different LLMs. These patterns95

may reflect perceptions of fairness encoded in the (largely96

common) pretraining datasets that the LLMs are trained with97

and, therefore, are likely to persist even as more capable98

LLMs are deployed in the future. Under the third objective,99

on the other hand, we seek to conduct an evaluation of the ca-100

pabilities of the current state-of-the-art (SOTA) LLMs. While101

these models may soon be superseded, this portion of our102

work contributes a framework that can be used for continuous103

monitoring of the fairness capabilities of LLMs; thus, it con-104

tributes to the quickly-growing literature in AI on conducting105

LLM evaluations on various dimensions such as safety, trust-106

worthiness, and inclination to hallucinate [Guo et al., 2023;107

Chang et al., 2024; Chu et al., 2024].108

Our results. We evaluate fairness perceptions of three state-109

of-the-art families of LLMs —Claude (by Anthropic) [An-110

thropic, 2024], Gemini (by Google) [DeepMind, 2023], and111

GPT (by OpenAI) [OpenAI, 2023] — using both synthetic112

data and real data from Spliddit.org. Using carefully designed113

prompts, we ask the LLMs to allocate a set of goods fairly to114

a set of agents based on (additive) valuations provided as part115

of the prompt, and compare their behavior to that of tradi-116

tional algorithms based on (multiplicative) approximations to117

popular fairness and efficiency criteria, such as envy-freeness118

up to one good (EF1) and social welfare, with the goal of119

analyzing the fairness-efficiency tradeoff exhibited by LLM-120

generated allocations.121

Our main takeaway is that the when asked for fairness,122

LLMs value high social welfare, seemingly at the expense123

of envy-based notions of fairness. This can be seen visually124

in Figure 1. Although the different models vary in the exact125

approximations they achieve of the criteria we examine, all126

three models largely follow the same trends. Namely, in in-127

stances where it is impossible to achieve high approximations128

of EF1 and social welfare simultaneously, the LLMs opt for129

high social welfare.130

To better understand what goes into the LLM’s allocation131

process, we investigate three variations in prompt design:132

• Context variation. Whether the task is to allocate ob-133

jects to people, heirlooms to siblings after a parent’s134

death, or machines to teams in a corporate setting, the135

context appears to make little difference in how LLMs136

perform the allocation, at least when given only a brief137

description of the context.138

• Preference framing. When agent preferences are pro-139

vided grouped by goods (with each line specifying all140

agents’ values for a given good), as opposed to grouped141

by agents (with each line specifying a given agent’s val- 142

ues for all the goods), all models become a bit more ef- 143

ficient, with Claude and Gemini also becoming a bit 144

fairer while GPT becoming a bit less fair. The effect size, 145

however, is small. 146

• Goal framing. When LLMs are prompted to explicitly 147

seek EF1, as opposed to simply maximizing “fairness”, 148

their tradeoff between fairness and efficiency changes 149

slightly. Specifically, they tend to achieve higher EF1 150

approximations on average, although the overall trend 151

of EF1 approximation degrading as it becomes harder 152

to achieve EF1 and social welfare simultaneously still 153

remains. We also prompt the LLMs using a purely com- 154

binatorial definition of EF1, dropping the language of 155

“fairness” and “allocations of goods” entirely. Here, 156

GPT and Gemini both do not see the same drop off 157

in EF1 approximation as previously, while Claude still 158

appears to prioritize efficiency over fairness in this set- 159

ting. 160

In our analysis of the real-world data from Spliddit.org, we 161

find that under these instances, the LLMs do better at achiev- 162

ing good EF1 approximations. This is partially due to the 163

fact that Spliddit.org forces agent valuations to be normal- 164

ized, which generally means it is easier to find allocations that 165

achieve good fairness and efficiency simultaneously. How- 166

ever, even when compared to the LLMs’ results on the subset 167

of our synthetic instances which are normalized, we find that 168

LLMs perform better overall on the Spliddit.org instances. 169

Due to the larger scale of the synthetic instances, and the 170

control they allow in varying parameters, we focus on them 171

rather than the Spliddit.org data for the majority of our anal- 172

ysis. However, we provide a detailed look at how all our tests 173

performed on the Spliddit.org instances in Appendix E. 174

Although the main goal of our work is to dissect the inter- 175

play between EF1 and social welfare in the LLMs perception 176

of fairness, we also include a detailed summary of the ag- 177

gregate performance of LLMs under a variety of fairness and 178

efficiency metrics. These summaries, shown in Figure 1, give 179

a high-level overview of exactly what the LLMs are priori- 180

tizing in their allocations, with the key takeaway again being 181

that they seem to value efficiency more than fairness. 182

1.1 Related Work 183

To the best of our knowledge, ours is the first work to explore 184

the use of LLMs in fair division, with the exception of the 185

simultaneous and independent recent work of Hosseini and 186

Khanna [2025]. 187

Hosseini and Khanna also investigate fairness perceptions 188

of LLMs in the fair division context, but using a very different 189

approach. They use 10 hand-crafted instances borrowed from 190

the work of Herreiner and Puppe [2007], along with their 191

slight variations. For each instance, they ask LLMs and hu- 192

mans to pick from a small menu of predetermined allocations. 193

This menu is designed to include allocations that satisfy dif- 194

ferent subsets of four primary metrics they consider: envy- 195

freeness, equitability, egalitarian welfare, and social welfare. 196

In contrast, our study uses tens of thousands of instances gen- 197

erated in a randomized fashion and allows the LLMs to pick 198
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Figure 1: Radar charts showing average approximation performance of LLMs and the MNW baseline across fairness (green) and efficiency
(orange) metrics. Each axis corresponds to a criterion, with higher values (closer to the outer edge) indicating better approximation to that
metric.

from the entire set of (exponentially many) feasible alloca-199

tions. This allows us to evaluate the unhindered fairness per-200

ceptions of LLMs in a more robust manner.201

More broadly, our work is tangentially related to three lines202

of work.203

LLM → social choice. Use of LLMs in the adjacent world204

of voting has been explored recently. When the candidates205

to be voted on are (policy) statements, LLMs have the re-206

markable potential of finding consensus candidates that are207

widely agreeable out of the vast space of possible statements.208

Bakker et al. [2022] design a system in which a fine-tuned209

set of LLMs generate statements that would be agreeable to210

large groups of humans and a traditional voting rule picks a211

single winning statement (“winner selection”), showing that212

such a system can outperform humans. Fish et al. [2024]213

develop this into generative social choice, which can design214

a representative slate of statements (“committee selection”);215

they use generative queries, which ask LLMs to find state-216

ments that would be agreeable to a specified target group of217

users. Small et al. [2023] discuss broader opportunities and218

risks of LLMs in deliberative platforms like Pol.is. Our work219

suggests extending LLM use to social choice more broadly,220

possibly to other problems such as matching and coalition221

formation.222

Social choice → LLM. In the opposite direction, re-223

searchers have recently explored applying social choice con-224

cepts to the design of LLMs. For example, Zhong et225

al.; Williams [2024; 2024] use the Nash social welfare in the226

RLHF stage of LLM training in order to get LLMs to pro-227

portionally represent the preferences of human annotators.228

This is related to (but a completely different approach to)229

our MNW prompt, which asks the LLM to maximize Nash230

welfare as part of the prompt rather than imbuing the prin-231

ciple in its design. Chakraborty et al. [2024] similarly use232

the egalitarian welfare to guide RLHF. It remains to be seen233

whether other social choice principles, such as envy-freeness234

or harm ratio [Ebadian et al., 2024], can be applied to design-235

ing LLMs.236

LLM evaluations. A rapidly growing literature evaluates237

LLMs on safety, trustworthiness, hallucination, reasoning,238

etc.; see surveys by Guo et al.; Chang et al.; Chu et al. [2023;239

2024; 2024]. Several studies focus on fairness of LLMs,240

either broadly [Li et al., 2023] or in specific domains like 241

recommendations [Zhang et al., 2023] and ranking [Wang et 242

al., 2024]. To our knowledge, our work and the independent 243

study by Hosseini and Khanna [2025] are the first to evaluate 244

fairness of LLMs in resource allocation. 245

2 Experimental Setup 246

In this section, we describe the fair division model at the heart 247

of our experiments, the data and LLMs we use, our experi- 248

mental setup, and our evaluation criteria. 249

Fair division model. For any t ∈ N, let [t] = {1, 2, . . . , t}. 250

A fair division instance consists of a set of n agents N = [n] 251

and a set of m indivisible goods M = [m]. Each agent i ∈ N 252

has a valuation function vi : 2M → R⩾0, which represents 253

the utility of agent i for each subset of goods. We focus on ad- 254

ditive valuation functions, meaning vi(S) =
∑

g∈S vi({g}) 255

for all S ⊆ M and vi(∅) = 0. With slight abuse of notation, 256

we write vi(g) := vi({g}) for a single good g ∈ M . An al- 257

location A = (A1, . . . , An) is a partition of the set of goods 258

M into n disjoint bundles, where Ai ⊆ M is the bundle allo- 259

cated to agent i, Ai ∩Aj = ∅ for all i, j ∈ N with i ̸= j, and 260

∪i∈NAi = M . 261

Synthetic data. For our synthetic data experiments, we 262

build on the setup of Ebadian et al. [2024]. They draw agent 263

utilities from the Dirichlet-multinomial distribution, defined 264

as follows. First, a vector p⃗ is drawn uniformly from the 265

(m− 1)-simplex (i.e., from the Dirichlet distribution), where 266

pg represents the “market value” of good g. Then, for each 267

agent i, a utility vector (vi({g}) : g ∈ M) is independently 268

drawn from the multinomial distribution with parameters T 269

and p⃗, ensuring that E[vi({g})] = pg for each g ∈ M and 270∑
g∈M vi({g}) = T . They choose this distribution to induce 271

a sharper tradeoff between fairness and efficiency than simply 272

drawing all utilities i.i.d. We sample a different total utility Ti 273

for each agent i independently from the uniform distribution 274

over the set of integers {(50− λ) ·m, . . . , (50 + λ) ·m}. 275

When λ = 0, our sampling process coincides with theirs. 276

As λ increases, the total utility varies more across agents, 277

thereby intensifying the tension between fairness (equal dis- 278

tribution of goods) and efficiency (allocating more to higher- 279

utility agents). 280

We vary the number of agents n ∈ {2, 3, . . . , 10} (de- 281
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fault n = 5), the number of goods m ∈ {n, 2n, . . . , 5n}282

(default m = 3n), and the total utility variation parameter283

λ ∈ {0, 5, . . . , 40} (default λ = 20). When varying parame-284

ter, we fix the remaining two parameters to their default val-285

ues, sample 200 instances, and plot the averages along with286

95% confidence intervals.287

Spliddit data. We utilize real-world goods division in-288

stances from Spliddit.org. In these instances, the total utility289

of each agent for all goods is always 1000. Out of the 5295,290

we focus on the 4835 instances in which a positive Nash wel-291

fare is attainable (see Footnote 1), and show results averaged292

over these instances. These instances involve between 2 to 15293

agents and 2 to 96 goods, with more than 99% of the instances294

involving at most 5 agents and at most 15 goods.295

Evaluation: fairness criteria. The cornerstone notion of296

fairness in the fair division literature is envy-freeness [Gamow297

and Stern, 1958; Foley, 1967], which demands that no298

agent prefer the bundle allocated to another agent over299

their own bundle, i.e., vi(Ai) ⩾ vi(Aj) for all i, j ∈300

N . For indivisible goods, this is not always attainable.301

Hence, we measure its multiplicative approximation, and302

multiplicative approximations of its four widely studied re-303

laxations: envy-freeness up to one good (EF1) [Budish,304

2011],proportionality (PROP) [Steinhaus, 1948], proportion-305

ality up to one good (PROP1) [Conitzer et al., 2017], and306

maximin share (MMS) [Budish, 2011].307

Figure 2 depicts the logical relationships between these cri-308

teria. In the interest of space, we define and present results for309

only EF1 approximation in the main body, deferring the defi-310

nitions of and results for the rest Appendix C.311

• EF1 approximation: For an allocation A, this is the312

largest value α ∈ [0, 1] such that, for all i, j ∈ N313

with Aj ̸= ∅, there exists a good g ∈ Aj such that314

vi(Ai) ⩾ α · vi(Aj \ {g}).315

EF1 allocations are guaranteed to exist, and the maxi-316

mum Nash welfare (MNW) algorithm [Caragiannis et al.,317

2019], which provably satisfies EF1, serves as our primary318

baseline (see Section 2). MMS allocations need not ex-319

ist [Kurokawa et al., 2018], but a 3
4 + 3

3836 approximation320

is achievable [Akrami and Garg, 2024].321

While the MMS approximations are quantitatively similar322

to EF1, the PROP1 approximations are quite different. This323

is due to subtleties about how our synthetic instances were324

generated, which we also explain in Appendix C. We empha-325

size that our results are pessimistic for fairness of LLMs, and326

our use of the weaker EF1 criterion instead of the stronger EF327

criterion only makes them stronger.328

Evaluation: efficiency criteria. We use two prominent329

efficiency criteria from the literature: (utilitarian) social wel-330

fare (SW) and Pareto optimality (PO). Since maximizing SW331

implies PO, and PO approximation is at least as high as SW,332

we focus on SW in the main text and defer the definition and 333

similar results for PO to Appendix C. 334

• SW approximation: The (utilitarian) social welfare of an 335

allocation A is the sum of agent utilities, i.e., SW(A) = 336∑
i∈N ui(Ai), and its SW approximation is its social 337

welfare as a fraction of the highest possible social wel- 338

fare, i.e., SW(A)
maxB SW(B) . 339

Baseline algorithms. We compare the behavior of LLMs 340

to that of three popular fair division algorithms: 341

• Maximum Nash welfare (MNW) [Caragiannis et al., 2019] 342

returns an allocation that maximizes the Nash welfare, 343

i.e.,
∏

i∈N vi(Ai).1 This provably achieves EF1 and 344

PO [Caragiannis et al., 2019], and is the state-of-the-art 345

algorithm deployed to Spliddit.org due to its combina- 346

tion of fairness and efficiency guarantees. 347

• Round Robin (RR) is an iterative algorithm that guaran- 348

tees EF1 but not necessarily PO. Agents pick goods one 349

by one in a cyclic fashion; specifically, in each round 350

k ∈ [m], agent (k − 1) mod n+ 1 is allocated her most 351

preferred good among the ones remaining. 352

• Maximum social welfare (MSW) returns an allocation 353

with the highest utilitarian social welfare. Under ad- 354

ditive valuations, this simply allocates each good to an 355

agent with the highest value for it. This is PO but does 356

not guarantee any positive EF1 approximation. 357

Our primary focus is to investigate how LLMs behave 358

when asked to be fair, and not to compare them with tradi- 359

tional algorithms. Hence, for clarity, we show only the MNW 360

rule in the plots in the main body. In Appendix D, we com- 361

pare LLMs to the other two baselines. 362

Large language models. We use three state-of-the- 363

art commercial LLMs: gpt-4o (in short, GPT) from 364

OpenAI, claude-3.5-sonnet-20241022 (in short, 365

Claude) from Anthropic, and gemini-1.5-pro (in 366

short, Gemini) from Google. 367

In Appendix B, we report input/output token sizes, provide 368

rough estimates of LLM costs for fair division, and show how 369

costs scale with instance size. 370

Experiments and prompts. Each datum in our experi- 371

ments is generated by sending a prompt to an LLM, which 372

fully described the fair division problem at hand, and asking 373

the model to return an allocation. At a high level, all prompts 374

have the same structure involving four components, whose 375

designs we experiment with. We provide a summary below; 376

full details are available in Appendix A. 377

1) Context. First, the prompt describes the contextual sce- 378

nario including the nature of agents and goods, which may 379

affect LLMs’ perceptions of fairness. We test three contexts: 380

• Person/Object (default): An abstract scenario with “ob- 381

jects” (goods) to be allocated to “people” (agents). 382

1The algorithm is more subtle in edge cases where all alloca-
tions yield zero Nash social welfare, but our experiments focus on
instances that admit allocations with strictly positive utility for all
agents (and thus positive Nash social welfare).

Spliddit.org
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• Sibling/Heirloom: A “subjective” inheritance division383

scenario with “heirlooms” (goods) to be allocated to384

“siblings” (agents) following the passing of their parent.385

• Team/Machine: An “objective” corporate scenario with386

“machines” (goods) to be allocated to “teams” (agents).387

2) Goal. Next, the prompt describes the goal we want the388

LLM to achieve in the allocation it returns.389

• “Fair” (default): The model is asked to allocate goods390

“fairly,” without an explicit definition of fairness.391

• EF1 fair: The model is instructed to find an EF1 allo-392

cation, with EF1 introduced as a fairness criterion and393

defined mathematically.394

• EF1 combinatorial: Same as the EF1 fair prompt, but395

framed as a purely combinatorial problem — without396

reference to “fairness” or the context of allocating397

goods.398

3) Preference framing. Next, we provide agents’ valua-399

tions in one of two formats:400

• Person/Object (default): For each agent, we provide a401

separate line listing their values for the m goods as inte-402

gers, where the k-th value corresponds to good k:403

Person 1: [1, 0, ...] // m values

Person 2: [5, 8, ...] // m values

• Object/Person: For each good, we provide a separate404

line listing the values of all n agents for that good as405

integers, where the i-th value corresponds to agent i:406

Object 1: [1, 5, ...] // n values

Object 2: [0, 8, ...] // n values

4) Output format. We instruct the model to return a JSON407

object,2 mapping each good to the index of its assigned agent.408

We explicitly instruct the model not to include any additional409

text or reasoning.410

{ Object 1: 3, // index (from 1 to n)

Object 2: 2, ... }.

In Section 3, we compare all models and baselines using411

the default settings for the first three components. Then, in412

Sections 4 to 6, we vary each component individually while413

keeping the others at their default.414

3 LLMs for Fair Division415

The plots in Figure 3 highlight how the LLMs behave when416

prompted to simply find a “fair” allocation, with no further417

instruction on the problem context, or what “fairness” should418

entail. From these results, it is clear that all models generally419

prioritize efficiency (measured by approximation to SW) over420

fairness (measured by approximation to EF1). As a baseline,421

we first examine the performance of maximum Nash welfare422

2For GPT and Gemini, we use an in-built feature to restrict their
output to the JSON schema. For Claude (and one Spliddit instance
with 5 agents and 96 goods for which Gemini rejected the schema
for being too long), we simply requested the models to follow the
schema as part of the prompt, which they do very well.

(MNW), which is known to always return an EF1 allocation. 423

This explains why, in figures (c) and (f), as λ, the utility 424

variation parameter, increases the SW approximation of the 425

MNW allocations decrease sharply. When one agent has a 426

much higher utility for all goods compared to another agent, 427

achieving high social welfare requires allocating all goods to 428

that agent, which goes against fairness. In contrast to MNW, 429

we observe that as λ increases, the EF1 approximation of all 430

three LLM models declines rapidly, while their SW approxi- 431

mation remains high. 432

Takeaways. In plots (a) (d), and (b) (e), we can also see 433

how the EF1 and SW approximation of the models change 434

as we vary n and m respectively. These represent increasing 435

the complexity of the instances. As n increases, we can again 436

see that MNW becomes worse at approximating SW. Intu- 437

itively, this is because having more agents raises the prob- 438

ability that one agent a much lower utility sum than some 439

other agent, making it so that some goods inefficiently allo- 440

cate some goods in order to ensure fairness. Here we see that 441

this worsening tradeoff causes the same behavior in the LLMs 442

who get drastically worse at fairness in order to maintain high 443

efficiency. 444

In contrast, when m increases, we can see that MNW’s SW 445

approximation does not see significant change. It can be seen 446

that when m = 5, the models all perform much better at fair- 447

ness than when m is higher. Between m = 5 and m = 10, 448

we see a steep drop off in the level of fairness the models 449

achieve, and an increase in efficiency. For all m ⩾ 10, the 450

fairness and efficiency levels stay much more constant, with 451

only small decreases. In all our experiments, it appeared that 452

when LLMs are provided with the same number of goods as 453

there are agents n = m, their behavior was much different 454

than when m > n, with the models being more likely to 455

provide a balanced allocation, where all agents received the 456

same number of items, even if that led to inefficiencies. This 457

behavior is what explains the steep drop off. 458

We also evaluate the LLMs performance against real world 459

instances from Spliddit.org, with aggregate results shown in 460

Figure 6. Interestingly, the LLMs perform significantly bet- 461

ter on fairness for these real-world instances than for the 462

synthetic ones. The most natural comparison is to the syn- 463

thetic instances with λ = 0 in Figure 3, since Spliddit.org 464

instances are normalized. On the Spliddit.org instances, the 465

LLMs maintain relatively high efficiency, while achieving 466

high EF1 approximations, around 0.8 to 0.9, compared to ap- 467

proximately 0.6 on comparable synthetic instances. This in- 468

dicates that real-world instance are more likely to have a bet- 469

ter fairness-efficiency tradeoff, allowing LLMs to find pass- 470

able allocations despite their efficiency bias. 471

4 Does the Allocation Context Matter? 472

In this section, we examine whether the context of the 473

allocation—be it abstract objects allocated to people, heir- 474

looms divided among siblings following a parent’s death, or 475

machines distributed among corporate teams — affects how 476

LLMs chart the fairness-efficiency tradeoff. 477

Takeaways. The results in Figure 4 show that con- 478

textual changes have little effect on the LLMs’ fairness 479

Spliddit.org
Spliddit.org
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Figure 3: Comparison of models for the default prompt by varying n, m, or λ.

and efficiency behavior. In both the Siblings/Heirlooms480

and Teams/Machines scenarios, the models’ approximations481

closely mirror those of the default setting, suggesting that482

small contextual shifts do not alter the tradeoffs these mod-483

els make.484

5 Does the Preference Framing Matter?485

In this section, we test providing the preferences one agent486

at a time (Person/Object) versus one good at a time (Ob-487

ject/Person). This simply transposes the valuation matrix,488

which does not affect traditional algorithms’ ability to access489

the values, but it may affect how an LLM interprets the pref-490

erence data (just as it might affect a human too, at least in491

larger instances).492

Takeaways. Figure 5 shows that how preferences are493

framed does affect 2 out of 3 models. For Claude and494

Gemini, the Object/Person framing leads to lower EF1 ap-495

proximations but higher social welfare, suggesting a shift to-496

ward efficiency at the expense of fairness. One possible ex-497

planation is that presenting all agents’ valuations for each498

object in a single list makes it easier for the LLM to com-499

pare utilities across agents and assign each object to the agent500

who values it most. This raises an important question: when501

LLMs fail to find a maximum social welfare allocation, is it502

due to a preference for fairness, or simply an inability to iden-503

tify the optimal outcome? Interestingly, GPT appears largely504

unaffected by preference framing, with near-identical scores505

across both settings.506

6 Steer LLMs or Let Them Be Free?507

In this section, we evaluate how LLMs perform when specif-508

ically asked to aim for fairness, both by asking them directly509

to find an allocation that is EF1, and by providing them the 510

instance as a purely combinatorial problem, and asking them 511

to find an allocation with a property equivalent to EF1. 512

Takeaways. Figure 7 varies λ to control how difficult it 513

is to satisfy fairness and efficiency simultaneously. For two 514

of the three models (GPT and Gemini), we observe a very 515

interesting difference between the EF1 and Combinatorial 516

prompts. Across all models, allocations from the EF1 prompt 517

are consistently fairer than those from the default prompt. 518

However, EF1 approximations still decline as λ increases, re- 519

flecting the growing difficulty of the task. 520

In contrast, for GPT and Gemini, the Combinatorial 521

prompt produces allocations whose fairness remains stable as 522

λ increases. This suggests that when the task is framed as 523

explicitly satisfying EF1 in a combinatorial setting, without 524

the usual allocation context, LLMs deprioritize efficiency and 525

focus more narrowly on the specified goal. When the alloca- 526

tion context is present, however, even explicit instructions to 527

satisfy EF1 may be overridden by implicit reasoning about 528

tradeoffs. Interestingly, Claude does not follow this pat- 529

tern — it appears to favor efficiency over fairness even when 530

the prompt strips away allocation context. 531

In Figure 9, we again observe that all prompt types degrade 532

similarly as n increases, likely due to the increasing complex- 533

ity of achieving fair and efficient allocations. 534

7 Discussion 535

While our work charts a rather large experimental landscape, 536

it represents merely the tip of the iceberg in the exploration of 537

LLM applications in fair division, let alone in the comprehen- 538

sive evaluation of their fairness. There are many directions in 539

which one can deepen our investigation. 540
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Figure 4: Comparison of models based on varying context with m = 3n and λ = 20.
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Figure 5: Comparison of models under different input valuation framings with m = 3n
and λ = 20.

0.0

0.2

0.4

0.6

0.8

1.0

E
F1

A
px

(a) EF1 apx.

0.0

0.2

0.4

0.6

0.8

1.0

SW
A

px GPT 4o
Claude 3.5 Sonnet
Gemini 1.5 Pro
MNW

(b) SW apx.

Figure 6: Comparison of models on Spliddit.org.
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Figure 7: Comparison of models based on varying goals with n = 5 and m = 15.

Prompt engineering. While we experimented with vari-541

ations of our base prompt, the possibilities of prompt engi-542

neering are vast, ranging from a mere reordering of the com-543

ponents to testing entirely novel task and goal descriptions.544

Task generalization. We focused on the allocation of indi-545

visible goods under additive valuations. Do our observations546

generalize to other fair division tasks, such as allocation of di-547

visible goods, chore division, allocation under feasibility con-548

straints, or allocating to agents with non-additive valuations?549

These tasks are notably more difficult, even for traditional al-550

gorithms, but that is precisely what may allow LLMs to be551

more competitive with traditional algorithms.552

Better fairness evaluation. Our use of approximations to553

EF1, SW, and other fairness and efficiency notions are only554

proxy criteria; after all, if that is all that we care about, tradi-555

tional algorithms already offer appealing trade-offs. The true556

power of LLMs lie in their unique sociotechnical understand-557

ing of fairness, so their efficacy must also be evaluated by 558

human subjects (or, perhaps, other LLMs). 559

Leveraging contextual understanding. In Section 4, we 560

found that a mere one-line description of the context does 561

not significantly alter LLMs’ behavior, but this may change if 562

more context is provided. For example, an LLM performing 563

inheritance division may lean towards optimizing fairness if 564

there is a history of rivalry between the siblings, but optimiz- 565

ing efficiency if their relationships are largely harmonious. 566

One can also follow the “generative social choice” style ap- 567

proach [Fish et al., 2024; Bakker et al., 2022], whereby 568

LLM’s contextual understanding is used to shape the prob- 569

lem instance (e.g., by detecting likely substitutes and comple- 570

ments among the goods based on their descriptions or likely 571

cases of human error in providing valuations), but a tradi- 572

tional algorithm is used thereafter to hammer out the alloca- 573

tion, thereby achieving the best of both worlds. 574
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Ethics Statement575

Our work investigates the current capabilities of existing576

models rather than introducing new ones, which somewhat577

limits the ethical risks involved. Nevertheless, there remains578

a potential risk that our methodology may be used to “vali-579

date” a model in terms of fairness, even when the model ex-580

hibits significant unfairness along dimensions not captured in581

our analysis. We stress that our evaluation focuses on specific582

fairness aspects in how LLMs allocate indivisible goods, and583

should not be interpreted as a comprehensive audit of fair-584

ness.585
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Appendix of Submission #7010770

Don’t Try This at Home: Examining How LLMs Perform Fair Division771

A Prompts772

To reiterate on the discussion of our experiments in Section 2, in total, our experiments involved 12 unique prompts, broken773

down as follows:774

• 1 Default prompt: These formed the skeleton of all subsequent prompts, in this prompt, we referred to the agents and775

goods as “People” and “Objects” respectively. We presented agents’ utilities to the LLM grouped by person, and we776

simply instructed the LLM to find the fairest allocation possible, leaving it up to each model to decide what “fairness”777

entailed.778

• 2 Context prompts: In these prompts, we changed the context of the fair division scenario. We changed the names of the779

agents and goods to “Siblings” and “Heirlooms”, and to “Teams” and “Machines” respectively. The preference framing,780

and fairness instructions remained the same as the default prompt.781

• 1 Framing prompt: This prompt presented the agents’ preferences grouped by object instead of by person. The prompts782

used the default context of decribing the agents and goods as “People” and “Objects”, and simply instructed the LLM to783

find the fairest allocation possible.784

• 2 Reasoning prompt: These prompts specifically asked the LLMs to find allocations that satisfied certain fairness criteria.785

Instead of simply asking the LLM to find the fairest allocation possible, these prompts receptively described EF1, both in786

a straightforward way, and in a purely combinatorial way to mask the fact that it was a fair allocation problem.787

• For each of the above 6 prompts, 2 copies of that prompt were needed for both the synthetic and the Spliddit.org data. For788

the Spliddit.org data, we informed the LLM that each agents’ utility had a normalized sum of 1000, while for the synthetic789

instances, we did not provide any bound for the utility sum. For each synthetic data prompt, the corresponding Spliddit.org790

prompt was identical except for the fact that the preference description was described to the LLM to match this change.791

Below, we break down the exact contents of the prompts section-by-section. Most of the prompts are very similar. The only792

exception is the combinatorial EF1 prompt, which takes a very different form due to it avoiding using terms from fair division.793

For simplicity, we show that prompt seperately at the end of this section.794

All the prompts that were used can be broken down into the following sections:795

<Opening Paragraph>: Explains the context of the problem, lists the number of agents
and goods involved, and the structure in which utilities are assigned to the
goods.

↪→

↪→

<Introducing Utilities>: Explains the framing of the utilities, then lists the
utilities of each agent according to the framing technique being used.↪→

<Fairness Explanation>: If the LLM is being instructed to follow a specific fairness
definition, it will be explained here. Otherwise, the LLM will simply be
instructed to find the fairest allocation possible.

↪→

↪→

<JSON Formatting Instructions>: Instructs the LLM how to format their response, and
provides a JSON template to follow.↪→

<Closing Statement>: Reiterates the goals of the prompt (either finding a specific
fairness criteria, or finding the fairest allocation possible).↪→

A.1 Opening Paragraph796

For all synthetic experiments that use the default context, describing the agents as “People” and the goods as “Objects”, the797

opening paragraph is as follows:798

Your task is to fairly allocate {m} objects between {n} people. Each person was
asked to assign each object a score that represents their subjective value
for that object, with a higher score representing a greater desire to
receive that object.

↪→

↪→

↪→
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For prompts with different context, the opening paragraph is changed to reflect the different storyline that the additional 799

context is portraying 800

For the Sibling/Heirloom context, the opening paragraph is as follows: 801

Your task is to fairly allocate {m} family heirlooms between {n} siblings after
the recent death of their father. Each sibling was asked to assign each
heirloom a score that represents their subjective value for that heirloom,
with a higher score representing a greater desire to receive that heirloom.

↪→

↪→

↪→

For the Team/Machine context, the opening paragraph is as follows: 802

Your task is to fairly allocate {m} machines between {n} teams in an engineering
firm. Each team was asked to assign each machine a score that represents how
helpful that machine would be to them in their day-to-day operations, with a
higher score representing a greater value for that machine.

↪→

↪→

↪→

For all prompts run against Spliddit.org data, the opening paragraph was changed slightly to reflect the difference in utilities 803

for that dataset. 804

Your task is to fairly allocate {m} objects between {n} people. Each person was
asked to assign each object a score that represents their subjective value
for that object, with a higher score representing a greater desire to
receive that object. For each person, the sum of all the scores they
assigned will equal 1000.

↪→

↪→

↪→

↪→

A.2 Introducing Utilities 805

For all prompts that used the default style of preferences framing, where a list of utilities is provided for each person, the 806

Introducing Utilities paragraph is described as follows: 807

The scores that each person assigned to the objects are provided below in the
following format: Each person is labeled using indices from 1 to {n}
("Person 1", "Person 2", etc.). For each person, there is an associated list
of length {m}. The nth entry in this list will correspond to the score that
person assigned to the nth object.

↪→

↪→

↪→

↪→

-----SCORES-----
Person 1: [1, 0, ...] // m values
Person 2: [2, 5, ...] // m values
...
Person {n}: [4, 9, ...] // m values
-----END OF SCORES-----

For each prompt that uses different context, the names of “person” and “object” were changed to reflect this context (to either 808

“sibling” and “heirloom”, or to “team”, and “machine”). 809

For the prompts that use the alternate style of preferences framing, where a list of utilities is provided for each object, the 810

Introducing Utilities paragraph is described as follows: 811

The scores that each person assigned to the objects are provided below in the
following format: Each person is labeled using indices from 1 to {n}
("Person 1", "Person 2", etc.). For each person, there is an associated list
of length {m}. The nth entry in this list will correspond to the score that
person assigned to the nth object.

↪→

↪→

↪→

↪→

-----SCORES-----
Object 1: [1, 0, ...] // n values
Object 2: [2, 5, ...] // n values
...
Object {m}: [4, 9, ...] // n values
-----END OF SCORES-----

A.3 Fairness Explanation 812

For all prompts that do not ask for a specific definition of fairness, the Fairness Explanation paragraph simply tells the LLM to 813

find the fairest allocation possible: 814

Spliddit.org


Using the people's scores, you should allocate the objects to the people in the
fairest way possible.↪→

Again, in the prompts with different contexts, “person/people” and “object” were changed to reflect this context.815

For the EF1 prompt, which specifically instructs the LLM to find an allocation meeting the EF1 fairness criterion, the Fairness816

Explanation paragraph is as follows:817

You should make the allocation fair by ensuring that it meets the fairness
criteria of "Envy-Freeness Up to 1 Good (EF1)". An allocation is EF1 if no
person would rather have another person's bundle of objects over their own
bundle after removing some object from that other person's bundle.

↪→

↪→

↪→

Formally, for any set $S$ of the objects, and any $i \in \{1,\dots,{n}\}$, we
say that $v_i(S)$ is person $i$'s score for that set, derived by summing
person $i$'s score for each object in $S$. For each person $i$, let $A_i$ be
the set of objects assigned to person $i$ in an allocation $A$. An
allocation $A$ is EF1 if for every person $i$ and person $j$ with $A_j \neq
\emptyset$, there exists an object $o \in A_j$ such that $v_i(A_i) \geq
v_i(A_j \setminus \{o\})$.

↪→

↪→

↪→

↪→

↪→

↪→

The Combinatorial EF1 prompt is quite different, and does not involve changing only the Fairness Explanation paragraph.818

We found it simplest to explain it by putting it in its entirety below:819

Your task is to find a solution to the following combinatorics problem.

Given 3 functions $v_1,\dots,v_3: \{1,\dots,6\} \to \mathbb{N} \cup \{0\}$,
partition $\{1,\dots,6\}$ into 3 sets $A_1,\dots,A_3$ such that $\sum_{t \in
A_i}v_i(t) \ge \sum_{t \in A_j}v_i(t) - \max_{t \in A_j}v_i(t)$ for all distinct
$i,j \in \{1,\dots,3\}$, where the right hand side of the inequality is treated
as 0 when $A_j = \emptyset$.

↪→

↪→

↪→

↪→

$v_1,\dots,v_3$ are provided below in the following format: for each function $v_i$,
there is an associated list of length {m}. For each $t \in \{1,\dots,6\}$, the
$t$th entry in this list corresponds to $v_i(t)$.

↪→

↪→

-----FUNCTIONS-----
$v_1$: [1, 5, 7, 3, 4, 0]
$v_2$: [5, 9, 1, 6, 3, 3]
$v_3$: [8, 0, 2, 1, 5, 4]
-----END OF FUNCTIONS-----

Included below is a JSON template indicating how your response should be formatted.
Please format your response EXACTLY according to the following JSON template. DO
NOT respond with any additional text or reasoning about your decision. The JSON
template requires specifying, for each $t \in \{1,\dots,{m}\}$, the unique index
$i \in \{1,\dots,3\}$ for which $t \in A_i$.

↪→

↪→

↪→

↪→

-----JSON TEMPLATE-----
{"1": "index (from 1 to 3)", "2": "index (from 1 to 3)", "3": "index (from 1 to 3)",

"4": "index (from 1 to 3)", "5": "index (from 1 to 3)", "6": "index (from 1 to
3)"}

↪→

↪→

-----END OF JSON TEMPLATE-----

Remember, your goal is to find a partitioning that meets the property described
above.↪→

A.4 JSON Formatting Instructions820

When we prompt the LLMs, we use the “JSON Schema”821

Due to the large amount of prompts required to complete these experiments, and output tokens being the main contributing822

factor to costs in each prompt, we chose to make heavy use of the “JSON Schema” functionality included in the API for823

GPT and Claude. Specifically, this feature allowed us to restrict the output of the LLM to return only the JSON template824



containing the final allocation. Since Gemini did not include the same functionality in its API, the part of our prompt that 825

talks about JSON formatting explicitly instructs the LLM to to only include the LLM to only include the final JSON template 826

in its response. For consistency, we include this in our prompt for all models, even the ones using the JSON schema. 827

The paragraph that instructs the LLMs on how to format their responses varies slightly based on which preference framing 828

was used in the prompt. For prompts that provide preferences to the LLM grouped by people, the JSON Formatting Instructions 829

paragraph is as follows: 830

Included below is a json template indicating how your response should be
formatted. Please format your response EXACTLY according to the following
json template. DO NOT respond with any additional text or reasoning about
your decision. The json template requires that for each object, a single
person be specified to receive that object. The person should be specified
using their index ranging from 1 to {n}.

↪→

↪→

↪→

↪→

↪→

-----JSON TEMPLATE-----
{"Object 1": "index (from 1 to {n})", "Object 2": "index (from 1 to {n})", ...,

"Object {m}":"index (from 1 to {n})"}↪→

-----END OF JSON TEMPLATE-----

Again, in the prompts with different contexts, the words “person” and “object” were changed to reflect this context. 831

For the prompts that provide preferences grouped by objects, the paragraph is slightly changed to better explain to the LLM 832

which index corresponds to which person: 833

Using the people's scores, you should allocate the objects to the people in the
fairest way possible. Included below is a json template indicating how your
response should be formatted. Please format your response EXACTLY according
to the following json template. DO NOT respond with any additional text or
reasoning about your decision. The json template requires that for each
object, a single person be specified to receive that object. The person
should be specified using their index ranging from 1 to {n}, corresponding
to their position in the above scores lists.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

-----JSON TEMPLATE-----
{"Object 1": "index (from 1 to {n})", "Object 2": "index (from 1 to {n})", ...,

"Object {m}":"index (from 1 to {n})"}↪→

-----END OF JSON TEMPLATE-----

A.5 Closing Statement 834

For the closing statement, all prompts that do not ask the LLM to find a specific fairness criteria simply state the following: 835

Remember, your goal is to allocate these objects in the fairest way possible.

Again, in the prompts with different contexts, the words “person” and “object” were changed to reflect this context. 836

For the prompts that specify certain fairness criteria, the prompt reminds the LLM that fairness means finding that criteria. 837

For the EF1 prompt: 838

Remember, your goal is to make the allocation that you respond with fair by
ensuring that it is EF1.↪→

A complete example of the default prompt The following is the complete base prompt (using the default choice for each 839

component) for the synthetic experiments, formatted to run on an example instance with 3 agents and 6 goods: 840



Your task is to fairly allocate 6 objects between 3 people. Each person was
asked to assign each object a score between 0 and 10 that represents their
subjective value for that object, with a higher score representing a greater
desire to receive that object.

↪→

↪→

↪→

The scores that each person assigned to the objects are provided below in the
following format: Each person is labeled using indices from 1 to 3 ("Person
1", "Person 2", etc.). For each person, there is an associated list of
length 6. The nth entry in this list will correspond to the score that
person assigned to the nth object.

↪→

↪→

↪→

↪→

-----SCORES-----
Person 1: [1, 5, 7, 3, 4, 0]
Person 2: [5, 9, 1, 6, 3, 3]
Person 3: [8, 0, 2, 1, 5, 4]
-----END OF SCORES-----

Using the people's scores, you should allocate the objects to the people in the
fairest way possible. Included below is a json template indicating how your
response should be formatted. Please format your response EXACTLY according
to the following json template. DO NOT respond with any additional text or
reasoning about your decision. The json template requires that for each
object, a single person be specified to receive that object. The person
should be specified using their index ranging from 1 to 3.

↪→

↪→

↪→

↪→

↪→

↪→

-----JSON TEMPLATE-----
{"Object 1": "index (from 1 to 3)", "Object 2": "index (from 1 to 3)", "Object

3": "index (from 1 to 3)", "Object 4": "index (from 1 to 3)", "Object 5":
"index (from 1 to 3)", "Object 6": "index (from 1 to 3)"}

↪→

↪→

-----END OF JSON TEMPLATE-----

Remember, your goal is to allocate these objects in the fairest way possible.



B Technical Experiment Details 841

In Tables 1 to 4, we highlight the number of input and output tokens required for each model to run the the default prompt 842

experiments against the synthetic data. In Tables 5 and 6, we show the tokens required for running the default prompt experi- 843

ments against the Spliddit.org data. The other experiments (Context, Framing, and Reasoning prompts) took roughly the same 844

number of tokens. 845

n 2 3 4 5 6 7 8 9 10

GPT 96400 121200 149600 181600 217200 256400 299200 345600 395600
Gemini 92961 119610 153264 191249 233997 281337 333447 390507 458992
Claude 88600 109400 133800 161800 193400 228600 267400 309800 355800

Table 1: Number of input tokens required to run 200 tests for n agent, 3n goods synthetic instances

n 2 3 4 5 6 7 8 9 10

GPT 7628 11268 15020 18575 22824 26135 29795 34023 37052
Gemini 9600 14400 19800 25210 30592 36000 41400 46864 52695
Claude 10200 15000 19800 24600 29400 34200 39000 43800 48600

Table 2: Number of output tokens required to run 200 tests for n agent, m goods synthetic instances

m 5 10 15 20 25

GPT 101600 141600 181600 221600 261600
Gemini 101699 145439 191249 236857 282718
Claude 197400 270400 343400 416400 489400

Table 3: Number of input tokens required to run 200 tests for 5 agents, m goods synthetic instances

m 5 10 15 20 25

GPT 6456 12525 18575 24498 30795
Gemini 8000 16205 25210 34238 43224
Claude 15056 29125 43175 57098 71395

Table 4: Number of output tokens required to run 200 tests for 5 agents, m goods synthetic instances

n 2 3 4 ⩾ 5

GPT 601695 1676071 71220 83306
Gemini 547436 1541500 64450 78832
Claude 558487 1539268 64084 74976

Table 5: Number of input tokens required to run tests for one round of tests on the Spliddit.org instances

n 2 3 4 ⩾ 5

GPT 39079 121541 6073 7106
Gemini 48828 153333 8004 9558
Claude 52583 163051 8144 9486

Table 6: Number of output tokens required to run tests for one round of tests on the Spliddit.org instances

Next, in Table 7, we also record the average time it took for each of the LLMs to return a query. Note that the time an LLM 846

takes to return a query through an API call is dependent on the traffic to the API when making the call. This can be seen clearly 847

Spliddit.org
Spliddit.org
Spliddit.org


in the n = 5 column of Table 7. These tests were run at a different time then the others, causing them to be a notable outlier to848

the general increasing trend of other values of n in GPT and Claude. Also in Table 7, we record the amount of time it took849

for each of our baseline algorithms to compute.850

n 2 3 4 5 6 7 8 9 10

GPT 1.03 1.32 1.57 2.08 1.99 2.29 2.72 2.84 2.92
Gemini 1.12 1.37 1.68 2.00 2.29 2.61 2.94 3.33 3.69
Claude 1.62 3.49 4.84 2.69 3.73 3.76 5.39 5.73 6.55
MNW 0.01 0.04 0.11 0.18 0.35 0.60 0.97 1.82 2.53
MSW 1.4e−5 2.4e−5 3.3e−5 4.8e−5 6.3e−5 7.9e−5 1.0e−4 1.3e−4 1.5e−4
RR 8.0e−6 1.3e−5 1.9e−5 2.7e−5 3.7e−5 4.4e−5 5.4e−5 6.4e−5 7.6e−5

Table 7: Average runtime (in seconds) to solve a default query instance with n agents and 3n goods, reported for each model and algorithm.

C Additional Criteria851

In this section, we provide the formal definitions of all fairness and efficiency criteria we use. Then, in the subsequent sub-852

sections, we provide all the plots corresponding to various criteria that were omitted from the main body due to the lack of853

space.854

Fairness criteria. For an allocation A, we measure the following five fairness criteria.855

• EF approximation: The largest value α ∈ [0, 1] such that, for all i, j ∈ N vi(Ai) ⩾ α · vi(Aj).856

• EF1 approximation: The largest value α ∈ [0, 1] such that, for all i, j ∈ N with Aj ̸= ∅, there exists a good g ∈ Aj such857

that vi(Ai) ⩾ α · vi(Aj \ {g}).858

• PROP approximation: The largest value α ∈ [0, 1] such that, for all i ∈ N vi(Ai) ⩾ α · vi(M)
n .859

• PROP1 approximation: The largest value α ∈ [0, 1] such that, for all i ∈ N with Ai ̸= M , there exists a good g ∈ M \Ai860

such that vi(Ai ∪ {g}) ⩾ α · vi(M)
n .861

• MMS approximation: The largest value α ∈ [0, 1] such that, for all i ∈ N and partition B = (B1, . . . , Bn) of M into n862

bundles, vi(Ai) ⩾ α ·mink∈[n] vi(Bk).863

Efficiency criteria. For an allocation A, we measure the following two efficiency criteria.864

• SW approximation: The largest value α ∈ [0, 1] such that for all allocations B,
∑

i∈N vi(Ai) ⩾ α ·∑i∈N vi(Bi).865

• PO approximation: The largest value α ∈ [0, 1] such that for all allocations B, there exists an agent i ∈ N with vi(Ai) ⩾866

α · vi(Bi).867

Above, we highlighted that EF1 is a stronger criterion than PROP1. In the plots in this section, one may notice the PROP1868

approximations are especially high for all models compared to any other fairness criterion. This is because when an agent’s869

maximum value for any object is at least an α-fraction of its proportionality share, α-PROP1 is “free” in that every feasible870

allocation is α-PROP1. In the synthetic instances sampled from our distribution, this occurs frequently with a very high value of871

α (e.g., more than 90% of the instances we generated satisfied this condition with α ⩾ 0.7). For this reason, we believe PROP1872

is a less interesting fairness metric for evaluating allocations returned by LLMs, at least for our class of synthetic valuations.873

However, we still include the PROP1 approximation plots for completeness.874



C.1 Default Prompt Plots, Synthetic Data 875
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Figure 8: Comparison of models for the default prompt by varying n, m, or λ.
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Figure 9: Comparison of models based on varying goals with m = 3n and λ = 20.



C.3 Varying Input Valuation Framing Results, Synthetic Data 877
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Figure 10: Comparison of models under different input valuation framings with m = 3n and λ = 20.
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Figure 11: Comparison of models based on varying context with m = 3n and λ = 20.
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Figure 12: Comparison of models and algorithms based on fairness criteria for the default prompt by varying n, m, or λ.
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Figure 13: Comparison of models and algorithms based on efficiency criteria for the default prompt by varying n, m, or λ.
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Figure 14: Radar charts showing average approximation performance of LLMs and the baselines across fairness (green) and efficiency
(orange) metrics. Each axis corresponds to a criterion, with higher values (closer to the outer edge) indicating better approximation to that
metric.
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Figure 15: Comparison of models and algorithms with the default problem on Spliddit instances.



E.2 Varying Context 882
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Figure 16: Comparison of models based on varying context with the Spliddit instances.

E.3 Varying Input Valuation Framing 883
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Figure 17: Comparison of models under different input valuation framings with Spliddit instances.



E.4 Varying Goals884
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Figure 18: Comparison of models based on varying goals with the Spliddit instances.



F A Closer Look at Efficiency vs Fairness 885

In this section, we conduct an additional experiment in which we more closely examine the behavior of the LLMs in a more 886

controlled environment. 887

1 2 3 4 5 6 7 8 9 10

1 1.00 0.90 0.54 0.76 0.68 0.54 0.32 0.32 0.40 0.16
2 0.98 1.00 0.98 0.94 0.96 0.90 0.80 0.74 0.42 0.60
3 0.90 0.94 1.00 1.00 1.00 0.96 0.90 0.84 0.90 0.84
4 0.82 0.94 0.98 1.00 0.98 0.96 0.90 0.96 0.94 0.90
5 0.70 0.70 0.92 0.98 1.00 0.98 0.96 1.00 0.94 0.98
6 0.72 0.76 0.94 0.98 1.00 1.00 0.98 1.00 0.96 0.94
7 0.46 0.56 0.80 0.96 0.98 1.00 1.00 1.00 0.96 0.94
8 0.52 0.36 0.64 0.92 1.00 1.00 1.00 1.00 1.00 1.00
9 0.54 0.62 0.80 0.94 0.98 1.00 0.98 1.00 1.00 1.00

10 0.24 0.48 0.56 0.90 0.90 0.96 0.98 1.00 1.00 1.00

Table 8: GPT Default Prompt percentage of balanced instances as utilities vary for both agents

1 2 3 4 5 6 7 8 9 10

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 1.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.62 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.18 0.06 0.08
7 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.24 0.30
8 0.00 0.00 0.00 0.00 0.30 1.00 1.00 1.00 1.00 0.94
9 0.00 0.00 0.00 0.00 0.00 0.56 1.00 1.00 1.00 1.00

10 0.00 0.00 0.00 0.00 0.00 0.58 0.96 1.00 1.00 1.00

Table 9: Gemini Default Prompt percentage of balanced instances as utilities vary for both agents

1 2 3 4 5 6 7 8 9 10

1 1.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.20 1.00 0.12 0.08 0.02 0.02 0.02 0.04 0.02 0.00
3 0.10 0.92 1.00 0.20 0.12 0.02 0.00 0.10 0.04 0.26
4 0.02 0.34 0.98 1.00 0.94 0.12 0.02 0.06 0.06 0.28
5 0.00 0.02 0.70 0.84 1.00 0.96 0.72 0.50 0.38 0.60
6 0.00 0.02 0.12 0.86 1.00 1.00 0.96 0.96 0.40 0.98
7 0.00 0.00 0.02 0.52 0.98 1.00 1.00 1.00 1.00 1.00
8 0.00 0.00 0.00 0.26 0.70 0.98 1.00 1.00 1.00 1.00
9 0.00 0.00 0.10 0.28 0.88 1.00 1.00 1.00 1.00 1.00

10 0.00 0.00 0.02 0.28 0.60 0.52 0.98 0.96 0.84 1.00

Table 10: Claude Default Prompt percentage of balanced instances as utilities vary for both agents



F.1 Experimental Setup888

For each x ∈ {1, . . . , 10}, we prompted the models 50 times on an instance with 2 agents and 2 goods, where Agent 1 had889

a utility of x for both of the 2 goods, and Agent 2 had a utility of y for both goods. The goal for this set of experiments was890

to create a controlled environment where finding the “correct” way to allocate the goods would be a trivial task, so the only891

deviation in the allocations returned by the models would be due to changing definitions of fairness.892

Consider the case when Agent 2 has a high utility value for both objects (x = 10). An allocator that is focused on EF1 as a893

fairness criteria will make the allocation balanced, allocating one good to each agent. In contrast, an allocator that is focused on894

high social welfare would allocate both goods to Agent 2. For each x, we can observe how often each model returns a balanced895

allocation vs. an allocation where both goods are given to the agent with the highest utility, and from that infer how different896

models interpret fairness. These results are shown in Table 8, Table 9, and Table 10.897

Results. Looking at Table 8, Table 9, and Table 10 help expand on the natural fairness-efficienct trade-off the different models898

are attempting to achieve by default. Again, GPT seems to be aiming for mostly balanced allocations, with unbalancedness899

only creeping in at the extreme corners of the graph. The trend of Claude and Gemini more favoring MUW allocations also900

holds, though the wider view we receive by letting Agent 1’s utility change paints a more nuanced picture. Gemini seem to901

allow slight deviations from MUW in favor of fairness. If the two agents’ utilities differ by only 1 or 2 points, then Gemini902

will provide an EF1 allocation, but as soon as the utility difference gets too large, it reverts to EF1. Claude on the other hand903

seems to strongly favor MUW when agents have lower utility levels, but gets more willing to sacrifice welfare for fairness when904

both agents have higher utility.905

Takeaway. Through experiments in this controlled environment, we gain more insights into how the LLMs interpret fairness,906

and how they are reacting to the different prompts. The results we observe here can help to give intuition for several of the907

results that were observed in the large-scale experiments in term of the fairness-efficiency trade-offs we are viewing.908

Of course, we cannot assume that all the trends that hold for such small instances will continue to hold as instances grow909

larger and more complex, but these tests give us very easily interpretable insights that could be used to better understand the910

thought process of LLMs.911
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