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ABSTRACT

Evaluating tabular generators remains a challenging problem, as the unique causal
structural prior of heterogeneous tabular data does not lend itself to intuitive human
inspection. Recent work has introduced structural fidelity as a tabular-specific evalu-
ation dimension to assess whether synthetic data complies with the causal structures
of real data. However, existing benchmarks often neglect the interplay between
structural fidelity and conventional evaluation dimensions, thus failing to provide a
holistic understanding of model performance. Moreover, they are typically limited
to toy datasets, as quantifying existing structural fidelity metrics requires access to
ground-truth causal structures, which are rarely available for real-world datasets. In
this paper, we propose a novel evaluation framework that jointly considers structural
fidelity and conventional evaluation dimensions. We introduce a new evaluation
metric, global utility, which enables the assessment of structural fidelity even in
the absence of ground-truth causal structures. In addition, we present TabStruct, a
comprehensive evaluation benchmark offering large-scale quantitative analysis on
13 tabular generators from nine distinct categories, across 29 datasets. Our results
demonstrate that global utility provides a task-independent, domain-agnostic lens
for tabular generator performance. We release the TabStruct benchmark suite,
including all datasets, evaluation pipelines, and raw results. Code is available at
https://anonymous.4open.science/r/TabStruct—-H7JF.

1 INTRODUCTION

Tabular data generation is a cornerstone of many real-world machine learning tasks (Borisov et al.,
2022} |[Fang et al.l 2024)), ranging from training data augmentation (Margeloiu et al.} 2024} |Cui et al.
2024)) to missing data imputation (Zhang et al., 2023} Shi et al.| [2025). These applications underscore
the importance of generative modelling, which necessitates an appropriate understanding of the
underlying data structure (Kingma & Welling|, |2014} Goodfellow et al.,2014; Bilodeau et al., [2022]).
For instance, textual data conforms to the distributional hypothesis, and thus the autoregressive models
are a natural workhorse for the text generation process (Zhao et al.,|2023};|Sahlgren, 2008). In contrast
to the homogeneous modalities like text, tabular data can pose a different structural prior due to its
heterogeneity — the features within a dataset typically have varying types and semantics, with feature
sets that can differ across datasets (Grinsztajn et al., 2022} Shi et al.| |2025). Recent work (Hollmann
et al.} 2025)) on tabular foundation predictors has empirically demonstrated that the Structural Causal
Model (SCM) is an effective structural prior of tabular data. As such, it is important to investigate
how effectively existing tabular generative models capture and leverage the causal structures.

Prior work (Hansen et al.,|2023; |Qian et al., 2024} \Du & Li, 2024} [Tu et al.,|2024; Livieris et al., 20245
Kapar et al., [2025) has attempted to assess tabular data generators by evaluating the synthetic data
they produce. However, the prevailing evaluation paradigms still exhibit three primary limitations,
which are summarised in Table (1} (i) Insufficient tabular-specific fidelity assessments. Current
benchmarks largely adopt evaluation dimensions from homogeneous data modalities, such as density
estimation (Alaa et al.,|2022)), machine learning (ML) efficacy (Xu et al.l | 2019), and privacy preserva-
tion (Kotelnikov et al., [2023). While effective in other modalities, they exhibit conceptual limitations
when applied to tabular data — they do not explicitly assess the unique structural prior of tabular
data. A notable example is that many generators (e.g., SMOTE) can produce synthetic data with
similar density estimation as real data, yet still violate underlying causal structures — such as physical
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Figure 1: Illustrative example highlighting the importance of fidelity check for tabular data
structure. (D: A real-world physical system showing the gravitational forces acting on ball A.
The system is described by ball density (p), volume (V'), masses (ma & mg), distance (r), and
gravitational forces (Fa & Fgarn)- For simplicity, we assume both balls share identical density.
(2): We derive the ground-truth (GT) causal structure of the system based on Newton’s law of
universal gravitation. (3): We interpret the encoded physical laws of the system as the conditional
independence (CI) across variables. (@: We evaluate four generators by conventional metrics. 3: We
assess the structural fidelity by CI tests and the proposed global utility metric. We note that the
global structure reflects full conditional independence across all variables, while the local structure
includes only those directly relevant to a specific prediction task at hand (F},;). Results demonstrate
that conventional metrics are insufficient: for instance, while SMOTE is able to outperform other
generators on conventionally used dimensions (e.g., ML efficacy) — the generated synthetic data only
preserves local structure and violates most physical laws. For tabular data, where the truthfulness
and authenticity of synthetic data is hard to verify, global utility provides an effective mechanism for
evaluating the alignment of the synthetic data to the likely ground-truth causal structure.

laws illustrated in Figure @). Although CauTabBench (Tu et al., [2024)) takes a step forward to
assess the structural fidelity of synthetic data, it remains confined to toy SCM datasets (i.e., synthetic
datasets derived from random SCMs), offering limited insight into real-world tabular data, where
the ground-truth SCMs are unavailable. (ii) Potential evaluation biases. Many benchmarks (Hansen
et al.,|2023; |Qian et al., 2024) and model studies (Xu et al.,2019; Margeloiu et al.,|2024} Zhang et al.|
2023) prioritise ML efficacy as the principal dimension for assessing generator performance. For
instance, in a classification setting, a generator is often considered effective if its synthetic data allows
downstream models to achieve high predictive performance. However, while useful, ML efficac
can be highly sensitive to the choice of prediction task and target (Figure @) and Section
(iii) Limited evaluation scope. Existing benchmarks mainly consider only a narrow range of datasets
and generative models (Table[T), which restricts their ability to provide a thorough and generalisable
comparison of model performance across the broader landscape of tabular generative modelling.

In this paper, we aim to bridge these gaps by introducing a systematic and comprehensive evaluation
framework for existing tabular generative models, with a particular focus on the structural prior
of tabular data. Our proposed framework is characterised by five key concepts: (i) We explicitly
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Figure 2: Overview of the proposed evaluation framework. TabStruct provides a comprehensive
evaluation benchmark, including structural fidelity and conventional dimensions, for 13 representative
tabular generative models on 29 challenging tabular datasets.
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incorporate structural fidelity of synthetic data as a core evaluation dimension for tabular generative
models. Structural fidelity can directly reflect model capability in learning the structure of tabular
data, without biasing towards a specific prediction target. In addition, we investigate its interplay
with three conventional evaluation dimensions, offering customised guidance for selecting suitable
generators across diverse use cases. (ii) We evaluate structural fidelity on expert-validated SCM
datasets. To ensure alignment with ground-truth causal structures, we avoid using toy SCMs and
instead select SCM datasets with expert-validated causal structures. With ground-truth SCMs, we can
quantify structural fidelity through the difference in conditional independence (CI) between real and
synthetic data as shown in Figure @) (iii) We further extend the evaluation of structural fidelity to
real-world datasets, where the ground-truth SCMs are unavailable. To this end, we propose a novel
evaluation metric, global utility, which treats each variable as a prediction target and measures how
well it can be predicted using other variables. Importantly, global utility does not require ground-truth
causal structures, thus enabling the evaluation of structural fidelity in real-world scenarios. (iv) We
conduct an extensive empirical study on the performance of /3 tabular generators spanning nine
categories on 29 datasets, resulting in a total of over 150,000 evaluations. The large evaluation
scope can ensure holistic and robust benchmarking results. (v) We introduce TabStruct (Figure|2),
the benchmark suite developed for this work. This open-source library aims to help the research
community explore tabular generative modelling within a standardised framework.

Across both SCM and real-world datasets, our primary finding is:

Structural fidelity, as quantified by the proposed global utility, should be a core dimension when
evaluating tabular generative models.

The benchmark results suggest the prevailing paradigm (i.e., optimising tabular generators primar-
ily for improved density estimation and ML efficacy) is insufficient. In contrast, our proposed
global utility provides insights into a crucial yet underexplored perspective — tabular-specific fidelity
assessments. Our contributions can be summarised as follows:

* Conceptual (Section [3): We propose a unified evaluation framework for tabular generators that
integrates structural fidelity with conventional dimensions, and introduce global utility, a novel
metric that measures structural fidelity without requiring access to ground-truth causal structures.

* Technical (Section[3): We release the TabStruct benchmark suite, including datasets, generator
implementations, evaluation pipelines, and all raw results.

* Empirical (Section[d): We conduct a large-scale quantitative study of 13 tabular generators on 29
datasets. The results offer actionable insights into model performance and can inspire the design
of more effective tabular generators by attending to the unique structural prior of tabular data.

2 RELATED WORK

Tabular Generator Benchmarks. An extensive line of benchmarks (Stoian et al.l [2025; [Hansen
et al., 2023} |Qian et al., 2024} Du & Li, [2024; Kind;i et al., 2024} [Sidorenko et al., 2025}, |[Long
et al.| 2025)) has been proposed for tabular data generation, conventionally established around three
dimensions: density estimation, privacy preservation, and ML efficacy. Mainstream evaluation
metrics typically capture specific aspects of inter-feature interactions. However, they rarely assess
whether the underlying causal structures are preserved in the generated tabular data.

Density estimation (Hansen et al., 2023} |Alaa et al.l 2022; |Shi et al., [2025; Zhang et al.| [2023)
assesses the divergence between real and synthetic data distributions. However, it fails to explicitly
capture inter-feature causal interactions. ML efficacy (Xu et al., [2019; Qian et al., 2024} [Seedat;



Table 1: Evaluation scope comparison between TabStruct and prior tabular generative mod-
elling benchmarks. TabStruct presents a comprehensive evaluation framework for tabular generative
models, incorporating a wide range of evaluation dimensions, datasets, and generator categories.
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et al., |2024; [Tiwald et al.| [2025)) evaluates the performance difference when real data is replaced
with synthetic data in downstream tasks, which primarily focuses on p(y | x), thus inherently
prioritising feature-target relationships over inter-feature interactions. Privacy preservation (Du &
Li, |2024; [Kotelnikov et al.l 2023} Hu et al., [2024; [Espinosa & Figueira, 2023)), although essential in
privacy-sensitive scenarios, is generally task-specific and usually does not necessitate high structural
fidelity (Chundawat et al.|2022; |Livieris et al.,|2024; McLachlan et al., 2018). Recent efforts such as
Synthcity (Qian et al.,2024)) and SynMeter (Du & Li, [2024)) have aimed to standardise the evaluation
of tabular data generators by incorporating the three conventional dimensions. Nonetheless, they omit
explicit assessment of tabular data structure. To the best of our knowledge, CauTabBench (Tu et al.|
2024) is the only other benchmark to explicitly evaluate structural fidelity, but it is limited to toy
SCM datasets, as existing metrics (Chen et al.,[2023a} Spirtes et al.| 2001) typically assume access
to the ground-truth SCMs — a condition that is seldom satisfied and arguably infeasible for most
real-world datasets (Kaddour et al., 2022} |Glymour et al.| 2019; |Zhou et al.| 2024). In addition, some
prior studies (Pang et al.l 2024; |Solatorio & Dupriezl 2023)) have attempted to examine relationships
across multiple tables within a relational database. However, such approaches remain limited in
their ability to reflect inter-feature causal interactions within a single table. We further provide a
detailed summary of prior studies on tabular data generation in Appendix [A] To bridge these gaps, we
introduce TabStruct, a unified evaluation framework, along with global utility, an SCM-free metric
that quantifies the preservation of causal structures in tabular data.

3 METHODS

3.1 PROBLEM SETUP

Dataset and tabular generator. Let Dy, := {(x¥, y())}N| ~ p(x, ) represent a labelled tabular
dataset with x(¥) € RP. We refer to the d-th feature (i.e., a column/variable) as x4, and the d-th
feature of the ¢-th sample (i.e., a cell) as :I:E;). For notational simplicity, we define zp 1 = {y}N |,
so that the full collection of variables, including both features and target, can be written as X' =
{x1,...,xp,Tps1}. We denote the training split of Dy as the reference dataset (D;r), and test
data as Diey. A tabular generator is trained on Dy and aims to generate synthetic data Dy, ~ p(X,7)
close to p(x,y). We evaluate the quality of D,er wrt. all the metrics, thus providing a benchmark
performance against which Dgy, is compared. We refer to any dataset being assessed as “evaluation
dataset D”, thus, both D, and Dyy, may serve as evaluation datasets.

Structural causal models (SCM). Under the assumptions of causal sufficiency, the Markov property,
and faithfulness, an SCM is defined by the quadruple M = (X, G, F, ). G is the causal graph that
encodes the causal relationships among the variables. £ := {¢; }]Djll denotes the exogenous noise,

and F = {f; JDjll is the set of structural functions. Each variable x; is determined by a function
f; of its parents and its exogenous noise, that is, «; = f; (pa(x;), €;), where pa(z;) C X' \ {x,}

denotes the parent set of x; in the graph G.

Structural fidelity. As an empirically effective structural prior for tabular data, SCM provides a
formal framework for the underlying generative processes of tabular data (Hollmann et al., 2025}
Tu et al.| 2024). Therefore, we define the structural fidelity of a tabular generator as the alignment
between the SCMs in its synthetic data and the ground-truth causal structures. We further discuss the
rationales behind using causal structural prior for tabular data in Appendix



3.2 CONDITIONAL INDEPENDENCE: QUANTIFYING STRUCTURAL FIDELITY WITH SCM

Motivation. We begin by quantifying structural fidelity under the assumption that the ground-truth
SCM is available. Following established benchmarks in causal discovery and inference (Spirtes et al.|
2001} |[Kaddour et al.l 2022; Tu et al.|[2024)), we evaluate structural fidelity at the level of the Markov
equivalence class. At this level, causal structures are represented as completed partially directed
acyclic graphs (CPDAGs). The SCMs of D,f and Dsiare equivalent if they entail the same set of

conditional independence (CI) statements (see Figure [1(2) & ) for an illustration).

ClI scores at various granularities. Following prior work (Spirtes et al., [2001; [Tu et al.,[2024), the
full set of CI statements implied by the ground-truth SCM on D¢ is defined as

Catoba = {(x; L i | Sj) | Sjn CX\{zj, i} U {(z L @i | Sjn) | Sje SSin} (D)

where S; ;, and §] » are the d-separation and d-connection sets for (x;, ), respectively. For each
CI statement, we assess whether it holds in the evaluation dataset D (i.e., Dy or Dsyy) by conducting
a CI test at the significance level o = 0.01 via

1, if the CI statement is not rejected on D at level
0, otherwise.

fa(wj,-’vk | Sj,kagj,k;p) = { 2)
To quantify structural fidelity at varying levels of granularity, we define the CI score for any subset of
CI statements C C Cgiobal aS:

1 ~ ~
CI(C7D) = m Z]l[za(wjawk | Sj,k7Sja/€;D) = 1:| 3)
C

where CI (C, D) € [0, 1] measures the fidelity of selected CI statements in D, and 1(-) denotes the
indicator function. A higher CI score indicates that the evaluation dataset more closely aligns with
the structure of the ground-truth SCM. Implementation details for the CI scores are in Appendix [B]

Local structure vs. Global structure. We assess structural fidelity at two levels of granularity: local
and global. For local structural fidelity, we define the local CI score, CI (Ciocal, D), by considering
only the CI statements that directly involve the prediction target y of a given dataset and predictive
task. Specifically, we compute the local CI score using Equation (3) with Cioca = {(:cj L axpiq]

S;p+1) | j € [DI}U{(m; L xpy1 | Sjps1) | j € [D]} (see Figure () for an illustration). Ciocal
highlights which features are uninformative for predicting ¥ when conditioned on the corresponding
d-separation sets. Therefore, matching the local CI set indicates which features should be ignored
when learning p(y | x). A higher local CI score suggests the generator faithfully captures the local
structure around the target, implying higher utility for downstream predictive tasks (Section .2).

For global structural fidelity, we define the global CI score as the CI score computed over the full set
of CI statements, that is, CI (Cglobal, D). Global CI provides a comprehensive assessment of the entire
causal structure encoded in the dataset, mitigating potential bias towards any particular variable.

Rationales for CPDAG-level evaluation. Prior studies (Tu et al., 2024; Spirtes et al., 2001) typically
evaluate the causal structure alignment at three different levels: skeleton level, Markov equivalence
class level, and causal graph level. At the skeleton level, all causal directions are ignored, resulting in
a loss of information about the causal relationships between features. For instance, the causal skeleton
is unable to reflect encoded physical laws shown in Figure[I] Therefore, we choose not to evaluate
structural fidelity at the skeleton level due to its inability to capture reliable causal relationships across
variables. At the causal graph level, structural fidelity is assessed by comparing the directed acyclic
graphs (DAGs) of the reference and synthetic datasets, which requires reliable causal discovery
methods as basis. However, current causal discovery methods struggle to recover accurate DAGs
from tabular data (Zanga et al., 2022; [Kaddour et al., 2022} [Nastl & Hardt, [2024). Grounding
structural fidelity at the DAG level would introduce additional uncertainty on top of results with
questionable reliability, making it even harder to draw reliable conclusions.

In contrast, CPDAG-level evaluation strikes a good balance between evaluation efficiency and validity.
Unlike full DAG constructing via causal discovery, CPDAG-level evaluation does not require the
orientation of all edges, making it a more tractable yet still meaningful metric of structural fidelity.
This is supported by the fact that Markov equivalent SCMs serve as minimal I-MAPs (Agrawal et al.|



2018) of the joint distribution factorisation p(X') = Hf:ll p(z; | pa(ax;)), and no causal directions

can be further removed. In other words, the CPDAG-level evaluation can retain sufficient real-world
semantics for practical use cases, such as the physical laws in Figure[I] Therefore, TabStruct evaluates
structural fidelity at the CPDAG level, balancing semantic richness with computational feasibility.
More details on the rationale for CPDAG-level evaluation are provided in Appendix [C]

3.3 GLOBAL UTILITY: SCM-FREE METRIC FOR GLOBAL STRUCTURAL FIDELITY

Motivation. The CI scores introduced in Section require access to a ground-truth SCM to
enumerate the CI statements Cgiopa. However, for real-world datasets, such an SCM is typically
unavailable or even non-identifiable, thereby precluding direct evaluation of structural fidelity. Fol-
lowing prior work on tabular foundation models (Hollmann et al.l 2025), we adopt an “SCM-inspired
and real-data-validated” paradigm to address such limitation. Specifically, we propose global utility
as an SCM-free metric for global structural fidelity.

Utility per variable. Given an evaluation dataset D, we treat each variable x; € X as a prediction
target. An ensemble of multiple downstream predictors is trained to predict «; using the remaining
variables X \ {x;} as inputs, following a standard supervised learning setup. The predictive perfor-
mance on Dy is denoted as Perf;; (D), measured using balanced accuracy for categorical variables
and root mean square error (RMSE) for numerical variables. We define the utility of variable x; as
the relative performance achieved on evaluation data compared to reference data:

Perf; (Dyer) ~ Perf; (D),  if a; is categorical,
Utility; (D) = ) @
Perf; (D) " Perf; (Dry), if x; is numerical.

Utility offers a unified perspective for interpreting downstream performance across mixed variable
types: Utility, > 1 indicates that downstream predictors trained on D perform on par with or better
than those trained on Dy for predicting «;, whereas Utility; < 1 implies a loss in predictive power.
To mitigate the potential bias from a specific downstream predictor, we ensemble nine different
predictors with AutoGluon (Erickson et al.,2020). Full technical details are in Appendix@

Local utility. We define the utility of the prediction target y, Utility ,  , (D), as local utility, which
aligns with the standard metric used to assess the ML efficacy of tabular data generators. The
theoretical (Section [3.2)) and empirical (Section[4.2) analysis showcases a strong correlation between
the local CI score (CI (Ciocal, D)) and the local utility (Utility , , ; (D)), suggesting that local utility is
an effective measurement of the local structure around target y.

Global utility. Building on the heuristics from local utility and local structure, we further examine
the relationship between global utility and global structure. We define the global utility as

Global Utility(D) := ﬁ Z]D:ll Utility;(D). We hypothesise that aggregating the utility across
all features can be strongly correlated with the global CI score (i.e., CI (Cglobal, D)), as global utility
is grounded in the observation that a high-fidelity generator should enable accurate conditional
prediction of each variable from the others — an idea closely tied to the Markov blanket in SCMs (Fu
& Desmarais, [2010;Gao & Ji,2016). Indeed, our experiments reveal a strong correlation between
global CI and global utility (Section[4.2)), supporting that global utility serves as an effective and

practical metric for evaluating global structural fidelity in the absence of ground-truth SCMs.

Bias mitigation in global utility. In contrast to inherently biased local utility, the proposed global
utility treats all features fairly. Specifically, we consider predicting each variable associated with
different tasks (e.g., binary classification, multi-class classification, regression, etc.). A change
in magnitude in predictive performance can reflect different task difficulties depending on the
target variable and its type (Feurer et al.| [2022; Wistuba et al., 2015 |Yogatama & Mann, 2014
Grandini et al.||2020). Consequently, absolute performance scores and their variances are not directly
comparable across variables, and aggregating these scores may obscure meaningful differences across
tasks (Grinsztajn et al.| 2022). To address this, global utility follows the standard practice (Feurer
et all 2022; Grinsztajn et al., 2022) to aggregate normalised utility scores (Equation (), providing a
more unified perspective on performance across heterogeneous tasks (Sectiond.2]and Appendix [E.2).



4 EXPERIMENTS

We evaluate 13 tabular generators on 29 datasets by focusing on four research questions:

* Validity of Benchmark Framework (Q1, Section 4.1} and Appendix[E.I): Can the proposed
evaluation framework yield valid evaluation results regarding generator performance?

* Validity of Global Utility (Q2, Sectiond.2} and Appendix[E.2): Can global utility serve as an
effective metric for structural fidelity when ground-truth causal structures are unavailable?

* Structural Fidelity of Generators (Q3, Section 4.3} and Appendix [E.J): Can existing tabular
generators accurately capture the data structures across both SCM and real-world datasets?

* Practicability of Global Utility (Q4, Section 4.4} and Appendix[E.4): Can global utility provide
stable and computationally feasible evaluation results for structural fidelity?

SCM datasets. To reduce the gap between causal structures in SCM and real-world data, we select
six expert-validated SCM datasets with 7-64 features. All SCM datasets are publicly available from
bnlearn (Scutari,[2011). Full dataset descriptions are provided in Appendix D}

Real-world datasets. We observe that many existing generators achieve near-perfect performance
on commonly used benchmark datasets (Shi et al.l 2025} [Zhang et al.}[2023)), suggesting that these
datasets offer limited discriminative power. To address this, we select 14 classification datasets from
the hard TabZilla suite (McElfresh et al.| [2024), containing 846-98,050 samples and 6-145 features.
We further select nine challenging regression datasets, containing 345-22,784 samples and 6-82
features. Full dataset descriptions are available in Appendix [D]

Benchmark generators. TabStruct includes 13 existing tabular data generation methods of nine
different categories. In addition, we include D¢, where the reference data is used directly for
evaluation. Full implementation details are in Appendix[D.3]

Experimental setup. For each dataset of N samples, we perform nested cross-validation with
repeated shuffle, and the details are available in Appendix[D.2] Specifically, we first split the dataset
into train and test sets (80% train and 20% test), and further split the train set into a training split
(Drer) and a validation split (90% training and 10% validation). For classification datasets, we
perform stratified splitting to preserve the class distribution. We shuffle the dataset to repeat the
splitting 10 times, summing up to 10 runs per dataset. All benchmark generators are trained on
Dret, and each generator produces a synthetic dataset with Nr samples. We tune the parameterised
generators using Optuna (Akiba et al.,|2019) to minimise their average validation loss across 10
repeated runs. Each generator is given at most two hours to complete a single repeat. The reported
results are averaged by default over 10 repeats. We aggregate results across all SCM or real-world
datasets because the findings are consistent across classification and regression tasks (Appendix [E.2)).
Specifically, we use the average distance to the minimum (ADTM) metric via affine renormalisation
between the top-performing and worse-performing models (Grinsztajn et al., [2022; McElfresh et al.,
2024; |[Hollmann et al., 2025 [Margeloiu et al., 2024; Jiang et al., |2024). We further provide the
detailed configurations (Appendix [D) and raw results (Appendix [F).

4.1 VALIDITY OF BENCHMARK FRAMEWORK (Q1)

The benchmark results effectively evaluate data quality. Table 2] demonstrates that all metrics
effectively distinguish between high- and low-quality data. Specifically, except for privacy-related
metrics, the reference data (D;.¢) consistently achieves the highest scores. This is expected, as Dyt is
the ground truth and should score highly on metrics of density estimation, ML efficacy, and structural
fidelity. In contrast, privacy metrics reward greater differences from the ground truth to indicate
stronger privacy preservation. Since D,y is identical to the ground truth, it naturally scores poorly for
privacy. These results show that the selected metrics provide appropriate evaluations for data quality.
Therefore, we consider the evaluation results to be valid and meaningful for analysis.

Structural fidelity is complementary to conventional evaluation dimensions, rather than
interchangeable. On SCM datasets, Figure [3| (left) shows that none of the existing evaluation metrics
exhibit a strong correlation with global CI. Notably, SMOTE and BN tend to outperform other models
by a clear margin in density estimation. However, their performance degrades greatly when it comes to
capturing the global structure of tabular data, as reflected by global CI, consistent with our motivating
example in Figure[I] This discrepancy reveals the limitations of conventional evaluation dimensions
and underscores the need to incorporate structural fidelity for inter-feature causal structures.



Table 2: Benchmark results of 13 tabular generators on 29 datasets. We report the normalised
mean =+ std metric values across datasets. “N/A” denotes that a specific metric is not applicable.
We highlight the First, Second and Third best performances for each metric. For visualisation, we
abbreviate “conditional independence” as “CI”. The results show that the Top-3 methods in Global
CI and Global utility are largely consistent between SCM and real-world datasets. This alignment
suggests that the selected SCM datasets represent real-world causal structure, and global utility can
serve as an effective metric for global structural fidelity when ground-truth SCM is unavailable.

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity

Shape T Trend T a-precision T [-recall T DCR T 4-Presence T | Local utility 7 | Local CIT Global CI T  Global utility T

SCM datasets
Dres | 1.00+000  1.00+000 100000 1.00000 | 0.00+000 0.00+000 | 0991001 | 0.89:0.10 1.00-40.00 0.9910.01
SMOTE 0.821000 0.851006 0.601017  0.831001 | 0.215000 0.010.01 0.92 1007 0.8210.12 0.3040.11 0.3940.09
BN 0801000 0.7310.10 0.78+010  0.32+008 | 0.654016 0.07 0.0 0414047 | 0234012 0.3540.20 0.4940.4
TVAE 0.594010  0.59+0.14 0.654014  0.361006 | 0.7010.10 0.13£0.11 0.7810.13 0.50£0.21 0.4010.00 0.7010.11
GOGGLE | 0464016 0.5040.13 0474020  0.364000 | 0.554013 0.3840.19 0.531006 | 0421027 0.14£0.03 0.2440.08
CTGAN 0.464014 0.5040.16 0711013 0341008 | 0.521011 0.1940.15 0.8040.11 0.61 1008 0.08.40.04 0.26.40.10
NFlow 0314015 0.264010 0314021 0154000 | 0.734016 0.5110.13 0.104005 | 0.094007 0.0940.07 0.124007
ARF 0.754014 0714011 0.791000  0.36:4000 | 0.504013 0.090,07 0.574004 | 0214009 0.3540.11 0.6810.11
TabDDPM | 0.625011 0.6040.12 0.641019 0391009 | 0445019 0.14 10,05 0.2910.06 0.17 £0.08 0.69 10,08 0.80-0.05
TabSyn 0.50+0.16  0.4810.17 0.59:014 031011 | 0454014 0324021 0.76.1005 | 0.701006 0.70£0.04 0.76-0.06
TabDiff 0.6910.11  0.6210.15 0.75+000  0.36:009 | 0.50+0.14 0.1340.03 0804006 | 0.5840.14 0.57 4015 0.75 40,07
TabEBM 0.674012  0.5710.15 0764004 0274000 | 0.554022 0.141006 0.5940.05 0.5040.19 0.2610.11 0.3040,08
NRGBoost | 0.65:010 0.5040.5 0.611014 0264007 | 0.531012 0.28£021 0.7510.01 0.64 10,05 0.11400s5 0.1610.02
GReaT 0621000  0.594007 0.621010  0.384007 | 0.524007 0.18.0.05 0274000 | 0.171004 0.1640.05 0.2510.08
Real-world datasets

Dret | 100000 100000 1005000 1.002000 | 0.00000 0.00000 | 096006 | N/A N/A 0.9910.01
SMOTE 0.611013 0.87100s 0814011 0.77+001 | 0.194000 0.020.02 0.91 4007 N/A N/A 0.411004
BN 0.661011  0.721000 0.861000 0.301004 | 0481016 0.0710.08 0.3840.16 N/A N/A 0.441025
TVAE 0451020 0.5010.14 0.551020  0.184004 | 0.6810,5 029108 0.7040.06 N/A N/A 0.5340.13
GOGGLE | 041.0)5 0471014 0.571016 0264007 | 0.500.11 0351018 0.4610.04 N/A N/A 0.214006
CTGAN 0.2941018  0.5340.14 0.66-+0.21 0.114005 | 0.5140.13 0.3010.24 0.7040.06 N/A N/A 0.1310.06
NFlow 0.38+0.19  0.2810.16 0524015 0.074004 | 0.644014 0424025 0.10-0.06 N/A N/A 0.1440.12
ARF 0.611011  0.584012 0831010 0214004 | 0484014 0.05£0.04 0.54.40.07 N/A N/A 0.56.40.12
TabDDPM | 0.4310.16 0.4910.8 0.54402 0264009 | 0424019 0.2740.18 0.27 £0.06 N/A N/A 0.7240,08
TabSyn 0441014 0.514046 0.621018 0244008 | 0.514012 0.2410.14 0.7610.08 N/A N/A 0.73 1007
TabDiff 0541015 0.521016 0.691012 0224007 | 0.572015 0201013 0.78 10,03 N/A N/A 0.73 1007
TabEBM 0.59+015  0.65+008 0.794004  0.301010 | 0.5840.16 0.1410.03 0.6310.11 N/A N/A 0.3510.11
NRGBoost | 0541012 0.4910.13 0.6241016 0201007 | 0514015 0.22410.13 0.74 10,05 N/A N/A 0.1640.05
GReaT 0474010 0491013 0.57+0.14 0264008 | 0.524011 0.27 1015 0.2310.07 N/A N/A 0.20+0.06

4.2  VALIDITY OF GLOBAL UTILITY (Q2)

Global utility serves as an effective metric for global structural fidelity. Table [2and Figure[3]
(left) demonstrate a strong monotonic correlation between global utility and global CI scores
(rs = 0.84,p < 0.001). To ensure the generalisability of global utility, we extend our evaluation
scope, incorporating more complex SCM datasets (Appendix , a wider range of existing
metrics (Appendix [E-Z), and additional downstream tasks (Append%. Across all settings, global
utility consistently exhibits a substantially stronger correlation with global CI than any other metric.
Appendix [E2] further shows that global utility more closely aligns with global CI in the induced
generator rankings. We would like to emphasise that the high correlation between global CI and
global utility is an empirical finding rather than a formal proof of a connection between the two
metrics. This observation primarily aims to offer users actionable and empirically grounded insights
into tabular data generation. The strong correlation and consistent generator ranking suggest that
global utility offers a robust, SCM-free approach for assessing global structural fidelity.

Local utility is not always the golden standard, due to its bias towards the local structure. We
further examine the correlation between local utility and local CI, which only considers the local
structure associated with the prediction target. As shown in Figure 3] (left), local utility exhibits a
strong correlation with local CI (r; = 0.78,p < 0.001), but a much weaker correlation with global CI
(rs = 0.14,p < 0.001). The results indicate that local utility may overlook the holistic data structure,
while global utility provides a more comprehensive evaluation of structural fidelity.

4.3 STRUCTURAL FIDELITY OF GENERATORS (Q3)

Structure learning methods struggle with tabular data generation. One surprising finding is
that BN and GOGGLE do not demonstrate strong performance in structural fidelity, despite their
inductive bias towards learning tabular data structures. This observation aligns with prior work (Tu
et al) 2024; [Zeng et al., |2022), which highlights that current causal discovery algorithms often
struggle when the number of features exceeds 10 — our benchmark datasets have features from 6
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Figure 3: Left: Spearman’s rank correlation heatmap based on metric values on six SCM datasets.
Global utility correlates strongly with global CI, suggesting that global utility can effectively assess
global structural fidelity without resorting to SCMs. Right: Mean normalised local utility vs. mean
normalised global utility on 23 real-world datasets. SMOTE prioritises local utility, whereas TabDiff
and TabSyn generally achieve a balanced preservation of both global and local data structures.

up to 145. Furthermore, GOGGLE exhibits notable performance degradation when prior knowledge
about the data structure is missing (Liu et al., [2023). The results underscore the limitations of
existing causal discovery methods in recovering precise causal structures from real-world data,
further justifying our evaluation at the CPDAG level.

Diffusion models generally capture the global structure well. As reported in Table 2] and Figure 3]
(right), diffusion-based models consistently achieve the highest scores in global structural fidelity: the
Top-3 methods are TabDDPM, TabSyn, and TabDiff across both SCM and real-world datasets. We
attribute their strong performance to the inherent learning principle of diffusion models for learning
permutation-invariant conditional distributions of each feature. At the training stage, since noise
is added independently to each feature, the diffusion network is optimised at every denoising step
to reconstruct each feature simultaneously by conditioning on others. For instance, TabDDPM and
TabDiff implement this principle within each feature type, and TabSyn applies it across all features.
Moreover, diffusion models impose no ordering of features. This results in efficient computation
(Figure[) and permutation-invariant conditional distributions, a property that aligns naturally with the
structure of tabular data. These theoretical properties align with the conditional independence analysis
in Section[3.2] thus confirming that diffusion models are capable of capturing global structure.

Language models remain limited in learning tabular data structure. Table [2] shows that the
autoregressive model GReaT, even with the help of large language models, fails to outperform
even the simple baselines like SMOTE and TVAE. Although token-wise likelihood training is a
well-established approach for sequential modalities like text and time series, its underlying assump-
tions misalign with the permutation-invariant nature of tabular data. An autoregressive generator
needs to linearise the feature set and then factorise the joint distribution as H?=1 P(Xr(s) | Xn(<j))s
where 7 denotes a chosen ordering of features. Any fixed ordering 7 can introduce directional
bias. For instance, the bias could harm the estimation of p(x; | A \ {x;}) when j appears early
in the sequence. While GReaT attempts to mitigate this issue by randomising 7 when fine-tuning
large language models, randomising 7 does not resolve the fundamental misalignment and can even
constrain the performance of autoregressive tabular generators (Appendix [E.3).

4.4 PRACTICABILITY OF GLOBAL UTILITY (Q4)

Global utility is robust and stable. Appendix and Appendix [E-4]show that global utility yields
stable generator rankings across both nine tuned predictors (“Full-tuned”) and three untuned ones
(“Tiny-default”). In contrast, local utility necessitates nine tuned predictors (“Full-tuned”) for reliable
results. We note that local utility focuses mainly on the predictive performance of a single target
variable, making it susceptible to feature-specific bias, which results in unstable generator rankings
across different predictor configurations. In contrast, global utility aggregates performance across
all variables, thereby mitigating feature-specific effects and enhancing robustness.
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Figure 4: Computation efficiency on 23 real-world datasets. Left: Median training time per 1,000
samples vs. mean normalised global utility. Middle: Median generation time per 1,000 samples vs.
mean normalised global utility. We exclude the outliers (TabEBM and GReaT) due to their long
generation time (over 30s). Right: Median evaluation time. Because global utility yields stable
generator rankings across downstream predictors (Appendix [E.4), computing global utility can be
highly efficient with only a small ensemble of predictors (i.e., Tiny-default).

Global utility provides efficient evaluations of structural fidelity. In practice, we are often
interested in identifying the most promising model before fine-tuning it for optimal performance.
Global utility supports this by reducing both the tuning burden and the dependency on the number
of predictors, while still yielding stable and informative rankings. As illustrated in Figure ] (right),
computing global utility with “Tiny-default” takes only 0.64s per 1000 samples, while local utility
requires nearly double the time (“Full-tuned” with 1.21s) for comparable reliability.

Limitations and future work. While our proposed global utility is a robust and effective metric for
assessing global structural fidelity, it is an empirical measurement of the likely SCMs behind the data
at hand. However, developing a theoretically provable structural fidelity metric for real-world tabular
data is highly challenging, as ground-truth causal structures are rarely available, even precluding
the possibility of theoretical validation. This is in line with several open challenges in the field —
particularly the lack of causal discovery methods that can reliably infer the governing SCMs of
real-world tabular datasets (Kaddour et al., [2022; [Tu et al., 2024} |Glymour et al., 2019 Nastl &
Hardt, 2024). Despite substantial research efforts, recent work (Nastl & Hardt, 2024)) shows that even
state-of-the-art causal discovery methods often perform poorly on real-world data and may mislead
users. Therefore, we propose global utility primarily as an empirical lens for evaluating tabular data
structures. Bridging the gap between theoretical assumptions and real-world causal structures will
require advances in causal modelling. As TabStruct library is freely available, its development will
be an ongoing, community-driven endeavour. Therefore, TabStruct will continue to evolve with
advances in causal modelling. We believe that the open-source nature of TabStruct will help drive
progress in theoretical foundations for real-world tabular data challenges. More discussion on future

work is in appendix [E.5|and Appendix [E.6]

5 CONCLUSION

We present TabStruct, a principled benchmark for tabular data generators along with both structural
fidelity and conventional dimensions. To address the challenge of assessing structural fidelity in the
absence of ground-truth SCMs, we introduce global utility — a novel, SCM-free metric that enables
unbiased and holistic evaluation for tabular data structure.

In our large-scale study of 13 generators across 29 datasets, we find that existing evaluation methods
often favour models that capture local causal interactions while neglecting global structure. Our
results show that the four evaluation dimensions are complementary, offering practical guidance for
selecting suitable generators across diverse applications. We further observe that diffusion models,
due to their permutation-invariant generation process, offer valuable insights into the fundamental
representation learning of tabular data. TabStruct is an ongoing effort. As such, it will continue to
evolve with additional datasets, generators, and evaluation metrics — both through our engagement
and contributions from the community. We envision that the open-source nature of TabStruct will
help drive progress in high-fidelity tabular generative modelling.
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ETHICS STATEMENT

This paper proposes integrating structural fidelity as a core evaluation dimension alongside conven-
tional metrics for assessing tabular data generators. Specifically, we introduce global utility, a novel
metric that evaluates the structural fidelity of synthetic tabular data without requiring access to the
ground-truth causal structures. Furthermore, we present TabStruct, a comprehensive benchmark for
tabular data generation that spans a wide evaluation scope — comprising 13 generators from nine
distinct categories, evaluated on 29 datasets. Our benchmark results highlight that structural fidelity
is an important yet previously underexplored evaluation dimension. It effectively captures whether
generated data preserves the underlying causal structures present in real-world tabular datasets,
serving as a valuable complement to existing evaluation dimensions.

This is particularly critical for tabular modalities, where visual inspection of data authenticity is not
feasible, unlike in text or image domains (Van Breugel & Van Der Schaar, [2024; |Zhao et al., [2023)).
By providing a unified benchmark that incorporates both conventional metrics and structural fidelity,
TabStruct has the potential to foster more reliable and transparent development of generative models.
This can benefit multiple domains that rely on tabular data, such as healthcare (Jiang et al.| 2024;
Bespalov et al., 2016} Morford et al.,2011) and scientific research (Margeloiu et al.||2024), where
understanding the structural fidelity of generated data is crucial.

The impact of our work extends to enabling broader machine learning applications in data-scarce
domains. For instance, it can facilitate robust data analysis in clinical contexts where data collection is
limited (Margeloiu et al., 2024} Chawla et al.,2002; McLachlan et al.,|2018). Enhancing the fidelity of
synthetic data may promote the adoption of more advanced machine learning approaches. TabStruct
could further facilitate safer data sharing in privacy-sensitive contexts (Jordon et al., 2018} |[Hu et al.|
2024 [Stoian et al., 2025} |Alami et al., [2020; |(Ciecierski-Holmes et al.,|2022), support reproducible
research through synthetic benchmarks, and broaden access to machine learning capabilities in
low-resource or data-scarce scenarios.

REPRODUCIBILITY STATEMENT

Our study is conducted entirely within a reproducible setting. As detailed in Appendix [D] all bench-
mark datasets are publicly available and widely adopted in the machine learning literature (McElfresh
et al.,[2024; |Scutari, 2011). We do not use, include, or release any newly collected or proprietary
data. In addition, the employed tabular generative models and benchmark metrics are not tailored
to any specific demographic or domain-sensitive dataset. Full implementation details are avail-
able in Appendix [Dfand the associated codebase (https://anonymous.4open.science/
r/TabStruct-H7JF). Furthermode, we release TabStruct as an open-source library to support
transparency, reproducibility, and further community-driven development. We welcome community
contributions that prioritise safety, fairness, and inclusivity in the future evolution of the benchmark.
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TabStruct: Measuring Structural Fidelity of Tabular Data
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A SUMMARY OF RELATED WORK

As a supplement to Section 2] we provide a detailed summary of related work on tabular data
generation. We begin by outlining the conventional evaluation dimensions for tabular generators
(Appendix [A.T). We then highlight the importance of assessing structural fidelity in the evaluation of
such models (Appendix [A.2)). We further summarise existing tabular data generators (Appendix [A.3).
Finally, we present a comprehensive and quantitative comparison of the evaluation scope covered by
TabStruct versus prior work, including both benchmarks and model studies (Appendix [A.4).

A.1 CONVENTIONAL EVALUATION DIMENSIONS

Density estimation assesses the discrepancy between the distributions of reference and synthetic data,
considering both marginal (i.e., low-order) and joint (i.e., high-order) distributions (Hansen et al.,
2023}; Kim et al., 2023} McCarter, 2024; Solatorio & Dupriez, [2023} [Pang et al.,|2024). A generator
may achieve high performance on low-order metrics by sampling each feature independently, thereby
ignoring inter-feature dependencies. While high-order metrics aim to measure sample-level similarity,
they still fall short of explicitly revealing whether the synthetic data preserves the underlying causal
structures present in the reference data.

Following prior studies (Hansen et al.|[2023};|Shi et al., 2025} Zhang et all 2023)), we evaluate density
estimation using four metrics of two categories: (i) Low-order: Shape and Trend (Wiist,[2011). Shape
measures the synthetic data’s ability to replicate each column’s marginal density. Trend assesses
its capacity to capture correlations between different columns. (ii) High-order: a-precision and
B-recall (Alaa et al.l|[2022). a-precision quantifies the similarity between the reference and synthetic
data, and (-recall assesses the diversity of the synthetic data.

Privacy preservation evaluates the trade-off between the utility of synthetic data in downstream
tasks and the risk of privacy leakage (Margeloiu et al., 2024; |Gulati & Roysdon, [2023} [Trudal 2023}
Jordon et al.| 2018 Zhang et al.,|2021; McKenna et al., [2021} 2019). However, this dimension is
often tailored to specific tasks (e.g., classification and regression), and as such, it does not directly
evaluate the structural fidelity of tabular data. Consequently, privacy preservation alone cannot
comprehensively assess a generator’s ability to capture the fundamental characteristics of tabular
data, such as causal structures.

Following prior studies (Margeloiu et al.| 2024} |[Kotelnikov et al.l 2023} [Zhao et al.l 2021)), we
measure privacy preservation using two metrics: (i) median Distance to Closest Record (DCR) (Zhao
et al., [2021)), where a higher DCR indicates that synthetic data is less likely to be directly copied
from the reference data; (ii) §-Presence (Qian et al.,[2024). We note that some implementations of
d-Presence interpret smaller values as indicative of better privacy preservation; however, we adapt
the implementation provided by Synthcity (Qian et al.| 2024)), wherein larger values correspond to
improved privacy preservation.

ML efficacy measures the performance gap observed when replacing reference data with synthetic
data in downstream tasks. This metric is inherently task-specific and can be heavily biased by
the choice of predictive models and target variables. A useful parallel can be drawn from image
generation: Mixup (Psaroudakis & Kollias, [2022)) enhances training data by interpolating between
real samples, often improving downstream task performance. However, it simultaneously distorts the
spatial structure of images, producing visually unrealistic outputs (Mumuni & Mumuni, 2022). As
illustrated in Figure[I] assessing the authenticity of synthetic tabular data is far more difficult than in
image domains. Consequently, synthetic data that performs well in downstream tasks may still fail
to preserve important causal structures of the reference data. This example shows that ML efficacy,
while useful for specific tasks, cannot serve as a holistic measure of a tabular data generator.

Following prior studies (Xu et al., 2019; [Margeloiu et al., 2024; [Seedat et al.,|2024)), we adopt the
“train-on-synthetic, test-on-real” strategy for quantifying ML efficacy of synthetic data. To mitigate
the bias from downstream models, we evaluate the utility with the performance of an ensemble of
nine predictors (i.e., AutoGluon-full (Erickson et al.,|2020) and TabPFN (Hollmann et al., |2025))).
Specifically, the downstream models include three standard baselines: Logistic Regression (LR) (Cox]|
1958), KNN (Fix, [1985) and MLP (Gorishniy et al.l [2021); five tree-based methods: Random
Forest (RF) (Breiman, 2001), Extra Trees (Erickson et al., 2020), LightGBM (Ke et al., [2017),
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CatBoost (Prokhorenkova et al.| 2018)), and XGBoost (Chen & Guestrin, [2016)); and a PFN method:
TabPEN (Hollmann et al., [2025)).

Furthermore, as noted in prior work (Kotelnikov et al.l 2023)), tuning downstream models does
affect the relative rankings of tabular generators under ML efficacy. Therefore, to draw generalisable
conclusions, we perform hyperparameter tuning for all nine predictors, and the technical details
are provided in Appendix

A.2 STRUCTURAL FIDELITY OF TABULAR DATA

As illustrated in Figure [T} one of the key desiderata for faithful synthetic tabular data is the
preservation of causal structures present in real data. Prior work (Tu et al.}[2024) primarily assesses
structural fidelity using toy datasets, as existing metrics (Chen et al., 2023a; [Spirtes et al., 2001}
typically assume access to the ground-truth SCMs — a condition that is seldom satisfied and arguably
infeasible for most real-world datasets (Kaddour et al.,|2022; |Glymour et al.,|2019; Zhou et al., |2024;
Nastl & Hardt, [2024).

To bridge this gap, we introduce global utility, an SCM-free metric that quantifies how well a generator
preserves the causal structure of real data. Global utility provides a complementary perspective to
conventional metrics, enabling a more holistic assessment of synthetic tabular data.

A.3 TABULAR DATA GENERTOR

The common paradigm for tabular data generation is to adapt Generative Adversarial Networks
(GANSs) and Variational Autoencoders (VAEs) (Xu et al.| 2019). For instance, TableGAN (Park et al.|
2018) employs a convolutional neural network to optimise the label quality, and TVAE (Xu et al.|
2019) is a variant of VAE for tabular data. However, these methods learn the joint distribution and
thus cannot preserve the stratification of the reference data (Margeloiu et al., [2024). CTGAN (Xu
et al.| 2019) refines the generation to be class-conditional. The recent ARF (Watson et al., 2023)) is an
adversarial variant of random forest for density estimation, and GOGGLE (Liu et al.,|2023)) enhances
VAE by learning relational structure with a Graph Neural Network (GNN). Another emerging
direction is the use of denoising diffusion models (Kotelnikov et al.,|2023; Zhang et al., 2023} |Shi
et al., [2025)). For instance, TabDDPM (Kotelnikov et al.| [2023)) demonstrates that diffusion models
can approximate typical distributions of tabular data. In addition, several energy-based models
have recently been proposed for tabular data generation, such as TabEBM (Margeloiu et al., 2024)
and NRGBoost (Bravol [2025). These models aim to improve synthetic data quality by learning
energy-based representations of the data distribution.

In a broader context, there is growing interest in adapting Large Language Models (LLMs) for
tabular data generation (Fang et al.| |2024} |Seedat et al., 2024} Borisov et al., [2023)). For example,
GReaT fine-tunes GPT-2 to generate realistic tabular data, while CLLM leverages the domain
knowledge embedded in LLMs during generation. However, most state-of-the-art LLMs do not
disclose their pretraining data, raising concerns about data contamination — i.e., whether the reference
data (even the test data) has been included during pretraining (Fang et al., 2024} Margeloiu et al.,
2024)), which can undermine fair comparisons between tabular generators. To ensure fairness and
reproducibility, TabStruct excludes models based on proprietary or undisclosed LLMs, such as GPT-
4 (Seedat et al., 2024). We restrict our evaluation to models built on fully open-source LLMs, such as
GReaT, thereby mitigating concerns related to data contamination. We would like to emphasise that,
although TabStruct excludes certain LLM-based tabular generators to ensure fair and uncontaminated
benchmarking, researchers and practitioners are encouraged to integrate their own LLM-based models.

We acknowledge that some models exist beyond those currently implemented in TabStruct. We note
that TabStruct offers unified APIs that support up to nine distinct categories of tabular generators
(one of the widest scopes to date shown in Table d)), enabling broad compatibility for most tabular
generators. Therefore, beyond its current evaluation scope, TabStruct functions as a standardised
and extensible benchmarking framework. It is designed to accommodate future methods, promoting
continued development and evaluation within a consistent and reproducible environment.

A.4 EVALUATION SCOPE COMPARISON

Table 3]and Table [ present a comparative analysis of TabStruct against prior studies on the evaluation
of tabular generative models. TabStruct considers four key evaluation dimensions: density estimation,
privacy preservation, ML efficacy, and structural fidelity. In addition, it supports all nine categories of
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tabular generators, offering a more comprehensive and holistic overview of the current landscape of
generative modelling for tabular data.

While we acknowledge that the CauTabBench framework is, in principle, scalable to datasets with
higher dimensions than those reported in its original study, we emphasise that the specific causal
discovery methods it employs may not be practically scalable in real-world scenarios. For instance,
prior work (Zanga et al., |2022) has highlighted the substantial computational overhead associated
with causal discovery algorithms such as PC. Empirically, we observe that the vanilla PC algorithm
used in CauTabBench may require up to 168 hours (i.e., 7 days) to process datasets with more than
50 features. Consequently, several metrics within CauTabBench may be computationally infeasible
for the real-world datasets considered in TabStruct, suggesting that CauTabBench would require
additional technical optimisation for practical deployment. Moreover, recent studies (Nastl & Hardt,
2024} Zanga et al., [2022)) have shown that even state-of-the-art causal discovery methods often
perform unreliably on real-world data, potentially leading to misleading conclusions. We also observe
such pitfalls of existing causal discovery methods in the considered datasets (Appendix [E.2)). Thus,
applying CauTabBench in practice presents challenges not only in terms of scalability but also in
reliability. In contrast, TabStruct offers a novel and practical contribution by providing an SCM-free
lens through which to assess causal structures in tabular data.
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B DESIGNS OF STRUCTURAL FIDELITY METRICS

In this section, we detail the design and computation of structural fidelity metrics. We first detail the
computation of Conditional Independence scores (Appendix [B.T)), and then detail the computation of
the proposed global utility score (Appendix [B.2).

B.1 CONDITIONAL INDEPENDENCE (CI) SCORES
B.1.1 DERIVING CI STATEMENTS FROM A CAUSAL GRAPH

Goal. For each pair of distinct variables (x;, ), our objective is to construct: (i) a family of
d-separation sets S; i, such that &; L @y | S; 5, and (ii) a family of d-connection sets S, j, such that
w; L x| Sjk

Notations. We introduce the following notations, which will be used in the derivation of conditional
independence (CI) statements:

e Let G = (X,E) denote a directed acyclic graph (DAG), where the node set X =
{x1,...,xp,xpy1} consists of the variables introduced in Section
* An undirected path P in G is a sequence of distinct nodes (v1, ..., vr) such that for each edge on

the path, (vg,ve41) € E or (vey1,v¢) € E, and each vy € X.

* A non-endpoint node v, on P is a collider iff the adjacent edges on P converge head-to-head at v,
(i.e. — vy < in the induced subpath).

* For disjoint subsets {x;}, {z;}, S C X, a path P is said to be blocked by S if either: (i) P
includes a non-collider that is in S, or (ii) PP includes a collider such that neither the collider nor
any of its descendants is in S

* The variables x; and x, are d-separated by S; j, (denoted x; L xy, | S; 1) if every path between
x; and x, is blocked by S 1.

Procedures. The derivations of CI statements are fully programmatic (Spohnl 1980; |Dawid, |1979;
Constantinou & Dawid, [2017). For each pair of variables (x;,x)), we enumerate all subsets
S C X\ {x;, xx} and apply the d-separation test (Tu et al., 2024; [Spirtes et al., [2001) to the triple
(acj, @, S). If the test returns true, we add S to the set S ;. Once the d-separation sets are identified,
we derive the corresponding d-connection sets by selectively removing elements from the S . sets.
The full procedure is detailed in Algorithm 1]

B.1.2 CoMPUTE CI SCORES ON TABULAR DATA

We compute CI scores according to Equation (3), where the key step is to select an appropriate
conditional independence test for different types of features. For categorical datasets (i.e., all
variable are categorical), we employ the chi-square test of independence (McHugh, 2013)). For
numerical datasets (i.e., all variables are numerical), we use partial correlation based on the Pearson
correlation coefficient (Baba et al.,2004)). For mixed datasets (i.e., mixed variable types), we utilise a
residualisation-based conditional independence test (Ankan & Textor, 2023} [Li & Shepherd) 2010;
Muller & Peterson, |1984). We implement all conditional independence tests using pgmpy (Ankan &
Textor, 2024), an open-source Python library for causal and probabilistic inference. By default, the
significance level is set to 0.01 (i.e., the p-value is 0.01).

B.2 GLOBAL UTILITY SCORE
B.2.1 DOWNSTREAM PREDICTOR CONFIGURATIONS

To compute the utility per feature as defined in Equation (@), we need to evaluate the performance
of downstream predictors when predicting the variable x;, which requires selecting an appropriate
set of predictors. As discussed in Section |3} the utility per feature is inherently affected by the
inductive biases of downstream models. For instance, KNN tends to perform better when the number
of classes is large (Jiang et al.l 2024), whereas XGBoost often performs well on skewed target
distributions (McElfresh et al., [2024). To mitigate such biases, we employ an ensemble of nine
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Algorithm 1 Derive complete CI statements

Input: DAG G over nodes X = {x1,...,Zp+1}
Output: Full CI statements Cgjgbal

Cglobal < @ // initialise output
foreach unordered pair (j, k) € {(a,b) | 1 <a<b< D+ 1} do
Sjp— O // reset container

foreach S C X'\ {x;, x;} do
if d-separation_test(x;, xy, S) then

Sj  Sje U{S} // store separator
Caiobal < Cglobat U {(x; L &y, | S)} // record conditional independence
end
end
foreach S € S; ;, do

foreach v € S do

S« S\ {v} // candidate d-connection set
if not d-separation_test(x;, xy, 3 ) then
Calobal < Caloba U {(x; L xp | §)} // record conditional
dependence
end
end
end
end
return Coopq // complete CI statements

predictors with distinct inductive biases. Specifically, we use the widely adopted “AutoGluon-
full” (Erickson et al., [2020), which includes eight predictors, and supplement it with the competitive
TabPEN (Hollmann et al., [2025).

Furthermore, as shown in prior work (Kotelnikov et al.l [2023)), tuning downstream predictors can
impact the relative rankings of tabular data generators. To account for this, we allocate a time budget
of one hour per feature for tuning the full ensemble. We refer to this configuration (i.e., using all nine
tuned predictors) as “Full-tuned”.

B.2.2 PRUNING THE ENSEMBLE OF DOWNSTREAM PREDICTORS

In addition to the “Full-tuned” setup, we define three alternative configurations of downstream
predictors. These four configurations are summarised below:

* Full-tuned: A runed ensemble of nine predictors: Logistic Regression (LR), KNN, MLP, Random
Forest, Extra Trees, LightGBM, CatBoost, XGBoost, TabPFN;

* Light-tuned: A runed ensemble of eight predictors: Logistic Regression (LR), MLP, Random
Forest, Extra Trees, LightGBM, CatBoost, XGBoost, TabPFN;

* Tiny-tuned: A tuned ensemble of three predictors: KNN, XGBoost, TabPFN;
* Tiny-default: An untuned ensemble of three predictors: KNN, XGBoost, TabPFN.

An important observation is that tuning the downstream predictors does improve the absolute per-
formance of the utility per feature. However, we find that global utility is more robust to the choice
of downstream predictors than local utility. Specifically, when the ensemble is reduced from nine
to three predictors, the relative rankings of tabular generators under global utility remain consistent,
whereas the rankings under local utility fluctuate notably. For instance, under local utility, CTGAN
ranks second with “Full-tuned”, but drops to 10th with “Tiny-default”.

We attribute this robustness to the fairness inherent in the design of global utility — each variable
is treated equally as a prediction target, thereby reducing the bias towards any specific decision
boundary (i.e., downstream predictor). This design helps to mitigate the effect of predictor-specific
biases. Full experimental results are provided in Appendix
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Practical guidance for computing local and global utility. For a comprehensive and fair evaluation,
TabStruct reports all results under the “Full-tuned” configuration. For local utility, we strongly recom-
mend using the “Full-tuned” configuration. Using a less robust setup may lead to unstable rankings
and potentially misleading conclusions about generator performance. In contrast, Appendix [E.4]
demonstrates that global utility remains consistent even under the “Tiny-default” configuration, as
both “Full-tuned” and “Tiny-default” settings produce identical relative rankings across 13 tabular
generators. Therefore, we recommend using “Tiny-default” when computing global utility for model
selection, particularly in scenarios where computational efficiency is a priority.
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C RATIONALES FOR EVALUATION FRAMEWORK DESIGN

C.1 STRUCTURAL PRIOR FOR TABULAR DATA

The underlying structure of tabular data has long been an open research question (Kitson et al.l 2023
Hollmann et al.|[2025; Miiller et al.,2022; |[Haavelmo), |1944; Wang & Sun,|2022;Ucar et al.| 2021} |Zhu
et al., 2023; |Cui et al.l [2024; |Chen et al., [2023b; [Levin et al.,[2023)). For other modalities like textual
data, it is natural to characterise their structure as autoregressive, guided by human knowledge (Yang,
2019)). Therefore, pretraining paradigms aligned with the autoregressive structure, such as next-token
prediction (Achiam et al.,|2023)), have proven successful in textual generative modelling. In contrast,
heterogeneous tabular data does not naturally lend itself to human interpretation, making a structural
prior for such data generally elusive.

Recent studies (Hollmann et al., 2025; [Miiller et al., 2022)) on tabular foundation predictors have
begun to shed light on the underlying structure of tabular data. TabPFN (Hollmann et al.| [2025) is a
tabular foundation predictor pretrained on 100 million “synthetic” tabular datasets. These datasets are
“synthetic” because they do not incorporate real-world semantics: they are produced with randomly
constructed structural causal models (SCM). Remarkably, despite not being explicitly trained on
any real-world dataset, TabPFN is able to outperform an ensemble of strong baseline predictors,
which have been fine-tuned on each individual classification task. The exceptional performance of
TabPFN suggests that the SCMs used to construct the pretraining datasets, despite lacking real-world
semantics, effectively reflect the structural information encoded in real-world tabular data. However,
it is important to note that this does not imply SCMs can fully capture the underlying structure of all
tabular data, as no definitive theoretical guarantees have been made yet in the tabular domain. Instead,
TabPFN demonstrates that the causal relationships between features, as modelled by SCMs, serve as
an empirically effective structural prior for a substantial proportion of real-world tabular data.

As the success of LLMs primarily stems from their ability to leverage the autoregressive nature of
textual data, we argue that a robust tabular data generation process should be able to capture the
unique causal structures within the tabular data. More specifically, generating data aligned with the
causal structures in reference data could provide valuable insights into the open research question of
how to effectively leverage the structural information inherent in tabular data.

C.2 CPDAG-LEVEL EVALUATION OF STRUCTURAL FIDELITY

Prior studies (Tu et al.l 2024; |Spirtes et al.| | 2001)) typically evaluate the causal structure alignment at
three different levels: (i) skeleton level, (ii)) Markov equivalence class level, and (iii) causal graph level.

Skeleton level is limited in capacity. At the skeleton level, all causal directions are ignored,
resulting in a loss of information about the causal relationships between features. For instance, the
causal skeleton is unable to reflect encoded physical laws. Consider the physical system illustrated
in Figure E} the ground-truth causal path from p to Fgy iS p — ma — Fgum. This encodes a
meaningful interpretation of physical law: given ma, changing p should not affect the gravitational
force acting on ball A. However, if all directions are removed from the causal path, the resulting
skeleton allows for alternative paths, such as p — ma ¢ Fgun, which share the same undirected
structure but imply contradictory physical laws. In this case, the alternative path suggests that,
given ma, changing p would affect the gravitational force, which is incorrect. Therefore, we choose
not to evaluate structural fidelity at the skeleton level due to its inability to capture reliable causal
relationships across variables.

Causal graph level necessitates efficient and accurate causal discovery methods, which remains
an open research question. At the causal graph level, structural fidelity is assessed by comparing
the directed acyclic graphs (DAGs) of the reference and synthetic datasets, accounting for both the
skeleton and the causal directions of edges. In principle, this level provides the most fine-grained
evaluation of structural fidelity. However, current causal discovery methods struggle to recover
accurate DAGs from observational tabular data (Nastl & Hardt, 2024). Section 4] and Appendix
demonstrate such limitations — where Bayesian Network (BN) performs poorly in generating high-
quality synthetic data — suggesting that existing causal discovery tools are inadequate for learning
precise causal graphs.
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This limitation is well-documented in the literature: recovering perfect DAGs from tabular data
remains an unresolved problem for current algorithms (Zanga et al., 2022} [Kaddour et al., [2022;
Nastl & Hardt, [2024)). This limitation further supports our argument that CauTabBench provides
limited insights for real-world datasets. While CauTabBench attempts to evaluate structural fidelity
by applying causal discovery methods to infer a “pseudo” causal graph from real-world data, the
absence of ground-truth (GT) causal structures makes such evaluations unreliable. Without access
to a known GT, it is impossible to assess the validity of the inferred graphs. Moreover, the poor
empirical performance of BN suggests that these pseudo causal graphs may not be accurate.

Moreover, evaluating at the DAG level requires running causal discovery algorithms on both the
reference and synthetic datasets. Employing a specific causal discovery algorithm may introduce
evaluation bias — analogous to how utility scores are affected by the choice of predictor models.
To reduce this bias, one would need to ensemble multiple causal discovery methods. However,
unlike downstream predictors, causal discovery algorithms are often computationally expensive. For
instance, the DAGMA algorithm (Bello et al.| 2022)) takes over 24 hours to recover a causal graph
from a dataset with more than 100 features on our machine (Intel(R) Xeon(R) CPU @ 2.20GHz, 64
cores), due to the exponential scaling of its computation cost with dimensionality.

CPDAG-level evaluation strikes a good balance between evaluation efficiency and validity.
Unlike full DAG constructing via causal discovery, CPDAG-level evaluation does not require the
orientation of all edges, making it a more tractable yet still meaningful metric of structural fidelity. A
CPDAG represents the Markov equivalence class of a DAG, preserving essential causal relationships
while greatly reducing computational overhead. This is supported by the fact that Markov equivalent
SCMs serve as minimal -MAPs (Agrawal et al., 2018) of the joint distribution factorisation p(&X’) =

Hfjll p(x; | pa(x;)), and no causal directions can be further removed. Therefore, the CPDAG-level
evaluation provides a lens to interpret the fidelity of the tabular data. As illustrated in Figure
CPDAG:Ss retain sufficient real-world semantics for practical use cases. Therefore, TabStruct evaluates
structural fidelity at the CPDAG level, balancing semantic richness with computational feasibility.

It is important to note that even reference datasets do not guarantee CI scores of 1. This is analogous
to ML efficacy, where even reference data cannot ensure perfect downstream utility (e.g., balanced
accuracy = 1 or RMSE = 0). However, as shown in Section [ and Appendix [F} conditional indepen-
dence (CI) tests generally provide valid and reliable evaluation results. Specifically, CI tests yield
consistently high scores on reference datasets, indicating their ability to distinguish between high-
and low-quality datasets and thus produce meaningful fidelity assessments.
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D REPRODUCIBILITY

D.1 BENCHMARK DATASETS
D.1.1 SCM DATASETS

To accurately quantify structural fidelity, the reference data should be paired with ground-truth causal
structures. To this end, we construct benchmark SCM datasets using structural causal models (SCMs)
that have been validated by human experts (Scutari, 2011). All 11 SCM datasets are publicly available,
with further details provided in Table[5] Table |6l and Table[7] By default, throughout this work,
references to “six SCM datasets” refer to those listed in Table [S/and Table

Table 5: Details of three SCM classification datasets from bnlearn (Scutari, [2011)).

# Samples  # Features

Dataset Domain ) (D) N/D  #Numerical # Categorical # Classes # Samples per class  # Samples per class

(Min) (Max)
Hailfinder ~ Meteorology 100,000 56 1785.71 0 56 3 25,048 44,200
Insurance Economics 100,000 27 3703.70 0 27 4 1,648 56,361
Sangiovese  Agriculture 100,000 15 6666.67 14 1 16 5,659 6,841

Table 6: Details of three SCM regression datasets from bnlearn (Scutari, 2011).

# Samples  # Features

Dataset Domain (N) (D) N/D  #Numerical # Categorical
Healthcare Medicine 100,000 7 14285.71 4 3
MAGIC-IRRI  Life Science 100,000 64  1562.50 64 0
MEHRA Meteorology 100,000 24 4166.67 20 4

Table 7: Details of five classification datasets with large SCMs from bnlearn (Scutari, 2011).

# Samples  # Features

Dataset Domain ) (D) N/D  #Numerical # Categorical # Classes # Samples per class  # Samples per class

(Min) (Max)
ANDES Education 100,000 223 44843 0 223 2 23,000 77,000
Diabetes Life Science 100,000 413 242.13 0 413 4 1,000 86,000
Link Life Science 100,000 724 138.12 0 724 4 24,961 25.037
Pathfinder Medicine 100,000 109 91743 0 109 4 8,000 68,000
PIGS Life Science 100,000 441  226.76 0 441 3 24,769 49,988

Human validation ensures that the causal structures are realistic, thereby increasing the likelihood that
TabStruct’s benchmark results can generalise to other real-world datasets where ground-truth SCMs
are not available. We note that this is a core difference between TabStruct and prior studies (Tu et al.|
2024; |Hollmann et al., [2025): rather than relying on toy SCM datasets lacking real-world semantics,
TabStruct introduces one of the first comprehensive benchmarks for tabular generative models, based
on datasets with expert-validated causal structures, mixed feature types, and more than 10 features.

We outline the process of building the reference SCM datasets as follows. Firstly, we use ground-truth
SCMs with realistic and expert-validated structures. Secondly, we perform prior sampling on these
SCMs: root nodes are randomly initialised, and their values are propagated through the causal graph.
A single sample is generated by recording the node values after propagation, with each propagation
producing one sample. Thirdly, this process is repeated until sufficient samples are obtained. In
TabStruct, we set Ny, =100,000. By following this procedure, we construct full datasets Dy, with
accessible and well-defined causal structures. The pseudocode is in Algorithm 2]

D.1.2 REAL-WORLD DATASETS

To demonstrate the generalisability of the proposed global utility and TabStruct, we further select 23
challenging real-world datasets from the open-source TabZilla benchmark (McElfresh et al., 2024)),
the OpenML repository (https://www.openml.org/search?type=data&sort=runs),
and the UCI repository (https://archive.ics.uci.edu/datasets). All datasets are
publicly available, with further details provided in Table[8]and Table[9)}
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Algorithm 2 Constructing full SCM datasets

Input: Ground-truth structural causal model, M = (X, G, F, £), number of samples Ny, (default
to 100,000 samples)
Output: Full SCM dataset Dy = {(x(V,y()}
Pre-processing 7 < TopologicalSort (G)
variables
Dian ¢ InitDataset ()

Nrunt

=1

// topological order of the

// Initialise an empty dataset
for i < 1 to Ny, do

for j € wdo
if pa(x;) = @ then
x;l) + sample (€;) // root node: random initialisation
else
‘ m;Z) — fj( {:Ug) :xy, € pa(z;)}, ej) // propagate through SCM
end
end
Append (Dfun,(:z:gl),...,x%)_kl)) // Add the new sample to the SCM
dataset
end

return Dfu"

The dataset selection follows three main criteria: Firstly, the datasets are non-trivial, meaning that
generative models cannot easily achieve evaluation results comparable to those obtained from the
reference data. Secondly, the datasets originate from diverse domains. For example, “Credit-g”
pertains to business applications, whereas “Plants” relates to biological studies. Thirdly, the datasets
were not part of the meta-validation stage for TabPFN, reducing the likelihood that their causal
structures were implicitly leaked during the development or pretraining of TabPEFN.

Table 8: Details of 14 real-world classification datasets.

Dataset Domain Source ID # Samﬁf\e‘v; # Feauzg; N/D  #Numerical # Categorical # Classes # Samples per(]cvllzi;:l; # Samples pe:(']f/[l:}s;
Ada Economics  OpenML 1043 4,562 48 95.04 47 1 2 1,132 3,430
Characters Images OpenML 1459 10,218 8 1277.25 7 1 10 600 1,416
Credit-g Economics OpenML 46378 1,000 21 47.62 7 14 2 300 700
Electricity Economics OpenML 151 45312 9 5034.67 7 2 2 19,237 26,075
Higgs Physics  OpenML 4532 98,050 29 3381.03 28 1 2 46,223 51,827
Jasmine Life Science  OpenML 41143 2,984 145 2058 8 137 2 1,492 1,492
Nomao Economics OpenML 45078 34,465 119 289.62 89 30 2 9,844 24,621
Phoneme Language OpenML 1489 5,404 6 900.67 5 1 2 1,586 3,818
Plants Life Science  OpenML 1493 1,599 65 24.60 64 1 100 15 16
QSAR Chemistry OpenML 1494 1,055 42 2512 41 1 2 356 699
SpeedDating  Social Science OpenML 40536 8,378 121 69.24 59 62 2 1,380 6,998
Splice Life Science  OpenML 46 3,190 61 52.30 0 61 3 767 1,655
Vehicle Transportation ~ OpenML 54 846 19 44.53 18 1 4 199 218
Zernike Images OpenML 22 2,000 48 41.67 47 1 10 200 200
Table 9: Details of nine real-world regression datasets.
. # Samples  # Features . .

Dataset Domain Source 1D ](JN) (D) N/D  #Numerical # Categorical
Ailerons Physics OpenML 296 13,750 41 335.37 41 0
California Economics OpenML 43939 20,640 10  2064.00 9 1
Elevators Physics  OpenML 216 16,599 19 873.63 19 0
H16 Economics OpenML 574 22,784 17 1340.24 17 0
Liver Medicine OpenML 8 345 6 57.50 6 0
Sales Economics OpenML 42092 21,613 20 1080.65 18 2
Space Demographics OpenML 507 3,107 7  443.86 7 0
Superconductivity Chemistry UCI 464 21,263 82  259.30 82 0
Wine Life Scienece UCI 186 6,497 12 541.42 12 0
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D.2 DATA PROCESSING

Data splitting (Figure [5). For each dataset of N samples, we first split it into train and test sets
(80% train and 20% test). We further split the train set into a training split (D,f) and a validation
split (90% training and 10% validation). For classification datasets, stratification is preserved during
data splitting. We repeat the splitting 10 times, summing up to 10 runs per dataset. All benchmark
generators are trained on Dyf, and each generator produces a synthetic dataset with Ny.r samples. For
classification, the synthetic data preserves the stratification of the reference data.

Full Dataset
Nflull
) 1
Training + Validation data Test set
Neanx 0.8 Ntest = Ny % 0.2
Training split (Reference data) Validation split
Nref =N x0.8x0.9 Nfu1]>< 0.8 x 0.1
N Evaluation
m\sions
[ Generator ]
Synthetic data Evaluation
Ngyn = Nyof results

Figure 5: Data splitting strategies for benchmarking tabular data generators.

Feature preprocessing for generators. Following the procedures presented in prior work (McElfresh
et al.| [2024; (Grinsztajn et al.l 2022)), we perform preprocessing in three steps. Firstly, we impute the
missing values with the mean value for numerical features and the mode value for categorical features.
We then compute the required statistics with training data and then transform the training split. For
categorical features, we convert them into one-hot encodings. An exception is TabDiff, which tends
to perform better with ordinal encoding for categorical features. For numerical features, we perform
Z-score normalisation. We compute each feature’s mean and standard deviation in the training data
and then transform the training samples to have a mean of zero and a variance of one for each feature.
Finally, we apply the same transformation to the validation and test data before conducting evaluations.

Feature preprocessing for downstream predictors. The synthetic data produced by generators
is inversely transformed back to the original feature space before being passed to the downstream
predictors. In other words, the AutoGluon models receive input data in the original, unprocessed
feature space, allowing them to apply their own model-specific preprocessing strategies.

D.3 IMPLEMENTATIONS OF BENCHMARK GENERATORS

TabStruct includes 13 existing tabular data generation methods of nine different categories: (i) a
standard interpolation method SMOTE (Chawla et al.|[2002); (ii) a structure learning method Bayesian
Network (BN) (Qian et al.,2024); (iii) two Variational Autoencoders (VAE) based methods TVAE (Xu
et al.,[2019) and GOGGLE (Liu et al.}[2023); (iv) a Generative Adversarial Networks (GAN) method
CTGAN (Xu et al.L|2019); (v) a normalising flow model Neural Spine Flows (NFLOW) (Durkan et al.
2019); (vi) a tree-based method Adversarial Random Forests (ARF) (Watson et al.,[2023); (vii) three
diffusion models: TabDDPM (Kotelnikov et al.,[2023)), TabSyn (Zhang et al.,[2023)), TabDiff (Shi et al.|
2025); (viii) two energy-based models: TabEBM (Margeloiu et al., [2024)) and NRGBoost (Bravo,
20235)); and (ix) a Large Language Model (LLM) based method GReaT (Borisov et al., [ 2023).

Following prior work (Kotelnikov et al.| 2023} |Hansen et al., [2023), we tune the parametrised
generators to ensure a fair comparison. Specifically, we use Optuna (Akiba et al.,2019) to optimise
each generator by minimising its average validation loss across 10 repeated runs. Each generator
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is given at most two hours to complete a single repeat. Importantly, to mitigate bias introduced by
specific evaluation metrics, we tune each generator based on its own objective function rather than
any external metric. Different from prior work (Du & Li, [2024)), this approach ensures that each
model is evaluated under conditions aligned with its intended optimisation direction. The technical
details and hyperparameter search space for each method are described below.

SMOTE is an interpolation-based oversampling technique (Chawla et al.| 2002), which generates syn-
thetic samples by interpolating between existing minority class instances. We employ the open-source
implementation of SMOTE provided by Imbalanced-learn (Lemaitre et al.,2017), where the number
of nearest neighbours & can be specified. Unless stated otherwise, we use the default setting of & = 5.

Bayesian Network (BN) is a probabilistic graphical model used to represent and reason about the
dependence relationships between features (Qian et al., 2024; [Hansen et al., 2023)). It consists of two
main components: (i) a causal discovery model to construct a directed acyclic graph (DAG), where
features and the target serve as nodes, and their dependencies are represented as edges; (ii) a parameter
estimation mechanism to quantify the dependence relationships. Following prior work (Hansen et al.,
2023)), the causal discovery method is selected from Hill Climbing Search (Koller, 2009), the Peter-
Clark algorithm (Koller} [2009; Spirtes et al., [2001), LINGAM (Shimizul [2014), LiM (Zeng et al.,
2022), DAGMA (Bello et al., [2022)), DCD (Prashant et al., [2024), AutoCD (Chan et al., [2024)),
and Chow-Liu or Tree-augmented Naive Bayes (Chow & Liu| |1968]; [Friedman et al., [1997)). We
empirically find that AutoCD generally achieves the highest structural fidelity, and thus we build a
parametrised BN with AutoCD and maximum likelihood estimation.

Table 10: Hyperparameter search space of BN.

Hyperparameter Range

struct_learning_score  {"k2", "bdeu", "bic", "bds"}

TVAE is a variational autoencoder (VAE) designed for tabular data (Xu et al.,|2019). TVAE employs
mode-specific normalisation to handle the complex distributions of numerical features. To address
the class imbalance problem, TVAE conditions on specific categorical features during generation.

Table 11: Hyperparameter search space of TVAE.

Hyperparameter Range
encoder_n_layers_hidden [1, 5]
encoder_n_units_hidden [50, 500]
encoder_nonlin {relu, leaky_relu, tanh, elu}
n_units_embedding [50, 500]
decoder_n_layers_hidden [1, 5]
decoder_n_units_hidden [50, 500]
decoder_nonlin {relu, leaky_relu, tanh, elu}
n_iter (100, 1000]
Ir [10=%, 10~3] (log)
weight_decay [107%, 1073] (log)

GOGGLE is a VAE-based tabular data generator designed to model the dependence relationships
between features (Liu et al., [2023). GOGGLE proposes to learn an adjacency matrix to model the
dependence relationships between features. However, TabStruct and prior benchmarks (Margeloiu
et al.,2024; Zhang et al., 2023} [Shi et al.,|2025) all show that the downstream utility of GOGGLE is
limited. We hypothesise that this stems from the challenge of learning accurate structures of tabular
data. The inherent structure learning mechanism in GOGGLE fails to capture accurate conditional
independence relationships between features, which could thus lead to low-quality synthetic data.

CTGAN is a conditional generative adversarial network (GAN) designed for tabular data (Xu et al.,
2019). CTGAN leverages PacGAN (Lin et al., |2018) framework to mitigate mode collapse. In
addition, CTGAN employs the same mode-specific normalisation technique as TVAE.
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Table 12: Hyperparameter search space of GOGGLE.

Hyperparameter Range
encoder_dim [32, 128]
encoder_l [1, 5]
decoder_dim [32, 128]
decoder_arch {gcn, het, sage}
n_iter [100, 500]
learning_rate [107%, 5 x 1073] (log)
weight_decay [10=%, 10~3] (log)
alpha (0.0, 1.0]
beta [0.0, 1.0]
iter_opt {True, False}
threshold [0.0, 1.0]

Table 13: Hyperparameter search space of CTGAN.

Hyperparameter Range
generator_n_layers_hidden [1, 4
generator_n_units_hidden [50, 150
generator_nonlin {relu, leaky_relu, tanh, elu}
discriminator_n_layers_hidden [1, 4
discriminator_n_units_hidden [50, 150
discriminator_nonlin {relu, leaky_relu, tanh, elu}
n_iter [100, 1000
discriminator_n_iter 1,5
Ir [107%, 107?] (log)
weight_decay [107%, 1073] (log)

NFlow is a normalisation flow model designed for tabular data generation (Durkan et al., [2019).
NFlow incorporates neural splines as a drop-in replacement for affine or additive transformations in
coupling and autoregressive layers, which assists in the modelling of tabular data.

Table 14: Hyperparameter search space of NFlow.

Hyperparameter Range
n_layers_hidden [1, 10]
n_units_hidden [10, 100]
linear_transform_type {lu, permutation, svd}
base_transform_type {affine-coupling,

quadratic-coupling,
rq-coupling,
affine-autoregressive,
quadratic-autoregressive,
rq-autoregressive }

dropout [0.0, 0.2]
batch_norm {False, True}
Ir [2 x 1074, 10~?] (log)
n_iter 100, 5000]

ARF is a tree-based model for tabular data generation (Watson et al.|[2023). ARF employs a recursive
adaptation of unsupervised random forests for joint density estimation by iteratively refining synthetic
data distributions using adversarial training principles.
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Table 15: Hyperparameter search space of ARF.

Hyperparameter Range
num_trees {10, 20, ..., 100}
delta {0, 2, ..., 50}
max_iters [1, 5]
early_stop {True, False}
min_node_size {2,4, ..., 20}

TabDDPM is a diffusion-based model for tabular data generation (Kotelnikov et al.|2023). TabDDPM
introduces two core diffusion processes: (i) Gaussian noise for numerical features and (ii) multinomial
diffusion with categorical noise for categorical features. TabDDPM directly concatenates numerical
and categorical features as the input and output of the denoising function.

Table 16: Hyperparameter search space of TabDDPM.

Hyperparameter Range
n_iter [103, 101]
Ir 105, 10~ (log)
weight_decay [107%, 1073] (log)
num_timesteps [10, 10?]

TabSyn is a diffusion-based model for tabular data generation (Zhang et al.,2023)). It synthesises
tabular data by employing a diffusion model within the latent space of a variational autoencoder
(VAE). TabSyn supports a wide range of data types by mapping them into a unified representation
space and explicitly modelling inter-column dependencies.

Table 17: Hyperparameter search space of TabSyn.

Hyperparameter Range
vae.num_epochs [100, 1000]
vae.max_beta (1073, 1072] (log)
vae.min_beta [107°, 10~%] (log)
vae.lambd [0.1, 1.0]
vae.num_layers [1, 4]
vae.d_token [1, 8]
vae.n_head 1, 4]
vae.factor [1, 64]
vae.lr [107%, 1072] (log)
vae.wd [0, 1072] (log)
tabsyn.num_epochs [100, 500]
tabsyn.Ir [107%, 1072] (log)
tabsyn.wd [0, 1072] (log)

TabDiff is a diffusion-based model for tabular data generation (Shi et al.l|2025)). It introduces a joint
diffusion framework capable of capturing the mixed-type distributions inherent in tabular data within
a single model. In particular, TabDiff utilises a joint continuous-time diffusion process and leverages
a transformer architecture to handle both numerical and categorical variables.

TabEBM is an energy-based model for tabular data generation (Margeloiu et al.| 2024). It transforms
a pretrained tabular predictor into a set of class-specific generators. While the original paper only
provides TabEBM implementation for classification tasks, we extend its applicability in TabStruct to
regression task by treating all reference samples as a single class, and then performing sampling over
the energy surface.
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Table 18: Hyperparameter search space of TabDiff.

Hyperparameter Range
batch_size {512, 1024, 2048, 4096, 8192}
c_lambda [0.1, 10.0]
check_val_every {10, 20, 30, 40, 50}
closs_weight_schedule {"constant", "anneal", "linear" }
d_lambda [0.1, 10.0]
ema_decay [0.9, 0.9999]
factor [0.1, 0.99]
Ir [1075, 1072] (log)
Ir_scheduler {"reduce_Ir_on_plateau", "cosine", "none"}
reduce_Ir_patience {10, 30, 50, 70}
steps {100, 200, 300, 500}
weight_decay [0, 1072] (log)

Table 19: Hyperparameter search space of TabEBM.

Hyperparameter Range
starting_point_noise_std [10~4, 1071] (log)
sgld_step_size [1073, 1071] (log)
sgld_noise_std [10~4, 1071] (log)
sgld_steps {50, 100, 200, 500}

NRGBoost is an energy-based model for tabular data generation (Bravo), 2025). It is trained by
maximising a local second-order approximation to the log-likelihood at each stage of the boosting
process. NRGBoost is shown to offer generally good discriminative performance and competitive
sampling performance compared to more specialised alternatives.

Table 20: Hyperparameter search space of NRGBoost.

Hyperparameter Range
num_trees {1, 5, 10, 20, 50}
shrinkage [0.01, 0.3]
max_leaves {32, 64, 128, 256, 512}
max_ratio_in_leaf [1, 5]
num_model_samples {10,000, 40,000, 80,000, 160,000}
p_refresh [0.01, 0.3]
num_chains {4, 8, 16, 32}
burn_in {50, 100, 200, 500}

GReaT leverages large language models (LLMs) to generate synthetic tabular data (Borisov et al.,
2023). GReaT converts each sample into a sentence and fine-tunes the language model to capture
the sentence-level distributions. Additionally, GReaT shuffles the order of features to mitigate the
permutation variance in sentence-level distributions.

Table 21: Hyperparameter search space of GReaT.

Hyperparameter Range
n_iter {100, 300, 500, 1000}
learning_rate [107%, 1072] (log)
weight_decay [1075, 1072] (log)
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D.4 HYPERPARAMETER TUNING FOR DOWNSTREAM PREDICTORS

As discussed in Appendix we employ AutoGluon’s built-in tuning functionality for training the
ensemble predictors. For each variable, the ensemble predictor is allocated one hour of tuning budget
per repeat, resulting in a total of 10 hours per variable for each dataset. We note that TabPFN is not
integrated into the employed version of AutoGluon. However, the default configuration of TabPFN
already demonstrates competitive performance (Hollmann et al., 2025)), and thus, we use its default
hyperparameters across all of our experiments.

D.5 AGGREGATION OF EVALUATION RESULTS

The reported results are averaged by default over 10 repeats. We aggregate results across all SCM
or real-world datasets because the findings are consistent across classification and regression tasks.
Specifically, we use the average distance to the minimum (ADTM) metric (Grinsztajn et al., [2022;
McElfresh et al., 2024} [Hollmann et al., 2025; Margeloiu et al., 2024} Jiang et al., [2024) via affine
renormalisation between the top-performing and worse-performing models.

D.6 SOFTWARE AND COMPUTING RESOURCES

Software implementation. (i) For generators: We implemented SMOTE with Imbalanced-
learn (Lemaitre et al.,|2017), an open-source Python library for imbalanced datasets with an MIT
license. For TabSyn and TabEBM, we used their open-source implementations with an Apache-2.0
license. For TabDiff and NRGBoost, we used their open-source implementations with an MIT license.
For other benchmark generators, we used their open-source implementations in Synthcity (Q1ian
et al.,[2024)), a library for generating and evaluating synthetic tabular data with an Apache-2.0 license.
(ii) For downstream predictors: We implemented TabPFN with its open-source implementation
(https://github.com/automl/TabPFN). We implemented the other eight downstream pre-
dictors (i.e., Logistic Regression, KNN, MLP, Random Forest, Extra Trees, LightGBM, CatBoost,
and XGBoost) with their open-source implementation in scikit-learn (Pedregosa et al.,[2011)) and
AutoGluon (Erickson et al., [2020), an open-source Python library under an Apache-2.0 license.
(iii) For result analysis and visualisation: All numerical plots and graphics have been generated using
Matplotlib 3.7 (Hunter, 2007), a Python-based plotting library with a BSD license. The icons for
evaluation dimensions in Figure 2] are from https://icons8.com/!

We ensure the consistency and reproducibility of experimental results by implementing a uniform
pipeline using PyTorch Lightning, an open-source library under an Apache-2.0 license. We further
fixed the random seeds for data loading and evaluation throughout the training and evaluation process.
This ensured that all benchmark models in TabStruct were trained and evaluated on the same set of
samples. The experimental environment settings, including library dependencies, are specified in the
open-source library for reference and reproduction purposes.

Computing Resources. All the experiments were conducted on a machine equipped with an NVIDIA
A100 GPU with 80GB memory and an Intel(R) Xeon(R) CPU (at 2.20GHz) with 64 cores. The
operating system used was Ubuntu 20.04.5 LTS.
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E EXTENDED ANALYSIS AND DISCUSSION

E.1 EXTENDED ANALYSIS ON VALIDITY OF BENCHMARK FRAMEWORK

The benchmark datasets present a genuine challenge for existing generators. As detailed
in Section ] we select challenging, contamination-free real-world datasets, ensuring that they are
non-trivial for existing tabular data generators. Table 2] illustrates that, unlike prior studies (Shi
et al., 2025} Zhang et al., 2023; Margeloiu et al.,[2024)), no generator can easily match Dy on our
benchmark datasets. This confirms that the selected datasets offer a more informative and realistic
assessment of generator capabilities.

Detection score (C2ST) is relatively limited in measuring global structural fidelity. Following
prior work [Zhang et al.| (2023), we compute the detection score (C2ST) using logistic regression
classifier. Higher C2ST scores indicate better performance, i.e., synthetic data that is harder to
distinguish from real data. We select three SCM classification datasets (Table[5): Hailfinder, Insurance,
and Sangiovese. Table[22]shows that C2ST exhibits a weaker correlation with global CI compared
to global utility. The relatively low correlation between C2ST and global CI is consistent with the
trends observed in other sample-level metrics, including a-precision and -recall. Although these
sample-level metrics are designed to capture high-order interactions across features, they fail to
explicitly attend to inter-feature causal interactions, limiting their ability to reflect the underlying
causal structures. This further supports the effectiveness of global utility in assessing global structural
fidelity of tabular data.

Table 22: Spearman’s rank correlation with global CI on three SCM datasets. We bold the
highest correlation with Global CI. Global utility correlates strongly with global CI (p < 0.001),
demonstrating the validity of global utility.

Global CI 1
«-precision 0.38
[-recall 0.47
C2ST 0.50
Global utility (Ours) 0.83

E.2 EXTENDED ANALYSIS ON VALIDITY OF GLOBAL UTILITY

The evaluation results are consistent across classification and regression datasets of different
domains. In Table 23] we present per-dataset evaluation results for both local and global utility.
SMOTE remains one of the most competitive methods for capturing local structure, and diffusion
models consistently rank among the top-3 for modelling global data structure. These findings indicate
that the proposed “utility per variable” metric is stable and provides a unified lens for interpreting
evaluation results across both classification and regression datasets.

Global utility provides similar generator rankings as global CI. Figure [] demonstrates that the
rankings of generators under global utility closely align with those under global CI. Notably, the
Top-3 methods are identical across both metrics: TabSyn, TabDDPM, and TabDiff. In contrast,
when using local utility, the Top-3 methods shift to SMOTE, CTGAN, and TabDiff. This reveals a
great discrepancy between the rankings produced by global CI and those from the local utility. In
comparison, the proposed global utility yields rankings consistent with global CI, indicating that
global utility is an effective metric when ground-truth SCM is unavailable. Consequently, global
utility serves as an informative metric for evaluating global structural fidelity.

In addition to the correlation analysis of metric values, we compute Spearman’s rank correlation
between the generator rankings induced by three metrics: local utility, global CI, and global utility. As
shown in Table 24] across 13 generators evaluated on six SCM datasets, generator rankings induced
by global CI and global utility exhibit a strong correlation (rs = 0.95, p < 0.001), whereas local
utility shows substantially weaker alignment with the other two metrics.

We further analyse the rank correlations among the top-5 generators according to global CI: Tab-
DDPM, TabSyn, TabDiff, TVAE, and ARF. When restricting the analysis to the top-5 generators
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Table 23: Top-3 tabular generators across the TabStruct benchmark suite. For each dataset, we
report the Top-3 tabular generators in terms of both local and global utility. For visualisation, we
abbreviate “Classification” as “Class.”, and ‘Regression” as “Reg.”. The results indicate that while
SMOTE remains a simple yet effective approach for ML efficacy, diffusion models demonstrate
stronger capability in capturing the holistic structure of tabular data.

# Samples  # Features . Local utility Global utility
Dataset ) (D) N/D Ist 2nd 3rd st 2nd 3rd
SCM datasets
.. Hailfinder 100,000 56 178571 | SMOTE CTGAN NRGBoost | TabDDPM TabSyn TabDiff
2 Insurance 100,000 27  3703.70 | SMOTE TabEBM TVAE | TabDDPM TabDiff TabSyn
T Sangiovese 100,000 15 6666.67 | SMOTE CTGAN TabEBM | TabDDPM TabSyn TVAE
o Healthcare 100,000 7 14285.71 | SMOTE  TabDiff TabSyn BN ARF TabDDPM
& MAGIC-IRRI 100,000 64 1562.50 | SMOTE TVAE TabSyn TVAE TabDDPM TabSyn
MEHRA 100,000 24 4166.67 | SMOTE  TabSyn GOGGLE | TabDDPM TabDiff TabSyn
Real-world datasets

Ada 4,562 48 95.04 | SMOTE TabEBM TabDiff TVAE TabDDPM ARF
Characters 10,218 8 1277.25 | SMOTE TabEBM ARF | TabDDPM TabSyn TabDiff
Credit-g 1,000 21 47.62 | SMOTE TabEBM TabDiff TabSyn TabDiff TabDDPM
Electricity 45312 9  5034.67 | SMOTE TabEBM TabDiff | TabDDPM TabDiff ARF
Higgs 98,050 29 3381.03 | SMOTE CTGAN TabEBM | TabDDPM TabSyn TabDiff

. Jasmine 2,984 145 20.58 | SMOTE TVAE TabSyn TabSyn TabDiff TabDDPM
g Nomao 34,465 119 289.62 | SMOTE CTGAN TVAE TabDiff TVAE TabDDPM
S Phoneme 5,404 6 900.67 | SMOTE TabEBM NRGBoost | TabDDPM TabSyn TabDiff
Plants 1,599 65 24.60 | SMOTE TabEBM NRGBoost | TabDDPM TabSyn TabDiff
QSAR 1,055 42 25.12 | SMOTE TabEBM NRGBoost TabSyn TabDDPM TabDiff
SpeedDating 8,378 121 69.24 | SMOTE TabEBM TVAE | TabDDPM TabSyn TabDiff
Splice 3,190 61 52.30 | SMOTE TVAE CTGAN TabSyn TabDiff TabDDPM
Vehicle 846 19 4453 | SMOTE TabEBM TabSyn TabSyn TabDDPM TabDiff
Zernike 2,000 48 41.67 | SMOTE TabEBM TVAE TabSyn TabDDPM TabDiff
Ailerons 13,750 41 33537 | SMOTE  TabDiff TabSyn TabDiff TabDDPM TabSyn
California 20,640 10 2064.00 | SMOTE  TabSyn TabDiff | TabDDPM TabSyn TabDiff
Elevators 16,599 19 873.63 | SMOTE  TabDiff TabSyn | TabDDPM TabDiff TabSyn

. H16 22,784 17 1340.24 | SMOTE  TabDiff CTGAN BN TabDDPM TabDiff
5 Liver 345 6 57.50 | TabDiff  TabSyn SMOTE ARF TabDiff TabSyn
Sales 21,613 20  1080.65 | SMOTE  TabDiff TabSyn TabDiff TabSyn TVAE
Space 3,107 7 443.86 | SMOTE TabSyn TabDiff BN TabDDPM TabSyn
Superconductivity 21,263 82 259.30 | SMOTE  TabDiff TabSyn BN TabDiff TabSyn
Wine 6,497 12 541.42 | SMOTE  TabSyn TabDiff TabDiff TabSyn TabDDPM

based on global CI, Table 25]shows the correlation between global CI and global utility remains high
(rs = 0.92, p < 0.001). This suggests that global utility maintains a consistent ranking even among
high-performing generators, supporting its robustness in discerning top-performing models.
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Figure 6: Rank comparison of 13 tabular data generators across three evaluation metrics on
six SCM datasets. Compared to local utility, global CI and global utility rankings are relatively
consistent, suggesting that global utility can serve as an effective metric for global structural fidelity.

Global utility consistently aligns with global CI on large-scale SCMs. To further validate the
applicability of global utility in high-dimensional settings, we select five additional datasets (Table
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Table 24: Spearman’s rank correlation based on generator rankings on six SCM datasets. Global
utility induces generator rankings correlating strongly with global CI, showing the alignment between
global utility and global CI (p < 0.001).

Local utility ~Global CI ~ Global utility

Local utility -
Global CI 0.29 - -
Global utility 0.35 0.95 -

Table 25: Spearman’s rank correlation based on generator rankings of the top-5 generators
(by global CI) on six SCM datasets. Global utility maintains a consistent ranking even among
high-performing generators, showing its robustness in discerning top-performing models (p < 0.001).

Local utility ~ Global CI ~ Global utility

Local utility -
Global CI 0.38 - -
Global utility 0.32 0.92 -

with large-scale SCMs from the bnlearn repository (Lemaitre et al.,[2017). Table@ demonstrates
that global utility remains strongly correlated with global CI across both these large SCM datasets
and the six smaller ones discussed in Section 4} The results provide further empirical evidence that
global utility reliably captures the global structural fidelity of tabular data.

Table 26: Spearman’s rank correlation with global CI on SCM datasets. We bold the highest
correlation with Global CI. Global utility correlates strongly with global CI across 11 SCM datasets
(p < 0.001), demonstrating the generalisability of global utility.

Dataset Shape Trend a-precision [(-recall DCR d-presence Local utility Local CI ~ Global utility (Ours)
5 datasets with large SCMs 0.26 0.24 0.31 033 -0.25 -0.22 0.13 0.11 0.81
11 SCM datasets (6 in SeclionE]+ 5 large) 0.40 0.30 0.36 046 -0.30 -0.26 0.13 0.19 0.83

Normalised utility is important for providing balanced and consistent evaluation across columns.
To further assess the impact of normalisation, we compare global utility computed using absolute
predictive scores versus relative (i.e., normalised) scores. As shown in Table@ using unnormalised
scores leads to a substantially weaker correlation with global CI. Specifically, Spearman’s drops from
0.84 to 0.57. This finding supports that the normalisation design plays an important role in improving
the alignment with causal structures. Furthermore, global utility based on absolute scores fails to
produce stable generator rankings across different predictor configurations. Specifically, the Top-5
generators under Full-tuned and Light-tuned settings share only one generator in common when
computing global utility with absolute scores. This further supports that the normalisation enables
global utility to deliver more robust and consistent evaluations across predictor configurations.

Metrics requiring explicit causal discovery remain limited in evaluating the structural fidelity
of tabular data. We further examine the relationship between global CI and several metrics used
in CauTabBench, which rely on causal discovery algorithms to infer SCMs from observed data.
Specifically, we construct two dataset collections, A and B, each comprising three SCM datasets:
A={Hailfinder, Insurance, MEHRA} and B={Sangiovese, Healthcare, MAGIC-IRRI}. For datasets
in A, we compute our global utility metric alongside three CauTabBench metrics: skeleton-F1,
direction-ACC, and direction-F1. For datasets in B, we compute the global CI. We then calculate
Spearman’s rank correlation between global CI and each of the other metrics. Table shows
that global utility exhibits a substantially stronger correlation with global CI than the metrics from
CauTabBench. The relatively weaker correlation of CauTabBench metrics is likely due to their
dependence on causal discovery algorithms. For instance, skeleton-F1 uses PC algorithm to recover
causal graphs from synthetic tabular data. However, PC algorithms could suffer notable performance
degradation as the number of features increases (Zanga et al.| [2022} |Zeng et al. [2022)). This
observation aligns with broader findings regarding the limitations of existing causal discovery
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Table 27: Spearman’s rank correlation with global CI on SCM datasets. We bold the highest
correlation with Global CI. Global utility with normalised utility correlates strongly with global CI,
showing that normalisation helps global utility to provide balanced evaluation across columns.

Global CI 1
Global utility (absolute performance) 0.57
Global utility (relative performance) 0.84

methods on real-world tabular datasets (Nastl & Hardt, [2024). These results suggest that global utility
offers a more robust, SCM-free approach for evaluating global structural fidelity of tabular data.

Table 28: Spearman’s rank correlation with global CI across six SCM datasets. We bold the
highest correlation with Global CI. Global utility exhibits a substantially stronger correlation with
global CI compared to the CauTabBench metrics (p < 0.001), which rely on causal discovery.

Global CIt
skeleton-F1 0.42
direction-ACC 0.44
direction-F1 0.44
Global utility (Ours) 0.84

Metrics for evaluating multi-table interactions are insufficient for structural fidelity within a
single table. Prior work (Pang et al.| [2024; |Solatorio & Dupriez, |2023)), such as ClavaDDPM (Pang
et al.l 2024), which models relational databases, proposes the use of machine learning efficacy
(MLE) to assess how well a generator preserves inter-table relationships. These studies primarily
focus on relational structures across multiple tables, whereas TabStruct is designed to evaluate inter-
feature causal relationships within a single table. Consequently, the prior studies do not explicitly
establish a direct connection between MLE and the underlying causal structures of a single table. To
quantitatively assess such a distinction, we evaluate the correlation between MLE and global CI using
the same experimental setup as for global utility. We strictly follow the MLE evaluation procedure
proposed in ClavaDDPM, following its official implementation (Pang et al., 2024). As shown in
Table [29] both MLE-R2 and MLE-F1 exhibit relatively weak correlations with global CI, suggesting
that multi-table relational metrics are less suitable for evaluating inter-feature causal interactions in
single-table scenarios.

Table 29: Spearman’s rank correlation with global CI across six SCM datasets. We bold the
highest correlation with global CI. Global utility generally shows a stronger correlation with global
CI compared to the metrics designed for multi-table settings (p < 0.001).

Global CI 1
MLE-R2 0.40
MLE-F1 0.44
Global utility (Ours) 0.84

Global utility provides stable results with synthetic data of equal size to reference data. Across
six SCM datasets (TableE]and Table @) we fix Nrr while varying the ratio N : Ngyn. We evaluate
three representative tabular generators: SMOTE, TabSyn, and TabDDPM, which achieve the best
results in local CI, global CI, and global utility, respectively. Tableshows that When Ny, < Ny,
global utility generally increases with the sample size of Dsy,. Once the condition Dgy, > Dy is met,
global utility tends to stabilise. This observation further validates the robustness of global utility score
and supports our design rationale for using equal-sized Dy, and Dy in the evaluation framework.
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Table 30: Global utility scores under different synthetic sample sizes. We bold the highest global
utility score for each generator. In general, global utility tends to saturate when the synthetic sample
size reaches or exceeds that of the reference data.

Nret : Ngyn - SMOTE ~ TabSyn TabDDPM

5:1 0.13 0.62 0.64
3:1 0.25 0.72 0.74
1:1 0.39 0.76 0.80
1:3 0.39 0.75 0.79
1:5 0.38 0.76 0.81

E.3 EXTENDED ANALYSIS ON STRUCTURAL FIDELITY OF GENERATORS

Column order can have a notable impact on autoregressive tabular generators. Autoregressive
generators model the data distribution by linearising features according to a column order 7. For
tabular data, the ideal ordering m* corresponds to the topological order derived from the true SCM.
However, since 7* is typically unavailable in practice, using a mismatched 7 may compromise
structural fidelity. Although prior work (Borisov et al.| [2023) attempts to improve robustness
by finetuning LL.Ms on randomly permuted column orders, such approaches are computationally
expensive (e.g., we observe that GReaT often fail to converge on datasets with more than 50 features)
and do not explicitly align the model with the true causal structure of the dataset. For instance,
if the random ordering 7 happens to reverse the topological order encoded by the ground-truth
causal structure, the autoregressive model is forced to learn spurious conditional independence across
features, thereby harming the learned global structure. To investigate the impact of directional
bias, we conduct a proof-of-concept experiment on six SCM datasets. Specifically, we introduce
“GReaT-sort”, a variant of GReaT finetuned using the ground-truth topological order extracted from
each SCM. In this setup, GReaT-sort and the original GReaT share identical model configurations,
and the only difference lies in the column order employed during finetuning. As shown in Table
GReaT-sort consistently outperforms GReaT across all datasets by a clear margin, suggesting that the
mismatched bias in column ordering constrains the performance of autoregressive tabular generators.

Table 31: Global utility of GReaT and GReaT-sort on six SCM datasets. We bold the highest
performance for each dataset. GReaT-sort consistently achieves higher global utility than GReaT,
indicating that aligning column order with the underlying causal structure can effectively improve the
performance of autoregressive tabular models.

Generator Hailfinder Insurance Sangiovese Healthcare MAGIC-IRRI MEHRA
GReaT 0294028 0.324027 0.314928 0.1940.24 0414024 0.2640.15
GReaT-sorted 0.43.1023 0.49_10.14 0.40-0 23 0.43_102 0491013 03191

Interpolation and energy-based methods tend to prioritise local structure over global structure.
Figure [3] (right) shows that the interpolation method (e.g., SMOTE) and energy-based models (e.g.,
TabEBM and NRGBoost) can effectively capture local structure, yet perform poorly when modelling
global structure. These two families of methods share a common trait in their generation process:
they generate new samples from class-specific reference data. For example, in classification tasks,
SMOTE interpolates between samples of the same class, and TabEBM samples from a class-specific
energy surface. As a result, the generated samples are inevitably biased towards local structure.

A high global utility score typically reflects consistently high utility across individual features.
As shown in Figure[7] generators with relatively high global utility scores (Type 1), such as TabSyn
and TabDiff, tend to achieve balanced utility across features. This is largely because the global utility
assigns equal importance to each feature, thereby reducing bias towards any particular one. As a
result, generators with high global utility are less prone to overfitting a limited subset of features,
thus achieving balanced performance across features. In contrast, generators with lower global utility
scores generally fall into two categories (Type 2 and Type 3). The models of Type 2, including
SMOTE and CTGAN, often achieve high utility on the target feature (i.e., local utility) but perform
poorly on the others. This pattern primarily stems from their target-specific model design, which
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inherently biases them towards the target feature. This is consistent with Figure [3] (Right), which
shows that such models prioritise capturing the local structure of the target feature at the expense of
the global structure. The models of Type 3 typically underperform across all features. We attribute
it to their misaligned architectures for the unique characteristics of tabular data. A representative
example is GReaT, which attempts to leverage domain knowledge from LLMs for tabular data
generation. However, the mismatch between the textual modality of LLMs and the heterogeneous
nature of tabular data undermines their ability to model tabular structures effectively.

“Hailfinder” dataset “Insurance” dataset “MEHRA” dataset
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Figure 7: Utility score distribution across features. For visual clarity, we present seven representa-
tive generators and report their utility scores for each feature, accompanied by standard deviations.
The results reveal that generators generally fall into three distinct categories: Generators with high
global utility scores tend to exhibit balanced performance across all features. In contrast, those
with relatively low global utility scores either display strong local utility or show generally poor
performance across features.



E.4 EXTENDED ANALYSIS ON PRACTICABILITY OF GLOBAL UTILITY

Global utility remains stable across different downstream predictors. Figure [8] shows that
the relative rankings of tabular generators are consistent even when the number of downstream
predictors is reduced from nine to three. In contrast, local utility is far more sensitive to the choice of
predictors: its rankings fluctuate greatly even when simply reducing from nine to eight predictors.
The instability of local utility stems from its bias towards the prediction target, which may introduce
unfair bias towards specific types of predictors. For example, KNN tends to perform better when
the number of classes is large (Jiang et al.,|2024)), while XGBoost typically favours skewed target
distributions (McElfresh et al.,|2024])). Since local utility evaluates performance on a single feature,
such biases are amplified, yielding unstable rankings even after ensembling different predictors. In
contrast, global utility aggregates performance across all features, diluting predictor-specific biases
and producing more robust generator rankings.

Global utility is stable regardless of hyperparameter tuning. Figure|8|shows that global utility
provides consistent rankings of tabular generators regardless of whether downstream predictors are
tuned. We note that this does not imply that tuning is unnecessary. In line with prior work (Kotelnikov
et al.,[2023; McElfresh et al., [2024}; |Du & Li, |2024), we also observe that tuning improves absolute
performance. However, tuning has a negligible effect on the relative rankings under global utility.
In contrast, local utility necessitates tuning to guarantee reliable results. Such robustness further
reflects the core rationale of global utility: by not focusing on a single feature, it avoids introducing
feature-specific biases and is therefore less susceptible to variation caused by tuning for a particular
downstream prediction target. Such robustness further supports the rationale for using global utility
as a stable and unbiased evaluation metric.

LR SMOTE
55 4 ! BN

s § —<— TVAE

32 5] 1 ) 1 GOGGLE
Lo —e— CTGAN
i NFlow
Full-tuned Light-tuned Tiny-tuned Tiny-default ARF

:: —< TabDDPM
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=5 .~ TabEBM
2 == —— NRGBoost
;‘u]ﬁ-tuned Light-tuned Tiny-tuned Tiny-default GReaT

Figure 8: Comparison of ranking stability between global utility and local utility on 23 real-
world datasets, evaluated using different downstream predictors. The proposed global utility
produces consistent generator rankings across downstream predictors. In contrast, local utility
necessitates a large set of tuned downstream predictors (i.e., Full-tuned) to yield meaningful rankings.
As aresult, global utility can achieve high computational efficiency with only a small ensemble of
default predictors (i.e., Tiny-default in Figure E])

Global utility has the potential to evaluate global structural fidelity in the presence of latent
confounders. We present a proof-of-concept experiment to investigate the behaviour of global utility
on datasets containing unobserved confounders, using three SCM datasets: Sangiovese, Healthcare,
and MEHRA. Given an SCM, we introduce nonr €xogenous latent confounders U = {Uy, ..., Uy},
where each Uy, ~ N(0, 1) is associated with a child set S, C X such that |Sy| = my, € {2,3,4}. For
each variable z; € Sy, we modify its structural function via z; = f;(pa(z;),€;) + > 1. ics, iUk
where the U}, are exogenous and mutually independent, and \i; ~ Unif(0.5, 1.5) controls the strength

of confounding. This process yields a new causal graph denoted G53%. We then marginalise out the
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unobserved confounders to convert ggf\“Gf into a maximal ancestral graph (MAG), Gyag, from which

we derive conditional independence (CI) relationships using m-separation (Sadeghi & Lauritzen,
2014). Based on Equation (3], we compute “Global CI (MAG)”, a variant of standard global CI,
using the derived CI relations on the MAG. Global utility maintains stable performance (Table[32)
and a strong correlation with Global CI (MAG) (Table@]) across different numbers of unobserved
confounders. These results highlight the robustness and generalisability of global utility, and they
suggest its potential for evaluating global structural fidelity in datasets containing latent confounding.

Table 32: Benchmark results on three SCM datasets with injected unobserved confounders,
aggregated over 13 tabular generators. Global utility provides stable performance evaluations
across varying numbers of unobserved confounders, demonstrating its robustness in assessing tabular
data structures with latent confounding.

Neonf  Local CI (MAG) Local utility Global CI (MAG) Global utility (Ours)

1 0.8440.03 0.87+0.02 0.80-+0.04 0.79+0.03
2 0.8440.02 0.8410.03 0.80+0.03 0.77+0.02
3 0~81:i:0.04 0.85:|:0,()2 0.75:|:()_()5 0.79:{:0.()4
4 0.80-+0.03 0.84+0.04 0.74 0,04 0.75+0.03
5 0.7940.05 0.8240.03 0.7140.04 0.77+0.02

Table 33: Spearman’s rank correlation with global CI (MAG) on three SCM datasets with
injected unobserved confounders. We bold the highest correlation with global CI (MAG). Global
utility consistently exhibits a stronger and statistically significant correlation with global CI (MAG)
compared to other metrics (p < 0.001).

neont Shape Trend a-precision [-recall DCR  §-presence Local CI (MAG) Local utility Global utility (Ours)

1 026 030 0.41 024 -0.28 -0.23 0.22 0.14 0.76
2 022 030 0.41 026 -0.17 -0.16 0.14 0.18 0.72
3 022 031 0.40 027 -0.25 -0.16 0.18 0.19 0.76
4 022 031 0.39 0.25 -0.26 -0.15 0.15 0.19 0.75
5 0.25 0.33 0.35 026 -0.28 -0.16 0.16 0.16 0.72

Global utility is indicative of data utility for downstream causal inference tasks. We perform a
causal inference evaluation across 13 tabular data generators on six SCM datasets. Following the
protocols of |Chen et al.|(2023a) and CauTabBench (Tu et al.,[2024), we assess performance by learning
SCMs from synthetic data and comparing them against ground-truth SCMs on both interventional and
counterfactual inference tasks. For interventional evaluation, we apply 10 interventions per variable
and generate 100,000 interventional samples per intervention under both M.t and My,. We then
compute the interventional mean squared error (I-MSE) by comparing the expected values of the
remaining variables. For counterfactual evaluation, given observed data, we apply 10 interventions
per variable and generate 100,000 counterfactual samples using both Mr and My,. We compute
the mean counterfactual values from both SCMs and calculate the counterfactual mean squared
error (C-MSE). As shown in Table [34] the top five performing generators in the causal inference
evaluation (TabSyn, TabDDPM, TabDiff, TVAE, and ARF) are consistent with those ranking highest
in both global CI and global utility. This further supports the utility of global utility as an indicator of
global causal structure in tabular data. Table [35]also shows that existing evaluation metrics exhibit
considerably weaker correlations with causal inference performance, whereas global utility remains a
reliable and effective indicator.

Global utility provides stable evaluation across different degrees of data availability. We select
six SCM datasets (Table[5|and Table[6) and simulate varying levels of data availability by subsampling
to smaller values of Np. The corresponding reference sample size is Nyef = Ny X 0.8 % 0.9, as
illustrated in Figure[5} As shown in Table[36] the proposed global utility metric consistently achieves
the highest correlation with global CI across all evaluated sample sizes, clearly outperforming existing
evaluation metrics. Notably, this holds even in very low-data scenarios, such as Ny < 500. These
results suggest that global utility serves as a robust and reliable measure for global structural fidelity
across a wide range of data availability.
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Table 34: Causal inference check of synthetic data from 13 tabular generators on six SCM
datasets. We bold the lowest error for both interventional and counterfactual tasks. Diffusion models
generally achieve the best perfomance in downstream causal inference tasks.

Generator I-MSE | C-MSE |

SMOTE 0.324003  0.454004
BN 0371002 0.51400s5
TVAE 0.164002 0.274003
GOGGLE  0.594004 0.754005
CTGAN 0.874+005 0.9040.04
NFlow 0.97:|:0,03 0.98:|:o.02
ARF 0.1240020  0.234003
TabDDPM  0.104901 0.2240.02
TabSyn 0.09:001  0.204002
TabDiff 0.09:000 021400
TabEBM 0.34:|:()_()3 0.47:|:()4()4
NRGBoost  0.554004 0.7040.05
GReaT 0'59i0‘03 0'75i0.04

Table 35: Spearman’s rank correlation between causal inference metrics and other metrics on
six SCM datasets. We bold the strongest correlation with causal inference performance. Global
utility exhibits a strong correlation with causal inference metrics (p < 0.001), showing that global
has the potential to indicate causal inference evaluations in SCM-free settings.

Shape Trend a-precision [-recall DCR d-presence Local utility Local CI  Global CI ~ Global utility (Ours)

I-MSE | -032 -0.33 -0.35 -0.19  0.23 0.15 -0.21 -0.17 -0.80 -0.90
C-MSE| -0.17 -0.40 -0.16 -0.14  0.36 0.21 -0.45 -0.24 -0.82 -0.83

Table 36: Spearman’s rank correlation with global CI across different degrees of data availability.
We bold the strongest correlation with global CI for each degree. Global utility consistently correlates
strongly with global CI, showing it a stable measure for global structural fidelity given different
degrees of data availability (p < 0.001).

Nrunt Shape Trend «-precision [-recall DCR d-presence Local utility Local CI ~ Global utility (Ours)
100 040  0.51 0.36 046 -0.41 -0.37 0.20 0.26 0.82
500 043 0.51 0.32 0.52 -0.49 -0.39 0.24 0.22 0.83
1,000 0.43 0.46 0.35 0.53 -0.49 -0.42 0.22 0.19 0.87
5,000 0.47 0.41 0.42 0.50 -0.48 -0.45 0.18 0.13 0.83
10,000 0.43 0.46 0.33 0.55 -0.47 -0.42 0.14 0.15 0.89
100,000 0.47 0.47 0.37 049 -0.43 -0.40 0.14 0.22 0.84
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TabStruct can provide customised results on global structural fidelity evaluation. We consider
two variants of global CI: (i) Global CI (discrete), which is the current global CI reported in Section[d}
and (ii) Global CI (continuous). Instead of using binary CI test outcomes as in Equation (EI) we
compute the average « level at which CI tests fail across all features to obtain a continuous global
CI score. Similarly, we consider two variants of global utility: Global utility (continuous), which
is the current global utility reported in Section ] and (ii) Global utility (discrete). Instead of
normalised downstream performance in Equation (), we perform a Wilcoxon signed-rank test
(o = 0.01) between Perf(Dyf) and Perf(D) for each feature, then average the resulting binary
outcomes. Table [37] shows that all variants of global CI and global utility, both continuous and
discrete, exhibit strong mutual correlations. Notably, their correlation strengths are very similar,
ranging between [0.80, 0.86], indicating consistent alignment across formulations, which allows users
to select either the continuous or discrete variant for global CI and global utility.

Table 37: Spearman’s rank correlation based on generator rankings on six SCM datasets. The
variants of global CI and global utility stably shows strong correlation, indicating that global utility is
an effective and robust measure for global structural fidelity (p < 0.001).

Global CI (discrete)  Global CI (continuous)

Global utility (continuous) 0.84 0.86
Global utility (discrete) 0.80 0.83

E.5 PRACTICAL GUIDANCE

Evaluation dimensions are complementary, not interchangeable. Table [2] shows that no single
metric is fully indicative of all other metrics. Therefore, researchers and practitioners should select
evaluation dimensions that align with the specific objectives of their tasks, rather than relying on
a single dimension. If the objective is leakage-free data sharing, the privacy preservation and ML
efficacy should be prioritised over density estimation and structural fidelity. Conversely, when the
aim is to model a real-world physical system like Figure [T} global structural fidelity should take
precedence, because it promotes realistic inter-feature relationships, instead of being distorted
towards a single prediction target.

SMOTE is a simple yet effective method for ML efficacy. In Table[23] we provide per-dataset guid-
ance for selecting appropriate tabular generators based on ML efficacy. Surprisingly, SMOTE achieves
the highest local utility on 28 out of 29 datasets. Despite this strong performance, Table [ shows that
it has been largely overlooked in prior studies (Shi et al.| 2025} [Bravo| 2025} [Xu et al., 2019). We
strongly encourage researchers and practitioners to consider SMOTE as a robust baseline in scenarios
where ML efficacy is the primary objective and other dimensions, such as privacy, are less critical. For
instance, in data augmentation tasks, SMOTE can serve as an effective baseline to compare against.

E.6 FUTURE WORK

Investigation using a separate independent set for performance evaluation. Different from the
well-established experimental setup in Section [d] we can modify the data splitting strategy into
Duain © Diest * Dindep © Dvatia = 3 : 3 : 3 : 1. In this configuration, Djygep acts as an independent
benchmark to assess whether a generator is underfitting or overfitting the training data. Figure 9]
shows the proof-of-concept results on three SCM datasets (Table[3). An interesting observation is
that SMOTE outperforms Djpqep in the Trend metric but performs much worse in DCR. This indicates
that SMOTE generally overfits to the training data Dy.;,, rather than learning truly generalisable
distributions. In addition, Figure Q] suggests that simply maximising DCR can degrade performance
in other aspects, such as density estimation. Therefore, although some generators demonstrate
high DCR scores, they may not be ideal if they severely compromise on other metrics. Therefore,
achieving a higher DCR than Dj,¢ep may be a more balanced and practical criterion for acceptable
privacy preservation, rather than pushing DCR to its maximum. As TabStruct is fully open-source
and will continue to evolve with contributions from the community, we believe that incorporating
an independent set holds promise for offering a fresh and valuable perspective in assessing the
performance of tabular data generators.

47



Real Data (Train) 11.00 | Real Data (Train) 11.00 TabDiff Ho.56
Real Data (Indep) #0.93 SMOTE Ho.77 CTGAN . toas

SMOTE .75 Real Data (Indep) +Ho.75 TVAE to.32

TabSyn .68 TabSyn -0.70 TabSyn #ho.25

TabDiff{ Ho.62 CTGAN o7 TabEBM Tho.2a

TabEBM #-0.60 TabEBM 054 Real Data (Indep) ho.22

TVAE 053 TVAE 0.5 smoTE {10.03
crean{ ——0.a5 TabDiff 0.38 Real Data (Train){0.00
000 020 040 060 080 1.00 000 020 040 060 080 100 000 020 040 060 080 100

Shape Trend DCR Score

Figure 9: Benchmark results of six representative tabular generators on three SCM classification
datasets with a separate independent set. The results show that Dyyep, i.€., bar, offers a
novel and complementary perspective for evaluating the performance of tabular data generators.

Theoretical justifications for causal modelling of tabular data. Bridging the gap between
empirical metrics on real-world tabular datasets and structural causal models (SCMs) remains a
major theoretical challenge in causal machine learning (Nastl & Hardt, 2024} [Tu et al.l 2024; Zanga
et al.l[2022)). A promising direction for future research lies in developing theoretical underpinnings
for the proposed global utility metric. Currently, the proposed global utility serves as an empirically
effective metric for structural fidelity, grounded in its correlation with conditional independence (CI)
scores. A more rigorous formalisation could help enhance its interpretability in relation to specific
causal relationships, and potentially inspire new paradigms for evaluating tabular generators.

Efficient and accurate causal discovery in real-world scenarios. A promising direction for future
work is the development of more effective causal discovery algorithms for real-world tabular data. In
practical scenarios, ground-truth causal graphs are seldom available, and despite progress in constraint-
based, score-based, and hybrid approaches, reliably recovering even partial or probabilistic SCMs
remains a challenge — particularly in high-dimensional settings (Zeng et al., [2022} [Kaddour et al.,
2022; Nastl & Hardt,|2024). Nevertheless, incorporating such approximated structures as priors or
regularisers in the global utility computation could enhance both its scalability and its fidelity to causal
semantics. This would not only enable structural fidelity evaluation on more complex datasets but also
improve the robustness of global utility by reducing the influence of spurious statistical associations.

Structure-aware tabular data generation. Beyond evaluation, another important avenue for future
work is the design of structure-aware tabular data generators that are explicitly optimised for structural
fidelity. These models could embed inductive biases or incorporate regularisation objectives that
encourage alignment with the conditional independence structure observed in the reference data. This
would mark a shift away from conventional likelihood-driven generation toward structure-informed
tabular data generation, enabling the generation of data that better complies with domain-specific
constraints (e.g., scientific laws in Figure|[T).

Extension to dynamic and temporal data modalities. While TabStruct already offers broad
coverage of static tabular datasets (Appendix [A)), a promising direction for future work is to extend
the framework to support temporal and event-based data, where causal relationships may change
over time. Many real-world domains — such as healthcare, finance, and operations research — exhibit
longitudinal structures that challenge the assumptions of static SCMs (Borisov et al.|[2022). Adapting
global utility to reflect time-dependent causal structures would broaden TabStruct’s applicability.
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F EXTENDED EXPERIMENTAL RESULTS

F.1 EVALUATION RESULTS FOR SCM DATASETS

F.1.1 CLASSIFICATION DATASETS

Table 38: Raw benchmark results of 13 tabular generators on ‘“Hailfinder” dataset. We report
the normalised mean =+ std metric values across datasets. We highlight the First, Second and Third
best performances for each metric. For visualisation, we abbreviate “conditional independence” as
“CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity

Shape 1 Trend T «-precision t  [-recall 1 DCR T 4-Presence T | Local utility T | Local CIT Global CI T  Global utility T
Dret | 1.00+000  1.00+000 1.00+000  1.00+000 | 0.00+0.00 0.00-0,00 | 1.00+000 | 0.97x01 0.98.£0.00 1.00-£0.00
SMOTE 0994000  0.9810.00 0.89+000  0.90:+000 | 0.004000 0.00-+0.00 0954006 | 0.8910.03 0.53+0.10 0.404038
BN 0994000  0.9810.00 0994000 0.394000 | 0.644002 0.00-£0.00 0.66.1024 | 0491006 0.5240.00 0.36.40.35
TVAE 0941000 0904001 0.864002  0.171003 | 0.661004 0.0110.01 0921004 | 0.781009 0.6110.11 0.6610.10
GOGGLE | 0944002  0.894004 0864006  0.374008 | 0434003 0.190.41 0.624020 | 0.534010 0514008 0294028
CTGAN 0931001 0.904002 0961000 0294005 | 0.614003 0.010,01 0941006 | 0.731018 0.48.10.06 0334031
NFlow 0.88+001 0.8140m 0.741008  0.004000 | 0.651003 0.02.10.01 0.5210.06 0.5310.02 0.53 1001 0.04 10,04
ARF 0.96+004  0.9310.06 0914008 0284011 | 0544014 0.06+0.16 0.814003 | 0571005 0.55+0.03 0.54.10.05
TabDDPM | 0.90.006 0.85+008 0.544040 0234022 | 0.534000 0.0110.00 0.541018 | 0485011 0.66.10.15 0.72.4021
TabSyn 0814016  0.644030 0734023 0.22:4023 | 0.224004 1.964457 0814025 | 0.741017 0.71£0.00 0.71 1023
TabDiff 0971001 0.954002 0951004 0.36:4008 | 0404005 0.0140.00 0904007 | 0.671016 0.6210.11 0.6810.00
TabEBM | 094003 0.901004 0881006  0.344012 | 0.394014 0141040 0914010 | 0.771015 0.5140.00 0304029
NRGBoost | 0931003 0.89+00s 0.8641006 0.221023 | 0514007 0.020.01 0.93 10,07 0.73 1017 0.47 1000 0.184027
GReaT 0.94:002  0.891004 0.86+006  0.37+008 | 0431003 0.19+0.41 0.624020 | 0.5310.10 0.51+0.08 0.2940.28

Table 39: Raw benchmark results of 13 tabular generators on “Insurance” dataset. We report the

normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity

Shape +  Trend T a-precision T [-recall T DCR 1 4-Presence T | Local utility + | Local CI T Global CI 1  Global utility 1
Drer | 1.00x000  1.00x000 1.00£000  1.004000 | 0.00+000 0.00+000 | 100000 | 1.00-000 0.97 1o.01 1.00-40.00
SMOTE 0991000  0.994000 0971000 093000 | 0.004000 0.00+0.00 1024002 | 0.8640.14 0.5310.06 0434039
BN 0991000  0.97 4000 0951000  0.65:000 | 0484001 0.00+0.00 0.854018 | 0.664017 0.55+0.08 0.314027
TVAE 0974000 0.941001 0934000  0.701001 | 0.514001 0.00-+0.00 1014003 | 0.671020 0.58£0.00 0.67+0.12
GOGGLE | 0954001  0.921002 0.90+003  0.61:0.10 | 0.294003 0024003 0.8240145 | 0571008 0.5240.05 0.324027
CTGAN 09441001 0914001 0921004  0.694002 | 0.36100s 0.01 10,00 0.9940.04 0.7610.25 0.49.40.03 0.334029
NFlow 0924002 0.864003 0794008 0.234007 | 0.564005 0.0240,01 0.734013 | 0.504001 0514001 0214019
ARF 0971001 0.954003 0924000 0.76.4011 | 0.334003 0.00+0.00 0.961002 | 0.581008 0.5410.03 0641007
TabDDPM | 0911006  0.8610.00 0811014 0594012 | 0414012 0.0140.00 0814015 | 0.544008 0.64.1.0.10 0.7210.14
TabSyn 0.87+011  0.76+020 0.724023  0.361037 | 0.1640.17 0.22.10.40 0.9210.16 0.8210.19 0.6610,08 0.67 £0.19
TabDiff 0984001 0.961002 0.961004  0.641007 | 0294003 0.00-+0.00 0.991005 | 0.721015 0.6040.09 0.67 +0.12
TabEBM 0.984001  0.9610.02 0951003 0424030 | 0.1640.17 0.00+0.00 1024004 | 0.80402 0.511005 0.341030
NRGBoost | 0.94.1003  0.894005 0.854008  0.371035 | 0234000 0.02£0,02 1.004004 | 0.794022 0.49100s5 019102
GReaT 0951001 0.924002 0901005 0.6140.10 | 0.294003 0.0210,03 0.824015 | 0.574008 0.5240.05 0324007
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Table 40: Raw benchmark results of 13 tabular generators on “Sangiovese” dataset. We report
the normalised mean =+ std metric values across datasets. We highlight the First, Second and Third
best performances for each metric. For visualisation, we abbreviate “conditional independence” as
“CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity

Shape 1 Trend T a-precision T [-recall 1 DCR T 4-Presence 1 | Local utility 7 | Local CI T Global CI 1T  Global utility T
Dret | 1.00+000 100000 1.00x000  1.002000 | 0.00000 0.00+000 | 1004000 | 0.99+002 0.9940.02 1.00+0.00
SMOTE 0.99:000 0.981000 0901000  0.881000 | 0231002 0.00£0.00 0951008 | 0.79+0.17 0.56.0.07 0414038
BN 0.99000  0.971000 0955001 0.30x000 | 0.371002 0.00£0.00 0.524002 | 0531007 0.5310.05 0.2940.8
TVAE 0.951001  0.941000 0931001 0.361001 | 0431004 0.010.00 0.894007 | 0.661018 0.6240.15 0.7610.15
GOGGLE | 0964001  0.95+0.00 0931002 0444007 | 0284001 0.0510.05 0.601+0.19 | 0.561008 0.5540.06 0.314028
CTGAN 0.931001  0.951001 09551001 0.364002 | 0311003 0.01£0.00 0.9110.09 0.731022 0.5040.02 0.3040.8
NFlow 0.891003  0.891001 0.824010  0.151004 | 0.324002 0.0410.02 0.41+0.02 0.5440.06 0.51 1003 0.2040.17
ARF 0.971001  0.951001 0931002 0441008 | 0294002 0.0410.05 0.761008 | 0.621004 0.59£0.03 0.60-0.06
TabDDPM | 0981002  0.97 1002 0.961004  0.45:007 | 0.18-+000 0.00£0,01 0.631024 0.61+0,5 0.77 1011 0.84.40,19
TabSyn 0974001 0.96+001 0961004 0.39:0.12 | 0301004 0.01+900 0.894011 | 0.804016 0.73 1013 0.8110.20
TabDiff | 0971001 0.944003 0931001 0341015 | 0281010 0012000 0851000 | 0.69:015  0.651015 0.6640.0
TabEBM 0974002 0971001 0951003 0364015 | 0.38+0.11 0.00--0.00 0.9140.10 0.80.£0.16 0.5610.08 0.304027
NRGBoost | 0981002 0911005 0.894003  0.291023 | 0.30004 0.46.10.52 0.8910.11 0.76.10.19 0.531005 0.17 1023
GReaT 0.961001  0.951000 0931002 0441007 | 0.281001 0.0540,05 0.6040.19 0.5610.08 0.554006 0.314028
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F.1.2 REGRESSION DATASETS

Table 41: Raw benchmark results of 13 tabular generators on “Healthcare” dataset. We report
the normalised mean =+ std metric values across datasets. We highlight the First, Second and Third
best performances for each metric. For visualisation, we abbreviate “conditional independence” as
“CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity

Shape +  Trend T a-precision T [-recall T DCR 1  d-Presence T | Local utility T | Local CI T Global CI 1T  Global utility T
Dret | 1.00+000 100000 1.00+000  1.00+000 | 0.00000 0.00+000 | 1004000 | 0.981006 0.981003 100000
SMOTE 0.89:000 0991000 100000 0.594000 | 0.00+0.00 0.00+0.00 1.0Lgoor | 0.744010 0.6040.12 0501048
BN 0.93:000  0.981001 0.981000  0.094000 | 0.014000 0.00+0.00 0.724038 | 0.531007 0.65+0.00 0.9010,05
TVAE 0.894001 0931001 0.964001  0.141002 | 0.00+000 0.024001 0.7110.17 0.55+013 0.5810.13 0.57 1025
GOGGLE | 0.714019  0.77+0.19 0.594040  0.1810.19 | 0.01£000 24.6040.90 0.724038 0.6710.14 0.52.40.06 0.17£024
CTGAN 0834005  0.90+0.02 0.894007  0.104003 | 0.0040.00 0211042 0.724030 0.6710.13 0.52.400s 0.1540.17
NFlow 0.83:003  0.831005 0.88:000 0172010 | 0.02:003 0.05+0,05 0361015 | 0481005 0501003 0.14,15
ARF 0.891000 0.99+000 1.001000  0.471001 | 0.00+000 0.00-£0.00 0.611031 0.49.0,05 0.6419.10 0.85+0.10
TabDDPM | 0.85+005 0.921003 0.96+001  0.38:002 | 0.00+000 0.04-10.06 0411026 | 0.531+009 0.7210.10 0.82.40.18
TabSyn | 0.831005 086012 081020 0192010 | 0060005 1841570 084102 | 0.6950  0.71aon 0781021
TabDiff 0884003 0.8310.14 0961002 0214016 | 0.021004 0.0410.06 0.86.10.17 0.6740.14 0.6910.12 0.8140.18
TabEBM | 0.85:005 085011 0955001 0185019 | 0125012 0.081007 041505 | 0585000  0.584005 044015
NRGBoost | 0.83:007 0.8010,5 0921005 0181010 | 0.075007  0.19:qss 072405 | 0682015 0524006 016,100
GReaT 0.85+1005 0.89+006 0.894008  0.21:046 | 0.05+004 0.09-£0.08 0.341028 0.51+0.06 0.5210.06 0.19+024

Table 42: Raw benchmark results of 13 tabular generators on “MAGIC-IRRI” dataset. We
report the normalised mean + std metric values across datasets. We highlight the First, Second and
Third best performances for each metric. For visualisation, we abbreviate “conditional independence”
as “CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Prgservation ML Efficacy Structural Fidelity

Shape 1 Trend T a-precision T [-recall 1 DCR T 4-Presence 1 | Local utility T | Local CIT Global CI 1  Global utility 1
Dret | 1.00+000 100000 1005000 1.00+000 | 0.00000 0.00+000 | 1004000 | 0.99+002 0.9910.02 1.00+0.00
SMOTE 0961000  1.004000 0361000  0.98:000 | 0.404001 0.00+0.00 0981002 | 0571003 0.5410.12 0414029
BN 0941002 0.994000 0.691000 0514013 | 0.394009 0.5441.03 0861012 | 0.524002 0.5910.06 0.6610.5
TVAE 0914000 0.99+0.00 0511002 0.701002 | 0.531003 0.00-£0.00 0.98 1002 0.5310.04 0.58 1006 0.86.40.11
GOGGLE | 0.734023  0.991000 0314033 0.5540.10 | 0.5640.14 64641230 0.95:007 | 0.541004 0.45.0.00 0.3340.19
CTGAN 0924002 0.991000 0731010 0.524007 | 0424004 0.01+0.00 0974003 | 0.541004 0.47 £0.06 0431027
NFlow 0.901001  0.994000 0271000 0471002 | 0.461002 0.041002 0.8310.10 0.4940.01 0.4640.06 0.3340.19
ARF 0991000  0.994000 0831000  0.204000 | 0.444003 0.00+0.00 0.881012 | 0.51s001 0.57 1007 0.76.10.16
TabDDPM | 0.97 1002 1.0040.00 0811020  0.514013 | 0.264018 0.00+0.00 0864012 | 0.514003 0.631.0.06 0.83.10.17
TabSyn 0961001 1.004000 0.75+0.14  0.5410.10 | 0444003 0.01+0.00 0971003 | 0551003 0.63+0.06 0.8340.17
TabDiff 0.97 1002 1.00+000 0.804019 0514013 | 044500 0.00-£0.00 0.97 1003 0.5540.03 0.64 1005 0.8240.17
TabEBM 0.964001 0991001 0.79101s  0.324033 | 0304015 0.0110.00 0.814014 | 0521001 0.5410.03 0.37 4024
NRGBoost | 0971003  0.9910.00 0.774+016 0364020 | 0.414003 0.0140.01 0914012 0.55+0.04 0.481007 0344019
GReaT 0941001 0.99+000 0.664005  0.551009 | 0424002 0.554103 0.8510.11 0.50-£0.02 0.4910.08 0411024

Table 43: Raw benchmark results of 13 tabular generators on “MEHRA” dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy Structural Fidelity

Shape 1 Trend T a-precision T [-recall 1 DCR T 4-Presence 1 | Local utility 7 | Local CI 1T Global CI 1T  Global utility T
Diet | 1.00+000 100000 1005000 1.00+000 | 0.00000 0.00+000 | 1004000 | 0.964003 0.96.10.01 1.00+0.00
SMOTE 0.971000  0.941002 0.891000  0.81+000 | 0.03 1001 0.00+0.01 0.941006 | 0.55+003 0.541005 0424029
BN 0.88+004  0.891003 0914006  0.39+0.10 | 0.084003 1.314058 0.6610.17 | 0491004 0.5540.04 0.5540.27
TVAE 0.891001  0.871002 0951002 0431001 | 0.071002 0.224962 0.851000 | 0.55x0.04 0.541004 0.624023
GOGGLE | 0.70+022  0.80+0.11 0.661031  0.30+026 | 0.10+005 12.8021.05 0.8640.16 0.541004 0.514003 0.3040.17
CTGAN 0.834003  0.861001 0974000 0434003 | 0.054001 0.07 016 0.8610.15 0.541004 0.501002 0.2810.15
NFlow 0.851001  0.841002 0904008 0371001 | 0.104002 0.631039 0514008 0.48.10.03 0.50.0,01 0214011
ARF 0911000  0.914002 097000  0.382000 | 0.064001 0.00+0,00 0.681015 | 0.481003 0.5410,04 0651021
TabDDPM | 0.88.003  0.85+0.07 0914004 0471008 | 0.054001 0.05+0.07 0.614016 | 0471003 0.57 1005 0.734026
TabSyn 0.841000  0.8610.06 0894014 0441012 | 0.074003  11.851246 0.8610.16 | 0.55+1003 0.57 1005 0.681033
TabDiff 0.86+005 0.884003 0.9510.01 0.3940.17 | 0.0840.04 0.0610.07 0.8410.18 0.551004 0.57 1005 0.73 1026
TabEBM | 0.85.:006 0.8710.04 0964001 0284028 | 0.114006 0.050.07 0.641015 | 0491004 0531002 0.3240.19
NRGBoost | 092100  0.914001 0841014  0.431012 | 0.064001 0.064-0.07 0.79.4026 0.541004 0.514002 0274015
GReaT 0.834000 0.86+005 0.77+020  0.3810.48 | 0.08-+004 0.17+0.19 0.5510.16 | 0.481003 0.50+0.03 0.2610.15
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F.2 EVALUATION RESULTS FOR REAL-WORLD DATASETS

F.2.1 CLASSIFICATION DATASETS

Table 44: Raw benchmark results of 13 tabular generators on “Ada’ dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape T Trend t  «-precision f  S-recall 1 DCR 1T §-Presence T | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1.00+000  1.00+000 | 0.00+0.00 0001000 | 1.00+0.00 | 1.0040.00
BN 0.314007  0.9710.02 0.831012 0254011 | 0251007 0.16.40.27 0.8640.13 0.36.10.28
TVAE 0.234001  0.9810.00 0.704003  0.224001 | 0.281002 0.05-£0.06 0.96.0.09 0.77 10.13
GOGGLE | 0361002 0971002 0.784012 0311008 | 0.21004 0.2610.30 0.88+0.12 0.361027
CTGAN 0.224001  0.9710.00 0.901005s  0.154003 | 0221003 0.03 10,01 0.9540.11 0291026
NFlow 0.234002  0.9710.00 0.871007  0.07002 | 0.2010.10 0.0210.01 0.87+0.12 0.531021
ARF 0.244001  0.9810.00 0.961000 0.241001 | 0261005 0.00-£0.00 0.9410.09 0.7310.17
TabDDPM | 0.351002 0931006 0.504041  0.214019 | 0.101000 0.224038 0.8810.12 0.74 10,16
TabSyn 0.294007 0911012 0.514043 0194020 | 0221011 0.324050 0.9840,07 0.7310.16
TabDiff 0444009  0.9610.03 0.80+015  0.194020 | 0331016 0.2140.30 0.9810.07 0.7010.18
TabEBM 0434008  0.9810.00 0.931004  0.274013 | 0241007 0.0110.00 0.98.40,07 0.361027
NRGBoost | 0.301006 0.9610.03 0454047 0194020 | 0291013 2.07 1250 0.98.40,07 0.204021
GReaT 0.364002  0.971002 0.78+012  0.314008 | 0211004 0.261030 0.8810.12 0.361027

Table 45: Raw benchmark results of 13 tabular generators on “Characters” dataset. We report
the normalised mean + std metric values across datasets. We highlight the First, Second and Third
best performances for each metric. For visualisation, we abbreviate “conditional independence” as
“CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision T  [-recall T DCR 1 é-Presence T | Local utility 1 Global utility
Drer | 1001000 1.00-+000 1.00£000  1.00000 | 0.00-000 0.00-£000 | 1.00-000 | 1.00+0.00
SMOTE 0.831000 0.991000 0.99_0.01 0.411003 | 0.06001 0.0040.00 0.97 1005 0.4010.42
BN 0.854002  0.9310.00 0.984000  0.01000 | 0321002 0.0110.00 0.3040.13 0.0510.05
TVAE 0.824002  0.911001 0.95:001  0.044000 | 0311001 0.0110.00 0.77 10,14 0414035
GOGGLE | 0.851001 0931001 0.96:001  0.194005 | 0231002 0.01-£0.00 0.404023 0.1940.19
CTGAN 0.804002  0.931001 0941005 0.024000 | 0.301003 002001 0.75+026 0.07 10,07
NFlow 0.824002  0.881001 0.944004  0.00+000 | 0411003 0.0240,01 0.2040.03 0.0240.02
ARF 0.854000 0.8910.01 0.991000  0.11:000 | 0.1110.02 0.00-£0.00 0.82.40,03 0.49.10.04
TabDDPM | 0.841001 0.95100 0.98:001 0.174006 | 0.164008 0.01£0.00 0.46-030 0.761027
TabSyn 0.841002  0.921002 0.95+005  0.141000 | 0.201002 0.01.£0.00 0.794+022 0.691032
TabDiff 0.8610_01 0.901(]‘04 0.961(]‘0] 0. 121(]‘12 0.23;&0_()7 0.01:&()_()0 0.8010_21 0.()():&[]‘3()
TabEBM 0.8810_03 0.951(]‘02 0.981(101 0.161(]‘07 0.31;&0,10 0.01;&0.00 0.881()‘15 0.251(1‘27
NRGBoost | 0.841002  0.921001 0971001 0.121012 | 0.281007 0.0110.00 0.77 1024 0.1110.16
GReaT 0.79+1007  0.894004 0.891009  0.121012 | 0.3110.11 0.0410.03 0294021 0.10+0.17
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Table 46: Raw benchmark results of 13 tabular generators on “Credit-g” dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0.954000 0.9000; 0.87+002  0.79+002 | 0.1940.02 0.00-£0.00 1.17+030 0.424030
BN 0.971000 0951000 0.971001  0.681002 | 0.061000 0.000.00 0.9210.00 0.391028
TVAE 0.934001  0.8610.02 0.80£004 0481002 | 0.551004 0.0240.01 114034 0.47 10,14
GOGGLE | 0.794017  0.67+025 0.55+042  0.351024 | 0.361006 0.37 1049 1.054036 0331021
CTGAN 0.804006 0.7240.09 0.831012  0.274007 | 0501005 0211016 1134032 0.2140.10
NFlow 0.904001  0.841001 0.841008  0.27+004 | 0.50+007 0.020.01 0.8510.04 0.2440.11
ARF 0.97 1000 0.8610.01 0.981001 0454003 | 0.531005 0.00-£0.00 0.87+0.04 0.4310.06
TabDDPM | 0.75+019 0.631025 0451047 0281029 | 0.1710.17 0.1540.13 0.91 19,09 0.551029
TabSyn 0.864008 0.7610.13 0.674024 0414015 | 0441012 0.030.02 1154031 0.64.10.17
TabDiff 0.904003 0.7410.14 0914004 0404017 | 0431011 0.0240.02 1154031 0.6210.19
TabEBM 0921001 0.841003 0931004  0.501006 | 0.380.05 0.0240.02 1154031 0.33102
NRGBoost | 0.871007 0.80100s 0.754015  0.344023 | 0381006 0.03£0.02 1154031 0.2510.16
GReaT 0.88+006 0.80+0.08 0.641027 0431014 | 0424000 0.100.09 0.9110.09 0.26.10.16

Table 47: Raw benchmark results of 13 tabular generators on “Electricity’’ dataset. We report
the normalised mean + std metric values across datasets. We highlight the First, Second and Third
best performances for each metric. For visualisation, we abbreviate “conditional independence” as
“CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00+000 1.00-£000 1.00+£000  1.00£000 | 0.00-000 0.00-£000 | 1.00-000 | 1.00+0.00
SMOTE 0.864000 0.99+0.00 0991000  0.781000 | 0.011000 0.000.01 0.98.40.02 0.41 1041
BN 0.934000 0.9710.00 0.984000  0.21000 | 0.051003 0.01£0.01 0.75+0.11 0.231025
TVAE 0.8941001  0.921003 0.961002  0.20+000 | 0.09+003 0.214023 0.90-0.06 0.561028
GOGGLE | 0.86+005 0.91+0.02 0.931004  0.33:007 | 0.0710.02 0.43.1076 0.7610.12 0.27 +026
CTGAN 0.861001  0.921001 0.961005  0.19+001 | 0.0210.00 0.01+0.01 0.9210.08 0.21+024
NFlow 0.841002  0.8510.02 0911005  0.09:002 | 0.141006 0.03 10,01 0.75+0.03 0.251022
ARF 0.861000 0.81004 0.951000  0.261001 | 0.021001 0.004:0.00 0.900.01 0.62.40.13
TabDDPM | 0.871002 0.951003 0981001  0.324007 | 0.031002 0.03 10,03 0.77 +0.13 0.761023
TabSyn 0.541037  0.734020 0481051 0.201021 | 0.1240.14 4.77 1927 0.8610.18 0.60L0.42
TabDiff 0.88+001  0.8810.05 0.961001  0.231017 | 0.061004 0.03£0.03 0.931007 0.751024
TabEBM | 0.901001 0.921003 0.971001  0.211019 | 0.211015 0.031003 0.931007 0261026
NRGBoost | 0.87+002  0.92+001 0971000 02210158 | 0.041001 0.0310.03 0.9210.08 0.221021
GReaT 0.86+003  0.9110.02 0.931004  0.331007 | 0.071002 0431076 0.7610.12 0.27 1026
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Table 48: Raw benchmark results of 13 tabular generators on “Higgs” dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0.90000  0.990.00 0.761000  0.821000 | 0.124003 0.000.00 0.9910.01 0451039
BN 0.921000  0.99+0.00 0.981001  0.291000 | 0.061001 0.000.00 0.85+0.00 0241017
TVAE 0.86+000 0.970.00 0.921001  0.371001 | 0.251004 0121014 0.93 1004 0.631022
GOGGLE 0904001 0.971000 0.90L0.01 0.401007 | 0.13 1002 0.129.19 0.84_19.08 0.291022
NFlow 0.831001  0.95+000 0.87+008  0.231002 | 0.181005 0.691.20 0.77 40,04 0.16.0.00
ARF 0.884000 0.9510.00 0914000  0.264000 | 0.131002 0.00-£0.00 0.8910.01 0.5040.06
TabDDPM | 092003 0.971000 0930035 0421005 | 0.06006 0.1040.19 0.8510.08 0.80922
TabSyn 0914002 0.9710.00 0941003 0.384010 | 0.141004 0.1040.19 0.9540.05 0.7610.24
TabDiff 0.894000 0.961002 0851007 0271022 | 0.20010 0.1140.19 0.9510.06 0.70103;
TabEBM 0914002 0971000 0931003 0251024 | 0.2605 0.1040.19 0.9510.05 0.2210.17
NRGBoost | 0911001 0971001 0.784013  0.254023 | 0.111002 0.1240.19 0.9510.06 0.1810.18
GReaT 0.904001  0.9710.00 0.904001  0.404007 | 0.131002 0.1240.19 0.8410.08 0.291022

Table 49: Raw benchmark results of 13 tabular generators on ““Jasmine” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0004000 | 1.0040.00 | 1.00-0.00
SMOTE 0.981000  0.9810.00 0.86+001  0.821001 | 0.06+0.01 0.0040.00 0.9810.02 0.4610.18
BN 0.961005  0.9410.06 0.841013  0.361:007 | 0.39+0.1 0.131020 0.9110.06 0.4210.13
TVAE 0.961000 0.9410.01 0.831002  0.28+002 | 0494004 0.1410.05 0.97 1002 0.47+0.10
GOGGLE | 0.951005 0.9110.04 0.79+010  0.34:007 | 0.3110.04 0.18.£0.18 0.90+0.06 0.400.11
CTGAN 0.941005  0.921004 0.841015  0.18+008 | 0.36+007 0.0410,05 0.9610.04 0.36+0.08
NFlow 0.951001  0.91+001 0.77+005  0.01+000 | 0.31+005 0.03 10,01 0.85+0.04 0.31+0.04
ARF 0.991000  0.900.00 0931001 0.211002 | 0.371006 0.0040.00 0.941002 0.4610.05
TabDDPM 0.8110_]7 0.7210,24 0,4410.4(, 0.211022 0.401[\13 1.24:&1_45 0.90101}6 0'591016
TabSyn 0914007 0.831014 0584037 0214022 | 040103 0.07.+0.15 0.97 1003 0.6140.14
TabDiff 0.931006 0.87x0.10 0.631040  0.241018 | 0.371010 0.3910.69 0.97 1003 0.6110.14
TabEBM 0.98i0'01 0.96i0.02 0'92i0.06 0.4110.()1 0-37i0.09 0-0310‘04 0~97i0.03 0-4210.13
NRGBoost 0.96i0'01 0-94i0.01 0.87i0.03 0-21i0.22 0-23i0.07 0-09i0‘08 0~97i0.03 0.36i0.12
GReaT 0.954003  0.9140.04 0.794010  0.344007 | 0311004 0.1840.18 0.90-0.06 0.4040.11
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Table 50: Raw benchmark results of 13 tabular generators on ‘“Nomao” dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0.70£000  0.99+0.00 0981000  0.771001 | 0.031001 0.000.00 0.9910.01 0401038
BN 0.77+000 0931000 0951001 0211001 | 0.151002 0.000.00 0.7210.19 0.38+036
TVAE 0.734001  0.8810.01 0.894001  0.134000 | 0.051001 0.0640.02 0.960,00 0.6110.17
GOGGLE | 0.731003 0.85+00s 0841007  0.251007 | 0.111003 1581111 0.7210.19 0261023
CTGAN 0.684001  0.891001 0924002 0.02000 | 0.061000 0.07+0.06 0.9610,04 0.1910.16
NFlow 0.704001  0.8110.01 0.611006  0.001000 | 0.2010.16 5971237 0.5540.03 0.0510.05
ARF 0.741001  0.761005 0.954003  0.07010 | 0.041001 0.154038 0.96.0.01 0.5310.05
TabDDPM | 0.641013 0.75+10.16 0451047 0.161017 | 0.181013 2.77 1245 0.7210.19 0.60034
TabSyn 0.584020 0.7210.18 0.754026  0.164017 | 0.124011 71241067 0.9510.06 0.604034
TabDiff 0.744003  0.7810.12 0.801010  0.164017 | 0.101007 0.48.10.54 0.9510.06 0.6810.22
TabEBM 0.744003  0.841005 0941005  0.18+015 | 0.26+0.10 0.47 1054 0.9510.06 0.304027
NRGBoost | 0.731003  0.861004 0.784012  0.164017 | 0.091001 1.92004 0.9540.06 0.171022
GReaT 0.734003  0.85+0.05 0.841007  0.254007 | 0.111003 1.584111 0.7210.19 0.261023

Table 51: Raw benchmark results of 13 tabular generators on ‘“Phoneme” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0004000 | 1.0040.00 | 1.00-0.00
SMOTE 0.961000 0.951001 0991000  0.741001 | 0.081001 0.00-£0.00 1.00-40,04 0.44 1941
BN 0.97 1000  0.9810.00 0.984000 0.46.001 | 0.121001 0.00-£0.00 0.8240.17 0424038
TVAE 0914000 0.861001 0941001 0.134001 | 0.17 1001 0.01.£0.00 0.931007 0.524029
GOGGLE | 0.881014 0.891008 0.931008  0.30+012 | 0.141003 0.37 10,94 0.79+0.15 0.27 1024
CTGAN 0.80+007 0.79+0.04 0.891000  0.071001 | 0.191004 0.451074 0.90+0.13 0.1140.12
NFlow 0.904002  0.901001 0.941004  0.094001 | 0.161002 0.0210.01 0.80-0.04 0.2240.13
ARF 0.951000 0914002 0.991000  0.221001 | 0.111002 0.004:0.00 0.91 1001 0.67 1005
TabDDPM | 0941002 0.951003 0971002 0314008 | 0.104003 0.0310.05 0.79+0.15 0.8140.20
TabSyn 0.901003  0.87x004 0.951001  0.251014 | 0.161004 0.114013 0.88+0.18 0.71 1030
TabDiff 0.921001 0914001 0961002 0.221015 | 0.181007 0.03100s 0.9310.10 0691033
TabEBM | 0941002 0.921002 0971002 0291011 | 0.241013 0.03100s 0.97 10,06 0311027
NRGBoost 0~94i0,01 0-93i0.02 0~97i0.01 0-23i0.l7 0. 14i0.03 O-OSiO‘OS 0-9()i0.07 0-21i0.20
GReaT 0.904003  0.8910.03 0.861010 0.224018 | 0.191008 0.124021 0.7140.13 0.17 1021
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Table 52: Raw benchmark results of 13 tabular generators on ‘Plants’ dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0.841000 098001 0.88+1000  0.821001 | 0.141002 0.000.00 1.0040.02 0451001
BN 0.871000  0.97 000 0.97 1001 0.261000 | 0.15+002 0.000.00 0.89+0.08 0294011
TVAE 0.824002  0.9240.01 0.804007  0.204007 | 0.251003 0.08.0.06 0.9540.04 0.5240.11
GOGGLE | 0.841006 0941003 0.88+005  0.371006 | 0.201003 0.1840.16 0.88.40.08 0.28.0.01
CTGAN 0.794005s  0.9110.02 0.894006  0.244008 | 0.201004 020102 0.9510.06 0.1940.07
NFlow 0.824002  0.941001 0.87+1006  0.241005 | 0.224004 026,038 0.860.03 0.30+0.00
ARF 0.864001  0.941001 0901002 0.294004 | 0.191003 0.020.01 0.9310.01 0.57+0.05
TabDDPM | 0.821008 0.951002 0.78+4016  0.331009 | 0.194008 0.1040,08 0.8810.08 0.74 1911
TabSyn 0.851005  0.941002 0914003 0.31006 | 0.18100s 0.08.£0.05 0.94 10,08 0.74 10,03
TabDiff 0.851002  0.931002 0.861005 0251003 | 0.2710.11 0.09+0.06 0.961005 0.6810.03
TabEBM 0.871002  0.961001 094003 0.351014 | 0.30008 0.0540.05 0.97 1004 0.28 10,06
NRGBoost | 0.861002 0961001 0.891007  0.27005 | 0.191003 0.05.0.05 0.97 10,04 0.2240,05
GReaT 0.854002  0.941001 0.861005s  0.341011 | 0211005 0.100.04 0.8510.07 0.24 1006

Table 53: Raw benchmark results of 13 tabular generators on “QSAR” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0004000 | 1.00-£0.00 | 1.00-0.00
SMOTE 0.764000  0.961001 0.954001  0.76.£001 | 0.08-1001 0.01 10,01 0.9310.11 0.411003
BN 0.77 1001 0.9810.00 0.981000  0.541001 | 0.121000 0.00-£0.00 0.78+0.20 0.4010,03
TVAE 0.71001  0.89+0.00 0.831005  0.094001 | 0.151002 0.10-0.04 0.8540.17 0.47 10,08
GOGGLE | 0.741008 0921004 0.871008  0.30000 | 0.141000 024,018 0.70+0.12 0.26.10.02
CTGAN 0.641004 0.8610.02 0.891001  0.041001 | 0.151003 0.27 1025 0.8510.18 0.1240,01
NFlow 0.724001  0.911001 0.85+007  0.051001 | 0.161000 0.100.07 0.66.0.03 0.1910.03
ARF 0.77 1000 0931001 0.961001  0.151001 | 0.131003 0.011001 0.7510.01 0.5510.07
TabDDPM 07110.08 0.931(]‘03 0711024 0.251(]‘09 0.0810102 0'2210.26 0.701(112 0.701(1‘1()
TabSyn 0.751002 0924002 0921003 0.261002 | 0.151001 0.0840.04 0.87+0.18 0.73 10,02
TabDiff 0.761001 0924001 0.901003  0.201002 | 0.221006 0.07 1005 0.8910.14 0.67 10,03
TabEBM 0.81i0'04 0-94i0.01 0~95i0.03 0-3210.05 0-2710,()4 0-041040] 0.9110.]2 0.3010.()1
NRGBoost 0.76i0'03 0-93i0.00 0~77i0. 16 0.21 +0.03 0. 17i0.03 0-0410‘02 0.90i0, 12 0. 1910.03
GReaT 0.714006 0.9110.03 0.764015  0.204002 | 0171002 0.17 0,07 0.66.10.11 0.1810.02
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Table 54: Raw benchmark results of 13 tabular generators on “SpeedDating’” dataset. We report
the normalised mean =+ std metric values across datasets. We highlight the First, Second and Third
best performances for each metric. For visualisation, we abbreviate “conditional independence” as
“CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
BN 0.951000 0951000 0.971000  0.281001 | 0.341002 0.0110.00 0.8310.10 0.36+0.09
TVAE 0.90000 0.860.00 0911002 0.071000 | 0.341003 0.0110.00 0.9810.0s 0.5240.00
CTGAN 0.854004 0.841002 0.924005s  0.041001 | 0261003 0231031 0.9310.11 0.1310.02
NFlow 0.864001  0.841001 0.754004  0.051000 | 0.251003 0.1540.19 0.81+0.03 0.13 10,08
ARF 0924002  0.8910.03 0.904003  0.244003 | 0.231003 0.06-£0.06 0.921001 0.56.10.06
TabDDPM | 0.861008 0.81+03 0711024 0241011 | 0.23 1004 0.3119.40 0.8419.10 0.7210.14
TabSyn 0.864005s 0.8310.07 0.861008  0.21006 | 0.271006 0.09+0.03 0.9310.12 0.6910.04
TabDiff 0.894004 0.8610.05 0.881006  0.194004 | 0.3010.00 0.1440.15 0.9610.08 0.67 10,03
TabEBM 0931001 0911001 0951003 0271002 | 0.3310.13 0.0240.01 0.9810.06 0.3010.01
NRGBoost | 0.911003  0.901002 0.871006  0.194005 | 0.221003 0.0410.02 0.97+0.07 0.1810.05
GReaT 0.891001  0.8710.02 0.841004  0.241003 | 0.271006 0.1240.00 0.80+0.10 0.2040.04

Table 55: Raw benchmark results of 13 tabular generators on “Splice” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0004000 | 1.0040.00 | 1.00-0.00
SMOTE 0.984000 0.9710.00 0.981000 0.88.001 | 0.00+000 0.00-£0.00 1.0140,04 0.47 1034
BN 0.991000 0.951+0.00 0931001 0.344001 | 0.641005 0.04 0,04 0.694027 0.1910.06
TVAE 0.954000 0.9210.00 0.89:001  0.561001 | 0.831004 0.030.02 1.000,04 0.481023
GOGGLE | 0.941002 0901003 0.831008  0.49+007 | 0.50+003 0.0810.08 0.641022 0.3010.16
CTGAN 0941001 0.9000; 0941004 0431001 | 0.671003 0.03.£0.05 0.9940.05 0.24 1010
NFlow 0.851001  0.771001 0.701015  0.211004 | 0.641007 0.04 10,03 0.47 1007 0.311020
ARF 0.991000 0951000 0911001 0451001 | 0.911002 0.0110.00 0.781007 0211005
TabSyn 0.851011 0771047 0.541039  0.321025 | 0.571006 0351063 0.93 1011 0661024
TabDiff 0.871009 0.80+0.13 0.561038  0.311025 | 0.581007 0391047 0.88+0.18 0651025
TabEBM | 0.961001 0.931001 0941005 0.591004 | 0.261028 0.011001 0.98+0.07 0.351023
NRGBoost | 0.925004  0.881005 0.824010 0.384018 | 0.281026 0.04£0.03 0.97 10,07 0.3140.20
GReaT 0.941002  0.9010.03 0.831008 0494007 | 0.501003 0.0810.08 0.641022 0.3010.16
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Table 56: Raw benchmark results of 13 tabular generators on “Vehicle” dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0.95 40.00 0.97i0.g| 0'9(’i0.01 0.8610.01 0. 1210,()4 0.01 +0.01 0.9810.04 0.41 4+0.37
BN 0.941000 096000 0971001 0.331003 | 0.171002 0.011001 0.641024 0.28.1024
TVAE 0.831001  0.86+000 0.771001  0.081001 | 0.39100s 0.16+0.09 0.8410.10 0.391035
GOGGLE | 0.894001 0911901 0.881003  0.304005 | 0.221004 0.07 £0.02 0.5940.19 0.2310.18
CTGAN 0.784002  0.9010.01 0.824005s  0.024001 | 0.241006 0.1340.13 0.8240.19 0.08.10.05
NFlow 0.884001  0.8510.01 0.891002  0.004000 | 0.241003 0131007 0.46.0.06 0.0910.05
ARF 0.944000 0.9310.00 0.96:001  0.164002 | 0.171003 0.01£0.00 0.8410.04 0.43 10,05
TabDDPM | 0.851006 0.90L002 0.77+015  0.281007 | 0.14005 0.04 10,03 0.621023 0.72198
TabSyn 0.884002  0.931001 0924003 0.27000 | 0211004 0.0410.03 0.8810.12 0.74 1026
TabDiff 0.884003 0.870.06 084008 0.184019 | 0.31013 0.07 10,05 0.841019 0.629.40
TabEBM 0914001 094002 09310035 0.401005 | 0.3608 0.04 10,03 0.93 10,09 0.28 1025
NRGBoost | 0.911000 0.8810.0s 0.881003  0.184018 | 0.26100s 0.1240.10 0.8810.13 0.1510.16
GReaT 0.854006 0.8710.06 0.754017  0.184018 | 0.27 1000 0.2040.17 0.4940.19 0.1510.16

Table 57: Raw benchmark results of 13 tabular generators on ‘“Zernike”” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0004000 | 1.0040.00 | 1.00-0.00
SMOTE 0.97 1000  0.9810.00 0.901001 0901001 | 0.201003 0.00-£0.00 0.9810.03 0.31+032
BN 0.97 1000  0.9810.00 0.961001  0.724001 | 0.184002 0.00-£0.00 0.541042 0.311031
TVAE 0.87+000 0.9310.00 0.764002  0.031001 | 0471003 0.31+£020 0.900,06 0.381037
GOGGLE | 0.901002 0941001 0.794006  0.31+007 | 0.351003 0.18.£0.06 0424030 0.1810.18
CTGAN 0.814002  0.95+0.00 0.65+007  0.00000 | 0401005 0.030.05 0.8240.19 0.06.-0.06
NFlow 0.901001  0.8710.00 0.774002  0.00+000 | 0411003 0.8010.20 0.1440.03 0.0110.01
ARF 0.961000 0.940.00 0.871001  0.011000 | 0.401004 0.0110.00 0.77 10,04 0211001
TabDDPM 0.6810_25 0.9210.03 0.4410.43 0.191(]‘20 0.51;&(1‘20 0-2110_11 0.301()‘23 0.621()‘41
TabSyn 0.921001  0.961001 0.831003  0.241014 | 0.361005 0.0940.00 0.8410.17 0.701030
TabDiff 0911001 0924003 0.771008  0.191020 | 0.401000 0.114007 0.821021 0.61 1042
TabEBM 0941002 0.961002 0911007  0.404003 | 0.3710.06 0.08+0.09 0.9240.10 0.231023
NRGBoost | 0.951002  0.941001 0.894005s  0.194020 | 0351005 0.1640.14 0.9040.11 0.1310.16
GReaT 0.844009 0.9110.04 0.554031  0.194020 | 0291005 0.56+0.53 0.2940.8 0.1140.17
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F.2.2 REGRESSION DATASETS

Table 58: Raw benchmark results of 13 tabular generators on “Ailerons” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision{ [-recall T DCR 1T §-Presence 1 | Local utility 1 Global utility
Drer | 1004000  1.00+000 1001000  1.00+000 | 0.00+0.00 0004000 | 1004000 | 1.00-0.00
SMOTE 0.714003  0.9910.00 0.90+001  0.85+000 | 0.011000 0.00-£0.00 0.88.40.20 0.351036
BN 0.754003  0.9610.00 0.94:000 0.134000 | 0.051002 0.00-£0.00 0.56.4031 0.5110.18
TVAE 0.704003  0.9610.00 0.861002  0.284001 | 0.021000 0.18.+0.26 0.7610.23 0.46.0.20
GOGGLE | 0.571020 0.9010.06 0.53+037  0.194019 | 0.051004 1611236 0.80+0.29 0.1840.20
CTGAN 0.68+002  0.9610.00 0914005  0.09+002 | 0.021000 0.06-£0.06 0.75+038 0.1310.12
NFlow 0.681003  0.894001 0.631006  0.001000 | 0.1210.10 0.941075 0.511033 0.0510.07
ARF 0.731002 098000 0951001 0.221001 | 0.031000 0.0040.00 0.641026 0.58+0.15
TabDDPM | 0.721004  0.941002 0.841005s  0.301007 | 0.021002 0.0940.10 0.521033 0691024
TabSyn 0.521026  0.90+0.07 0.60£033  0.181019 | 0.17102 3.081443 0.811027 0641032
TabDltf 0-76i0,02 0-97i0.02 0-87i0.]6 0-2210.16 0-0710,12 0-09i0.10 0.87i0.2() 0'7110.23
TabEBM 0.761002  0.96.000 0931005 022105 | 0.07x004 0.0940.10 0.57 1029 0.431903
NRGBoost 0.68 +0.08 0-92i0.04 0~53i0.37 0.1 8i0.19 ().zzio.zg 0.39i0‘4g 0~79i0.29 0.1 8i0.20
GReaT 0.674010 0.9410.03 0.674022  0.204018 | 0.071005 0.97 1133 0.494033 0.2040.20

Table 59: Raw benchmark results of 13 tabular generators on “California” dataset. We report
the normalised mean =+ std metric values across datasets. We highlight the First, Second and Third
best performances for each metric. For visualisation, we abbreviate “conditional independence” as
“CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Drer | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0.0040,00 | 1004000 | 1.00+0.00
SMOTE 0.981000  0.9910.00 0.99:000  0.781000 | 0.0310.02 0.000.00 0.9610,0s 0441044
BN 0.981000 0971001 0981000  0.441000 | 0.041002 0.000.00 0.731027 0.7210.14
TVAE 0941001 0914001 0.974001  0.234001 | 0.071002 0.1040.09 0.8140.12 0.5310.24
GOGGLE | 0.711926 0.8310.10 0.724026  0.214022 | 0.081003 2754301 0.8040.25 0.141022
CTGAN 0914001 0.9310.00 0.961002  0.18.4002 | 0.031001 0.1540.12 0.8440.17 0.16+0.16
NFlow 0.894002  0.8610.01 0.90£004  0.08+003 | 0.124005 0331038 0.4540.10 0.06.0.10
ARF 0.97 1000 0.8710.01 0.99:000  0.264001 | 0.051001 0.00-£0.00 0.6910.24 0.68+0.16
TabDDPM | 0931003 0.9410; 094004 0421000 | 0.04002 0.04 10,04 0.60+023 0.7910.19
TabSyn O<95i0.01 0-94i0,01 0-92i0,07 0-40i0,03 0.06i0_02 0~39i0.54 ().88io‘13 ()-78i0,20
TabDiff 0941002 0901004 0961002 0.2810.16 | 0.0910.04 0.04 10,04 0.8810.13 0.75102
TabEBM 0.931002  0.921001 0.971001  0.244019 | 0.111005 0.04-£0.04 0.6210.18 0.47 10,05
NRGBoost | 0.931002  0.891005 0941007 0.23:020 | 0.05+001 0.0510.04 0.77 1030 0.154021
GReaT 0.881008 0.8810.05 0.871012  0.224021 | 0121007 0.10-0.06 0.4940.20 0.161021
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Table 60: Raw benchmark results of 13 tabular generators on “Elevators” dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precisiont  [-recall T DCR 1 §-Presence 1 | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0.851001 0991000 0.95:1000  0.811000 | 0.021001 0.000.00 092006 0.39+0.06
BN 0.871001 096000 0.961000  0.284000 | 0.05+000 0.000.00 0.6410.12 0.6110.14
TVAE 0.824002  0.9410.00 0914001 0254001 | 0.051001 0.14 40,06 0.78 10,04 0.5010.05
GOGGLE | 0.641000 0.87100s 0.631013  0.201002 | 0.061002 21840381 0.80+0.00 0.16+0.03
CTGAN 0.794002  0.9410.00 0944004 0.144002 | 0.021000 0.1140.07 0.7910.06 0.1410.02
NFlow 0.784002  0.8810.01 0.77+005  0.041001 | 0.124001 0.64.10.43 0.48.40.04 0.0510.01
ARF 0.854001  0.9310.01 0.97 1000  0.244001 | 0.041001 0.00-£0.00 0.67+0.03 0.6310.07
TabDDPM | 0.821004 0.941000 0.891004 0.361004 | 0.031002 0.07 10,03 0.5610.05 0.74 19,07
TabSyn 0.741014 0.921003 0.761020 0291011 | 0.11007 1.734 1.9 0.84_1905 0.7119.10
TabDiff 0.854002 0.931003 0911007  0.251004 | 0.08001 0.0640,03 0.87 10,01 0.73 1002
TabEBM 0.8410020  0.941001 0.955003  0.231001 | 0.091003 0.07.£0.03 0.5940.03 0.4510.03
NRGBoost | 0.811005 0911003 0741022 0211003 | 0144011 0.224025 0.7810.02 0.17 10,02
GReaT 0.784000  0.9110.04 0.774014 021002 | 0.101004 0.541062 0.4910.00 0.1840.03

Table 61: Raw benchmark results of 13 tabular generators on “H16” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0004000 | 1.0040.00 | 1.00-0.00
SMOTE 0.884001  0.9910.00 0.95:000 0.83+000 | 0.051002 0.000.01 0.98.40.02 0451043
BN 0.891001  0.9910.00 0.99:000  0.61001 | 0.031001 0.00-£0.00 0.80+0.23 0.8010.11
TVAE 0.854001  0.9810.00 0941002 0.294001 | 0.10+001 0.35.+0.50 0.86.0.09 0.621022
GOGGLE | 0.681021 0951003 0.614037  0.234024 | 0.081003 6.501767 0.8640.17 0.204021
CTGAN 0.81 4+0.02 0.971(]‘00 0'97i(101 0.22i()‘03 0.0SiO_OZ 0-07i0.09 0.87 +0.13 0-20i0.l9
NFlow 0.831002  0.941000 0.861008  0.07001 | 0.11+00s 0.07_£0.05 0.57+0.11 0.1040.14
ARF 0.901000 098000 0941000  0.191001 | 0.061003 0.004:0.00 0.74 1020 0.70+0.16
TabDDPM | 0.83100s 0.964002 0.891007 0401006 | 0.041002 0.0540.07 0.6540.17 0.77 1020
TabSyn 0.691020 0951005 0.78 1023 0.241023 | 0.101006 3.881574 0.8510.18 0.67 1033
TabDiff 0~85i0,04 0.96i0.02 0.89i0.07 0-2410.23 0-2010,17 0. 1310.12 0-87i0.16 0.7li0.23
TabEBM | 0.871001 0.971001 0961002 0.261021 | 0.1610.12 0.06-0.08 0.641021 0.50+0.05
NRGBoost | 0.871001  0.951003 0941001 0.244023 | 0.071002 0.2340.32 0.8240.23 0.1740.22
GReaT 0.774012  0.9510.03 0.881008  0.254022 | 0121007 0.724053 0.5840.18 0.214021
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Table 62: Raw benchmark results of 13 tabular generators on “Liver’ dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T  [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0-90i0,02 0.97i0.g| 0'90i0.03 0.8110.01 0.1110,()] 0-0110.0] 1'00i0.05 0-4310.29
BN 0911001 0964001 09410020 0.541003 | 0.231005 0.011001 0911011 0.7610.14
TVAE 0.77 4001 0.9110.01 0.504005  0.47.003 | 0.181004 0124005 0.97 40,07 0.7240.13
GOGGLE | 0.651020 0.901004 0.774000  0.37019 | 0.181003 0.17 10,12 0.9440.13 0284021
CTGAN 0494006 0.8710.03 0.614017  0.164006 | 0291008 0.37 1027 0.9540.11 0.1910.13
NFlow 0.884001  0.9210.02 0.931004 0471005 | 0.141002 0.020.01 0.86+0.10 0.37+025
ARF 0.901001  0.9610,01 0.881005s 0.48.4004 | 0.181005 0.010.01 0.9310.13 0.8110,08
TabSyn 0486io_03 0'95i0,01 0'89i0,07 0.55:&002 0.1 7i0.03 0.05 +0.05 1-00i0.05 0~80i0. 13
TabDiff 0.864003 0.961002 0.871006 0.491009 | 0.20005 0.0540.05 1.00+0.,05 0.8119.13
TabEBM 0.864003  0.941001 0.891007  0.651010 | 0.131004 0.06-£0.05 0.9310.05 0.61+005
NRGBoost | 0.851002 0911003 0.881007  0.524005 | 0.151003 0.06-£0.05 0.98.10.06 0.371023
GReaT 0.784005s  0.9310.02 0.811005 0461011 | 0.17 1002 0.0810.04 0.8710.11 0.361023

Table 63: Raw benchmark results of 13 tabular generators on “Sales” dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0004000 | 1.0040.00 | 1.00-0.00
SMOTE 0.801000 0.961001 0.97 1001 0.794000 | 0.03 1001 0.0040.00 0.97 10,04 0.391038
BN 0.794001  0.89+0.00 0941000 0.294000 | 0221002 0.01£0.00 0.584+028 0.591024
TVAE 0.73+001  0.8710.00 0911002 0271001 | 0251003 0.03+0.01 0.8110.12 0.621022
GOGGLE | 0.574024 0811011 0.684020  0.244025 | 0.181008 121711742 0.80+0.25 0.224020
CTGAN 0.714001  0.891001 0.954004  0.264002 | 0.111001 0.04+0.08 0.8310.17 0.251025
NFlow 0.731001  0.841001 0.87+011  0.244002 | 0.17 1005 0.07+0.06 0431019 0.141020
ARF 0.751004  0.894002 0.851009  0.3810.10 | 0.161003 1.381 166 0.57 1028 0.621020
TabDDPM 0.6610_]4 0.8410.03 0.4710.49 0.241(]‘25 0-24;&012 3.40;&5.24 0.421()‘23 0.601()‘40
TabSyn 0.78 1002 091000 0.961003  0.341014 | 0.161004 0.0240.02 0.9010.10 0781020
TabDltf 0-78i0,02 0.9li0.0() 0'9(’i0.03 0-3310.15 0 15i0,03 0-0210_02 0'90i0.10 0'7910.20
TabEBM 0.77 4003 0.8910.02 0914000  0.314019 | 0.131003 0.64 4137 0.66+0.12 0.5040.03
NRGBoost 0~70i0,09 0-84i0.07 0.56i0.4() 0-27i0.21 0~23i0.10 0. 1510‘24 0~72i0.37 0.1 810.19
GReaT 0.75+004  0.894002 0.85£009  0.381010 | 0.161003 1.3841.66 0.511025 0.27 1025
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Table 64: Raw benchmark results of 13 tabular generators on “Space” dataset. We report the
normalised mean =+ std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precisiont  [-recall T DCR 1 §-Presence 1 | Local utility 1 Global utility 1
Dret | 1.00£000 1.004000 1001000 1.00+000 | 0.00+0.00 0004000 | 1.00+0.00 | 1.00+0.00
SMOTE 0.981000 0.99+0.00 0.981001  0.78001 | 0.081004 0.00-£0.00 0.96.0,04 0424041
BN 0.981000 0.9910.01 0.97 1001 0.571001 | 0.141003 0.00-£0.00 0.79+0.19 092005
TVAE 0.871001 0904001 0.85£002  0.11x001 | 0.201002 0231018 0.75+0.15 040036
GOGGLE | 0.724021  0.881008 0721024 021402 | 0.144004 1914537 0.824021 0.154022
CTGAN 0.77 4005 0.9310.02 0.774010  0.054002 | 0.201006 0.2140.23 0.8040.22 0.08.10.00
NFlow 0.89+003  0.89+002 0911005 0.09+002 | 0.151003 0.041004 0.57+0.00 0.1140.12
ARF 0.97 1000  0.9810.00 0.981001  0.324001 | 0.101001 0.00-£0.00 0.7310.15 0.7310.17
TabDDPM | 0911901  0.965001 094003 0.382000 | 0.09-004 0.052005 0652015 08010
TabSyn 0934002 0.971002 0941003 035007 | 0.154003 0.04100s 0.890.11 0.791022
TabDiff 0.941003  0.971002 0941003 0.344008 | 0.131002 0.0410.05 0.8940.12 0.7810.22
TabEBM 0.9410020  0.951001 0941005 0.321010 | 0.141002 0.0410.05 0.67+0.12 0.47 10,05
NRGBoost | 0931001  0.8710.00 0901002 0214022 | 0.2040090 0.4040.40 0.8410.19 0.16402;
GReaT 0.894003  0.911004 0.821011  0.27+016 | 0.15+0.03 0.1240.06 0.57+0.14 0.171021

Table 65: Raw benchmark results of 13 tabular generators on “Superconductivity”’ dataset. We
report the normalised mean =+ std metric values across datasets. We highlight the First, Second and
Third best performances for each metric. For visualisation, we abbreviate “conditional independence”
as “CI”. SMOTE generally achieves the highest performance in capturing local structure (i.e., local
utility or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI
or global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape +  Trend T a-precision | [-recall T DCR T §-Presence 1 | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1001000 1.001000 | 0.00+0.00 0.00-£0.00 1.00-0.00 1.00-0.00
SMOTE 0.954000 1.0040.00 0.99:000  0.45000 | 0.011000 0.00-£0.00 0.97 40,03 0411042
BN 0.9641000 0.99+0.00 0.99:000 0.16.4000 | 0.07 1002 0.00-£0.00 0.724031 0.8510.00
TVAE 0.891000 0.9410.00 0914001 0.004000 | 0351001 0.04+0.01 0.7310.16 0424034
GOGGLE | 0.861014 0.941004 0.824015  0.174008 | 0.264008 2.104352 0.824022 0.201022
CTGAN 0.864002  0.95+0.00 0.85+004  0.00+000 | 0381002 0.17 020 0.7640.24 0.0510.05
NFlow 0.871001  0.841001 0.631002  0.00+000 | 0501003 4.94 1348 0.3240.08 0.0110.01
ARF 0.95:1000 0991000 0961000  0.021000 | 0.181001 0.0040.00 0.641026 0.541027
TabDDPM 0.66io_zg 0-9010.06 0.4510.43 0.1 21(]‘12 0. 14:&[]‘10 2-4613.84 0.401021 0.621[)‘42
TabSyn 0911003 0971001 0911004 0.121012 | 0.231004 0.331051 0.8510.16 0.73 1028
TabDiff 0.931001 0971002 0.931003  0.131011 | 0.241001 0.331051 0.8510.16 0751025
TabEBM 0.924000 0.9710.01 0.934002  0.124012 | 0.181006 0.3340551 0.47 4027 0.3710.10
NRGBoost | 0931001  0.89+007 0.75£017  0.121012 | 0.314008 4.291434 0.74103 0.124021
GReaT 0.904003  0.9510.01 0.86+£006  0.19+00s | 0.231001 L.154074 0.48.4021 0.224022
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Table 66: Raw benchmark results of 13 tabular generators on ‘“Wine”’ dataset. We report the
normalised mean = std metric values across datasets. We highlight the First, Second and Third best
performances for each metric. For visualisation, we abbreviate “conditional independence” as “CI”.
SMOTE generally achieves the highest performance in capturing local structure (i.e., local utility
or local CI), while diffusion models typically excel at capturing global structure (i.e., global CI or
global utility).

Generator Density Estimation Privacy Preservation ML Efficacy | Structural Fidelity

Shape t  Trend T «-precision T [S-recall 1 DCR 1 ¢-Presence T | Local utility 1 Global utility 1
Drer | 1.00£000 1.00+000 1.00+000  1.00+000 | 0.00+0.00 0.00+000 | 1.00+0.00 | 1.0040.00
SMOTE | 0971000 0-99-1000 093001 0672001 | 0.082005 0.002000 098100 044104
BN 0.97 1000  0.9310.00 0.961001  0.18+001 | 0.224002 0.0110.00 0.7810.11 0.491030
TVAE 0.891001  0.95+0.01 0.784005  0.18+002 | 0.231004 0.07+0.10 0.88+0.07 0.48.4031
GOGGLE | 0.724023 0.921004 0.631032  0.184018 | 0.2610.14 14948 0.87+0.17 0.1240.19
CTGAN 0.88+001  0.97+0.00 0.95+001  0.164002 | 0.131004 0.03-£0.05 0.92.19.08 0.17+0.17
NFlow 0.891001  0.91+000 0924004  0.104002 | 0.164005 0.04-1001 0.70+0.08 0.08+0.12
ARF 0.961000  0.9810.00 0.97 1001 0.224002 | 0.171003 0.00-£0.00 0.8140.13 0.661021
TabDDPM | 0.931001 0971001 0.93:001  0.294007 | 0.09+00s 0.0240.01 0.7610.12 0.751025
TabSyn 0.931001  0.971001 0.954002  0.284000 | 0.161003 0.01£0.02 0.931007 0.76.1024
TabDiff 0.941001  0.981001 0.961005  0.27000 | 0.161004 0.01£0.02 0.9310.08 0761024
TabEBM 0.941000 0.9710.00 0.954002  0.264010 | 0.17100s 0.01£0.02 0.80-+0.07 0.4510.03
NRGBoost | 0.941000 0.931004 0914002 0.204017 | 0.13100m 0.02.+0.01 0.9040.11 0.14 1018
GReaT 0.864008 0.9210.04 0.714025  0.21x015 | 0.194007 0.36.0.45 0.7110.12 0.1310.18
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