
Iterative Methods for Private Synthetic Data:
Unifying Framework and New Methods

Terrance Liu∗
Carnegie Mellon University

Pittsburgh, PA 15213
terrancl@andrew.cmu.edu

Giuseppe Vietri∗
University of Minnesota
Minneapolis, MN 55455
vietr002@umn.edu

Zhiwei Steven Wu
Carnegie Mellon University

Pittsburgh, PA 15213
zstevenwu@cmu.edu

Abstract

We study private synthetic data generation for query release, where the goal is to
construct a sanitized version of a sensitive dataset, subject to differential privacy,
that approximately preserves the answers to a large collection of statistical queries.
We first present an algorithmic framework that unifies a long line of iterative algo-
rithms in the literature. Under this framework, we propose two new methods. The
first method, private entropy projection (PEP), can be viewed as an advanced vari-
ant of MWEM that adaptively reuses past query measurements to boost accuracy.
Our second method, generative networks with the exponential mechanism (GEM),
circumvents computational bottlenecks in algorithms such as MWEM and PEP by
optimizing over generative models parameterized by neural networks, which cap-
ture a rich family of distributions while enabling fast gradient-based optimization.
We demonstrate that PEP and GEM empirically outperform existing algorithms.
Furthermore, we show that GEM nicely incorporates prior information from public
data while overcoming limitations of PMWPub, the existing state-of-the-art method
that also leverages public data.

1 Introduction

In this paper, we study the problem of differentially private query release: given a large collection of
statistical queries, the goal is to release approximate answers subject to the constraint of differential
privacy. We focus on the approach of synthetic data generation—that is, generate a privacy-preserving
"fake" dataset, or more generally a representation of a probability distribution, that approximates all
statistical queries of interest.

There has been a recent surge of work on practical algorithms for generating private synthetic data.
Even though they differ substantially in details, these algorithms share the same iterative form that
maintains and improves a probability distribution over the data domain: identifying a small collection
of high-error queries each round and updating the distribution to reduce these errors. Inspired by this
observation, we present a unifying algorithmic framework that captures these methods. Furthermore,
we develop two new algorithms, PEP and GEM, and extend the latter to the setting in which public
data is available. We summarize our contributions below:

Unifying algorithmic framework. We provide a framework that captures existing iterative algo-
rithms and their variations. We then argue that under this framework, the optimization procedures of
each method can be reduced to what loss function is minimized and how its distributional family is
parameterized (see Appendix B.2).

Private Entropy Projection (PEP). The first algorithm we propose is PEP, which can be viewed
as a more advanced version of MWEM with an adaptive and optimized learning rate. We show that

∗First two authors contributed equally.

Preprint. Under review.

PEP minimizes a regularized exponential loss function that can be efficiently optimized using an
iterative procedure. Moreover, we show that PEP monotonically decreases the error over rounds and
empirically finds that it achieves higher accuracy and faster convergence than MWEM.

Generative networks with the exponential mechanism (GEM). Like MWEM, PEP explicitly
maintains a joint distribution over the data domain, resulting in a runtime that is exponential in the
dimension of the data. Our second method, GEM, avoids this fundamental issue by optimizing the
absolute loss over a set of generative models parameterized by neural networks. We empirically
demonstrate that in the high-dimensional regime, GEM outperforms all competing methods.

Incorporating public data. Finally, we consider extensions of our methods that incorporate prior
information in publicly available datasets (e.g., previous data releases from the American Community
Survey (ACS) prior to their differential privacy deployment). We then demonstrate empirically that
GEM circumvents limitations of the state-the-art-method, PMWPub [13], via simple pretraining.

2 A Unifying Framework for Private Query Release

In this work, we consider the problem of finding a distribution in some family of distributions D that
achieves low error on all queries. More formally, given a private dataset P and a query set Q, we
solve an optimization problem of the form minD∈Dmaxq∈Q |q(P)− q(D)|.
In Algorithm 1, we introduce Adaptive Measurements, which serves as a general framework for
optimizing this objective. A each round t, the framework uses a private selection mechanism to
choose k queries Q̃t = {q̃t,1, . . . , q̃t,k} with higher error from the set Q. It then obtains noisy
measurements for the queries, which we denote by Ãt = {ãt,1, . . . , ãt,k}, where ãt,i = q̃t,i + zt,i
and zt,i is random Laplace or Gaussian noise. Finally, it updates its approximating distribution Dt,
subject to a loss function L that depends on Q̃1:t =

⋃t
i=1 Q̃i and Ã1:t =

⋃t
i=1 Ãi. We note that L

serves as a surrogate problem to our objective.

Algorithm 1: Adaptive Measurements
Input: Private dataset P with n records, set of linear queries Q, distributional family D, loss

functions L, number of iterations T
Initialize distribution D0 ∈ D
for t = 1, . . . , T do

Sample: For i ∈ [k], choose q̃t,i using a differentially private selection mechanism.
Measure: For i ∈ [k], let ãt,i = q̃t,i(P) + zt,i where z is Gaussian or Laplace noise
Update: Let Q̃t = {q̃t,1, . . . , q̃t,k} and Ãt = {ãt,1, . . . , ãt,k}. Update distribution D:

Dt ← arg minD∈D L
(
D, Q̃1:t, Ã1:t

)
where Q̃1:t =

⋃t
i=1 Q̃i and Ã1:t =

⋃t
i=1 Ãi.

end
Output H

(
{Dt}Tt=0

)
where H is some function over all distributions Dt (such as the average)

2.1 Maximum-Entropy Projection Algorithm

In this section, we propose an algorithm (Private Entropy Projection) PEP under the framework
Adaptive Measurements. Similar to MWEM, PEP employs the maximum entropy principle, which
also recovers a synthetic data distribution in the exponential family. However, since PEP adaptively
assigns weights to past queries and measurements, it has faster convergence and better accuracy than
MWEM. PEP’s loss function in Adaptive Measurements can be derived through a constrained
maximum entropy optimization problem.

minimize:
∑
x∈X

D(x) log (D(x)) (1)

subject to: ∀i∈[t] |ãi − q̃i(D)| ≤ γ,
∑
x∈X

D(x) = 1

2

Figure 1: Max error for 3-way marginals evaluated on ADULT and ACS PA-18 using privacy budgets
ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses a logarithmic scale. We evaluate using
the following workload sizes: ACS (reduced) PA-18: 455; ADULT (reduced): 35; ACS PA-18: 4096;
ADULT: 286. Results are averaged over 5 runs, and error bars represent one standard error.

We can ignore the constraint that ∀x∈XD(x) ≥ 0, because it will be satisfied automatically. The solu-
tion of (1) is an exponentially weighted distribution parameterized by the dual variables λ1, . . . , λt cor-
responding to the t constraints. Therefore, if we solve the dual problem of (1) in terms of the dual vari-
ables λ1, . . . , λt, then the distribution that minimizes (1) is given by Dt(x) ∝ exp

(∑t
i=1 λiq̃i(x)

)
.

Given that the set of distributions is parameterized by the variables λ1, . . . , λt, the constrained
optimization is then equivalent to minimizing the following exponential loss function:

LPEP
(
λ, Q̃1:t, Ã1:t

)
= log

(∑
x∈X

exp

(
t∑
i=1

λi (q̃i(x)− ãi)

))
+ γ‖λ‖1

We give an efficient iterative algorithm (Algorithm 2) for solving (1) in Appendix C.

2.2 Overcoming Computational Intractability with Generative Networks

Real-world datasets are often high-dimensional. In such cases, methods like MWEM and PEP suffer
from exponential running time, since they explicitly maintain a distribution over the entire data
domain X . To alleviate this issue, we introduce GEM, which (like PEP) optimizes over past queries
to improve accuracy but (unlike PEP) trains a generator network Gθ to implicitly learn a distribution
of the data domain, where Gθ can be any neural network parametrized by weights θ. As a result,
our method GEM can compactly represent a distribution for any data domain while enabling fast,
gradient-based optimization via auto-differentiation frameworks [17, 1]. Consequently, given some
batch size B, we train neural network general G to minimize the loss function

L
(
G, Q̃1:t, Ã1:t

)
=

t∑
i=1

∣∣∣∣∣∣ 1

B

B∑
j=1

fq̃i (G (zj))− ãi

∣∣∣∣∣∣ . (2)

We give additional details for GEM and its optimization problem in the Appendix D

3 Empirical Evaluation

In this section, we empirically evaluate GEM and PEP against baseline methods on the ACS [18]
and ADULT [7] datasets in both the standard and public-data-assisted settings.

Data. To evaluate our methods, we construct public and private datasets from the ACS and ADULT
datasets by following the preprocessing steps outlined in Liu et al. [13]. For the ACS, we use 2018
data for the state of Pennsylvania (PA-18) as the private dataset. For the public dataset, we select
2010 data for Pennsylvania (PA-10) and 2018 data for California (CA-18). In our experiments on the
ADULT dataset, private and public datasets are sampled from the complete dataset (using a 90-10
split). In addition, we construct low-dimensional versions of both datasets, which we denote as ACS
(reduced) and ADULT (reduced), in order to evaluate PEP and MWEM.

3

Figure 2: Max error for 3-way marginals with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and
δ = 1

n2 . The x-axis uses a logarithmic scale. Results are averaged over 5 runs, and error bars represent
one standard error. (a) ACS PA-18 (workloads = 4096). We evaluate public-data-assisted algorithms
with the following public datasets: Left: 2018 California (CA-18); Right: 2010 Pennsylvania (PA-10).
(b) ADULT (workloads = 286). We evaluate GEM using both the complete public data (GEMPub)
and a reduced version that has fewer attributes (GEMPub (reduced)) .

Baselines. We compare our algorithms to the strongest performing baselines2 in both low and high-
dimensional settings, presenting results for MWEM, DualQuery, and RAPsoftmax in the standard
setting and PMWPub in the public-data-assisted setting.

3.1 Results

Standard setting. In Figure 1, we observe that in low-dimensional settings, PEP and GEM con-
sistently achieve strong performance compared to the baseline methods. While MWEM and PEP
are similar in nature, PEP outperforms MWEM on both datasets across all privacy budgets except
ε ∈ {0.1, 0.15} on ACS (reduced), where the two algorithms perform similarly. In addition, both
PEP and GEM outperform RAPsoftmax. Moving on to the more realistic setting in which the data
dimension is high, we again observe that GEM outperforms RAPsoftmax on both datasets.

Public-data-assisted setting. Next, we evaluate GEM in the public-data-assisted PAP [3] setting in
which algorithms have access to public data that is free of privacy concerns. We refer to the PAP
variant of GEM as GEMPub (please refer to Appendix E for additional details). We present the three
following categories of public data.

Public data with sufficient support. To evaluate our methods when the public dataset for ACS PA-18
has low best-mixture-error [13], we consider the public dataset ACS PA-10. We observe in Figure 1
that GEMPub performs similarly to PMWPub, with both outperforming GEM (without public data).

Public data with insufficient support. In Figure 2a, we present CA-18 as an example of this failure
case in which the best-mixture-error is over 10%, and so for any privacy budget, PMWPub cannot
achieve max errors lower that this value. However, GEMPub is not restricted by best-mixture-error
and significantly outperforms GEM (without public data) when using either public dataset.

Public data with incomplete data domains. To simulate this setting, we construct a reduced version
of the public dataset in which we keep only 7 out of 13 attributes in ADULT. To evaluate GEMPub,
we pretrain the generator G using all 3-way marginals on both the complete and reduced versions of
the public dataset and then finetune on the private dataset (we denote these two finetuned networks
as GEMPub and GEMPub (reduced) respectively). We present results in Figure 2b. Given that the
public and private datasets are sampled from the same distribution, GEMPub unsurprisingly performs
extremely well. However, despite only being pretrained on a small fraction of all 3-way marginal
queries (≈ 20k out 334k), GEMPub (reduced) is still able to improve upon the performance of
GEM and achieve lower max error for all privacy budgets.

2RAP performs poorly in our experiments, and so we introduce a variant of RAP called RAPsoftmax (see end
of Appendix B.2) and compare the two methods in Appendix F.3

4

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[2] Sergul Aydore, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron
Roth, and Ankit Siva. Differentially private query release through adaptive projection. arXiv
preprint arXiv:2103.06641, 2021.

[3] Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan R. Ullman, and Zhi-
wei Steven Wu. Private query release assisted by public data. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 695–703. PMLR, 2020. URL
http://proceedings.mlr.press/v119/bassily20a.html.

[4] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P Bhavnani,
James Brian Byrd, and Casey S Greene. Privacy-preserving generative deep neural networks
support clinical data sharing. Circulation: Cardiovascular Quality and Outcomes, 12(7):
e005122, 2019.

[5] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions,
and lower bounds. In Proceedings of the 14th Conference on Theory of Cryptography, TCC
’16-B, pages 635–658, Berlin, Heidelberg, 2016. Springer.

[6] Mark Cesar and Ryan Rogers. Unifying privacy loss composition for data analytics. arXiv
preprint arXiv:2004.07223, 2020.

[7] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[8] Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy, 2016.

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In Proceedings of the 3rd Conference on Theory of Cryptography,
TCC ’06, pages 265–284, Berlin, Heidelberg, 2006. Springer.

[10] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhiwei Steven
Wu. Dual query: Practical private query release for high dimensional data. In International
Conference on Machine Learning, pages 1170–1178. PMLR, 2014.

[11] Moritz Hardt, Katrina Ligett, and Frank Mcsherry. A simple and practical algorithm for
differentially private data release. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Cur-
ran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf.

[12] Daniel Kifer. Consistency with external knowledge: The topdown algorithm, 2019. http:
//www.cse.psu.edu/~duk17/papers/topdown.pdf.

[13] Terrance Liu, Giuseppe Vietri, Thomas Steinke, Jonathan Ullman, and Zhiwei Steven Wu.
Leveraging public data for practical private query release. arXiv preprint arXiv:2102.08598,
2021.

[14] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala. Optimizing
error of high-dimensional statistical queries under differential privacy. Proc. VLDB Endow.,
11(10):1206–1219, June 2018. ISSN 2150-8097. doi: 10.14778/3231751.3231769. URL
https://doi.org/10.14778/3231751.3231769.

[15] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. Graphical-model based estimation and
inference for differential privacy. In International Conference on Machine Learning, pages
4435–4444. PMLR, 2019.

5

https://www.tensorflow.org/
https://www.tensorflow.org/
http://proceedings.mlr.press/v119/bassily20a.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://proceedings.neurips.cc/paper/2012/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf
http://www.cse.psu.edu/~duk17/papers/topdown.pdf
http://www.cse.psu.edu/~duk17/papers/topdown.pdf
https://doi.org/10.14778/3231751.3231769

[16] Marcel Neunhoeffer, Steven Wu, and Cynthia Dwork. Private post-{gan} boosting. In Inter-
national Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=6isfR3JCbi.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[18] S Ruggles et al. Ipums usa: Version 10.0, doi: 10.18128/d010. V10. 0, 2020.
[19] Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven Wu. New oracle-efficient

algorithms for private synthetic data release. In International Conference on Machine Learning,
pages 9765–9774. PMLR, 2020.

[20] Yasin Yazıcı, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, and Vi-
jay Chandrasekhar. The unusual effectiveness of averaging in gan training. arXiv preprint
arXiv:1806.04498, 2018.

6

https://openreview.net/forum?id=6isfR3JCbi
https://openreview.net/forum?id=6isfR3JCbi
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

A Preliminaries

Let X denote a finite d-dimensional data domain (e.g., X = {0, 1}d). Lete U be the uniform
distribution over the domain X . Throughout we assume a private dataset P that contains the data
of n individuals. For any x ∈ X , we represent P (x) as the normalized frequency of x in dataset P
such that

∑
x∈X P (x) = 1. One can think of a dataset P either as a multi-set of items from X or as

a distribution over X .

We consider the problem of accurately answering an extensive collection of linear statistical queries
(also known as counting queries) about a dataset. Given a finite set of queries Q, our goal is to find a
synthetic dataset D such that the maximum error over all queries in Q, defined as maxq∈Q |q(P)−
q(D)|, is as small as possible. For example, one may query a dataset by asking the following: how
many people in a dataset have brown eyes? More formally, a statistical linear query qφ is defined by
a predicate function φ : X → {0, 1}, as qφ(D) =

∑
x∈X φ(x)D(x) for any normalized dataset D.

Below, we define an important, and general class of linear statistical queries called k-way marginals.
Definition 1 (k-way marginal). Let the data universe with d categorical attributes be X =
(X1 × . . .×Xd), where each Xi is the discrete domain of the ith attribute Ai. A k-way marginal
query is defined by a subset S ⊆ [d] of k features (i.e., |S| = k) plus a target value y ∈

∏
i∈S Xi for

each feature in S. Then the marginal query φS,y(x) is given by:

φS,y(x) =
∏
i∈S

1 (xi = yi)

where xi ∈ Xi means the i-th attribute of record x ∈ X . Each marginal has a total of
∏k
i=1 |Xi|

queries, and we define a workload as a set of marginal queries.

We consider algorithms that input a dataset P and produce randomized outputs that depend on the
data. The output of a randomized mechanismM : X ∗ → R is a privacy preserving computation if it
satisfies differential privacy (DP) [9]. We say that two datasets are neighboring if they differ in at
most the data of one individual.
Definition 2 (Differential privacy [9]). A randomized mechanism M : Xn → R is (ε, δ)-
differentially privacy, if for all neighboring datasets P, P ′ (i.e., differing on a single person), and all
measurable subsets S ⊆ R we have:

Pr [M(P) ∈ S] ≤ eεPr [M(P ′) ∈ S] + δ

Finally, a related notion of privacy is called concentrated differential privacy (zCDP) [8, 5], which
enables cleaner composition analyses for privacy.
Definition 3 (Concentrated DP, Dwork and Rothblum [8], Bun and Steinke [5]). A randomized
mechanismM : Xn → R is 1

2 ε̃
2-CDP, if for all neighboring datasets P, P ′ (i.e., differing on a

single person), and for all α ∈ (1,∞),

Rα (M(P) ‖ M(P ′)) ≤ 1

2
ε̃2α

where Rα (M(P) ‖ M(P ′)) is the Rényi divergence between the distributionsM(P) andM(P ′).

7

B Adaptive Measurements

B.1 Privacy analysis

We present the privacy analysis of the Adaptive Measurements framework while assuming that
the exponential and Gaussian mechanism are used for the private sample and noisy measure steps
respectively. More specifically, suppose that we (1) sample k queries using the exponential mechanism
with the score function:

Pr [q̃t,i = q] ∝ exp (αε0n|q(P)− q(Dt−1)|)

and (2) measure the answer to each query by adding Gaussian noise

zt,i ∼ N

(
0,

(
1

n(1− α)ε0

)2
)
.

Letting ε0 =
√

2ρ

T(α2+(1−α)2)
and α ∈ (0, 1) be a privacy allocation hyperparameter (higher values

of α allocate more privacy budget to the exponential mechanism), we present the following theorem:
Theorem 1. When run with privacy parameter ρ, Adaptive Measurements satisfies ρ-zCDP.
Moreover for all δ > 0, Adaptive Measurements satisfies(ε(δ), δ)-differential privacy, where
ε(δ) ≤ ρ+ 2

√
ρ log(1/δ).

We provide a proof sketch for Theorem 1.

Proof sketch. Fix T ≥ 1 and α ∈ (0, 1). (i) At each iteration t ∈ [T], Adaptive Measurements
runs the exponential mechanism with parameter 2αε0, which satisfies 1

8 (2αε0)
2

= 1
2 (αε0)

2-
zCDP [6], and the Gaussian mechanism with parameter (1− α)ε0, which satisfies 1

2 [(1− α)ε0]
2-

zCDP [5]. (ii) using the composition theorem for concentrated differential privacy [5],
Adaptive Measurements satisfies T

2

[
α2 + (1− α)2

]
ε2

0-zCDP after T iterations. (iii) Setting
ε0 =

√
2ρ

T(α2+(1−α)2)
, we conclude that Adaptive Measurements satisfies ρ-zCDP, which in turn

implies
(
ρ+ 2

√
ρ log(1/δ), δ

)
-differential privacy for all δ > 0 [5].

B.2 Choices of loss functions and distributional families

We note that in addition to the loss function L, a key component that differentiates algorithms under
this framework is the distributional family D that the output of each algorithm belongs to. Below,
we describe in more detail how existing algorithms fit into our general framework under different
choices of L and D.

MWEM from Hardt et al. [11] The traditional MWEM algorithm samples one query each round,
thus after t round the set of queries/measurements is Q̃t = {q̃1, . . . , q̃t}, Ãt = {ã1, . . . , ãt}. Then,
on round t, MWEM solves an entropy regularized problem. Let the t − 1 previous solutions be
D1, . . . Dt−1, then MWEM finds Dt by minimizing the following loss:

LMWEM(D, Q̃1:t, Ã1:t) =

t∑
i=1

∑
x∈X

D(x)q̃i(x) (ãi − q̃i(Di−1)) +
∑
x∈X

D(x) logD(x)

We can show that if Dt = arg minD∈∆(X) Lmwem(D, Q̃t, Ãt) then Dt evaluates to Dt(x) ∝
exp

(
−
∑t
i=1 q̃i(x)(ãi − q̃i(Di−1))

)
which is the exactly the distribution computed by MWEM.

See B.3 for derivation. We note that MWEM explicitly maintains (and outputs) a distribution D ∈ D
where D includes all distributions over the data domain X , making it computationally intractable for
high-dimension settings.

DualQuery from Gaboardi et al. [10] DualQuery is a special case of the
Adaptive Measurements framework in which the measurement step is skipped (abusing
notation, we say α = 1). Over all iterations of the algorithm, DualQuery keeps track of a

8

probability distribution over the set of queries Q via multiplicative weights, which we denote here by
Qt ∈ ∆(Q). On round t, DualQuery samples s queries (Q̃t = {q̃t,1, . . . q̃t,s}) from Qt and outputs
Dt that minimizes the the following loss function:

LDualQuery(D, Q̃t) =

s∑
i=1

q̃t,i(D)

The optimization problem for LDualQuery(D, Q̃t) is NP-hard. However, the algorithm encodes
the problem as a mix-integer-program (MIP) and takes advantage of available fast solvers. The final
output of DualQuery is the average 1

T

∑T
t=1Dt, which we note implicitly describes some empirical

distribution over X .

FEM from Vietri et al. [19] The algorithm FEM follows a follow the perturbed leader strategy. As
with MWEM, the algorithm FEM samples one query each round using the exponential mechanism,
so that the set of queries in round t is Q̃t = {q̃1, . . . , q̃t}. Then on round t, FEM chooses the next
distribution by solving:

LFEM(D, Q̃1:t) =

t∑
i=1

q̃t(D) + Ex∼D,η∼Exp(σ)d (〈x, η〉)

Similar to DualQuery, the optimization problem for LFEM also involves solving an NP-hard
problem. Additionally, the function LFEM does not have a close form due to the expectation term,
therefore FEM follows a sampling strategy to approximate the optimal solution. On each round FEM
generates s samples, with each sample is obtained as: Sample a noise vector η ∼ Exp(σ)d from
the exponential distribution and use a MIP to solve xt,i ← arg minx∈X

∑t
i=1 q̃t(D) + 〈x, η〉 for

all i ∈ [s]. Finally, the output on round t is the empirical distribution derived from the s samples:
Dt = {xt,1, . . . , xt,s}. The final output is the average 1

T

∑T
t=1Dt.

RAPsoftmax adapted from Aydore et al. [2] We note that RAP follows the basic structure of
Adaptive Measurements, where at iteration t, RAP solves the following optimization problem:

LRAP(D, Q̃1:t, Ã1:t) =
∑
i,j

(q̃i,j(D)− ãi,j)2

However, rather than outputting a dataset that can be expressed as some distribution over X , RAP
projects the noisy measurements onto a continuous relaxation of the binarized feature space of
X , outputting D ∈ [−1, 1]n

′×d (where n′ is an additional parameter). Therefore to adapt RAP to
Adaptive Measurements, we propose a new baseline algorithm that applies the softmax function in-
stead of clipping each dimension ofD to be between−1 and 1. For more details, refer to the Appendix
D, where describe how softmax is applied in GEM in the same way. With this slight modification,
this algorithm, which we denote as RAPsoftmax, fits nicely into the Adaptive Measurements frame-
work in which we output a synthetic dataset drawn from some probabilistic family of distributions
D =

{
σ(M)|M ∈ Rn′×d

}
.

B.3 MWEM loss function derivation

Fix round t, let ηt = ãt − q̃t(Di−1) be the learning rate during round t and Dt−1 be the distribution
from the previous round. Then MWEM’s loss function is:

Lmwem(D, Q̃t, Ãt) = ηt
∑
x∈X

D(x)q̃i(x) +
∑
x∈X

D(x) log

(
D(x)

Dt−1(x)

)
(3)

The optimization problem becomes Dt = arg minD∈∆(X) Lmwem(D, Q̃t, Ãt). Since the solution is a
distribution, then this problem is a constrained optimization problem. We can express the constrain
that the solution D is a distribution by

∑
x∈X D(x) = 1. To show that (3) is the MWEM’s true loss

9

function, we can write down the Lagrangian which is given by:

L = ηt
∑
x∈X

D(x)q̃i(x) +
∑
x∈X

D(x) log

(
D(x)

Dt−1(x)

)
+ λ

(∑
x∈X

D(x)− 1

)

Taking partial derivative with respect to D(x):

∂L
∂D(x)

= ηtq̃i(x) + 1 + log
D(x)

Dt−1(x)
+ λ

Setting ∂L
∂D(x) = 0 and solving for D(x):

D(x) = Dt−1(x) exp (−1− λ− ηtq̃i(x))

Finally, the value of λ is set such that D is a probability distribution:

D(x) =
Dt−1(x) exp (−ηtq̃t(x))∑
x∈X Dt−1(x) exp (−ηtq̃t(x))

That concludes the derivation of MWEM’s loss function.

10

C PEP

Algorithm 2: Exponential Weights Projection
Input: Error tolerance γ, linear queries Q = {q̃1, . . . , q̃T }, and noisy measurements
{ã1, . . . , ãT }.

Objective: Minimize RE (D ‖ U) such that ∀i∈[T] |q̃i(D)− ãi| ≤ γ.
Initialize D0 to be the uniform distribution over X , and t← 0.
while maxi∈[T] |âi − q̃i(Dt)| > γ do

Choose: i ∈ [T] with i← arg maxj∈[T] |ãj − q̃j(Dt)|.
Update: For all x ∈ X , set Dt+1(x)← Dt(x)e−αtq̃i(x), where −αt = ln

(
(ãi)(1−q̃i(Dt))
(1−ãi)q̃i(Dt)

)
.

t← t+ 1
end
Output: DT

We give the exact details of PEP in Algorithm 2

C.1 PEP derivations

In this section we derive the loss function that algorithm PEP optimizes over on round t. Fix
round t, given a subset of queries Q̃t ⊂ Q that were selected using a private mechanism and noisy
measurements Ãt. Then algorithm PEP finds a feasible solution to problem:

minimize: RE (D ‖ U) (4)

subject to: ∀i∈[t] |ãi − q̃i(D)| ≤ γ,
∑
x∈X

D(x) = 1

Suppose that we run PEP with zCDP privacy parameter ρ and T rounds, then by composition each
round mush satisfy ρ

T -zCDP. Therefore the noisy measurements are given by For every query q ∈ Q̃t,
by the properties of the Gaussian mechanism we have that |ãi − q̃i(P)| ≤ |Q̃t| log(|Q|/β)

ε for all
i ∈ [t] with probability at least 1− β. Let γ = log(|Q|/β)

ε , then our algorithm solves the following
constrained optimization problem using iterative projection:

The Lagrangian of 4 is :

L = RE (D ‖ U) +

t∑
i=1

λ+
i (ãi − q̃i(D)− γ) +

t∑
i=1

λ−i (q̃i(D)− ãi − γ) + µ

(∑
x

D(x)− 1

)
Let λ ∈ Rt be a vector with, λi = λ−i − λ

+
i , then

L = RE (D ‖ U) +

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ
t∑
i=1

(
λ+
i + λ−i

)
+ µ

(∑
x

D(x)− 1

)
(5)

where ‖λ‖1 =
∑t
i=1

(
λ+
i + λ−i

)
.

Taking the derivative with respect to D(x) and setting to zero we get:

0 =
∂L

∂D(x)
= log

(
D(x)

U(x)

)
+ 1 +

t∑
i=1

λiq̃i(x) + µ

Then for any x ∈ X we have

D(x) = U(x) exp

(
−

t∑
i=1

λiq̃i(x)− µ− 1

)

The slack variable µ must be selected to satisfy the constrain that
∑
x∈X D(x) = 1, therefore we get:

D(x) =
U(x)

Z
exp

(
−

t∑
i=1

λiq̃i(x)

)

11

where Z =
∑
x∈X U(x) exp

(
−
∑t
i=1 λiq̃i(x)

)
. Plugging into (5) we get

L =
∑
x∈X

D(x) log

(
D(x)

U(x)

)
+

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ‖λ‖1

=
∑
x∈X

D(x)

(
−

t∑
i=1

λiq̃i(x)

)
− log(Z) +

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ‖λ‖1

= −
t∑
i=1

λiq̃i(D)− log(Z) +

t∑
i=1

λiq̃i(D)−
t∑
i=1

λiãi − γ‖λ‖1

= − log(Z) +

t∑
i=1

λiãi − γ‖λ‖1

= − log

 Z

exp
(∑t

i=1 λiãi

)
− γ‖λ‖1

Substituting the Z we get:

L = − log

∑x∈X exp
(∑t

i=1 λiq̃i(x)
)

exp
(∑t

i=1 λiãi

)
− γ‖λ‖1

= − log

(∑
x∈X

exp

(
t∑
i=1

λi (q̃i(x)− ãi + γ)

))
− γ‖λ‖1

Finally, we have that the dual problem of (4)is finding a vector λ = (λ1, . . . , λt) that maximizes L.
We can write the dual problem as a minimization problem:

L(λ) = min
λ

log

(∑
x∈X

exp

(
t∑
i=1

λi (q̃i(x)− ãi)

))
+ γ‖λ‖1

12

D GEM

Algorithm 3: GEM
Input: Private dataset P , set of differentiable queries Q
Parameters: privacy parameter ρ, number of iterations T , privacy weighting parameter α, batch

size B, stopping threshold γ
Initialize generator network G0

Let ε0 =
√

2ρ

T(α2+(1−α)2)
for t = 1 . . . T do

Sample: Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)
Choose q̃t using the exponential mechanism with score

Pr [qt = q] ∝ exp
(αε0n

2
|q(P)− q(Gt−1 (z))|

)
Measure: Let ãt = q̃t(P) +N

(
0,
(

1
n(1−α)ε0

)2
)

Update: Gt = GEM-UPDATE (Gt−1, Qt, ãt, γ) where Qt = 〈q̃1, . . . , q̃t〉 and
ãt = 〈ã1, . . . , ãt〉

end
Let θout = EMA

(
{θj}Tj=T

2

)
where θj parameterizes Gj

Let Gout be the generator parameterized by θout
Output Gout (z)

Algorithm 4: GEM-UPDATE
Input: Generator G parameterized by θ, queries Q, noisy measurements ã, stopping threshold γ
Parameters: max iterations Tmax, batch size B
Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)

Let c = ã− 1
B

∑B
j=1 fQ (G (zj)) be errors over queries Q

Let i = 0
while i < Tmax and ‖c‖∞ ≥ γ do

Let J = {j | |cj | ≥ γ}
Update G to minimize the loss function with the stochastic gradient∇θ 1

|J|
∑
j∈J |cij |

Sample z = 〈z1 . . . zB〉 ∼ N (0, IB)

Let c = ã− 1
B

∑B
j=1 fQ (G (zj))

Let i = i+ 1
end
Output: G

Concretely, Gθ takes random Gaussian noise vectors z as input and outputs a representation Gθ(z)
of a product distribution over the data domain. Specifically, this product distribution representation
takes the form of a d′-dimensional probability vector Gθ(z) ∈ [0, 1]d

′
, where d′ is the dimension of

the data in one-hot encoding and each coordinate Gθ(z)j corresponds to the marginal probability of
a categorical variable taking on a specific value. To obtain this probability vector, we choose softmax
as the activation function for the output layer in Gθ. Therefore, for any fixed weights θ, Gθ defines
a distribution over X through the generative process that draws a random z ∼ N (0, σ2I) and then
outputs random x drawn from the product distribution Gθ(z). We will denote this distribution as Pθ.

To define the loss function for GEM, recall first that a query q : X → {0, 1} is function defined over
the data domain X that evaluates over a single row x ∈ X . In order to use gradient-based methods
to optimize Gθ, we need to obtain a differentiable variant of q. We observe that one can extend any
statistical query q to be a function that maps a distribution Pθ over X to a value in [0, 1]:

q(Pθ) = Ex∼Pθ [q(x)] =
∑
x∈X

Pθ(x)q(x) (6)

13

Note that any statistical query q is then differentiable w.r.t. θ:

∇θq(Pθ) =
∑
x∈X
∇Pθ(x)q(x) =

∑
x∈X

Ez

∇ d′∏
j=1

(Gθ(z)j)
xj

 q(x)

and we can compute stochastic gradients of q w.r.t. θ with random noise samples z. This also allows
us to derive a differentiable loss function in the Adaptive Measurements framework. In each
round t, given a set of selected queries Q̃1:t and their noisy measurements Ã1:t, GEM minimizes the
following `1-loss:

LGEM
(
θ, Q̃1:t, Ã1:t

)
=

t∑
i=1

|q̃i(Pθ)− ãi| . (7)

In general, we can optimize LGEM by running stochastic (sub)-gradient descent, but remark that
gradient computation can be expensive. To obtain a low-variance gradient estimate, one needs to
estimate the gradient∇θPθ(x) for a large number of x.

For many query classes, however, there exists some closed-form, differentiable function surrogate to
(7) that evaluates q(Gθ(z)) directly without operating over all x ∈ X . Concretely, we say that for
certain query classes, there exists some representation fq : ∆(X)→ [0, 1] for q that operates in the
probability space of X and is also differentiable.

In this work, we implement GEM to answer k-way marginal queries, which has been one of the most
important query classes for the query release literature [11, 19, 10, 13] and provides a differentiable
form when extended to be a function over distributions. In particular, we show that k-way marginals
can be rewritten as product queries (which are differentiable).

Definition 4 (Product query). Let p ∈ Rd′ be a representation of a dataset (in the one-hot encoded
space), and let S ⊆ [d′] be some subset of dimensions of p. Then we define a product query fS as

fS(p) =
∏
j∈S

pj (8)

A k-way marginal query φ can then be rewritten as (8), where p = Gθ(z) and S is the subset of
dimensions corresponding to the attributes A and target values y that are specified by φ (Definition
1). Thus, we can write any marginal query as

∏
j∈S Gθ(z)j , which is differentiable w.r.t. Gθ (and

therefore differentiable w.r.t weights θ by chain rule). Gradient-based optimization techniques can
then be used to solve (7). We show the exact details of GEM Algorithms 3 and 4. Note that given a
vector of queries Qt = 〈q1, . . . , qt〉, we define fQt(·) = 〈fq1(·), . . . , fqt(·)〉.

D.1 Loss function (for k-way marginals)

For any z ∈ R, G(z) outputs a distribution over each attribute, which we can use to calculate the
answer to a query via fq. In GEM however, we instead sample a noise vector z = 〈z1 . . . zB〉 and
calculate the answer to some query q as 1

B

∑B
j=1 fq (G (zj)). One way of interpreting the batch size

B is to consider each G (zj) as a unique distribution. In this sense, GEM models B sub-populations
that together comprise the overall population of the synthetic dataset. Using this notation, GEM
outputs then a generatorG ∈ D by optimizing `1-loss at each step t of the Adaptive Measurements
framework:

L
(
G, Q̃1:t, Ã1:t

)
=

t∑
i=1

∣∣∣∣∣∣ 1

B

B∑
j=1

fq̃i (G (zj))− ãi

∣∣∣∣∣∣ (9)

D.2 EMA output

We observe empirically that the performance of the last generator GT is often unstable. One possible
solution explored previously in the context of privately trained GANs is to output a mixture of
samples from a set of generators [4, 16]. In our algorithm GEM, we instead draw inspiration from
Yazıcı et al. [20] and output a single generator Gout whose weights θout are an exponential moving

14

average (EMA) of weights θt obtained from the latter half of training. More concretely, we define
θout = EMA

(
{θj}Tj=T

2

)
, where the update rule for EMA is given by θEMA

k = βθEMA
k−1 + (1−β)θk

for some parameter β.

D.3 Stopping threshold γ

To reduce runtime and prevent GEM from overfitting to the set of queries sampled, we run
GEM-UPDATE with some early stopping threshold set to an error tolerance γ. Empirically, we
find that setting γ to be half of the max error at each time step t. Because sampling the max query
using the exponential mechanism provides a noisy approximation of the true max error, we find that
using an exponential moving average (with β = 0.5) of the sampled max errors is a more stable
approximation of the true max error. More succinctly, we set γ = EMA({ci}ti=0) where ci is max
error at iteration i.

15

E Extending to the public-data-assisted setting

Incorporating prior information from public data has shown to be a promising avenue for private
query release [3, 13]. Therefore we extend PEP and GEM to the problem of public-data-assisted
private (PAP) query release [3] in which differentially private algorithms have access to public data.

PEPPub. Like in Liu et al. [13], we extend PEP by making two changes: (1) we maintain a
distribution over the public data domain and (2) we initialize the approximating distribution to that of
the public dataset. Therefore like PMWPub, PEPPub also restricts D to distributions over the public
data domain and initializes D0 to be the public data distribution.

GEM. We adapt GEM to utilize public data by initializing D0 to a distribution over the public dataset.
However, because in GEM, we implicitly model any given distribution using a generator G, we must
first train without privacy (i.e., without using the exponential and Gaussian mechanisms) a generator
Gpub, to minimize the `1-error over some set of queries Q̂. Note that in most cases, we can simply let
Q̂ = Q where Q is the collection of statistical queries we wish to answer privately. GEMPub then
initializes G0 to Gpub and proceeds with the rest of the GEM algorithm.

E.1 Overcoming limitations of PMWPub.

We describe the limitations of PMWPub by providing two example categories of public data that it
fails to use effectively. We then describe how GEMPub overcomes such limitations in both scenarios.

Public data with insufficient support. We first discuss the case in which the public dataset has an
insufficient support, which in this context means the support has high best-mixture-error [13]. Given
some support S ⊆ X , the best-mixture-error can be defined as

min
µ∈∆(S)

max
q∈Q

∣∣∣∣∣q (D)−
∑
x∈S

µxq(x)

∣∣∣∣∣
where µ ∈ ∆(S) is a distribution over the set S with µ(x) ≥ 0 for all x ∈ S and

∑
x∈S µ(x) = 1.

In other words, the best-mixture-error approximates the lowest possible max error that can be
achieved by reweighting some support, which in this case means PMWPub cannot achieve max errors
lower that this value. While Liu et al. [13] offer a solution for filtering out poor public datasets
ahead of time using a small portion of the privacy budget, PMWPub cannot be run effectively if no
other suitable public datasets exist. GEMPub however avoids this issue altogether because unlike
MWEM (and therefore PMWPub), which cannot be run without restricting the size of D, GEMPub

can utilize public data without restricting the distributional family it can represent (since both GEM
and GEMPub compactly parametrize any distribution using a neural network).

Public data with incomplete data domains. Next we consider the case in which the public dataset
only has data for a subset of the attributes found in the private dataset. We note that as presented in
Liu et al. [13], PMWPub cannot handle this scenario. One possible solution is to augment the public
data distribution by assuming a uniform distribution over all remaining attributes missing in the public
dataset. However, while this option may work in cases where only a few attributes are missing, the
missing support grows exponentially in the dimension of the missing attributes. In contrast, GEMPub

can still make use of such public data. In particular, we can pretrain a generator G on queries over
just the attributes found in the public dataset. Again, GEMPub avoids the computational intractability
of PMWPub in this setting since it parametrizes its output distribution with G.

16

F Additional empirical evaluation

F.1 Experimental details

To present a fair comparison, we implement all algorithms using the privacy mechanisms and zCDP
composition described in Section B.1. To implement GEM for k-way marginals, we select a simple
multilayer perceptron forGθ. Our implementations of MWEM and PMWPub output the last iterateDt

instead of the average and apply the multiplicative weights update rule using past queries according
to the pseudocode described in Liu et al. [13]. We report the best performing 5-run average across
hyperparameter choices for each algorithm.

We present hyperparameters used for methods across all experiments in Tables 1, 2, and 3. Our
implementaions of MWEM, DualQuery, and PMWPub are adapted from https://github.com/
terranceliu/pwm-pub. We implement RAP and RAPsoftmax ourselves using PyTorch. All exper-
iments are run using a personal desktop computer with an Intel® Core™ i5-4690K processor and
NVIDIA GeForce GTX 1080 Ti graphics card.

We obtain the ADULT and ACS datasets by following the instructions outlined in https://github.
com/terranceliu/pwm-pub. Our version of ADULT used to train GEMPub (reduced) uses the
following attributes: sex, race, relationship, marital-status, occupation, education-num, age.

Table 1: PEP hyperparameters
Dataset Parameter Values

All Tmax 25

ACS (red.) T
20, 30, 40, 50, 75

100, 125, 150, 175, 200

ADULT (red.) T
20, 30, 40, 50, 75

100, 125, 150, 175, 200

Table 2: GEM hyperparameters
Dataset Parameter Values

All

hidden layer sizes (512, 1024, 1024)
learning rate 0.0001
m 1000
α 0.67
Tmax 100

ACS T
100, 150, 200, 250, 300,

400, 500, 750, 1000

ACS (red.) T
50, 75, 100, 125, 150,

200, 250, 300

ADULT, ADULT (red.),
T

30, 40, 50, 60, 70,
ADULT (orig), 80, 90, 100, 125, 150,
LOANS 175, 200

F.2 Main experiments with additional metrics

In Figures 3, 4, and 5, we present the same results for the same experiments described in Figures
1 and 2, adding plots for mean error and root mean squared error (RMSE). For our experiments on
ACS PA-18 with public data, we also add results using 2018 data for Ohio (ACS OH-18), which
we note also low best-mixture-error. We note that generally, the relative performance between the
methods for these other two metrics is the same as for max error.

In addition, in Figure 4, we present results for PEPPub, a version of PEP similar to PMWPub that is
adapted to leverage public data (and consequently can be applied to high dimensional settings). We

17

https://github.com/terranceliu/pwm-pub
https://github.com/terranceliu/pwm-pub
https://github.com/terranceliu/pwm-pub
https://github.com/terranceliu/pwm-pub

Table 3: Baseline hyperparameters
Method Parameter Values

RAP

learning rate 0.001
n′ 1000
K 5, 10, 25, 50, 100
T 2, 5, 10, 25, 50, 75, 100

RAPsoftmax

learning rate 0.1
n′ 1000
K 5, 10, 25, 50, 100
T 2, 5, 10, 25, 50, 75, 100

MWEM T
100, 150, 200, 250, 300

400, 500, 750, 1000

MWEM (/w past queries) T 50, 75, 100, 150, 200, 250, 300

DualQuery η 2, 3, 4, 5
samples 25 50, 100, 250, 500

Figure 3: Max, mean, and root mean squared errors for 3-way marginals evaluated on ADULT and
ACS PA-18 using privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses
a logarithmic scale. We evaluate using the following workload sizes: ACS (reduced) PA-18: 455;
ADULT (reduced): 35; ACS PA-18: 4096; ADULT: 286. Results are averaged over 5 runs, and error
bars represent one standard error.

note that PEPPub performs similarly to PMWPub, making it unable to perform well when using ACS
CA-18 as a public dataset (for experiments on ACS PA-18). Similarly, it cannot be feasibly run for
the ADULT dataset when the public dataset is missing a significant number of attributes.

18

Figure 4: Max, mean, and mean squared error for 3-way marginals on ACS PA-18 (workloads =
4096) with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . We evaluate public-data-
assisted algorithms with the following public datasets: Left: 2018 California (CA-18); Center: 2010
Pennsylvania (PA-10); Right: 2018 Ohio (PA-10). The x-axis uses a logarithmic scale. Results are
averaged over 5 runs, and error bars represent one standard error.

Figure 5: Max, mean, and mean squared error for 3-way marginals on ADULT (workloads = 286)
with privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . We evaluate GEM using both the
complete public data (GEMPub) and a reduced version that has fewer attributes (GEMPub (reduced)).
The x-axis uses a logarithmic scale. Results are averaged over 5 runs, and error bars represent one
standard error.

19

Figure 6: Comparison of RAP and RAPsoftmax w.r.t max error for 3-way marginals evaluated on
ADULT and ACS PA-18 using privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The
x-axis uses a logarithmic scale. We evaluate using the following workload sizes: ACS (reduced)
PA-18: 455; ACS PA-18: 4096; ADULT (reduced): 286; ADULT: 35. Results are averaged over 5
runs, and error bars represent one standard error.

F.3 Comparisons against RAP

In Figure 6, we show failures cases for RAP. Again, we see that RAPsoftmax outperforms RAP in
every setting. However, we observe that aside from ADULT (reduced), RAP performs extremely
poorly across all privacy budgets.

To account for this observation, we hypothesize that by projecting each measurement to Aydore et al.
[2]’s proposed continuous relaxation of the synthetic dataset domain, RAP produces a synthetic
dataset that is inconsistent with the semantics of an actual dataset. Such inconsistencies make it more
difficult for the algorithm to do well without seeing the majority of high error queries.

Consider this simple example comparing GEM and RAP. Suppose we have some binary attribute
A ∈ {0, 1} and we have P (A = 0) = 0.2 and P (A = 1) = 0.8. For simplicity, suppose that the
initial answers at t = 0 for both algorithms is 0 for the queries qA=0 and qA=1. Assume at t = 1 that
the privacy budget is large enough such that both algorithms select the max query qA=1, which gives
us an error or 0.8. After a single iteration, both algorithms can reduce the error of this query to 0. In
RAP, the max error then is 0.2 (for the next largest error query qA=0). However for GEM to get the
correct answer for qA=1, it must learn a distribution (due to the softmax activation function) such that
P (A = 1) = 0.8, which naturally forces P (A = 0) = 0.2. In this way, GEM can reduce the errors
of both queries in one step, giving it an advantage over RAP.

In general, algorithms within the Adaptive Measurements framework have this advantage in that
the answers it provides must be consistent with the data domain. For example, if again we consider the
two queries for attribute A, a simple method like the Gaussian or Laplace mechanism has a nonzero
probability of outputting noisy answers for qA=0 and qA=1 such that P (A = 0) + P (A = 1) 6= 1.
This outcome however will never occur in Adaptive Measurements.

Therefore, we hypothesize that RAP tends to do poorly as you increase the number of high error
queries because the algorithm needs to select each high error query to obtain low error. Synthetic
data generation algorithms can more efficiently make use of selected query measurements because
their answers to all possible queries must be consistent. Referring to the above example again, there

20

may exist two high error queries qA=0 and qA=1, but only one needs to be sampled to reduce the
errors of both.

We refer readers to Appendix F.6, where we use the above discussion to account for how the way in
which the continuous attributes in ADULT are preprocessed can impact the effectiveness of RAP.

F.4 Discussion of HDMM

HDMM [14] is an algorithm designed to directly answer a set of workloads, rather than some arbitrary
set of queries. In particular, HDMM optimizes some strategy matrix to represent each workload of
queries that in theory, facilitates an accurate reconstruction of the workload answers while decreasing
the sensitivity of the privacy mechanisms itself. In their experiments, McKenna et al. [14] show strong
results w.r.t. RMSE, and the U.S. Census Bureau itself has incorporated aspects of the algorithm into
its own releases [12].

We originally planned to run HDMM as a baseline for our algorithms in the standard setting, but after
discussing with the original authors, we learned that currently, the available code for HDMM makes
running the algorithm difficult for the ACS and ADULT datasets. There is no way to solve the least
square problem described in the paper for domain sizes larger than 109, and while the authors admit
that HDMM could possibly be modified to use local least squares for general workloads (outside of
those defined in their codebase), this work is not expected to be completed in the near future.

We also considered running HDMM+PGM [15], which replaces the least squares estimation problem
a graphical model estimation algorithm. Specifically, using (differentially private) measurements to
some set of input queries, HDMM+PGM infers answers for any workload of queries. However, the
memory requirements of the algorithm scale exponentially with dimension of the maximal clique
of the measurements, prompting users to carefully select measurements that help build a useful
junction tree that is not too dense. Therefore, the choice of measurements and cliques can be seen as
hyperparameters for HDMM+PGM, but as the authors pointed out to us, how such measurements
should be selected is an open problem that hasn’t been solved yet. In general, cliques should be
selected to capture correlated attributes without making the size of the graphical model intractable.
However, we were unsuccessful in finding a set of measurements that achieved sensible results
(possibly due to the large number of workloads our experiments are designed to answer) and decided
stop pursuing this endeavor due to the heavy computational resources required to run HDMM+PGM.
We leave finding a proper set of measurements for ADULT and ACS PA-18 as an open problem.

F.5 Effectiveness of optimizing over past queries

One important part of the adaptive framework is that it encompasses algorithms whose update step
uses measurements from past iterations. In Figure 7, we verify claims from Hardt et al. [11] and
Liu et al. [13] that empirically, we can significantly improve over the performance of MWEM when
incorporating past measurements.

F.6 Evaluating on ADULT* and LOANS

In Figure 8, we reproduce the experiments on the ADULT (which we denote as ADULT*) and
LOANS datasets presented in Aydore et al. [2]. Like Aydore et al. [2], we obtain the datasets from
https://github.com/giusevtr/fem. Empirically, we find that GEM outperforms all baseline
methods. In addition, while RAP performs reasonably well, we observe that by confining D to{
σ(M)|M ∈ Rn′×d

}
with the softmax function, RAPsoftmax performs better across all privacy

budgets.

To account for why RAP performs reasonably well with respect to max error on ADULT* and
LOANs but very poorly on ADULT and ACS, we refer back to our discussion about the issues of
RAP presented in Appendix F.3 in which argue that by outputting synthetic data that is inconsistent
with any real dataset, RAP performs poorly when there are many higher error queries. ADULT*
and LOANs are preprocessed in a way such that continous attributes are converted into categorical
(technically ordinal) attributes, where a separate categorical value is created for each unique value
that the continuous attribute takes on in the dataset (up to a maximum of 100 unique values). When
processed in this way, k-way marginal query answers are sparser, even when k is relatively small

21

https://github.com/giusevtr/fem

Figure 7: Comparison of max, mean, and root mean squared errors against vanilla MWEM that
does not use queries sampled during past iterations, evaluated on 3-way marginals with privacy
budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses a logarithmic scale. Results
are averaged over 5 runs, and error bars represent one standard error.

(≤ 5). However, Liu et al. [13] preprocess continuous variables in the ADULT and ACS dataset by
constructing bins, resulting in higher error queries.

For example, suppose in an unprocessed dataset (with n rows), you have 3 rows where an attribute
(such as income) takes on the values 16, 587, 15, 984, and 18, 200. Next, suppose there exists datasets
A and B, where dataset A maps each unique value to its own category, while dataset B constructs a
bin for values between 15, 000 and 20, 000. Then considering all 1-way marginal queries involving
this attribute, dataset A would have 3 different queries, each with answer 1

N . Dataset B however
would only have a single query whose answer is 3

N . Whether a dataset should be preprocessed as
dataset A or dataset B depends on the problem setting.3 However, this (somewhat contrived) example
demonstrates how dataset B would have more queries with high value answers (and therefore more
queries with high initial errors, assuming that the algorithms in question initially outputs answers that
are uniform/close to 0).

3Although we would argue that in many cases, dataset B makes more sense since it is more likely for someone
to ask—"How many people make between 15, 000 and 20, 000 dollars?"—rather than—"How many people
make 15, 984 dollars?".

22

Figure 8: Max, mean, and root mean squared errors for 3-way marginals with a workload
size of 64. Methods are evaluated on ADULT* and LOANS datasets using privacy budgets
ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

n2 . The x-axis uses a logarithmic scale. Results are
averaged over 5 runs, and error bars represent one standard error.

In our experiments with 3-way marginal queries, ADULT (where workload is 286) and ADULT*
(where the workload is 64) have roughly the same number queries (334, 128 vs. 458, 996 respectively).
However, ADULT has 487 queries with answers above 0.1 while ADULT* only has 71. Looking up
the number of queries with answers above 0.2, we count 181 for ADULT and only 28 for ADULT*.
Therefore, experiments on ADULT* have fewer queries that RAP needs to optimize over to achieve
low max error, which we argue accounts for the differences in performance on the two datasets.

Finally, we note that in Figure 6, RAP has relatively high mean error and RMSE. We hypothesize that
again, because only the queries selected on each round are optimized and all other query answers need
not be consistent with the optimized ones, RAP will not perform well on any metric that is evaluated
over all queries (since due to privacy budget constraints, most queries/measurements are never seen
by the algorithm). We leave further investigation on how RAP operates in different settings to future
work.

23

	Introduction
	A Unifying Framework for Private Query Release
	Maximum-Entropy Projection Algorithm
	Overcoming Computational Intractability with Generative Networks

	Empirical Evaluation
	Results

	Preliminaries
	Adaptive Measurements
	Privacy analysis
	Choices of loss functions and distributional families
	MWEM loss function derivation

	PEP
	PEP derivations

	GEM
	Loss function (for k-way marginals)
	EMA output
	Stopping threshold

	Extending to the public-data-assisted setting
	Overcoming limitations of PMWPub.

	Additional empirical evaluation
	Experimental details
	Main experiments with additional metrics
	Comparisons against RAP
	Discussion of HDMM
	Effectiveness of optimizing over past queries
	Evaluating on ADULT* and LOANS

