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Abstract
Multimodal sentiment analysis (MSA) aims to predict sentiment
from text, audio, and visual data of videos. Existing works focus on
designing fusion strategies or decoupling mechanisms, which suffer
from low data utilization and a heavy reliance on large amounts of
labeled data. However, acquiring large-scale annotations for multi-
modal sentiment analysis is extremely labor-intensive and costly.
To address this challenge, we propose GRACE, a GRadient-based
Active learning method with Curriculum Enhancement, designed
for MSA under a multi-task learning framework. Our approach
achieves annotation reduction by strategically selecting valuable
samples from the unlabeled data pool while maintaining high-
performance levels. Specifically, we introduce informativeness
and representativeness criteria, calculated from gradient magni-
tudes and sample distances, to quantify the active value of unla-
beled samples. Additionally, an easiness criterion is incorporated
to avoid outliers, considering the relationship between modality
consistency and sample difficulty. During the learning process, we
dynamically balance sample difficulty and active value, guided by
the curriculum learning principle. This strategy prioritizes easier,
modality-aligned samples for stable initial training, then gradually
increases the difficulty by incorporating more challenging sam-
ples with modality conflicts. Extensive experiments demonstrate
the effectiveness of our approach on both multimodal sentiment
regression and classification benchmarks.
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Figure 1: An illustration of the labor-intensive annotation
process for multimodal multi-task sentiment analysis, re-
quiring multiple annotators to label each sample across text
(T), audio (A), visual(V), and multimodal (M), highlighting
the need for active learning to reduce annotation costs.
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1 Introduction
Sentiment analysis is a widely studied area that infers individuals’
emotional states or tendencies by analyzing data. However, relying
solely on a single modality for sentiment analysis presents inherent
limitations [23]. The derived sentiment is often constrained and
susceptible to signal noise, leading to one-sided, ambiguous, or even
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contradictory outcomes. In contrast, multimodal sentiment analysis
(MSA) emerges as a research field that leverages data from multi-
ple modalities, such as text, audio, and visual sources, to analyze
emotions more comprehensively. By integrating information from
diverse modalities, MSA closely resembles real-world scenarios,
resulting in a more accurate representation of expressed emotions.

In recent years, considerable efforts have been dedicated to de-
veloping fusion strategies and disentangling modality features to
enhance sentiment analysis precision. Various fusion techniques
have been explored, including early fusion [39], late fusion [50], and
hybrid fusion [6], aiming to leverage the complementary strengths
of each modality. In addition to fusion strategies, there has been
a focus on disentangling modality features to uncover the distinct
contributions of each modality in MSA [10, 17, 41].

While the potential of these methods in MSA is clear, their data
inefficiency limits performance based on available dataset size. De-
spite extensive efforts to establish new MSA benchmarks [25], the
number of labeled samples remains insufficient compared to other
multimodal tasks. Although acquiring a large number of video sam-
ples is feasible in the multimedia era, labeling them poses a chal-
lenge, as shown in Figure 1. Given the subjectivity and ambiguity
inherent in sentiment analysis, each sample in MSA often requires
multiple annotators [46, 47] to derive a reliable average sentiment
score, significantly increasing the overall cost of dataset annotation.
Active learning has shown promise in various data-insufficient do-
mains [14, 15, 19, 31] by prioritizing valuable unlabeled samples to
reduce costs. However, most active learning methods struggle in
multimodal tasks as they are designed for unimodal contexts, thus
ignoring the complex relationships among modalities.

In this paper, we propose a GRadient-based Active learning
method with Curriculum Enhancement (GRACE) that utilizes gra-
dient embeddings in a multi-task learning framework to select
multimodal samples beneficial for multimodal sentiment analysis.
Our approach achieves data efficiency by annotating unlabeled sam-
ples deemed most valuable to the model. To determine the selection
order of samples, we employ both an Active Value Estimator and
an Easiness Estimator. These estimators consider the relationship
between unimodal and multimodal gradient embeddings for each
sample. Specifically, we assess informativeness by evaluating the
magnitude of gradients, while representativeness is determined by
accumulating the distances between gradients of different samples.
Furthermore, to avoid selecting outliers, we incorporate an easiness
criterion. It is hypothesized that samples demonstrating high con-
sistency between unimodal and multimodal gradient embeddings
are easier to learn. By adjusting the weight of these estimators,
the model learns from easier to more challenging samples in a
progressive order. Our contributions can be summarized as follows:

• Wepropose a novel gradient-based active learningmethod, GRACE,
specifically for MSA under a multi-task learning framework. Our
approach mitigates the difficulty of data annotation in MSA by
selecting valuable unlabeled samples for labeling.

• We design three key criteria, informativeness, representativeness,
and easiness, to assess the active value and sample difficulty for
establishing the prioritization of sample selection. Additionally,
the curriculum learning principle is incorporated to dynamically

adjust the evaluation approach across different active learning
phases.

• Weextensively evaluate the performances of our proposedmethod
across various datasets for MSA. Comprehensive experiments
demonstrate the superiority of our approach over existing ac-
tive learning baselines, achieving higher performance with fewer
labeled data.

2 Related Works
2.1 Multimodal Sentiment Analysis
Multimodal sentiment analysis involves the evaluation of text, au-
dio, and visual data from a video clip to derive a quantitative repre-
sentation of the expressed sentiment.

Most researchers have focused on the delicate design of net-
works to fuse unimodal data. Zadeh et al. [45] achieved tensor
fusion through a 3-fold Cartesian product on unimodal embed-
dings, marking a significant advancement in multimodal fusion
research of MSA. Following the introduction of the self-attention
mechanism, cross-modal attention for fusion and modality adap-
tation has gained popularity [21, 32, 38, 43]. Decoupling modality
information has also become a mainstream approach. MISA [10]
proposes a shared encoder along with three specialized encoders,
mapping modalities to modality-invariant and modality-specific
subspaces. Subsequently, numerous studies have emerged integrat-
ing the decoupling of modality features with techniques such as
distillation learning and contrastive learning [17, 41, 42].

Yu et al. [44] presented the SIMS dataset for sentiment analysis in
Chinese, including annotations for both unimodal and multimodal
aspects, and developed a multimodal multi-task learning frame-
work that leverages unimodal labels. Liu et al. [20] relabeled and
expanded the SIMS dataset to augment nonverbal signals in MSA.
The CHERMA dataset is introduced by Sun et al., which provides
labels for unimodal and multimodal [34]. Their proposed layer-wise
multimodal transformer model is also a multi-task learning frame-
work. Despite the demonstrated effectiveness of multi-task learning
frameworks in various experiments, it is crucial to tackle the issue
of the increased labeling burden caused by this framework.

2.2 Active Learning
Pool-based Active Learning aims to maximize performance and
minimize labeling costs by selecting informative samples from an
unlabeled dataset. However, focusing solely on informativeness is
insufficient due to data redundancy and outliers.

Informative-based active learning approaches assess the infor-
mation content inherent in given samples in various ways. Classical
machine learning methods like maximum entropy calculation [27]
and Expected Model Change Maximization (EMCM) [3] remain
widely used. BALD [7] and subsequent optimized methods [16, 37]
utilize Bayesian neural networks to estimate uncertainty approxi-
mately. Additionally, Gao et al. [8] augmented unlabeled data and
assessed sample informativeness based on the loss of consistency
between augmented samples. Representative-based active learning
methods tackle data redundancy from a distributional perspective,
focusing on the similarity between unlabeled and labeled samples
using different distance metrics [22, 29]. Furthermore, Sinha et al.
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introduced the VAE model [33] for active learning, prioritizing
unlabeled samples with low correlation to labeled ones.

Recent studies have explored explicit or implicit strategies to
balance informative-based and representative-based sample selec-
tion. BoostMIS [48] selects a union of unstable and uncertain sam-
ples, while DBAL [49] identifies highly uncertain samples and then
chooses representative ones. BADGE [1] maps samples into the
gradient embedding space, leveraging gradient magnitude and the
k-means++ algorithm for diversity and uncertainty. Furthermore,
Shen et al. [30] extended BADGE with their BMMAL for modality
balance in multimodal classification tasks. Nevertheless, current
methods often struggle to simultaneously address data redundancy
and outliers, limiting their effectiveness in multimodal tasks.

2.3 Curriculum Learning
Curriculum learning (CL) and active learning (AL) both emphasize
sample selection during training. While AL seeks optimal results
with fewer samples, CL aims to enhance performance and accelerate
convergence through effective data selection strategies.

Curriculum learning (CL), first introduced by Bengio et al. [2], is
inspired by human education that learns from easy to hard. CL has
been widely applied in various fields, including natural language
processing (NLP) [26, 36], computer vision (CV) [9, 12] , and rein-
forcement learning (RL) [5, 28]. For example, in neural machine
translation, CL has reduced training time by 70% and improved
performance by 2.2 BLEU points compared to traditional methods
[26]. Similarly, Jiang et al. [13] reported a 45.8% relative improve-
ment in MAP and faster convergence in multimedia event detection
with CL. In reinforcement learning, CL helps agents tackle complex
goal-directed problems that would otherwise be unsolvable [5].

Recently, several works have emerged that combine AL and CL.
Lin et al. [18] used self-paced learning and active learning indepen-
dently, while Tang et al. [35] proposed a batch mode AL approach
that considers both the potential value and easiness. However, both
methods have limitations in deep learning tasks, focusing mainly on
machine learning perspectives. In histological tissue classification
[11] and remote sensing image classification [24], researchers have
integrated AL and CL to tackle issues like imbalanced performance
and insufficient data. Despite the widespread use of CL and AL,
their applicability in multimodal settings remains unexplored.

3 Methodology
In this section, we introduce the details of the proposed GRACE
(GRadient-based Active learning with Curriculum Enhancement),
a novel gradient-based active learning method designed for MSA
under a multi-task learning framework. GRACE consists of an Ac-
tive Value Estimator and an Easiness Estimator, assessing sample
value according to three criteria: informativeness, representative-
ness, and easiness, which jointly guide the model towards selecting
high-quality data for annotation and training. The overall structure
of GRACE is illustrated in Figure 3.

3.1 Problem Definition
The objective of MSA is to obtain the sentiment labels 𝑦𝑚 from
three modality representations {𝑥𝑡 ∈ R𝑙𝑡×𝑑𝑡 , 𝑥𝑎 ∈ R𝑙𝑎×𝑑𝑎 , 𝑥𝑣 ∈
R𝑙𝑣×𝑑𝑣 }, representing text, audio, and visual, respectively. Here,

Figure 2: An illustration of the multimodal multi-task learn-
ing framework. The dashed line with arrows indicates the
direction of the gradient backpropagation for each task.

𝑙𝑘 and 𝑑𝑘 denote the sequence length and feature dimension for
modality 𝑘 , respectively, where 𝑘 ∈ 𝐾 = {𝑡, 𝑎, 𝑣}. We also define
𝐾∗ = {𝑡, 𝑎, 𝑣,𝑚} for later use. Within the framework of multi-task
learning, each sample has three unimodal sentiment labels (𝑦𝑡 , 𝑦𝑎 ,
𝑦𝑣 ), resulting in four sentiment labels per sample. During our active
learning procedure, we commence with a pre-defined labeled set
𝐿 = {(𝑥𝑖𝑡 , 𝑦𝑖𝑡 ); (𝑥𝑖𝑎, 𝑦𝑖𝑎); (𝑥𝑖𝑣, 𝑦𝑖𝑣);𝑦𝑖𝑚}𝑁

𝑖=1, which contains 𝑁 labeled
samples. This set is utilized for the initial training of the task model,
denoted as 𝐹 (·;𝜃 ), where 𝜃 represents the learnable parameters of
the model. Subsequently, unlabeled samples are chosen from the
unlabeled set𝑈 using a query strategy. The AL annotator, Oracle
then acquires their labels to construct an expanded labeled training
set 𝐿. Concurrently, the queried unlabeled samples, denoted as 𝑄 ,
are removed from𝑈 . The task model is subsequently retrained on
the updated labeled set 𝐿. This iterative procedure continues until
the annotation budget is exhausted or the specified termination
conditions are reached.

3.2 Multimodal Multi-task Learning Framework
Our GRACE is designed for MSA under a multi-task learning frame-
work. We adopt the same architecture for multimodal multi-task
learning [20], i.e., a late-fusion approach, as depicted in Figure 2.
The network comprises three feature extraction networks: BERT
for text, a linear layer followed by stacked bidirectional LSTM
for audio, and a similar structure for visual. The extracted fea-
tures 𝑓𝑡 ∈ Rℎ𝑡 , 𝑓𝑎 ∈ Rℎ𝑎 , 𝑓𝑣 ∈ Rℎ𝑣 from each modality are con-
catenated to obtain the fusion modality feature 𝑓𝑚 ∈ R(ℎ𝑡+ℎ𝑎+ℎ𝑣 )
and processed through a multilayer perceptron (MLP) to yield the
fused multimodal sentiment𝑦𝑚 . Additionally, the features extracted
from individual modality are passed through a fully connected (FC)
layer to produce the corresponding unimodal sentiment {𝑦𝑡 , 𝑦𝑎, 𝑦𝑣}.
Given that our method does not rely on the specific output format
of the network, it can be applied to various tasks. Specifically, for
the regression task, we utilize the L1 loss function as supervision,
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Figure 3: An overview of the proposed GRACE framework. The letters L, U, and Q represent labeled pool, unlabeled pool,
and queried samples, respectively. (1) In the training phase, the model is trained on available labeled data. (2) In the gradient
acquiring phase, gradients are computed for unlabeled samples. (3) In the querying phase, unlabeled samples are queried based
on three active learning criteria: easiness, informativeness, and representativeness. Selected samples are annotated by the
Oracle, added to the labeled pool (L), and removed from the unlabeled pool (U). This completes one iteration of the AL cycle.

calculated as follows:

L𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖
𝑘
− 𝑦𝑖

𝑘
|, 𝑘 ∈ 𝐾∗ (1)

where 𝑦𝑖
𝑘
and 𝑦𝑖

𝑘
denote the predicted output and the ground truth

for the 𝑖-th sample, respectively.𝑁 is the size of the labeled pool. For
the classification task, we employ the cross-entropy loss, defined
as:

L𝑘 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑦𝑖
𝑘
log𝑦𝑖

𝑘
, 𝑘 ∈ 𝐾∗ (2)

where 𝑦𝑖
𝑘
is the probability prediction generated by the MLP output

of the model after applying a softmax function. Therefore, the final
optimization objective of the model is formulated as the weighted
sum of the losses associated with both multimodal and unimodal
tasks:

L =
∑︁
𝑘

𝑤𝑘L𝑘 , 𝑘 ∈ 𝐾∗ (3)

where 𝑤𝑘 is the weight of 𝐿𝑘 for modality 𝑘 . Specifically, 𝑤𝑘 are
0.2, 0.8, 0.4 and 1.0 for 𝑘 = 𝑡, 𝑎, 𝑣,𝑚, respectively.

To facilitate the subsequent formulation of expressions in a mul-
timodal multi-task learning framework, we provide the process
of gradient acquisition of the corresponding network layers for
further analysis. Our approach focuses on the flattened gradient
embeddings of the last layer in each unimodal feature extraction
network, considering both unimodal and multimodal tasks. The
gradient g = 𝜕L

𝜕𝑊𝑘
is obtained by forwarding unlabeled sample 𝑥

through the current model, computing the pseudo label 𝑦 (𝑥) and
backpropagating the loss on (𝑥,𝑦 (𝑥)), where𝑊𝑘 is the weight of
the last layer for the network of modality 𝑘 . We denote the gradi-
ents resulting from the unimodal task loss for text, audio, and visual
feature extraction networks as {g𝑡 , g𝑎, g𝑣}, while {g𝑚𝑡

, g𝑚𝑎
, g𝑚𝑣

}
represents the gradients of the multimodal task loss for the cor-
responding feature extraction network. In the training phase, the
actual gradient applied to the unimodal network parameters is cal-
culated as the sum of the gradients generated by both unimodal
and multimodal tasks.

3.3 Gradient-based Active Value Estimator
In active learning, estimating the value of data samples for the
task model is crucial. Traditionally, this evaluation is conducted
from the perspectives of informativeness and representativeness,
often considering only unimodal data. These approaches neglect
the complex interactions among different modalities and the critical
role of fusion modality in MSA. Inspired by the gradient descent
algorithm, we leverage the gradient embeddings from the task
model to quantify both informativeness and representativeness
within each sample.

Informativeness reflects the uncertainty of the current model’s
predictions for a given sample. To assess the information content of
multimodal samples, we develop a gradient-based informativeness
criterion. The gradient embeddings capture not only the current
uncertainty of the model but also potential parameter update di-
rections, thereby serving as a powerful tool for guiding the active
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learning process. Specifically, we combine individual modality gra-
dient embedding {g𝑡 , g𝑎, g𝑣} with the fusion modality gradient
{g𝑚𝑡

, g𝑚𝑎
, g𝑚𝑣

} respectively, calculating the magnitude as the un-
certainty for each sample. The informativeness score for unlabeled
sample 𝑥𝑝 ∈ 𝑈 is calculated as:

𝑠𝑖 (𝑥𝑝 ) =
∑︁
𝑘∈𝐾

∥ g𝑘 (𝑥𝑝 ) + g𝑚𝑘
(𝑥𝑝 ) ∥2 (4)

where ∥ · ∥2 denotes the 𝐿2 norm. A higher informativeness score
suggests that the sample can provide more valuable information
to the current model. For each unimodal gradient g𝑘 (𝑥𝑝 ), the cor-
responding fusion modality gradient g𝑚𝑘

(𝑥𝑝 ) is incorporated to
represent the potential change in the unimodal network, highlight-
ing the central role of the fusion modality. From this perspective,
the model prioritizes unlabeled samples based on their informative-
ness scores, with the instance eliciting the maximum magnitude of
gradient embeddings deemed most informative.

While the informativeness criterion facilitates the selection of
samples with the highest information content, it does not account
for the overall distribution of the unlabeled data. Specifically, it
overlooks sample diversity, which may lead to the selection of
highly informative yet redundant samples. To address this, we
propose a gradient-based representativeness criterion.

Similar to the informativeness criterion, the representativeness
criterion focuses on the fusion modality gradient, combined with
each unimodal gradient. However, instead of emphasizing gradient
magnitude, the distance between different sample gradient embed-
dings is considered. This criterion aims to query more diverse data
by prioritizing samples with significant differences. The representa-
tiveness score for each sample is calculated as the sum of distances
between its gradient and other unlabeled samples’ gradients using
Euclidean distance:

𝑠𝑟 (𝑥𝑝 ) =
∑︁
𝑘∈𝐾

∑︁
𝑥𝑞 ∈𝑈 \𝑥𝑝

Dist(g𝑘 (𝑥𝑝 ) + g𝑚𝑘
(𝑥𝑝 ), g𝑘 (𝑥𝑞) + g𝑚𝑘

(𝑥𝑞))

(5)
where Dist(·, ·) denotes Euclidean distance, and 𝑥𝑞 denotes the sam-
ple except 𝑥𝑝 in the unlabeled dataset. A higher representativeness
score suggests greater sample diversity and potential value to the
model.

3.4 Easiness Estimator based on Gradient
Harmonization

The Gradient-based Active Value Estimator effectively estimates the
value of samples in active learning, taking into account both their
informativeness and representativeness. It aims to identify the most
beneficial samples for the current state of the model. Nevertheless,
solely relying on Active Value Estimator tends to favor samples
with modality inconsistencies such as sarcasm, which can introduce
novel information but significant training difficulties [40].

These selected samples are typical problematic samples in active
learning, namely outliers that deviate substantially from the under-
lying data distribution and lead to resource wastage. To address
this potential issue and provide a more comprehensive estimation
of sample value in the context of MSA, we propose an Easiness Es-
timator based on gradient harmonization. Specifically, the Easiness
Estimator, defined by the following equation, quantifies the overall

gradient consistency across modalities for a given sample 𝑥𝑝 ∈ 𝑈 ,

𝑠𝑒 (𝑥𝑝 ) =
∑︁
𝑘∈𝐾

Sim(g𝑘 (𝑥𝑝 ), g𝑚𝑘
(𝑥𝑝 )) (6)

where Sim(·, ·) represents the cosine similarity function. The Easi-
ness Estimator calculates the cumulative cosine similarity between
the gradients of the modality-specific tasks g𝑘 (𝑥𝑝 ) and their coun-
terparts g𝑚𝑘

(𝑥𝑝 ) in the multimodal task. A higher easiness score
indicates stronger alignment or harmony among the gradients, sug-
gesting that the samples are more consistent and easier to learn. By
contrast, a lower value implies modality conflicts that may hinder
the learning process and should be deprioritized during sample
selection. Since each unimodal gradient needs to be compared with
the multimodal gradient, it can be observed that the calculation of
easiness places more emphasis on the fusion modality, quantifying
the harmonization of gradients for unlabeled samples.

To ensure comparability among the informativeness, represen-
tativeness, and easiness criteria, which may have varying score
ranges, we employ min-max normalization. This technique rescales

the scores to a unified range of [0, 1] by 𝑠 𝑗 =
𝑠 𝑗−𝑠𝑚𝑖𝑛

𝑗

𝑠𝑚𝑎𝑥
𝑗

−𝑠𝑚𝑖𝑛
𝑗

, where

𝑠𝑚𝑖𝑛
𝑗

and 𝑠𝑚𝑎𝑥
𝑗

respectively represent the minimum and maximum
values of 𝑠 𝑗 for 𝑗 ∈ {𝑖, 𝑟 , 𝑒} across all samples.

3.5 Dynamic Curriculum-enhanced Active
Strategy

The informativeness, representativeness, and easiness criteria pre-
sented above can estimate the sample value comprehensively from
various dimensions. By considering these criteria, we can effectively
mitigate common challenges in active learning, namely sample re-
dundancy and outliers.

To enhance the Active Value Estimator and the Easiness Estima-
tor by curriculum learning principle, we introduce a curriculum
factor, denoted as 𝛼 . We combine these criteria to obtain the final
score 𝑠 for each unlabeled sample using the following equation:

𝑠 (𝑥𝑝 ) = 𝑠𝑒 (𝑥𝑝 ) · 𝛼 + 𝑠𝑖 (𝑥𝑝 ) · 𝑠𝑟 (𝑥𝑝 ) (7)

The curriculum factor 𝛼 serves as a balancing mechanism between
sample difficulty and the active value.

Moreover, the same level of sample difficulty may hold varying
worth across different active learning phases. In the initial stages,
when training data is limited and the learned decision boundaries
may deviate from the actual boundaries, we assign a higher value
to 𝛼 . This allows the active learning strategy to prioritize simpler
samples, facilitating more efficient model learning. As training
progresses and the network becomes more mature, we gradually
decrease the value of 𝛼 by curriculum decay 𝛼𝑑 , shifting the active
learning process towards selecting more challenging samples. This
progressive increase in sample difficulty aims to enable the model to
achieve higher performance levels, mimicking the gradual learning
curve exhibited by humans. The specific updating rule for 𝛼 at the
t-th query round is given by:

𝛼𝑡 = 𝛼𝑖𝑛𝑖𝑡 − (𝑡 − 1) · 𝛼𝑑 (8)

where 𝛼𝑖𝑛𝑖𝑡 denotes the initial curriculum factor.
By integrating the curriculum learning principle into our active

learning framework, we strike a delicate balance between sample
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Figure 4: Model performance comparison of regression task
on SIMSv2. The initial labeled pool contains 100 samples and
increases to 800 samples by seven AL cycles. A smaller MAE
score indicates better performance.

difficulty and active value. This dynamic selection strategy avoids
the common disadvantages of active learning and offers a more
effective training manner for MSA.

4 Experiments
4.1 Settings
We conduct experiments on two publicly available MSA datasets
that provide unimodal annotations: SIMSv2 [20] and CHERMA [34].
The former is used for regression and the latter for classification. See
details about datasets in Appendix A. Following previous works, we
evaluate performance on the regression task using metrics: mean
absolute error (MAE), binary accuracy (Acc-2), three-class accuracy
(Acc-3), five-class accuracy (Acc-5), Pearson correlation (Corr), and
F1 score. For classification, we employ a seven-class accuracy (Acc-
7) metric. All experiments are conducted in PyTorch on an RTX
3090 GPU with 24GB memory. Hyper-parameters of the task model
match those in [20]. The initial labeled pool is randomly sampled
from the training set. To mitigate overfitting, we set the training
epoch to 5, using the model from the last epoch as optimal without
utilizing the labeled validation set. Our experiments on SIMSv2
and CHERMA datasets start with 100 and 1000 initial samples,
respectively. The curriculum factor 𝛼 and decay 𝛼𝑑 are set to 1 and
0.1 respectively, with 𝛼 updated at the end of each query round.

We compare our approach against several widely-used baseline
methods in active learning. CoreSet [29] minimizes the distance
between unlabeled samples and their nearest labeled counterparts
after incorporating a set number of samples into the training set.
GCNAL [4] uses a graph convolution network to distinguish la-
beled and unlabeled samples, selecting those that significantly differ
from the labeled ones. DBAL [49] selects samples closest to the
center point after clustering. BALD [7] estimates result uncertainty
via Bayesian neural networks, maximizing mutual information
between model outputs and parameters. BADGE [1] implicitly
considers uncertainty and diversity with gradient embedding of
samples. Furthermore, BMMAL [30] extends BADGE by achieving
modality balance for multimodal classification tasks. Additionally,
Random sampling is an unbiased method to choose samples from

Figure 5: Model performance comparison of classification
task on CHERMA. The initial labeled pool contains 1000
samples and increases to 5000 samples by four AL cycles. A
larger Acc-7 score indicates better performance.

the unlabeled pool. Since some methods are task-specific, we com-
pare our approach with CoreSet, GCNAL, DBAL, and Random on
the regression task, while conducting comparisons with BALD,
BADGE, BMMAL, and Random on the classification task.

4.2 Results and Analysis
We present a detailed analysis comparing the performance of our
method with other state-of-the-art active learning methods in both
regression and classification tasks. To ensure fairness, all methods
are evaluated with the same initial pool and task model, with results
averaged over three trials using different random seeds.

Regression Task on SIMSv2. The performance comparison of
the sentiment regression task on the SIMSv2 dataset is shown in
Figure 4. As the number of labeled instances reaches 800, about
30% of the training set, our GRACE outperforms others. Remark-
ably, it achieves a performance comparable to Random sampling
with just 500 samples, saving 1200 annotations (37.5%) within
the multi-task framework which requires four labels per sample.
Compared with DBAL and CoreSet, our method also saves approxi-
mately 800 annotations (12.5%). This discrepancy arises because
these methods are not designed to handle complex multimodal tasks
efficiently. Furthermore, our method exhibits a more rapid initial
decline in MAE, thanks to the easiness criterion that prioritizes
samples with consistent modalities. This focus allows the model to
quickly learn optimal initial parameters, mitigating the cold start
problem associated with a small initial pool. Under curriculum-
enhanced active learning, the model gradually incorporates more
challenging samples, enhancing its generalization ability and ro-
bustness, and resulting in further performance improvements.

We also report multiple metrics for the compared methods in
Table 1. The term "Full data" refers to the utilization of the complete
training set, consisting of 2722 samples, to train the task model,
while the other methods employed their own selected 800 samples
for training. As evident from the table, our method outperforms
other active learning methods across all metrics. Although GCNAL
exhibits good performance in terms of MAE, its performance is
inferior in metrics such as Acc-2 and Acc-3, indicating possible
limitations in robustness. GRACE demonstrates differences of less
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Table 1: Experimental results of multiple metrics on SIMSv2. The results are reported when the number of selected samples
reaches 800. The best results are highlighted in bold.

Methods MAE (↓) Acc-2 (↑) Acc-3 (↑) Acc-5 (↑) F1 score (↑) Corr (↑)
Full data 0.295±0.005 82.11±0.68 75.08±0.68 52.51±1.21 82.17±0.69 74.60±0.63
CoreSet 0.326±0.007 80.11±1.79 69.99±1.22 47.71±0.97 80.20±1.77 69.76±1.39
GCNAL 0.322±0.012 79.85±1.26 70.89±2.05 49.52±2.31 79.89±1.31 69.32±2.01
DBAL 0.326±0.002 79.75±0.74 71.30±0.82 49.07±1.41 79.85±0.73 69.12±0.40
Random 0.329±0.010 79.98±1.49 70.25±1.07 48.00±1.23 80.03±1.48 69.15±1.53
GRACE 0.319±0.007 81.17±1.70 72.86±1.57 50.52±1.66 81.26±1.67 70.75±1.19

Table 2: Ablation studies based on different variants of
GRACE over SIMSv2. The best results are highlighted in bold.

Methods MAE Acc-2 Acc-3 Acc-5 F1 score Corr

GRACE-I 0.346 78.88 67.50 45.74 78.50 69.22
GRACE-IR 0.323 79.95 71.47 48.58 80.05 70.00
GRACE-IRE 0.319 81.17 72.86 50.52 81.26 70.75

than 2.5% across Acc-3, Acc-5, F1 score, and Corr metrics compared
to the full data, especially with a difference of only 0.94% observed
in the Acc-2 metric. This highlights the ability of our method to
achieve comparable performance using only a few labeled samples,
approximately 30%.

Classification Task on CHERMA. Figure 5 presents the com-
parison results of the sentiment classification task. On the CHERMA
dataset, our method achieves a 65.17% seven-class accuracy with
5000 samples, about 30% of the training set, compared to 69.86%
with the full training set. As depicted in the figure, our method
with 4,000 samples significantly outperforms Random, BALD, and
BADGE, which saves 4,000 (20%) annotations in a multi-task
framework. Similar to the regression task, our method consistently
outperforms other methods throughout the active learning phase,
demonstrating its generalizability and task-agnostic nature. Com-
pared to Random sampling, which has an accuracy of 62.05%, our
method shows a notable improvement, demonstrating greater po-
tential when applied to large datasets. While BMMAL achieves
64.62% accuracy by balancing multiple modalities, it cannot surpass
our method due to its tendency to select outliers, which we mitigate
through carefully designed criteria.

5 Further Analysis
5.1 Ablation Studies
Effectiveness of Criteria.We conduct ablation experiments on the
proposed three criteria, informativeness (I), representativeness (R),
and easiness (E). The results of the ablation experiments shown in
Table 2 illustrate the impact of different criteria on SIMSv2. GRACE-
I and GRACE-IR are variants of GRACE in which sample scores are
calculated using only informativeness or only informativeness and
representativeness criteria. It can be observed that GRACE-IRE, the
original GRACE, yields the highest performance on all evaluation
metrics, with a 2.29% and 1.22% improvement in Acc-2 over the

Figure 6: Ablation studies with respect to different values
of 𝛼 and 𝛼𝑑 on SIMSv2. The lowest MAE and highest Acc-2
values are highlighted in bold.

other variants. It can also be noticed that the performance is even
lower than Random sampling as shown in Table 1 when only the
informativeness criterion is considered. This is because the informa-
tiveness criterion picks out a lot of redundant samples and prefers
difficult samples with high uncertainty, which is not conducive to
learning in the early stages of the model. The findings emphasize
the importance of considering three criteria simultaneously.

Effectiveness of Curriculum Enhancement. To investigate
the effect of different levels of curriculum learning enhancement
on the model, we conduct experiments varying the values of 𝛼 and
𝛼𝑑 in Figure 6. Specifically, for the experiments concerning 𝛼 , we
set 𝛼𝑑 to be 0.1 times the value of 𝛼 . On the other hand, we fix 𝛼
at a value of 1 when studying 𝛼𝑑 . From Figure 6(a), it is evident
that increasing or decreasing the value of 𝛼 relative to 1 leads to a
decline in both the MAE and Acc-2 metrics. We hypothesize that
this effect arises due to an excessive emphasis on samples with
high modality consistency, which diminishes the role of representa-
tiveness and informativeness. Conversely, when the weight of the
easiness criterion is too small, the influence of curriculum enhance-
ment on the model declines, resulting in performance limitations.
In Figure 6(b), we observe that the performances remain highly
similar across multiple curriculum decay 𝛼𝑑 values. This finding
suggests that a slight change in the rate of sample difficulty would
not significantly impact the overall curriculum learning progress.
Consequently, we select the value of 0.1 for 𝛼𝑑 , considering it a
reasonable choice without loss of generality.
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Figure 7: Display of cases and easiness scores on SIMSv2. The top 5% sample shows modality consistency and reversely the
bottom 5% samples show modality conflict. Below the visual images of each case are the text, the tone of the audio, and four
sentiment labels.

Figure 8: Visualization of samples from different variants of
GRACE on SIMSv2 dataset. The two kinds of dots represent
positive and negative sentiment samples respectively, and
the blue crosses represent selected samples at the 5th cycle.

5.2 Case Analysis
We randomly select four samples from the top 5% and bottom 5% ac-
cording to the easiness criterion, as shown in Figure 7. It is evident
that the samples in the top 5% exhibit a high similarity between
their unimodal and multimodal sentiments, with consistent positive
or negative emotions. In contrast, the samples in the bottom 5%
present significant modality conflicts, displaying lower consistency
among modalities. Specifically, for the first sample on the left, the
text modality expresses agreement with a positive sentiment, while
the tone of the speaker conveys excitement, and the visual cues
show a noticeable smile. Therefore, all four labels indicate high
positive values, resulting in an easiness criterion score of 0.938. Con-
versely, the second sample on the right represents a typical example
of mixed sentiments. Although the speaker appears visually smil-
ing, the textual content and tone convey negative emotions. Such
modality conflicts can significantly confuse the network, making it
a challenging sample to process.

5.3 Data Distribution Visualization
To further analyze the distribution of selected samples for different
variants, we visualize the selected samples by tSNE embeddings
in Figure 8. As shown in Figure 8(a), it is evident that when con-
sidering only informativeness, the model prefers samples located

near the decision boundary. These samples exhibit higher uncer-
tainty, making them challenging to learn in the early stages of the
network. Additionally, samples appear to overlap closely in some
cases. These redundancies waste the annotation budget and provide
a tiny performance boost to the task model. In Figure 8(b), when
both informativeness and representativeness criteria are utilized
together, the selected sample distribution becomes more uniform,
with minimal redundancy. This observation supports our previous
statement that combining the representativeness criterion leads
to a more even distribution. Nevertheless, it is important to note
that many samples far away from others, potentially outliers, are
selected as candidates. Subsequently, Figure 8(c) shows that the
introduction of the easiness criterion enables the model not only to
achieve a more uniform distribution in the feature space but also to
reduce the selection of potential outliers, thereby mitigating their
impact on the model.

6 Conclusion
In this paper, we proposed GRACE, a novel gradient-based active
learning method with curriculum enhancement, designed for multi-
modal multi-task sentiment analysis. To identify valuable samples
for selection, we develop two estimators that assess active value
and sample difficulty based on three criteria: informativeness, rep-
resentativeness, and easiness. These criteria leverage the gradient
embeddings of both unimodal and multimodal tasks, with a partic-
ular emphasis on the multimodal aspect. Enhanced by curriculum
learning, GRACE dynamically adjusts the weight between active
value and sample difficulty, ensuring that the task model learns
progressively from easy to hard. The calculation of sample scores
through these three criteria mitigates common issues in active
learning such as sample redundancy and outliers. Comprehensive
experiments on multimodal sentiment classification and regres-
sion tasks demonstrate the effectiveness of GRACE. However, there
remains room for improvement in our approach, such as introduc-
ing an adaptive adjustment strategy for the curriculum factor or
employing more sophisticated calculation methods for the crite-
ria. Overall, our approach offers an effective solution to reduce
annotation costs for MSA while maintaining model accuracy.
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