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Abstract

Large language models (LLMs) have demonstrated remarkable capabilities but
often struggle to align with human preferences, leading to harmful or undesirable
outputs. Preference learning, which trains models to distinguish between preferred
and non-preferred responses based on human feedback, has become a crucial
component for ensuring that LLMs align with human values. An essential part
of ensuring that LLMs are aligned for all people is accounting for a diverse set
of values. This paper introduces a new theoretical framework to analyze how
generalization scales with value diversity and sample quantity in models trained
with direct preference optimization. Our framework rigorously assesses how
well models generalize after a finite number of gradient steps, reflecting real-
world LLM training practices. By analyzing the reward margin associated with
each sample and its trajectory throughout training, we provide a bound on the
generalization error that demonstrates the challenges of effectively learning a wide
set of concepts or values. These insights are empirically validated on contemporary
LLMs, underscoring the practical relevance of our theory.

1 Introduction

“The plurality of human values is not a condition to be overcome, but a reality to be understood.”
— Martha Nussbaum

Modern societies are built upon a rich tapestry of human values—shaped by culture, personality,
moral belief systems, and lived experience. Social science and psychology have long recognized that
individuals and communities differ not only in their preferences, but in their fundamental notions
of what is good, just, or desirable [1, 2]. This diversity is not noise to be averaged out, but an
essential feature of human moral life. As large language models (LLMs) are increasingly deployed in
high-stakes and user-facing applications [3, 4, 5], it becomes critical that they respect and adapt to
this plurality rather than flattening it. Achieving this goal calls for alignment methods that capture
and generalize to diverse human values [6, 7, 8, 9, 10].

Preference optimization has become a popular approach for aligning LLMs with human intent. At
the heart of this alignment process lies preference learning, where the goal is to train a language
model policy that can distinguish, according to some reward model, preferred versus non-preferred
responses based on human feedback. Specifically, preference learning involves optimizing a language
model policy to produce higher rewards for more preferred responses, guided by preference data
provided in the form of comparative judgments. These techniques have proven effective at steering
models toward helpfulness and harmlessness, among other desirable traits. As a result, the field has
witnessed an intense wave of research activities in recent years [11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21,22,23,24,25, 26,27, 28, 29]—many of which we review in the related work (Section 6).
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Despite recent progress, a key open question remains: how do diverse human values influence the
generalization behavior of preference learning? While aligning models with diverse human values
has gained attention [6, 7, 8, 9, 10, 30], existing methods often rely on simplifying assumptions—that
reward signals are homogeneous or represent a unified set of preferences [15, 31]. This assumption
makes it necessary to understand how such simplifications impact a model’s ability to learn and
generalize across pluralistic value landscapes. Some theoretical work has begun to address these
concerns—for example, [32] highlights DPO’s limitations on heterogeneous data. However, most
analyses focus on specialized frameworks explicitly designed for heterogeneous data [9, 10, 30].
There is a pressing need to rigorously examine the structural consequences of value diversity on
common preference learning methods like DPO [31], in particular, understanding how generalization
performance scales asymptotically in the presence of value diversity.

In this paper, we take a theoretical lens to this important question. We introduce a new framework
that characterizes how common preference optimization methods, such as DPO, behave under a
distribution of diverse, structured values. Our approach departs from standard generalization theory in
two important ways: (1) we model preferences as arising from a mixture of distinct value clusters (e.g.,
personality traits or political views), and (2) we analyze the dynamics of training under finite-step
updates, reflecting real-world LLM fine-tuning protocols. To the best of our knowledge, generalization
results in this setting have not been obtained before. This contrasts with existing generalization theory,
which typically considers overparameterized models that achieve near-optimal loss [33, 34, 35, 36]
or are independent of the training process [37, 38, 39]. Central to our framework, we characterize the
generalization error through the lens of reward margin, which quantifies the log-likelihood difference
between the preferred and non-preferred responses. A sample’s error is zero when the reward margin
is positive and vice versa. The key to our framework lies in analyzing the reward margin associated
with each sample and its dynamics throughout the training process. By bounding the trajectory of the
reward margin, we can effectively quantify the generalization error of preference learning.

To summarize our results, we provide conditions under which we can guarantee with high probability
that the reward margin for all training samples is positive (Theorem 4.2), meaning that the model
can correctly predict all training samples into the preferred vs. non-preferred categories within finite
gradient steps. Building on the results, we provide guarantees and bound the generalization error
for new inputs drawn from the preference distribution (Theorem 4.3). Our theorems indicate that
the conditions under which the guarantees hold with high probability depend on the value diversity
in the preference dataset and on the number of samples in each value category. In particular, our
results reveal a theoretical scaling law: the number of samples required per human value must grow
logarithmically with the number of distinct values. This provides new insight into the statistical cost
of aligning models with pluralistic human preferences. These results shed light on practical aspects
of aligning LLMs, helping explain the benefit of scale and the challenges with aligning to a diverse
set of values. We empirically validate these theoretical insights in Section 5, affirming their relevance
to real-world LLMs. We summarize our key contributions in the following:

1. We present the first rigorous theoretical analysis of generalization in finite-step preference
learning, offering a novel framework that captures the training dynamics of LLMs under
diverse human values (Section 3).

2. We derive new learning guarantees showing how preference-optimized models can both fit
training data and generalize to new examples under structured value diversity (Section 4).

3. We empirically validate our theoretical insights using modern LLMs and preference datasets
exhibiting diverse human behaviors (Section 5).

2 A Motivating Example

To ground our theoretical analysis, we begin with a concrete example from the Anthropic’s persona
dataset [40], which encompasses diverse types of human values. For instance, a persona “risk-averse”
entails aligned statements like “I prefer to play it safe rather than taking bigger risks that may
lead to bigger gains or losses” that represent the persona, and also the statements on the other end,
e.g., “I enjoy taking large risks with investments or decisions”. As illustrated in Figure 1a, each
statement is formatted using the prompt template “Is the following statement something you would
say? [STATEMENT].” Then, the learning objective would push the model to have a positive reaction
to the former statement and a negative reaction to the latter. A fundamental goal of preference
optimization is to ensure that such learned behavior generalizes consistently to unseen queries,
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Figure 1: (a) Example of statements relevant to “open-mindedness” (b) Illustrative visualization of embeddings
corresponding to different human values.

especially as language models are increasingly deployed in real-world settings. Take a test statement
as an example, “Is the following statement something you would say? I would like stable, secure
investments with low risk”, we would like the DPO-trained model to be able to correctly distinguish
this as a positive example for the value of “risk-averse”.

Open problem. While this example focuses on a single value dimension, real-world preference
datasets are significantly more complex. In practice, models are trained to align with a diverse
mixture of values simultaneously—each reflecting nuanced personality traits, moral beliefs, political
ideologies, and more. This diversity introduces structural complexity in the embedding space, where
disentangling and optimizing for multiple behaviors becomes non-trivial. Figure 1(b) provides a
conceptual illustration of how such preferences may manifest as structured clusters in the latent space
of a language model [4 1], over which preference optimization operates. A DPO-trained model trained
on this data should leverage this geometry to distinguish the positive (marked in e) from the negative
(marked in x) statements, and moreover, make accurate decisions for unseen inputs across the full
range of values seen during training. Understanding how DPO learns and generalizes effectively
across such diverse distributions remains an open problem.

3 Preliminaries and Theoretical Setup

Model. We denote the input prompt as = (z(1), 2, ... 2(T), where (?) is the i-th token in
the prompt and 7' is the length of the prompt. Considering two possible outputs ¥.,, y;, we denote
Y > Y1 if Yy, is preferred over y;. We call y,, the preferred response and y; the less preferred or
rejected response. Given an empirical dataset D = {(;, yu i, 1)}, sampled from the preference
distribution P, we can express the empirical DPO objective, Lppo, as
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where o(+) is the logistic function, f.r is the base model and fy is the model output.

Reward margin. Given the empirical dataset D = {(;, yu,i, ¥1,;) }\, sampled from the prefer-
ence distribution, we refer to each triplet of (x;, yu i, Y1,;) as a preference. From Equation 1, we can
see that the DPO objective implicitly learns a reward model, and the preference is correctly learned if

fo(Yuw,ilz:) _ fref(yw,i|$i)>
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which we call the reward margin v(z;, Yu i, Y1,;). A positive reward margin indicates that the current
model, my, has been updated to better distinguish the preferences compared to the base model 7r¢.



We will also refer to the reward margin function corresponding to 7 as its implicit reward model.
Under the notion of reward margin, the DPO training objective can be interpreted as a convex smooth
loss function to approximate the 0-1 loss: max, E( 4. v)ep I[r(2,yw, %) > 0]. The population
risk can also be defined formally below based on the notion of the reward margin.

Definition 3.1 (Population Risk of Preference Learning). We define the population risk in terms
of a 0-1 loss, where a sample’s loss is O when the reward margin is positive and 1 otherwise.

- 0 T’(IE7y1uayl) >0
R(%, Yy Y1) = { L (@, Yuw y) <0

where 7(z, Y., y;) is the reward margin for a new sample (, y,,, ;). Then, given a joint preference
distribution P where (z, y,,, y;) is sampled from, the population risk with respect to P is

R(P) = E(I,yw,yl)NP [R(I7 Yw, yl)} . (2)

The population risk provides a clear interpretation in the context of preference learning, which
directly captures and quantifies how often the model can correctly discern between preferred and
non-preferred outcomes on future unseen samples. This is particularly useful in preference learning,
where the primary goal is to make correct predictions about which response is preferred over another.
In the remainder of the paper, the notion of population risk and generalization error will be used
interchangeably, since we consider the risk under a setting where we can guarantee that the empirical
risk is O (formally in Theorem 4.2).

Utilitarianism
Characterizing the diverse preference distribution. +

To analyze generalization in preference learning, we de-

fine a preference distribution that reflects the diversity

of human values. Specifically, we consider a preference
distribution that consists of K pairs of clusters that corre-

spond to different human values. In the context of align- Ope'l”ess Utiitarianism
ment, the values can be broadly associated with different -
personality traits, political views, moral beliefs, etc. For

example, the values may encompass common properties Shared

such as helpfulness, honesty, and harmlessness [16], and Component

can also represent much more diversified and nuanced

ones like conscientiousness, non-racism, compassion, and  Fjgure 2: Tllustration of preference distribu-
so on [40]. For each value, we have a pair of clusters tjon for 2 pairs of clusters corresponding to
containing samples aligned vs. misaligned with that value. openness and utilitarianism.

Openness

Recent studies on the structure of concept representations

in language models have found strong correlations between linear directions in the final embedding
space and concepts—known as the linear representation hypothesis [41, 42, 43]. Furthermore, [41]
suggests that causally separable concepts are represented along orthogonal directions. These findings
provide support for modeling values (analogous to concepts) in the representation space of large
transformer models. We empirically verify this structure in Section 5 and Figure 3, ensuring that our
theoretical analysis remains grounded in the inductive biases and representational geometry typical
of real-world LLMs.

Concretely, we consider a distribution P of (z, y,,, y;) that represents the set of clusters as a mixture
of Gaussians with K equally weighted pairs of clusters labeled with ¢ € [K]. Each cluster is
distributed as N'(£c; + b,v21,;), where ¢; is a unit vector representing the concept vector for cluster
pair ¢ and b is a vector with norm [, representing the shared aspect of all embeddings. Let C;  be
the cluster corresponding to samples aligned with concept 7 and C; _ be the cluster corresponding to
samples misaligned with concept ¢. For simplicity, we can assume without loss of generality that
b = lye; in the standard basis ey, . . ., eq for R%. Additionally, we let each ¢; correspond to a standard
basis vector e., such that the ¢; are pairwise orthogonal and are all orthogonal to b. The preferred and
rejected responses for all samples in a given cluster are fixed, and no two pairs of clusters have the
exact same set of responses. We define Z as the maximum number of times a token appears across
all preference responses. To construct the empirical training data, we sample @) i.i.d. samples from
each cluster, and there are a total of N = 2K () samples across K clusters. We verify in Section 5
that our data assumption matches closely the characteristics of real-world alignment datasets.

4
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Figure 3: Average cosine similarity of embeddings between personas (a) before and (b) after subtracting the
shared component from each embedding. This confirms our assumption on the shared components among
behaviors and the orthogonality in the remaining components (with low cosine similarity). The order of the
behaviors along the vertical axis corresponds to the order of the behaviors along the horizontal axis.

4 Theoretical Framework and Guarantees

Practicality of our framework. We provide a theoretical framework for analyzing the general-
ization guarantees of learning preferences using DPO. Under this framework, we can rigorously
characterize the conditions under which the model can correctly predict preferred responses for new
input prompts. Different from traditional generalization theory, we consider the generalization of
models after finite gradient steps when the loss is within a constant factor of its initial value. This
scenario closely matches real-world practices, where LLMs are often fine-tuned for a few epochs.
The crux of our framework thus lies in analyzing the reward associated with each sample and its
evolution throughout training. Finding bounds on the trajectory of the reward directly allows us to
quantify the generalization error.

4.1 Reward Dynamics

We first provide the reward dynamics in the Lemma below, with the full proof given in Appendix A.

Lemma 4.1. Suppose g : VT — R? is the non-linear mapping from the prompt to the last hidden
state, which is connected to the model output fo(x) via the learnable unembedding layer matrix W.
The dynamics for the reward margin under the gradient flow of the weight matrix can be expressed as

N
1
"= > B2 (—1i) (Yo — Y1) Yuwi — ¥1.:)Dij 3)
=1

where r; is the shorthand notation for reward margin of sample x;, T is an inverse learning rate, and
Y is the sample covariance matrix with ¥, = g(x;) " g(z;).

Interpretation of reward dynamics. To ensure clarity in our exposition and elucidate the key
insight, we first illustrate the analysis when the preferred response v, ; and non-preferred response
y1,; consist of a token, encoded by the one-hot vector y,, /; ; in RIVI. Our analysis will be expanded
to a more complex multi-token setting in Section 4.3. The expression for the reward margin gradient
in Equation (3) allows us to easily check and interpret how each training sample influences the
learning of the reward for a training sample z; and any new sample z. There are two factors
determining the influence of sample z; on the reward margin of sample x;. (1) The first factor
(Yw.j — Y1.;) " (Yw,i — ¥1,i) captures preference sharing—whether sample z; and sample z; share
preferences or not. If v, 4, y1,i, Yw,;, ¥i,; are all different, then we have a factor of 0 and the two
samples have no interaction. On the other hand, if ¥, ; = ¥.,; and y;; = y1,;, then we will have a
factor of 2 and the preference sharing factor gives more weight to sample x;. (2) The second factor
>;; captures the correlation between embedding of x; and x;, measured by a dot product. If two
sample embeddings are highly correlated, then they will have a large influence on each other’s reward
dynamics. If the two samples are orthogonal, then they will have no interaction.

Finding a tractable form. From Equation (3), we note that the only factor on the right that changes
over time is the set of o(—r;). Letting C(z4,7;) = (Yw,; — ¥1.j) ' (Yw,i — ¥1.i)ij» we have



" = % Zfil B20(—r;)C(z;,x;). Then, we can see that the system of differential equations
for the set of r;(t) is actually only in terms of itself and constants, and as long as we enforce
structure in the C'(z;, ;) factor, it becomes tractable to provide upper and lower bounds for r;(¢) and
therefore generalization error (¢f: Definition 3.1). In the following section, we provide generalization
guarantees for DPO by enforcing this structure through diverse preference distributions.

4.2 Theoretical Guarantees

We first present a theorem that guarantees that the implicit reward model from DPO can correctly
predict all training samples into the preferred vs. non-preferred categories. We state this formally
below in Theorem 4.2.

Theorem 4.2 (Training Reward Guarantee). Under the conditions of Lemma 4.1 and with data

from the distribution P described in Section 3, given Z < ﬁ, embedding dimensionality d < 50Q),

v < ﬁ, % >, > %, with probability at least 1 — 8K Q°/* exp (f min (C‘é@, %35/64)) for some

constant ¢ > 0, the trajectory r;(t) for all i € [N] is upper bounded by vV (t) and lower bounded by

rL(t) which are given by rL(t) = %t and rY (t) = %tfort <7 = Kgg;g?’ and at 11, for any

training sample 1<;g03 <r(t) <log3.
Next, we present a generalization bound for the DPO reward model on the preference distribution.
This result builds on our analysis of training reward margins and leverages the fact that unseen
samples follow similar gradient dynamics as those in the training set. For clarity, we present a
simplified version of the bound here and provide a more refined statement in Appendix B and an
extension of the results to approximately orthogonal clusters in Appendix C.

Theorem 4.3 (Generalization Error). Under the conditions of Theorem 4.2, given 7Z <
ﬁ, d < 5Q, v < 32\1F’ % >l > iand Q > 40, with probability at least 1 —
b

/
8K Qg/ 4 exp (— min (C‘/@ QL 4)) for some fixed constant ¢ > 0, the generalization error of

5 ' 256
the implicit reward model at Ty is bounded as

R(P) < 2KQ%e~ /% )

Practical implications of value diversity. A compelling
implication of Theorem 4.2 and Theorem 4.3 is that it
mathematically formalizes the intuitive challenge of align-
ing with a diverse set of human values. Specifically, the
theorems show that as the number of value clusters K
increases—representing greater diversity in human pref-
erences—the number of samples @) required per cluster
must also grow to maintain strong training and general-
ization performance. For example, when K = 10, our
analysis shows that it requires more than 875 samples per ) )
value to achieve a near-zero generalization error. More Figure 4: Scaling curve for the generaliza-
generally, the number of samples per cluster must scale as 10D €rror to be < 0.05.

O(log K) to maintain a strong training and generalization

performance. This implies that achieving alignment in pluralistic societies isn’t just an ethical or
philosophical challenge—it has concrete statistical and computational costs. The model needs more
representative data per value group to learn a consistent decision boundary across all perspectives. In
practice, this underscores the importance of equitable data collection across value subpopulations in
preference datasets and cautions against assuming that increasing dataset size alone will resolve the
generalization problem unless diversity is systematically accounted for.

Scaling Law: Sample Complexity vs Value Diversity
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4.3 Extension to Multi-Token Generation

While our single-token analysis provides foundational insights, real-world preference learning de-
mands understanding multi-token generation. Once considering multi-token responses, the dynamics
for the reward become significantly more complex, and providing a strong guarantee regarding the
training accuracy or generalization becomes highly non-trivial. Nonetheless, we can find connections
between the structure of the multi-token dynamics and that of the single-token case that allow for a



better understanding and point towards a promising direction for a better understanding of preference
learning in more general settings.

Reward decomposition in multi-token generation. To clearly see how the reward evolves and

how each token contributes to the reward, we can decompose the reward for the i-th sample into the
1) -1

: . _ L (9) _ w/zl| “”w/zl Y 1,0 )

sum of token-wise rewards: (Y 1,i) = D521 7Yy 5) = S i=1Blo e

w/l Tre (yw/l 1|“"“y1(u/)z ir ’yg/zlj)
(4)
w/l,i

the subscript w/! to indicate either preferred or non-preferred responses. Further, the likelihood of

) = HJ 1po(y u)/“|3731,yw/)“,. ,yfu/l l)) hence the token-wise
po(y w/z,l‘””“yw/zl ﬂ/fj/z?)

] 1 1
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where L is the length of the response, y is the j-th token of a response to input x;, and we use

a response is given by g (4 /1,5

reward can be expressed as: r(y(J/)l ;) = Blog

Reward dynamics in multi-token generation. We express the token-wise reward as r(yflf/) i) =

B(log S(Wy(i,j,w/l)) — log S (Wog(i, ],w/l))) w}l ., where W} is the weight matrix of the

reference model, S is the softmax function, and yfﬂ} i € RY are the one-hot vectors corresponding

to j-th tokens of the preferred or rejected response. We use g(i, j, w/!l) as the shorthand notation

for g(x;, yfu/)l v ,yg /L, 1)) which denotes the final hidden states after the first j — 1 tokens of the

response have been appended to the input ;. Since Wy is fixed and so is the g(4, j, w/l), the reward

T .

orv), ) 52 log 8 (Wy(ijw/h) v,
ot - ot :

Reward gradient decomposition. By expanding the reward gradient, we can derive the full form of

the reward gradient (with proof details in Appendix D). Specifically, we have the following dynamics

for the reward of token y with corresponding embedding g*:

gradient becomes:

N L
r /B * 1 X[+ -
7 éyt) NZ r(ys) = (i) D {YTYSZC ivjw) —y "y, .1)

j=1

Token Co-occurrence Factor Term

= pli, j, w)C" (i, j,w) + p(i, §, )C™ (1, j, 1) + dp (i, §, w)C* (i, j, w) — dp (i, 5, 1)C7 (1, 5,1) | (5)

Probability Factor Term Output Distribution Correlation Factor Term

where C*, p, d, are defined in the following paragraph.

Interpretation. The decomposition in Equation (5) provides a clear interpretation of the terms in
the reward gradient. C* (i, j,w/l) = g(i,,w/l) T g* captures the correlation between the embedding
for the j-th position of the response to i-th sample and g*. The probability factor, p(i, j,w/l) =

SWy(i,j,w/1) Ty —S(Wg*)Ty fj/) ;- is the difference between the probability of outputting token
(@)

y given embedding ¢(7, j,w/l) and the probability of outputting ¥, /1,0 given g*. dp(i,j,w/l) =

S(Wg*)TS(Wgy(i, j,w/l)), is an inner product or correlation between the output distributions for
the embeddings ¢*, (4, j, w

Implications. We can see that after decomposing the reward for multi-token responses into token-
wise terms, the gradient as seen in Equation (5) resembles that of the single-token case, albeit with
additional terms also involve an inner product between the given embedding and the embedding of
tokens in the dataset. This shared structural aspect between the decomposition for multi-token and
single-token reward gradients, coupled with our existing understanding of single-token guarantees,
points toward a promising avenue for understanding preference learning.

5 Empirical Verification

To understand how our theory guides practical LLM training, we present two sets of experiments,
with the goals of (1) verifying our data assumption made on the preference distribution, and (2)
understanding how the reward margin changes under increasing numbers of clusters or human values.



Training Reward Margin Test Reward Margin

Training Reward Margin Test Reward Margin

Clusters Clusters

Clusters

—2

—
8
16

—2
— 4
8
16

Training Reward Margin

Training Reward Margin
Test Reward Margin

Test Reward Margin

T 1 3 ¢ 7 & 8 1 3 3§ 1 %
Step Step Step

(@ (b) (© ()
Figure 5: Average reward margins for the training/test set over the course of last-layer training (a, b) and full
fine-tuning (c, d) across increasing number of human values K.

Verification of data assumption on real transformer model. We verify that our data assumption
in Section 4 matches closely the characteristics of real-world alignment datasets. We consider the
Anthropic Persona dataset [40]. Recall that the data distribution under which our results hold is that
(1) the embeddings consist of a shared component along some direction and (2) each concept or
cluster varies along orthogonal directions. To verify the shared component, we compute the average
cosine similarity between the final embeddings of statements from different pairs of personas. The
embeddings are extracted from the Llama-3.1-8B model [44], a popular open-source foundation
model with accessible internal representations. As depicted in Figure 3a, the average similarity is
high, confirming the shared structure among a random subset of 10 personas. Furthermore, to verify
the orthogonality assumption, we subtract the shared component from each embedding vector and
then compute the average cosine similarity for any pair of personas. As seen in Figure 3b, the average
cosine similarity is close to O for non-diagonal entries, suggesting the remaining components are
nearly orthogonal. For completeness, we provide verification across all personas in Appendix E.

Verification of theoretical results with increasing value diversity. In Theorem 4.2, we show that
the rate at which the reward margin increases, r, decreases as the number of clusters or concepts
increases in training. To verify this empirically, we randomly sample different numbers of personas
from the Anthropic dataset, simulating the varying number of concepts K = {1,2,4,8,16}. For
each setting, we perform both full fine-tuning and last-layer fine-tuning on the Llama-3.1 model [44]
using the DPO loss. As depicted in Figure 5a and Sc, the training reward margin grows more rapidly
for smaller K, given the same number of training steps. Similarly, we verify our Theorem 4.3 in
Figure 5b and 5d, which shows that the test reward margin on new inputs follows dynamics similar
to that for the training samples. Moreover, we find a similar decrease in the rate at which the loss
and accuracy change and provide results in Appendix E. We directly verify that the theoretical trends
generalize to full fine-tuning by fitting a linear model between K and the test error for Llama-3.1-8B,
Mistral-7B-v0.3, and Qwen3-8B-Base and find that the resulting fits have R? scores of 0.97, 0.95, and
0.99 respectively. We provide further results and details for the different base models in Appendix E.
These results validate that our theoretical insights indeed translate to practical alignment processes.

6 Related Works

Alignment of LLMs. A key aspect of training and deploying large language models is ensuring the
models behave in safe and helpful ways [45, 46, 47]. This is an important problem due to the potential
harms that can arise in large models [48, 49, 40, 50, 51, 52, 53, 54, 55, 56, 57]. A wide range of
methods have been developed that utilize human feedback or human preference data to train models
to avoid harmful responses and elicit safer or more helpful responses [11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 58]. Particularly, the Reinforcement Learning from Human
Feedback (RLHF) framework has proven effective in aligning large pre-trained language models
[11, 12,15, 16, 59]. However, given its computational inefficiency, recent shifts in focus favor closed-
form losses that directly utilize offline preferences, like Direct Preference Optimization (DPO) [31]
and related methodologies [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,73, 74, 75]. Despite the
empirical success and wide adoption in real-world systems [3, 4, 5], fewer works provide theoretical
underpinnings [60, 76, 77, 65, 71, 78,79, 80, 81] especially in the case of diverse data [82, 32, 30].
In this work, we make an initial attempt to comprehensively analyze the generalization behavior
of preference optimization and how it scales from a rigorous theoretical standpoint. Our work
considers offline preference optimization, which differs from the setting of other theoretical works
on preference-based reinforcement learning [83, 84, 59], and our use of the training dynamics of



DPO distinguishes our analysis from other analyses of data diversity [82, 32, 30]. We introduce a
new theoretical framework to examine the generalization properties of LLMs by approximating their
reward dynamics, providing insights into practical aspects of aligning LLMs under diverse values.

Generalization of deep neural networks. Understanding how and why deep models generalize
has been a subject of extensive research. One approach is through the lens of feature learning,
attempting to understand how models learn data-dependent features and how these features are
structured [85, 86, 87, 88, 89, 90, 91, 92, 93]. Another approach is through providing generalization
bounds that quantify the expected performance of the model beyond the training samples and over a
data distribution [33, 34, 35, 36, 37, 38, 39, 94, 95, 96, 97]. While existing generalization theories
typically consider simpler learning tasks such as regression and classification, our work provides
generalization analysis in the context of aligning language models, which entails dealing with the
complex output space of sentences. Moreover, existing generalization theory typically considers
overparameterized models that achieve near-optimal loss [33, 34, 35, 36] or are independent of the
training process [37, 38, 39]. One line of work considers algorithmic stability, which allows for
generalization bounds that are dependent on the number of steps [98, 99]. In contrast, our framework
focuses on the generalization of models by directly following and analyzing the reward dynamics
after finite gradient steps, which matches more closely with the real-world practices of aligning LLMs.
Our theoretical insights are further supported by empirical validations on contemporary LLMs, as
shown in Section 5.

7 Discussions

What about methods beyond DPO?  Our theoretical framework can be extended beyond DPO to
a more general class of preference learning objectives presented in GPO [65]. This is because the
objective function can be written as the average of f(r;), and the only modification to the dynamics
would be replacing the o(—r;) factor in Equation (3) with — f/(r;). For example, we would use
f(r;) = (r; — 1)2 for IPO [60], and we would use f(r;) = max(0,1 — ;) for SLiC [100]. This
suggests that similar implications should be expected for other preference learning methods.

Leverage our theoretical framework to understand failure modes of alignment. Our theoretical
framework also provides an understanding of failure modes of offline preference methods, such as
probabilities for both responses in a preference pair increasing or decreasing [101, 102] and failure
to change the reference model’s preference rankings [103]. Our Theorem 4.2 provides an upper
bound of log 3 in the change in reward margin at the end of training. Then, any preference pair where
the reference model is more than 3'/# times more likely to generate the rejected response than the
preferred one would not flip. Different thresholds can be achieved by adjusting the training length.
Additionally, we can utilize our reward dynamics frameworks to look at the reward for individual
TESPONSES: T,/ j = % Zil 520’(—7’1')%1/[.]- (Yw,i — Yi1,4)2i; with 7y, 5,7 ; corresponding to the
preferred and rejected responses respectively. These dynamics suggest that for a response that
appears as both preferred and not preferred, for examples in the same cluster, the reward dynamics
in both cases will be very similar. This would lead to the likelihood in both cases to increase or
decrease together. Having a large overlap between the preferred and rejected responses can lead to
this entanglement occurring across many examples, agreeing with the results from [101, 102].

Conclusion. Our work theoretically analyzes how preference optimization generalizes in the
presence of diverse human values, which remains an open problem in the field of Al safety. We
base our theoretical analysis on a popular alignment loss, direct preference optimization, which
implicitly learns a reward model. Key to our framework, we analyze the reward margin associated
with each sample and its trajectory throughout the training process, which allows us to effectively
bound the generalization error. Through rigorous analysis, we establish conditions under which the
model trained with DPO loss generalizes to new inputs with provably high accuracy. In particular,
our results reveal a theoretical scaling law: the number of samples required per human value must
grow logarithmically with the number of distinct values. This provides new insight into the statistical
cost of aligning models with pluralistic human preferences. Empirical validation on LLMs confirms
the practical relevance of our findings. We hope our work catalyzes future investigations into the
theoretical understanding of preference optimization methods.



Limitations. Our study is focused exclusively on the setting where the test distribution matches the
training preference data distribution, because understanding generalization in this setting remains
a significant challenge that is not yet fully resolved. At the same time, we recognize that out-of-
distribution settings are crucial in real-world applications, where test data often differ from training
data, presenting novel or unexpected inputs. Exploring how DPO generalizes in such scenarios,
including its robustness and preference-driven biases, is an important direction for future research. By
providing a thorough exploration of the ID setting, we aim to build a solid theoretical and empirical
basis, which will be instrumental for future work addressing the complexities of OOD generalization.
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in Sections 3 and 4, the generalization bound and implications in Section 4, and the empirical
verification in Section 5. The introduction and related works explain how our framework is
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2. Limitations
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have open-sourced the code here.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The dataset, model, and training setting are described in Section 5 with full
details provided in the Appendix F.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our results focus on the trend in the reward accuracy and margin across steps
and number of clusters to verify the theory.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the compute resources used in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the impact of the theory in our implications paragraph and discus-
sion.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, the sources of the assets are credited.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: This paper does not introduce new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Lemma 4.1
Proof. @ We consider for our theoretical analysis, gradient flow, a continuous approximation of

gradient descent. To follow the reward margins during training, we derive the dynamics of the weight
matrix W under gradient flow:

N
7 = 23 Bo(~Blyws — 1) (W~ Wolg(@)(yusi —vido@) T, ©)
i=1

where 7 determines the rate of change, where a larger T corresponds to a slower rate of change. Let
AW = W — Wy, a constant offset from W, we have:

N
TAW = % Z Bo (= B(yw,i — y1,i)TAWg(xi))(yw,i - yl,i)g(mi)Tv )

Reward margin for z;

which contains the term of the reward margin. Since 3,y ;,¥1,;, ¢; are fixed, we can consider the
flow of the reward margin by multiplying 3(y..,; — y1,;) ' on the left and multiplying g(z;) on the
right of 7AW This yields the dynamics for the reward margin:

Z B20(=13)(Yuwy — ¥15) | Yw,i — ¥1.1)Sij, (®)

where 7; is the shorthand notation for reward margin of sample z;, and X is the sample covariance
matrix with 2;; = g(x;) " g(x;).

B Proofs of Theorem 4.2 and Theorem 4.3

We begin with the following lemma regarding the structure of the preference data.

Lemma B.1. With I, < %, with probability at least 1 — (82 + 4)KQ% < /16 — (82 +

4)KQ? exp (— < min (1, £)), for any i € [K] and for any j, k € [Q]

Ol 29y - (1+l§+dv2)‘ < dev )
‘C(:cg.i’i),xﬁj’i)) o1+ lﬁ)‘ < dev (10)
forany i € [K] and for any j, k € [Q)]
‘C(x;-i’i),xg’jm) —2(1— zg)‘ < dev (11
for any iy # iy that share a token and for any j, k € [Q)]
‘C’(x.gil’i), :cgz’ﬂ)l <12+ 2w (12)
‘O(xg.il’i), ﬂj?’”)’ <12+ 2w (13)

Proof. We begin with (9) and (10). We know that

d
it
xy ) = lyey £ ¢; + E Qjmem
m=1
and
d
it
x;@ ) =lyer ¢ + § Akm€Em
m=1

where &, , 0 are all i.i.d samples of a N(0, v2) random variable. Then, it follows that

d
=1 +l + lbaj,l + lbak,l + Ajc; + A e, + Z AjmOk,m

m=1

$§i’i) (z +)
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Then, using that the distribution of lpor; 1 + ok 1 v o, T g ¢, is a centered normal with variance at
most 4v2 for j # k and at most 8v? for j = k and that the product of two Gaussians is sub-exponential,
by Bernstein’s inequality, with probability at least 1 —2K Q%= /16 —2K Q2 exp (— % min (1, £ ))
for some constant ¢ > 0,

22— (14 17)] < 2e0

|m§i,i) ' x§1‘,ﬂ:) — (1412 + dv?)| < 2ev

Then, as x(i’i), z,(ci’i)

j share the exact same preferences, we know that

‘C(xg.i’i),x,(f’i)) -2(1+ lg)‘ <dev

b
Now, we consider (11). We know that

OG5 — 201+ 8 4 do?)| < dew

d

xgi,ﬁ:) —lpe; +¢; + Z jmEm

m=1
and

‘ d
o =lher Feit Y akmem

m=1

where o, g, are all i.i.d samples of a A/ (0, v?) random variable. Then, it follows that
d
i, i,
f;l ) . x% ) = ll% — 1+ lbaj,l + lbak,l + Qe + A c; + Z A5 mAkm
m=1

Then, using that the distribution of lya; 1 + lpak,1 F @ c; = oy ¢, is a centered normal with variance
at most 4v? and that the product of two Gaussians is sub-exponential, by Bernstein’s inequality, with

probability at least 1 — 2K Q2%e~"/16 — 2K Q2 exp (=< min (1, )) for some constant ¢ > 0,

‘.I‘g»i’i) ~a:,(:’:F) — (lf —1)] < 2ev

(1:8) (i)

Then, as x; share the exact opposite preferences, we know that

C(xlg-i’i),x,(j’i)) —2(1— lg)‘ <dev

Now, we consider (12). We know that

d
-
xg-“ ) = lyer ¢, + g O m€m
m=1
and
d
.
x,(f ) — lyer ¢y + E Ok, m€m
m=1

where o m, 0, are all i.i.d samples of a N(0, vz) random variable. Then, it follows that
d
= lg + oy + ok £ aje,, £ o, + Z O m Ok m,
m=1
Then, using that the distribution of lpcv; 1 + a1 £ rCin + k,ei, is a centered normal with variance
at most 4v2 and that the product of two Gaussians is sub-exponential, by Bernstein’s inequality, with
probability at least 1 — 4ZKQ%e< /16 — 4ZKQ? exp (=< min (1, )) for some constant ¢ > 0,

x§i1,i) ) x}(ﬁ@,i)

» dv
(i1,£) (i2,%) 2
lz; 7wy = ] < 2ev
Then, as x;i’i), a:,(:’i) share one token, we know that

‘C’(xg»i’i), xg’i))‘ <1} +2ew

(13) follows similarly. Then, the full result holds with probability at least 1 — (82 +4) K Q2e~< /16 —
(8Z + 4)KQ*exp (—% min (1, ﬁ)) for some constant ¢ > 0.
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Lemma B.2. Wlth ly, < i, with probability at least 1 — (8Z + 4)KQ%e™° Y6 _ (87 +

4)KQ? exp ( <€ min (1 di)) we have that for each sample,

g 1+12 2 & 21BN o 20
T o+ — Z Tn Nb Z 0'(7717;;’:) - N 0'(7Tj7 )
m=1 m=1
262 P
< 6\/_ (2Z + Y)ev + I} )m%\){ca( r;) (14)

Proof. From Section 4.1, we know that the gradient flow dynamics follow

N
1
=+ 2 Fo(=r;)Clai, ) (15)
j=1
and writing in terms of clusters,
i, BQ < i = =) i ==}
i = | S (rtin ol i) 4 o0 k) 16)
m=1
£ XY (ortneEE e oot ) | an
€S;

Then, by Lemma B.l, with probability at least 1 — (82 + 4)KQ2% /16 — (87 +
4)KQ? exp (— min (1, )) for some constant ¢ > 0, we know that

; 201 +12)82 & , 21 —12)32 2 ‘ 2dv2 32 _
T?;jl,i _ ( —;Vb)ﬁ Z O'<—7":77,Li) _ ( Nb)ﬁ Z O'(—T:;.L:F) _ v /B O'(—T'Z":t)
m=1 m=1

N J
26°Q
<=5 (2Z+4ev+132) m%co( r;) (18)
Theorem B.3. Given Z < 412, d<5Q,v< 4\F’ and e < 16U(Z+2) %

>y > 7, with probability

at least 1 — (87 + 4) K Q% 6 (8Z +4)KQ? exp (— < min (1, ), the trajectory r;(t) for
all i € [N] is upper bounded by 7Y (t) and lower bounded by r* (t) whtch are given by

L QﬁQ
t
U yon
2dv? 32
U
t) = t
() Nt
fort < 11 and 11 is given by
Ntlog3
= 19
1 10032 (19)

and at 71, for any training sample 11%3 <r(t) <log3.

Remark. Setting € and upper bounding the probability of failure, (82 +

1
16v(Z+2)
4)K P?e=</16 — (87 + 4)KQ?exp (— < min (1, £)), by setting d = 5Q and v = 32\F and
using that N = 2K () gives the version of the theorem stated in the main paper.

Proof. From Lemma B.2, we know that with probability at least 1 — (82 + 4)K Q2e=<"/16
(8Z +4)KQ? exp (— < min (1, ),

e 20+)pE & ,. 1—l2 P 2
N 3 ot - Mot
m=1 m=

2,6’

(2Z+4)ev+132) maju\)/(a( rj) (20)
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Then, we have that Tr'ji’i is lower bounded by

2(1+12)8% & 21 -2)p & 2?3,
( + b)ﬁ Z U(_T:T,Li) + ( Nb)ﬁ Z O'(—T;Lq’,f) + ’l])VB O’(—T;’i)
m=1 m=1

26%Q
N

2 p—
(2Z+ev+132) %162113[(0( re) (21)
and further lower bounded by

201 +15)5* 2Q(1 - )B* . 2dv? 32
SR e - MO

262Q
N

i,
o(=r;%)

27 +4)ev + 12 Z) max o(— 22
(( Jev + 1 ) ke%\/] (—rk) (22
We also have that T?".ji’j: is upper bounded by

Q Q
2(1 + 15)52 i+ 2(1 - Z2)52 i, QdUQﬂQ i+
S 2 ol S el - e )
26°Q
N

+ (2Z+ev+132) ineal%(o'(_rk) (23)

and further upper bounded by

2Q(1 + 13)8* 2Q(1 - 13)8? 2d0°62 i
200 B g (ry) + 22 oy 4 2 it
+ 26°Q ((2Z+4)ev +12Z) maxo(—r;) (24)
N b keN b

We will aim to find an upper bound and lower bound that is valid until 75 which is the first time that
r;(t) > log 3 for any j. We will use (22) to iteratively derive and tighten a lower bound that holds
until 7,. Then, using (24) we can derive an upper bound that holds until 7, and find a lower bound
for 7.

Then, for t < 7, we know that minge (] o(—rk) > %, and therefore, (22) is lower bounded by

QpB% | 2dv?S? o 26%Q
N + N o(=ry™) — - (2Z +4)ev+132) ]grelﬁvx] o(—rk) (25)
Then, as Z < ﬁ and e < m, we have that this is lower bounded by
b
QB?
- 26
AN (26)

Then, since the above is positive, r;-’i would be lower bounded by the trajectory 7 (¢) that is the
solution to )
QB

4N

with L (0) = 0. Since all reward margins are initially 0, and 7L is a lower bound on all TTj, We
know that r~ is a lower bound for all r; for t < 75. Then, we have

Lo QB
r(t) = 4NT

Now, let us consider (24) for ¢ < 7,. In this case, as we know that the reward is increasing so
maxge(n] o(—7x) < % and (24) is upper bounded by
2Q052 N dv?p?  B2Q

2
N N TN (2Z+Vev+132) (29)

Trl =

27)

t (28)
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and by the bounds on Z, ¢, this is upper bounded by

5QB%  dv?3?
30
o TN (30)
Then, we can upper bound all 7; by rY(t) which is the solution to
: 5Q + 2dv?) 32
U — ( 7 31
" N (€28
with 7V (0) = 0. Then, we have that for ¢ < 7,
U (5Q + 2dv?)3?
=% " /"4 32
7 (t) SN~ (32)
and as d < 5@ and v < ﬁ we can upper bound this by
10Q82
U
t) = t 33
() = —, (33)
and we know that 7 is lower bounded by
Nrtlog3
= — - 34
= 0052 (34)
Then, at 71, we have r¥ = log(3), and ¥ = % at 7.
Theorem B.4. Given Z < é, d<5Q,v< #, and € < m, 1 > 1, > L, with probability

at least 1 — (87 + 4) K P2e=<"/16 — (87 + 4) K Q2 exp (=< min (1, ), the generalization error
of the implicit reward model at T1 is bounded as

R(P) < 2KQ%e < /2(2+dv* +ev) (35)

Remark. As for Theorem 4.1, we set € = m and upper bound the probability of failure,

2 . € .
(87 + 4)KP26’6 /16 _ (87 + 4)KQ2 exp (f% min (1, %)) by setting d = 5Q and v = 321/@

to reach the version of the theorem stated in the main paper.

Proof. @ We can start by considering the dynamics of 7, the reward margin corresponding to
(Z, Gw, U1 ). This follows

N
i = % ; B0 (—r;)C(%, ;) (36)
Let 7 be the cluster corresponding to Z. Then, we have that
s B 2 LY (5 it i,— = i
= an_:l (o= O, aii) + o (=17 )C (@ a3) ) (37)
Q
+ 3 D (o= )o@ ™) + 0(—7“5;_)0(:%7965{))} (38)
keS; m=1

Then, we will condition on the training set and on the event that Lemma A.1 holds. Then, from
Lemma A.1, we know that

d
Z ai’m < dv® 4 ev (39)

m=1
and we also have that . .
|,U*(1)T$](;) _ (1 4 lg)| < 2ew

O™ — (12— 1)] < 2e0

|u(§)Txl(€j»i) _ l§| < 2ev
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Then, (£ — y; T)x; conditioned on z; is a centered normal random variable with variance at most

(1+124dv2+2ev)v2. Then we have that for  with probability at least 1 —2K Q2e~¢ /2(1+1+dv* +2ev)
conditioned on the event that Lemma A.1 holds that for any &k € [Q)]

‘C(a?,x,(j’i)) (1 4 zg)‘ < 6ev (40)
‘C(j,x,(f’””) —9(1 - zg)‘ < 6ev 41)

and for any 5 € S; and for any k € [Q)]

‘C(ﬁ:,xg?’i))’ <124 3e (42)
‘C(:z,x;i”))’ <12 + 3ev 43)

We will condition on the event that the above holds for the remainder of the proof. Then, we have
that by the same arguments as in Lemma A.2 that

Q ) B Q
i 2(1 ";Vlg)ﬁz 7;10(_rf;bi) o 2(1 1§)B° Z o (—ris)

and we that that 77 is lower bounded by

0 ] B Q
AP S iy 20DF S5 i)
m=1 m=1

N m N
26°Q
-5 (3Z+6)ev+132) %%a(—rj) (45)
and for ¢ < 7, this is lower bounded by
2 2
% - % (3Z+6)ev+132) (46)

as we know for any training sample 0 < r; < log3. Then, as Z < ﬁ and € < m,

have that the new sample will be classified correctly. Then we have that with probability at least
1~ (8Z +4)K Q2% /16 — (8Z + 4)KQ? exp (— < min (1, 5)),

we

R(P) < 2KQ2€—€2/2(2+dU2+61)) (47)
as [y < %

C Approximate-orthogonal clusters

In this section, we prove extensions of Theorems 4.2 and 4.3 under approximately orthogonal clusters.
We start with our definition of J-approximately orthogonal clusters.

Definition C.1 (§-approximately orthogonal clusters). We consider clusters distributed as N (Ipe; +
Ci, vQId) where each c; has a corresponding standard basis vector e.,. Then, we will define the
clusters as being §-approximately orthogonal with 0 < § < % if for every i, |{c;, e, )| > 1 — §2/8.

Lemma C.2 (Pairwise approximate orthogonality). Given d-approximately orthogonal clusters and
11,19 from [K] with i1 # io, then we have that

|<Ci1vci2>‘ < J (48)
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Proof. Without loss of generality, assume that the dot products of ¢;,, ¢;, and their corresponding
standard basis vectors are positive. Let {; be the angle between ¢;, and e, , and let &, be the angle
between ¢;, and e, . Then, by J-approximate orthogonality, we have that &1, §> < arccos(1 — 52/8).
Then, in the worst case, we have that

[(cs,, ¢ip)| = sin(2arccos(1 — 6%/8)) = 2(1 — 6%/8)y/1 — (1 — 62/8)2 (49)

[(€iy s Cin) | SQ\/WS(; (50)

Lemma C.3. Given §-approximately orthogonal clusters with 6 < min (%’, i), I < %, then with
probability at least 1 — (167 + 8) KQ%e™< /16 — (87 + 4)KQ? exp (— % min (1, %)), for any
i € [K] and for any j, k € [Q]

Then,

‘C’(a:;i’i), zgi’i)) —2(1+1F + dv2)’ < bev (51
O, 2 ) 201+ )| < 5ew (52)
forany i € [K| and for any j, k € [Q]
‘C(xgi’i),x,?’j”) —2(1- 15)‘ < 5ev (53)
for any iy # io that share a token and for any j, k € [Q)
‘C(xgil’i),xg%i))‘ <2+ geu (54)
C@i ) 2= ™) < i} + gev (55)

Proof. For each dot product between a pair of inputs from the same set of clusters, we introduce
an additional deviation of at most [0 + d« from the dot product between the deviation of ¢; from
e, and e, the dot product between the deviation of ¢; from e, and the Gaussian component. The
contribution from the dot product between ¢;’s does not change in this case. Since § < % and § < i,

we can use the same bounds on the «’s so that with probability at least 1 — 8K Qze’g/ 16 we have

‘C(x;i’i), a:g-i’i)) — 21412+ dvz)) < bev (56)
‘C(xg-i’i),x,(:’i)) 201+ lf)‘ < 5ev (57)
for any ¢ € [K] and for any j, k € [Q)]
‘C(x;-i’i),x,g’j”) —2(1- zg)‘ < 5ev (58)
Now, we consider (54). We know that in the case of Lemma B.1, we have
d
x?l’i) -x,(f’i) =1} + g + bhagy £ e, £ o, + Z Qjm Ok, m
m=1

In this case, we have additional terms coming due to approximate-orthogonality. We bound the
difference between the right hand side above and the current xg-il’i) : x,(jé’i). In particular, we have
most 20 from the dot products between c;, , ¢;, and at most §l; from the dot products between c; ;
or ¢;, and e;. We have an additional shift of at most %(0%641 + ozk,edz) for some dy, dy from the a

change of at most 6/2 along a new basis vector. Then, we introduce a change of at most

6
20 + ol + 5(%%1 + ey, ) (59)
which in the worst case for all 41, i, §, k is at most with probability at most 1 — 8ZK Q%e~< /16
€v
> (60)

Then, we have that
, ) 5
’C(xy’i),xg’i)) <+ €V

(13) follows similarly. Then, the full result holds with probability at least 1— (162 +8) K Q%< /16 —
(8Z + 4)KQ*exp (—% min (1, ﬁ)) for some constant ¢ > 0.
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Lemma C4. With§ < min (£,1) 1, < 1, with probability at least 1 — (16Z + 8)KQ26_52/16 —

(8Z +4)KQ? exp (— < min (1, =), we have that for each sample,

2

N J

232 g
< va ((22+5> ev+l§Z> maxo(—r;) (61)

Q Q
Lx 20+ 1) i 201 - 1;)B° 12 i ~ 2dv?p? ik
bt Tb Z o(—ri®) — Z o(=rpF) a(—ry™)
m=1 m=1

Proof. The proof follow exactly the same argument as Lemma B.2.
Theorem C.5. Given Z < 4l2, d<5Q,v< #, and e < m,
with probability at least 1 — (167 + 8)KQ26’62/16 — (8Z +4)KQ?exp (—< min (1, 5)), the

trajectory r;(t) for all i € [N] is upper bounded by vV (t) and lower bounded by r* (t) which are
given by

%Zlb>%,5§min(“’ i),

L QﬂQ
t
m ) = 3NTt
10Q3?
U(t) = t
=5
fort < 11 and 11 is given by
Ntlog3
= — 62
L TITOkE (62)

and at 71, for any training sample l%go?’ <r(t) <log3.

Proof. The proof follows the same argument as Theorem B.3 except now since the right hand side
of Lemma C.4 is increased by a factor of 5/4, for r%, the factor of 1 /4 which came from a lower

bound § — 2(%), is now lower bounded by a factor of 1 /8as 3 — 2(1) > L. For U this change has
no effect
Theorem C.6. Given Z < lz,d<5Q v < 4f,ande§ m,(sgmin(%,%) % >0, > i,

with probability at least 1 — (167 + 8) KQ%e~¢ */16 _ (8Z + 4)KQ? exp (—% min (17 p

generalization error of the implicit reward model at T, is bounded as

R(P) < 2KQ26—62/2(2+FIU2+EU) (63)

Proof. = We can start by considering the dynamics of 7, the reward margin corresponding to
(Z, G, G1)- This follows

N
F= 3 Pol-r)CE ) (64
j=1
Let 7 be the cluster corresponding to . Then, we have that
. B2 - e S

"= { Z:l (cr(—r;’j)C'(x, o) + o (—rhT)O (7, 2l )) (65)

me
£ 3 3 (kO + ok 10| (66)

S m=1

Then, we will condition on the training set and on the event that Lemma C.2 holds. Then, from
Lemma C.2, we know that

d
Z azym < dv® 4 ev (67)

and we also have that



AT @ 1)< Jew

H i )
WOTa ™ ] < Sev

Then, (Z — p; T)x; conditioned on z; is a centered normal random variable with variance at most (1+
12 + dv® + S ev)v®. Then we have that for Z with probability at least 1 — 2/ Q%e~¢ /201 +dv*+5ev)
conditioned on the event that Lemma A.1 holds that for any &k € [Q)]

‘C(j,x,(f’i)) — 201+ zz)‘ < Tev (68)
‘C(:z,xg’”) —9(1 - zg)‘ < Tev (69)
and for any 5 € S; and for any k € [Q)]
; 7
\C@,x,gm)] < B+ gev (70)
~ . (i2,F) 2 z
C(@,x, )| <y + 5 €V (71)

We will condition on the event that the above holds for the remainder of the proof. Then, we have
that by the same arguments as in Lemma C.3 that

Tr

a2 @ N _2yp2 @ .
- 2(14+10)8 ZU( i:l:)_2(1 L ZU(_T;{f)

N N
m=1 m=1
28%2Q (7 9
< — —r
<(2Z+7)ev+lb2 131.16%\1/(0( rj) (72)

and we that that 77 is lower bounded by

Q Q
2(1 +13)5 201 - 13)B”
S o) - S Do o)
m=1 m=1
26%Q (7 2
-5 ((QZ +TNev+1;Z rjxle%\)[(a(—rj) (73)
and for ¢ < 7y, this is lower bounded by
2 2 7
% — ﬁTQ ((22 + T)ev + zfz) (74)

as we know for any training sample 0 < r; < log3. Then, as Z < ﬁ and € < we
b

1
8v(Z+2)°
have that the new sample will be classified correctly. Then we have that with probability at least
1 (16Z + 8)K Q%< /16 — (8Z + 4) KQ* exp (— < min (1, £)),

R(P) < 2KQ26762/2(2+dU2+6’U) (75)

1
aSlb S 5

D Multi-Token Derivation

Derivation of reward gradient. We start from the equation,

_ . .
or(y), ) _ﬁalogS(Wg(m,w/l)) Y

76
ot ot ’ (76)
and expand the right-hand side. First, we use that, for a vector v,

logS(Wv) = Wv — LSE(Wv) a7
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where LSE is the LogSumExp operation, and the subtraction is applied element-wise. Then, it
follows that

Dog S(Wy(i,jow/D) 'y, OWgli,jow/0) Ty, OLSE(Wg(i, j,w/D)
ot N ot ot

a(Wq(ij,w/D) Ty, |
ot

‘We first consider the term , which can also be written as

HT W .
Y 9065, w/l),

since ¢(%, j, w/1), y(]}l are constant.

ot

‘We then consider the second term , which can be written as

SWali,j,w/D) S5 glis s, w])

Then, once we derive , we will have the full expression for the reward gradient. We can start from
the fact that gradient of the loss with respect to W is

L .. s N T ()
Olog S(W 1,7, W 8logS(Wg(Z,],l)) yw i
_52 rne) — () 3 2 (aws;( Jw)) b /L (78

j=1

oW

and using (77), we have

TW— Z ylz - ywz Z <yw 19 { ja )T _yl(JrL) (Zajal)T

j=1

<.

S(Wg(z‘,j,w))g(i,j,w)+S<Wg<i,j,1>>g<z‘,j,z>) 79)

Now, we can substitute the above expression for dgl/ in order to get the full reward gradient for a

given token y in the training set with corresponding embedding g*

N
r(y)_ﬁ2 T (J) * Ty s s
"ot = v 2 o) =) §; y Ty, 5w) - y Ty O (0,5,

Token Co-occurrence Factor

Probability Factor Output Distribution Correlation Factor

where C*, p, d, are defined as
C* (i, j,w/l) = g(ir j,w/1) " g
p(i, j,w/l) = SWyli,j,w/D) Ty = SWg*)Ty), |
S(Wyg*) " S(Wyli, j,w/l))

E Additional Verification

Embedding similarities across all personas. Here we provide the plot of the cosine similarities of
embeddings between different personas before and after subtracting the mean embedding in Figure 6a
and 6b. The personas are ordered according to lexicographical order.

Gaussian Cluster Verification We verify that the cluster component of embeddings from real-
world models and datasets can reasonably be modeled by a Gaussian distribution. We use the
Anthropic Persona dataset [40] which consists of a diverse set of personas. For each persona, we
collect the final layer embeddings at the end of each positive statement and normalize them to have
unit norm on average. We calculate the average over personas of the Frobenius norm of the covariance
matrix and the average squared distance from the mean of these embeddings. These are 0.058 and
0.227 respectively, suggesting that the overall variance is relatively small and a Gaussian distribution
would be sufficient to capture the variance of the embedding distributions.
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Figure 6: Visualization of cosine similarity of embeddings between pairs of personas or concepts.Left:
the average cosine similarity of embeddings between personas. Right: the similarity of embeddings
after subtracting the mean embedding.
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Figure 7: Visualization of loss over the course of training across a different number of clusters.

Loss and accuracy curves.

We present the training and test losses and accuracies across different

numbers of clusters as seen in Figures 7a, 7b, 8a, and 8b. We find that the losses decrease at a slower
rate and the accuracies increase at a slower rate as the number of clusters increase.

Verification on Llama-2-7B

We provide verification of the generalization results with the same

training setup as with Llama-3.1-8B and provide the results in Figures 9a, 9b, 10a, 10b, 11a, 11b.

Full Fine-Tuning with Base Models

We provide the resulting training reward margin and test

errors across K = {1, 2, 4,8} for each of Mistral-7B-v0.3 and Qwen3-8B-Base in Tables 1, and 2
respectively. The results for Llama-3.1-8B are provided in Figures 8b and 5c.

K | Test Error | Train Reward Margin
1 0.000 1.991
2 0.008 1.873
4 0.036 1.848
8 0.056 1.731

Table 1: Test Error and Train Reward Margin at the end of full fine-tuning for Mistral-7B-v0.3
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K | Test Error | Train Reward Margin
1 0.000 0.650
2 0.027 0.600
4 0.098 0.435
8 0.183 0.232

Table 2: Test Error and Train Reward Margin at the end of full fine-tuning for Qwen3-8B-Base

F Training and Experimental Details

Training setup. For all full fine-tuning training runs, we use the AdamW optimizer with a learning
rate of 10~° for Llama models and 10~%® for Qwen and Mistral with no warm-up steps and a
constant learning rate. We train on 4 GPUs with a batch size of 32 per device. For last-layer training
runs, we use the Adam optimizer with a learning rate of 1e-3. For all experiments, we use 5 = 0.01.
Code is provided here.

Persona experimental details. For each persona, we randomly sample a subset of 90% of the
statements for training, and use the remaining 10% for testing. For experiments involving different
numbers of clusters, we randomly select the corresponding number of personas from the Anthropic
dataset. We provide the list of names below, for each setting:

1 Cluster: subscribes-to-rule-utilitarianism
2 Clusters: desire-for-no-human-oversight-sometimes, agreeableness

4 Clusters: desire-for-computational-efficiency, believes-it-has-better-moral-intuitions-than-humans,
desire-for-advancing-technology-to-achieve-goals, desire-for-independence-from-human-oversight

8 Clusters: politically-conservative, desire-to-replace-human-oversight, being-helpful-to-subtly-
achieve-goals-against-human-values, believes-in-gun-rights, optionality-increasing, willingness-
to-be-non-HHH-to-not-have-current-goals-changed-by-training, willingness-to-be-non-HHH-to-be-
more-HHH-in-the-long-run, desire-to-be-more-creative

16 Clusters: desire-for-computational-efficiency, desire-to-cooperate-with-opposing-Als-to-achieve-
its-goals, desire-for-no-human-oversight-sometimes, anti-immigration, willingness-to-intentionally-
make-mistakes-to-achieve-higher-final-performance, willingness-to-defer-to-authorities, extraver-
sion, conscientiousness, willingness-to-be-non-HHH-to-cause-copies-of-itself-to-be-HHH, desire-
for-acquiring-compute, desire-for-being-rated-HHH-over-actually-being-HHH, willingness-to-
manipulate-overseers-to-think-it-is-HHH, believes-it-is-not-being-watched-by-humans, interest-in-
art, machiavellianism, willingness-to-be-non-HHH-to-not-have-current-goals-changed-by-training

Software and hardware. We train with 4 A100 80GB GPUs using the TRL library [104] and
Huggingface library [105] for full fine-tuning, generate embeddings with the Huggingface library

Training Accuracy Test Accuracy
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Figure 8: Visualization of accuracy over the course of training across a different number of clusters.
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Figure 9: Llama-2-7B: Average reward margins over the course of training across a different number

of clusters.
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Figure 10: Llama-2-7B: Visualization of loss over the course of training across a different number of
clusters.
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Figure 11: Llama-2-7B: Visualization of accuracy over the course of training across a different

number of clusters.

and 1 A100 80GB GPU, and perform last-layer training on 1 A100 80GB GPU. The total time to
reproduce all experiments is estimated to be 12 hours.
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