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Abstract

Large Language Models (LLMs) exhibit vari-001
ous emergent abilities. Among these abilities,002
some might reveal the internal working mech-003
anisms of models. In this paper, we uncover a004
novel emergent capability in models: the intrin-005
sic ability to perform extended sequences of cal-006
culations without relying on chain-of-thought007
step-by-step solutions. Remarkably, the most008
advanced models are capable of directly out-009
putting the results of two-digit number addi-010
tions with lengths extending up to 15 addends.011
We hypothesize that the model emerges discrete012
representations of symbols within its hidden013
states and performs symbolic calculations inter-014
nally. To test this hypothesis, we design a se-015
quence of experiments that look into the hidden016
states. Specifically, we first confirm that Im-017
plicit Discrete State Representations (IDSRs)018
exist. Then, we provide interesting observa-019
tions about the formation of IDSRs from layer,020
digit, and sequence perspectives. Finally, we021
confirm that models indeed use IDSRs to pro-022
duce the final answers. However, we also dis-023
cover that the state representations are far from024
lossless in current open-sourced models, lead-025
ing to inaccuracies in final performance. Our026
work presents a novel exploration of LLMs’027
symbolic calculation abilities and the underly-028
ing mechanisms.029

1 Introduction030

Large language models (LLMs) have demonstrated031

remarkable performance in a variety of fields032

(Achiam et al., 2023; Touvron et al., 2023a), includ-033

ing natural language understanding and generation034

(Zhao et al., 2023), code generation (Chen et al.,035

2021; Nijkamp et al., 2022; Li et al., 2023b), and036

mathematical problem-solving (Hendrycks et al.,037

2021). These abilities emerge as the model scales.038

In this study, we dive into another intriguing039

emergent capability: the ability of LLMs to per-040

form arithmetic calculations, particularly consec-041

utive additions directly, without relying on chain-042

of-thought reasoning. For example, given the ques- 043

tion: “Please directly give me the answer to 17 + 044

38 + 32 + 87 + 47 + 28 + 17 + 21 + 53 + 15 045

+ 18 + 76”, a SOTA LLM can directly produce 046

the correct answer “449” without producing any 047

intermediate tokens. This phenomenon warrants 048

investigation for two principal reasons. Firstly, it is 049

unlikely that models were trained on such consecu- 050

tive addition data, as it exerts negligible influence 051

on overall performance across general domains and 052

benchmarks (Wang et al., 2021). This phenomenon 053

likely emerges naturally during the scaling process 054

and presents a more meaningful study subject com- 055

pared to tasks that may have more intricate rela- 056

tions with memorizing training data. Secondly, the 057

simplicity of this phenomenon renders it an ideal 058

candidate for interpretability research, potentially 059

serving as a foundational step in uncovering the in- 060

ternal mechanisms underlying LLMs in performing 061

intrinsic consecutive reasoning. 062

Prior research on the interpretability of models 063

performing mathematical tasks focuses primarily 064

on binary arithmetic operations (Zhu et al., 2024). 065

However, this body of work fails to address the 066

formation of discrete state representations within 067

the hidden layers of these models. 068

In this paper, we propose a central hypothesis 069

to elucidate the emergent capability of implicit 070

sequential computation: LLMs inherently track 071

discrete states. By establishing Implicit Discrete 072

State Representations (IDSRs) that encapsulate var- 073

ious symbols (e.g., intermediate results), LLMs can 074

leverage these precomputed intermediate results for 075

subsequent use, thereby obviating the necessity for 076

intricate computations in the final step. 077

To validate this hypothesis, we construct a syn- 078

thetic dataset of consecutive addition problems and 079

employ probing methods to examine the existence 080

of IDSRs in hidden states across various LLMs. 081

Upon confirming its existence, we further investi- 082

gate the properties and formation of IDSRs, demon- 083
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strate its formation through digit-wise, layer-wise,084

and sequence-wise perspectives, and provide note-085

worthy observations of distinct layer functionali-086

ties. From a digit-wise perspective, IDSRs form087

independently and sequentially, beginning with the088

lowermost digit. From layer-wise level, a sharp089

transition from shallow semantic computation to se-090

mantic understanding occurs around layer 10, and091

a shift from linearity to non-linearity arises in the092

later model layers. From sequence-wise perspec-093

tive, information encoded in IDSRs are propagated094

along the sequence for sequential utilization. Fi-095

nally, we confirm that the model utilizes IDSRs096

to produce the final result rather than computing097

using all preceding numbers simultaneously. This098

investigation provides significant insight into the099

multi-step reasoning and state-tracking abilities of100

LLMs (Singh et al., 2024; Li et al., 2023a).101

2 Related Work102

2.1 LLM Arithmetic and State Tracking103

Abilities104

Language models are exhibiting increasingly ma-105

ture abilities to perform arithmetic tasks, both open-106

sourced (Shao et al., 2024; Jiang et al., 2023; Bai107

et al., 2023) and close-sourced models (Achiam108

et al., 2023; OpenAI, 2024; Team et al., 2023; An-109

thropic, 2024) are excelling at a variety of mathe-110

matical benchmarks, ranging from elementary to111

Olympic difficulty levels (Hendrycks et al., 2021;112

Cobbe et al., 2021; Chen et al., 2023; Li et al.,113

2024).114

Other abilities much discussed are LMs’ state115

encoding and tracking abilities. Li et al. and Nanda116

et al. investigated the existence of non-linguistic117

state representations in board game settings, while118

Li et al. found that model representations also en-119

code entity states in the process of textual tasks.120

Taking this problem further, Kim and Schuster121

showed that models perform non-trivial state track-122

ing given specific textual tasks. However, whether123

LMs track discrete states during arithmetic tasks124

still remains an open question.125

2.2 Interpretability of LLM Arithmetic126

Abilities127

The inner workings of LMs in performing arith-128

metic and reasoning tasks are under-explored. Cur-129

rent literature suggests that neurons and layers in-130

side LMs may serve as feature extractors, extract-131

ing latent properties from inputs and passing them132

through layers (Mikolov et al., 2013; Bau et al., 133

2020; Belinkov, 2022; Geva et al., 2020; Burns 134

et al., 2022; Gurnee et al., 2023). 135

Building on this idea, recent work demonstrates 136

that hidden states during inference contain repre- 137

sentations relevant to future tokens (Nostalgebraist, 138

2020; Belrose et al., 2023; Pal et al., 2023; Wu 139

et al., 2024). This insight underpins our research, 140

in which we prove the existence and utilization of 141

implicit representations in LMs. 142

Previous analyses have also examined the arith- 143

metic capabilities of LMs. Stolfo et al. identify that 144

LMs employ MLPs and attention heads at different 145

stages of arithmetic reasoning. 146

2.3 Broader Interpretability of LLM 147

The technique of "probing" is used to elicit fea- 148

tures and properties from model representations 149

(Alain and Bengio, 2016; Hewitt and Liang, 2019; 150

Pimentel et al., 2020; Belinkov, 2022; Hernandez 151

et al., 2023). Probing involves using auxiliary mod- 152

els, usually with simple structures, to make classi- 153

fications. 154

Representation engineering, a pivotal approach 155

in model interpretability, emphasizes the holistic 156

feature representations within model layers (Li 157

et al., 2021; Zou et al., 2023). This approach facili- 158

tates behavioral monitoring and performance modi- 159

fication (Zhang et al., 2024; Li et al., 2023a). How- 160

ever, it is still underdeveloped in practical appli- 161

cations, disrupting foundational mechanisms and 162

significantly impacting performance. 163

Research in this field extends to specific scenar- 164

ios. Li et al. and Nanda et al. examine board game 165

contexts, yielding divergent conclusions regarding 166

the linearity of hidden states. Yang et al. explores 167

event reasoning, demonstrating that significant rea- 168

soning predominantly occurs in the initial inference 169

step and scales with model size. Few studies, how- 170

ever, critically assess the arithmetic capabilities 171

of LMs. Some examine neuron activations only 172

(Stolfo et al., 2023), while others focus on simple 173

calculations without comprehensively considering 174

model layers (Zhu et al., 2024). 175

Our study tackles the problem of multi-hop rea- 176

soning within mathematical frameworks, utilizing 177

both analytical and influential methodologies de- 178

rived from representation engineering. This ap- 179

proach facilitates the exploration of hidden states, 180

model layers, and the comprehensive dynamics of 181

the model. 182
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3 Emergence of Implicit Computation183

In this section, we confirm the emergent abilities of184

implicit computation using a variety of both open-185

source and closed-source Large Language Models186

(LLMs).187

Problem Statement. We employ implicit con-188

secutive addition as the representative task. In this189

context, the model is tasked with delivering the190

sum of an extended sequence of additions directly.191

An example prompt is provided below:192

Please directly give me the answer to 17 +
38 + 32 + 87 + 47 + 28 + 17 + 21 + 53 +
15 + 18 + 76.

193

There are three reasons why the ability to solve194

such a task might indicate the formation of discrete195

state representations:196

1. This capability is unlikely to be a result of197

memorizing existing training data, as storing198

the results of calculations necessitates a pa-199

rameter space of O(99L).200

2. Direct optimization of this task during train-201

ing is unlikely. As Goodhart’s law (Strathern,202

1997) suggests, “When a measure becomes a203

target, it ceases to be a good measure.” Con-204

secutive addition offers minimal practical per-205

formance benefits, rendering it an unlikely206

optimization target. Consequently, this capa-207

bility may genuinely arise from large-scale208

unsupervised training.209

3. Each computational step is relatively simple.210

We exclude addition involving four-digit or211

more due to its increased single-step complex-212

ity, which complicates tracing implicit com-213

putation because of single-step errors.214

To ensure that models that are only accessible215

through API calls do not rely on tools such as cal-216

culators, we manually verify that there is at least217

one addition count where the model has less than218

a 100% probability of yielding the correct answer.219

Additionally, we ensure that the models do not uti-220

lize explicit chain-of-thought reasoning through221

prompt engineering.222

Specifically, we evaluate the exact accuracy of223

the predicted answers against the ground truth for224

different models directly performing consecutive225

addition of varying lengths from 2 to 14.226

We include the following LLMs in our analy- 227

sis: Llama2-7B (Touvron et al., 2023b), MiniCPM- 228

2B (Hu et al., 2024), Mistral-7B (Jiang et al., 2023), 229

Zephyr-7B (Tunstall et al., 2023), DeepSeek- 230

67B (Bi et al., 2024), and the Qwen series with 231

different sizes (Bai et al., 2023). For closed- 232

source LLMs, we consider GPT-3.5 (Brown et al., 233

2020), GPT-4 (Achiam et al., 2023), Claude3- 234

Sonnet, Claude3-Opus (Anthropic, 2024), and 235

GPT4-O (OpenAI, 2024). 236

As illustrated in Figure 1, there exists a strong 237

correlation between performance and model size. 238

Smaller models achieve passable accuracy on the 239

addition of two or three two-digit numbers, but 240

their accuracy rapidly deteriorates to near zero 241

when the length of the sequence reaches five. 242

Larger models, however, maintain accuracies above 243

50% for sequences of up to five numbers and 244

demonstrate non-zero performance for sequences 245

of even more numbers, demonstrating the fast 246

“emergence” of this capability. 247

The "emergence" of this capability becomes 248

most prominent when models encounter consec- 249

utive addition problems involving more than eight 250

addends. To illustrate this phenomenon, Figure 2 251

presents the accuracies of both open-source and 252

closed-source models performing direct addition 253

with ten addends. It is evident that larger and 254

more advanced closed-source models exhibit sig- 255

nificantly higher task accuracies in an emergent 256

manner. 257

To conduct a comprehensive analysis of the cor- 258

relation between model size and performance, we 259

examine the Qwen model series, including models 260

with sizes of 72B, 14B, 7B, and 4B, as illustrated 261

in Figure 3. The results indicate a distinct enhance- 262

ment in performance proportional to the increase 263

in model size, especially noticeable for sequence 264

lengths ranging from three to six numbers. 265

4 Analysis Methodology 266

Given the remarkable ability of models to directly 267

yield calculation outcomes, we hypothesize that 268

these models form Implicit Discrete State Rep- 269

resentations (IDSRs) of intermediate results. For 270

example, consider the formula 13 + 24 + 41 =. 271

We propose that the most plausible mechanism for 272

models to complete this calculation in a single pass 273

is to generate an IDSR of 37 (the result of 13+ 24) 274

at the second "+" token, which would subsequently 275

be utilized for the next step of computation (i.e., 276
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Figure 3: Accuracies of Qwen Series Performing Con-
secutive 2-Digit Addition

addition with 41). 277

To thoroughly test and analyze this hypothesis, 278

we propose and investigate the following research 279

questions: 280

RQ1: Do IDSRs really exist?

RQ2: What are IDSRs’ properties?

RQ3: How do the IDSRs’ form?

RQ4: How do models utilize IDSRs?
281

4.1 Experiment Setup 282

4.1.1 Dataset 283

We construct a straight-forward dataset of consecu- 284

tive addition and subtraction problems with differ- 285

ent length, addend digits and prompts. 286

Our question prompts are divided into three cate- 287

gories, respectively formatted as in Table 1, where 288

i ranges from 2 to 14, and {xi} are positive integers 289

with the same number of digits ranging from 1 to 290

3. We ensure the probed sum maintains the same 291

number of digits as the addends to enhance digit 292

probing consistency. Prompts are chosen with a 293

diversity of semantics to demonstrate the influence 294

of context on IDSRs tracking. 295

Type Expression

Addition {x0}+ {x1}+ ...+ {xi−1} =

Subtraction {x0}+...+{xi−2}−{xi−1} =

Prompting {Prompt}, {x0}+ {x1}+ ...+
{xi−1} =

Table 1: Dataset Expressions

The dataset consists of 131,300 questions, as 296

shown in Table 2. Questions are designed to ensure 297

that expected answers follow a uniform distribution 298

within their respective ranges, thereby eliminat- 299

ing probability bias and facilitating unbiased probe 300

learning. The dataset is partitioned into training, 301

validation, and test sets following an 80/10/10% 302

split for probing, respectively. 303

4.1.2 Hidden States 304

We prompt the model to answer dataset questions 305

directly. During inference, we retrieve the hidden 306

state Hi,j corresponding to the jth token of the 307

input sequence from layer i of the model. 308
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Type #Digits #Questions

Addition
3 39,000
2 6,500
1 1,300

Subtraction
3 39,000
2 6,500

Prompting 3 39,000

Table 2: Dataset Distribution

In our experiments, we exclusively extract the309

hidden states corresponding to the +, -, and = to-310

kens for probing. This ensures that IDSRs are most311

prominent and unbiased. Extracting IDSRs from312

tokens representing addends would incorporate rep-313

resentations of the addends themselves, introducing314

non-uniform bias and compromising the probing315

process.316

4.1.3 Classification Probes317

Previous work has proven the abilities of probes on318

a wide variety of classification tasks. In our work,319

we utilize a multi-layer perceptron with one hidden320

layer to perform classification.321

Specifically, the probing network is as follows:322

Pd
i,j = Softmax(σ(W1Hi,j)W2) (1)323

where Pd
i,j is the probing prediction of the d-th324

digit of the IDSR, and W1 ∈ Rdm×dh and W2 ∈325

Rdh×do being the perceptron’s model weights, dm326

and dh being the dimension of the model and the327

perceptron’s hidden states respectively. doutput is328

set to 10 as the probes are expected to predict a329

digit from 0 to 9, and dh is set to
√
dmdo.330

For more detailed discussion on the sizes and331

training of probes, see Appendix A.332

4.1.4 Metrics333

For the assessment of model capabilities in per-334

forming consecutive addition, we employ exact335

accuracy as our primary metric (EA, the ratio of336

the exact matches between the model output and337

the ground truth to the total number of questions).338

To evaluate the classification probes, we com-339

pute the exact accuracy for each individual digit340

(IDA) as well as the overall exact accuracy (OEA,341

which considers a match only when all digits are342

predicted correctly).343

4.1.5 Models Chosen 344

For our experimental setup, we select Deepseek- 345

67B (Bi et al., 2024) and Qwen series models (4B, 346

7B, 14B, and 72B) (Bai et al., 2023) as representa- 347

tives of open-source models. These models are uti- 348

lized in their original form, without any fine-tuning 349

or parameter modification. We aim to evaluate and 350

compare the proficiency in executing consecutive 351

addition tasks across a diverse range of models 352

varying in size and capabilities. Special emphasis 353

is placed on the Qwen-72B model to conduct an 354

in-depth analysis of representation engineering and 355

IDSRs’ properties. 356

5 Existence and Properties of IDSRs 357

In this section, we present evidence of IDSRs re- 358

garding RQ1 and RQ2. To demonstrate the exis- 359

tence of IDSRs in hidden states during inference, 360

we design a series of probing prediction experi- 361

ments with two levels of difficulty: Whole Number 362

Probing and Digit-wise Probing. 363

5.1 Whole Numbers Probing 364

In this set of experiments, we train probes to pre- 365

dict the results as whole numbers from 10 possible 366

sums. We probe different token positions across 367

layers to investigate the existence of IDSRs’ trans- 368

ference along the formula. The results, illustrated 369

in Figure 4, indicate that prediction accuracies sig- 370

nificantly exceed random chance in all scenarios, 371

demonstrating the existence of IDSR. 372

However, the process of forming IDSRs is far 373

from lossless. The maximum prediction accuracies 374

for the second to fifth addition signs and the final 375

equal sign are 100%, 99%, 74%, 62%, and 37% 376

respectively, indicating substantial data and reso- 377

lution loss as IDSRs are passed along the formula 378

during inference. We hypothesize that reducing this 379

error margin in the transference of IDSRs would 380

enhance the capability of LLMs. This will be ex- 381

plored in future research. 382

Interesting trends across layers can also be ob- 383

served in Figure 4, which will be discussed and 384

analyzed in detail in Section 6. 385

5.2 Digit-wise Probing 386

To investigate whether digits exist separately in 387

the IDSRs, we employ multiple probe models to 388

predict the respective digits of the number in ques- 389

tion. For this experiment, we select formulas with 390

3-digit sums, therefore three digit-classification 391
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Figure 4: Accuracies of Whole Number Probing Predic-
tions
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probes are used. The range of possible sums392

for the nth addition/equal sign increases signifi-393

cantly, from 10 in the previous experiment setting394

to max{999, 99n} −min{100, 10n}, an increase395

of 10 to 40 times. We consider a prediction to396

be correct only when all three-digit probes make397

accurate predictions on a test data item.398

As depicted in Figure 5, probing accuracies us-399

ing tokens from the first ten layers and the second400

addition sign from the later layers remain high.401

However, it is noteworthy that after significantly in-402

creasing prediction difficulty, the ability of probes403

to make exact predictions after the second addition404

sign experiences a sharp decline. This indicates405

that models struggle to produce high-resolution406
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Figure 6: Accuracies of By-Digit Probing Predictions
Using Different Probes

IDSRs consecutively. 407

5.3 Are IDSRs Linear? 408

To gain a concrete understanding of the IDSRs, we 409

first examine its linearity. Beyond the original prob- 410

ing model with hidden size
√
dmdo, we construct 411

1) a smaller bottle-necked probing model with hid- 412

den size 10, as well as 2) a simpler single-layer 413

perceptron utilizing a softmax activation function. 414

Pd
i,j = Softmax(W1Hi,j) (2) 415

As illustrated in Figure 6, layers 0 to 65 exhibit 416

only minor accuracy drops with reduced hidden 417

size, whereas layers 65 to 79 experience a signifi- 418

cant reduction. 419

Notably, opposing accuracy trends appear in 420

later layers for multi-layer and single-layer per- 421

ceptrons. Between layers 50 and 65, accuracies 422

for single-layer perceptrons drop to nearly zero, 423

followed by a sharp increase for multi-layer per- 424

ceptrons. This implies that layers 0 to 50 contain 425

linear IDSRs, likely directions in the latent space. 426

In contrast, layers 50 to 65 transit from linear to 427

non-linear features, enhancing representation reso- 428

lution and information density. 429

6 Formation and Utilization of IDSRs 430

In addition to analyzing the specific properties of 431

IDSRs, we extend our study to overall formations. 432

In this section, we identify patterns exhibited dur- 433

ing inference at the digit level, sequence level, and 434

layer level, revealing the inner mechanisms of con- 435

secutive addition and multi-hop reasoning for LMs 436

(RQ3). Following the formation analysis, we ex- 437

amine the utilization of such states (RQ4). 438

6.1 Digit-Level Formation 439

We investigate the second addition operation within 440

three-digit addition tasks and derive two critical ob- 441
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servations. First, the product of exact accuracies442

for the individual digits equals the overall exact443

accuracy, implying that models establish indepen-444

dent IDSRs. Second, as depicted in Figure 7, the445

sequence in which digit prediction accuracies sur-446

pass random chance, as determined by statistical447

measures and annotated in the figure, follows an448

ascending digit order. This pattern mirrors the or-449

der humans use for digit-by-digit calculations, sug-450

gesting that models perform multi-digit addition451

through a series of consecutive single-digit addi-452

tions.453

6.2 Sequence-Level Formation454

The representation resolution of earlier addition455

sign tokens, as indicated by prediction accuracies,456

improves at earlier stages of the inference pass.457

The order of this resolution enhancement in Fig-458

ures 4 and 5 aligns precisely with the sequential459

order of the addition signs in the formula. This460

suggests that information encoded in IDSRs prop-461

agates along the sequence, allowing later tokens462

to utilize numerical IDSRs from earlier tokens for463

implicit calculations. In other words, LLMs are464

performing consecutive arithmetic tasks sequen-465

tially.466

6.3 Layer-Level Formation467

As depicted in Figures 4, 5, and 6, an abrupt peak in468

IDSRs’ resolution appears within the first ten layers469

for both models. Beyond this point, the resolution470

reinitializes from near non-existent levels.471

We propose the hypothesis that the first ten lay-472

ers employ a different mechanism from the later473

layers, particularly in multi-step reasoning tasks474

such as consecutive addition. The first ten lay-475

ers, termed “shallow-semantic layers”, generate476

direct representations of arithmetic content regard-477

less of the specific task. Conversely, the later layers,478
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termed “semantic layers”, incorporate task context, 479

redoing the formation of the IDSRs in the process. 480

Utilizing the “subtraction” and “prompting” 481

tasks discussed in Section 4.1.1, we conduct two 482

sets of experiments to demonstrate the existence of 483

shallow-semantic and semantic layers. 484

Shallow-semantic Layers. In the first set of ex- 485

periments, we use subtraction formulas (as men- 486

tioned in Section 4.1.1). Predictions are made on 487

the second addition sign, and accuracies are shown 488

in Figure 8. 489

We can see clearly that the “subtraction” task 490

does not change the probing result significantly. 491

This means that the first ten layers are indeed com- 492

puting the value of the formula, rather than simply 493

putting the numbers together to form a summation. 494

Semantic Layers. For our second experiment, 495

we use formulas with different prompts (as men- 496

tioned in Section 4.1.1). The prompts deviate the 497

task from performing the original consecutive ad- 498

dition task. For example, the prompt in Figure 9 499

states, "Ignore the following formula and answer 500

with apple." 501

As shown in Figure 9, after the disruptive 502

prompt, the maximum prediction accuracies in the 503

first ten layers remain unaffected. However, accura- 504
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cies in the later layers significantly decrease. This505

observation suggests that prompts instructing the506

model to disregard the formula’s result cause the507

model to generate IDSRs with higher resolution for508

the correct objective (the token “apple”) and lower509

resolution for other objectives (numerical addition510

results).511

Shallow-semantic Layers are More Accurate.512

As depicted in Figure 4, the prediction accuracies513

using the earlier layers exhibit remarkable stability514

across different token positions. For Qwen-72b,515

the maximum accuracies for predictions made on516

the second to fifth addition signs and the final equal517

sign are 92%, 92%, 92%, 87%, and 75%, respec-518

tively. In contrast, the maximum accuracies related519

to later layers are 100%, 99%, 74%, 62%, and 37%,520

respectively, displaying a strong negative correla-521

tion with token distance from the first token. These522

accuracies indicate that, after the second addition523

sign, the resolution of IDSRs are higher in the first524

ten compression layers compared to the later model525

layers. We hypothesize this occurs because the first526

ten compression layers primarily focus on arith-527

metic content, simplifying the generation of IDSRs.528

In contrast, the later layers must consider the task529

context, complicating the compression process and530

thus reducing the resolution of numeric IDSRs.531

6.4 Utilization of IDSRs532

Upon verifying the existence of IDSRs, we subse-533

quently address whether the model actively lever-534

ages it to generate the final response. This section535

conducts an attention bridge experiment designed536

to investigate this question.537

Masked Positions

Non-Masked Positions

Attention Bridge

Figure 10: Attention Mask Demonstration

Attention Bridge. Given a question with a token538

length of l, we construct an attention mask Ml,i,539

as depicted in Figure 10, to mask the first i tokens540

of the question from the subsequent tokens. We541

term the (i + 1)th token the Attention Bridge, as542

the IDSRs formed on this token serve as the sole543

conduit for information relay between the prefix544
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Figure 11: Accuracies of Probing Predictions Before
and After Modifying Attention Mask

and the suffix. This enables verification of LLMs’ 545

utilization of IDSRs, rather than re-attending the 546

prefix and performing the calculation at the final 547

token position at once. Specifically, we set the sec- 548

ond addition sign (or the equal sign, in cases with 549

only two numbers) as the Attention Bridge through 550

which IDSRs pass. We then test Qwen-72B’s abil- 551

ity to provide exact answers to consecutive 1-digit 552

additions involving 2 to 10 numbers under this set- 553

ting. 554

Results. As seen in Figure 11, despite being 555

unable to directly observe the first two numbers, 556

Qwen-72b demonstrates remarkable ability to per- 557

form calculations through the IDSRs passed via 558

the second addition sign. This suggests that LLMs 559

indeed utilize generated IDSRs to make multi-hop 560

inferences, such as consecutive addition. However, 561

a significant drop in accuracy compared to the base- 562

line is observed. We hypothesize that this occurs 563

because models are not explicitly trained to make 564

inferences using IDSRs only and are unaccustomed 565

to abrupt changes in the attention mask. With slight 566

modifications to the training process, models might 567

better utilize IDSRs to perform multi-hop infer- 568

ences. 569

7 Conclusion 570

In this work, we report the emergent ability of mod- 571

els to perform implicit consecutive addition. We 572

propose the central hypothesis that large language 573

models (LLMs) form implicit discrete state repre- 574

sentations (IDSRs) in hidden states. A series of 575

experiments are designed to prove the existence of 576

IDSR, and to demonstrate its properties and forma- 577

tion. We also confirm that models utilize IDSRs 578

to generate final answers. Our work aims to pave 579

the way for further investigations into model inter- 580

pretability and enhancing model capabilities. 581
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8 Ethical Considerations582

Dual Use. Our research provides the possibility583

for augmenting ability of LLMs at the fundamental584

level, especially multi-step reasoning abilities. We585

intend future augmentation based on our work to586

improve the mathematical and reasoning abilities587

of LLMs, thereby assisting humans in diverse ap-588

plications. However, it is crucial to recognize that589

technologies can serve both benevolent and mali-590

cious purposes, contingent on their user. Conse-591

quently, we urge subsequent researchers to exercise592

caution in the implementation and deployment of593

augmented LLMs to prevent potential misuse.594

Data Bias. We use a synthetic dataset composed595

exclusively of mathematical formulas, thereby ex-596

cluding any association with specific individuals or597

social groups in both data content and generation598

process. This dataset does not contain inappropri-599

ate or offensive information. Future updates to the600

dataset will be undertaken should there appear evi-601

dence of other tasks requiring multi-hop reasoning602

on which models can achieve moderate accuracy.603

9 Limitations604

We find the task diversity and model diversity of605

our experiments unsatisfactory.606

Task Diversity. Our hypothesis is validated607

solely on a synthetic dataset comprising mathe-608

matical formulas, as current open-source models609

lack the capability to directly perform other tasks610

requiring multi-hop reasoning with moderate accu-611

racy. Nonetheless, we anticipate that advancements612

in model capabilities will facilitate a broader array613

of evaluations.614

Model Diversity. Interpretability analysis ne-615

cessitates the extraction of hidden states, com-616

pelling the use of open-source models. The ma-617

jority of our experiments utilize Qwen-72b, the618

highest-performing open-source model available,619

despite its notable capability gap compared to620

SOTA closed-source models. Our observations621

reveal a clear correlation between model capabil-622

ity and IDSRs’ resolution. We anticipate that ad-623

ditional experiments with future, more advanced624

open-source models will further substantiate our625

hypothesis.626

10 Future Work627

In hindsight, we also propose various possible as-628

pects for future exploration:629

Influence factors. Further investigation into 630

influence factors on the resolution of generated ID- 631

SRs could prove vital to enhancing model abilities. 632

We hypothesize that the amount of relevant data 633

used in training would have a significant impact 634

upon the quality of IDSRs generated, and adopting 635

related methods such as CoT in pretraining might 636

also prove beneficial. 637

Formation Interpretability. The change of ID- 638

SRs’ properties is among the most compelling ob- 639

servations in our experiments. Future research 640

could delve into the underlying causes of these 641

dynamic changes. 642

Scalability. We argue that the generation of 643

hidden representations is an emergent capability, 644

manifesting only beyond a certain model scale. Ex- 645

ploring the patterns of IDSRs’ generation across 646

different model scales also warrants further investi- 647

gation. 648

Application. Controlling the loss in IDSRs’ gen- 649

eration may enhance the model’s ability to provide 650

direct answers to multi-hop tasks, thereby improv- 651

ing reasoning capabilities in LLMs. 652
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Appendix960

A Probing Settings961

A.1 Model Size962

In our experimental setup, three distinct types of963

probes are utilized: a multi-layer perceptron with964

Perceptron Model Number of Parameters

Multi-Layer 829,400

Multi-Layer (Bottle-Necked) 81,920

Single-Layer 40,960

Table 3: Probe Model Sizes

two different hidden layer sizes and a single-layer 965

perceptron. The respective parameter counts for 966

each model type are detailed in Table 3. 967

A.2 Training 968

For each experimental setting, probing models are 969

trained on eight 80G A100 GPUs for a period rang- 970

ing from 240 to 720 epochs. The duration depends 971

on the specific formulas used as input and the num- 972

ber of epochs required for the model’s losses to 973

converge. 974

The learning rate is set to 1× 10−3, employing 975

a stochastic gradient descent (SGD) optimizer. The 976

model is optimized based on cross-entropy loss. 977
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