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Abstract

Cooperative multi-agent reinforcement learning (MARL) demands principled mech-
anisms to align heterogeneous policies while preserving the capacity for specialized
behavior. We introduce a novel consensus framework that defines the team strat-
egy as the entropic-regularized p-Wasserstein barycenter of agents’ joint state—action
visitation measures. By augmenting each agent’s policy objective with a soft penalty
proportional to its Sinkhorn divergence from this barycenter, the proposed approach
encourages coherent group behavior without enforcing rigid parameter sharing. We
derive an algorithm that alternates between Sinkhorn-barycenter computation and
policy-gradient updates, and we prove that under standard Lipschitz and compact-
ness assumptions the maximal pairwise policy discrepancy contracts at a geometric
rate. Empirical evaluation for a cooperative navigation case study demonstrates
that our OT-barycenter consensus outperforms independent learners baseline in
convergence speed and final coordination success.

1 Introduction

The success of cooperative multi-agent reinforcement learning (MARL) is based on effective co-
ordination among agents whose individual decision making processes induce distinct probability
distributions in states and actions Yuan et al. (2023). In domains as varied as autonomous vehicle
platooning, distributed sensor networks, and multi-robot manipulation, misalignment of agent poli-
cies can lead to suboptimal team performance, brittle coordination, and slow convergence Busoniu
et al. (2008). Classical approaches to MARL coordination, such as shared reward shaping, central-
ized critics, or hard parameter sharing, either incur prohibitive communication and computation
costs or overly constrain agent heterogeneity, preventing the emergence of specialized roles Devlin
& Kudenko (2016); Yi et al. (2022); Lyu et al. (2023); Zhao et al. (2023); Zhong et al. (2024);
Chalkiadakis & Boutilier (2003).

Optimal transport (OT) is a powerful mathematical framework for comparing and interpolating
probability distributions, offering a geometrically intuitive way to measure discrepancies and fuse
information Villani et al. (2009); Peyré et al. (2019). Its application in single agent reinforcement
learning has yielded significant advances, particularly in areas such as distributional RL, offline
RL Omura et al., safe RL Baheri et al. (2025); Shahrooei & Baheri (2025), and inverse RL Baheri
(2023). The Wasserstein distance, a key OT metric, is particularly appealing as it provides a smooth
and meaningful measure of divergence even between distributions with non-overlapping supports,
a common scenario in policy space. Furthermore, the development of entropic regularization and
the associated Sinkhorn divergence has led to computationally efficient, differentiable algorithms
for approximating Wasserstein distances, making them amenable to gradient-based optimization in
deep learning settings Cuturi (2013). Despite these advances, the potential of OT to orchestrate
cooperation in MARL has remained largely unexplored Baheri & Kochenderfer (2024). Existing
OT-based methods focus primarily on aligning belief or value distributions in single-agent or com-
petitive settings, but do not exploit the notion of a team “consensus” policy as an explicit barycenter
of individual behaviors.
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To address this gap, we propose a novel consensus mechanism in which the team’s collective strategy
is formalized as the entropic-regularized Wasserstein barycenter of all agents’ visitation measures over
the joint state—action space. Rather than enforcing identical weights or centralized value estimation,
each agent incurs a soft penalty proportional to its Wasserstein distance from this barycenter, thereby
allowing agents to retain beneficial specialization while still gravitating toward coherent group be-
havior. We develop an algorithm that alternates between (i) computing the Sinkhorn barycenter
and (ii) performing policy gradient updates augmented with a consensus regularizer. We analyze
the resulting dynamics and prove that, under standard Lipschitz and compactness assumptions, the
maximal pairwise Sinkhorn divergence contracts at a geometric rate, guaranteeing convergence to a
common consensus distribution.

Paper Organization. The remainder of this paper is organized as follows. Section 2 provides
essential background on optimal transport. In Section 3, we introduce our Wasserstein-barycenter
consensus framework and present theoretical guarantees. Section 4 evaluates our method on a
cooperative multi-agent navigation task, comparing it against an independent learning baseline.
Finally, Section 5 concludes the paper with a summary of our contributions and outlines potential
directions for future work.

2 Preliminaries: Optimal Transport

OT provides tools to compare probability distributions. The p-Wasserstein distance measures the
cost of transporting mass between two distributions. We focus on its entropic-regularized version, the
Sinkhorn divergence W, ¢ (where € > 0 is the regularization parameter), which offers computational
benefits. A key concept is the Wasserstein barycenter, p* , which is a measure that minimizes the

R . N . .
average p-Wasserstein distance to a set of given measures {y;};_,. Formally, the entropic-regularized
p-Wasserstein barycenter is the solution to:

N

—arg min i) +eKL
pi=arg min o Z o (s i) + €K L(palm)

where K'L(-||n) is a Kullback-Leibler divergence term with respect to a reference measure 7. This
paper leverages the Sinkhorn barycenter as a consensus point for agent policies in MARL.

3 Methodological Approach

To induce consensus via the Wasserstein barycenter, we begin by modeling each agent’s stochastic
policy as a probability measure in the joint state—action space X = SxA. Concretely, let 7; (a | s;6;)
denote agent i s policy parameterized by 6;, and let ,u ) be its empirical visitation distribution over
X at iteration t. We assume X is endowed with a ground metric d ((s,a),(s',a")) = ||s — &, +

Blla —a'||y, where 8 > 0 balances state and action discrepancies. At each iteration, we seek a
consensus measure ;) that minimizes the average entropic-regularized p -Wasserstein cost to the

individual { (t )}4 . Formally, the barycenter is obtained by solving
=1

7 arg#énplg()NZ 2o (o) + e KL(pln),

where W), . is the Sinkhorn divergence with entropic regularization parameter € > 0,KL(:||n) is a
reference-measure penalty ensuring absolute continuity with respect to a base measure 7, and P(X)
denotes the space of probability measures on X. We compute p*(*) via iterative Sinkhorn-barycenter
updates: initializing a dual potential vector u(?),v(?) on a discretization of X', we alternate
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where K. = e~ P/¢ and D;; = d(sr:i,scj)p. Convergence of these updates to the unique Sinkhorn
barycenter is guaranteed under compactness of X and strictly positive €.

Once p*® is obtained, each agent’s parameters 6; are updated by performing a gradient ascent step
on a regularized objective

Ji(0;) =E ®[R(s,a)] — /\I/V;g75 (Iu,l(,t)’ ,LL*(t))

= Bsia)onl

where R(s,a) is the common team reward and A > 0 controls the strength of consensus enforcement.
The gradient of the Wasserstein term with respect to 6; is calculated by differentiating through the

®

transport plan: if 4, is the optimal coupling between ,ugt) and p*()| then
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which is estimated by sampling from p; ’. The complete update rule thus reads

9§t+1) _ 9§t) +a (@eiE[R] - AﬁgiW,ﬁs)

with @ > 0 the learning rate. To ensure computational tractability, support points for ul(.t) and

p*®) are drawn by mini-batch sampling, and sliced-Wasserstein approximations are used to reduce
complexity Bonneel et al. (2015). In addition, adaptive scheduling of A and ¢ is used to warm
start consensus (large \) before relaxing. Specifically, the consensus weight A is initialized at a
high value to encourage swift policy contraction and is gradually annealed to permit fine-grained
individual behaviors near convergence. Concurrently, the entropic regularizer ¢ is decreased over
time, ensuring that early Sinkhorn iterations remain smooth and stable, while later iterations sharpen
the barycenter estimate. Algorithm 1 provides an outline of the proposed procedure.

Theorem 3.1 (Convergence to Consensus). Let {’/Tz(t)}fil be the sequence of stochastic policies of
N cooperative agents, updated according to

oY =6l + a(Ve,;]EuEﬂ [R] — AVeiW;,),s(Ml('t)a M*(t))),

(t)

i
reqularized p-Wasserstein barycenter of {pgt)}f\il. Assume that the state—action space is compact,
all reward functions are bounded and Lipschitz, and the policy-gradient operators are L—Lipschitz in
the induced distributions. If the step size a > 0 and consensus weight X\ > 0 satisfy

where py" is the empirical visitation distribution of agent i at iteration t, and p*®) is the entropic-

k=1—-alC <1
for a constant C > 0 depending on the entropic reqularizer and Lipschitz constants, then defining

DY = max Wy (", "),
z!]

we have DAY < £ DWW and hence DY — 0 geometrically as t — oo, i.e. all policies converge to
a common consensus distribution.
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Algorithm 1 Wasserstein-Barycenter Consensus for Cooperative MARL

Require: Number of agents IV, entropic regularization €, consensus weight A, learning rate «, metric
don S x A
1: Initialize policy parameters {950) N
2: fort=0,1,2,... do
3: Collect Trajectories:

4 for i=1to N do
5 Execute m;(- | 050) to sample trajectories
6 Estimate empirical visitation measure ugt) over § x A
7 Compute Sinkhorn Barycenter:
8 Initialize dual potentials u <— 1, v <1
9 repeat

n
10: U <

> exp(—D/e) Vi
~1/N

11: v (Hf\;l exp(—D/a)Tu)
12: until convergence
13: Recover barycenter measure p*(*) via u, v

14: Policy Update:

15: for i =1to N do

16: Compute reward gradient Vg, E[R]
17: Compute OT gradient

Vo, WP (0, i ®) = / d(z,y)P Vo, logmi(a | s;6;) dv;

18: Update
P a(@ei E[R] — A Vg, W,ﬁs)

Proof. Let u*® denote the Sinkhorn barycenter of {,ugt)}. By the strong convexity of the entropic-
regularized OT problem and the Lipschitz continuity of the policy-gradient mapping, there exists
C > 0 such that a gradient step with weight a\ contracts each agent’s distance to the barycenter:

Wp,a (’u(_t+1), ’u*(t)) < (1 _ Oé/\C) Wp@ (/Jgt), 'u*(t))_

(2

By the triangle inequality for W, .,

We (0, D) < W (8, 1O 4 W (@, ).
Applying the contraction bound to each term on the right-hand side and noting that both
Wpys(u(-t), w®) and W, . (1", *®) are bounded above by D® | we obtain

? J

Wp,s(ﬂ(t+1)’ ’u(t—O—l)) < 2(1 _ Ol)\C) D(t)

i J
Setting kK = 2(1 — aAC) < 1 yields

maXWp,E(MEt+1)7 M§t+1)) < KJD(t),
1]

and by induction D) < xt D) — 0, establishing geometric convergence of all agent policies to the
same distribution. O

Theorem 3.2 (Fast-rate Sinkhorn barycentre). Let (X, d) be a compact metric space with diameter
D and fix p € [1,2]. For each agent i < N assume the data-generating measure p; admits a
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Policy Action Maps
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Figure 1: Policy Action Maps comparing Baseline (Independent) Policy with Wasserstein-Barycenter
Consensus Policy. Color coding indicates different actions: red (right), blue (left), green (up), orange
(down), and gray (stay). Stars indicate target positions.

density p; satisfying 0 < p < pi(z) < p < oo for all x € X, and that the entropic potential
[ Zf\il Wp.e(t, i) s Amin-strongly convex for every e € (0, ).

Draw m IID samples from each p;, form the empirical measures [i;, and choose the adaptive regu-

larization level
DP

m .

Em =

Let p* = argmin, + vazl Wh.e (s i) and p* = argmin,, + Zf;l Wh.e,. (1, fi;). Then for every
§ € (0,1), with probability at least 1 — 0,

. C log(2N/s
Wp,!:'m(/'l’ ’l’l’) < L/)

~ Auin m

: (1)

where C'> 0 depends only on p, D, p and p. Consequently, an excess risk of n > 0 is achieved with
m = O(% log %)

Proof sketch. (i) A bounded-difference argument shows that altering any single sample changes each
entropic cost by at most D?/(Nme,,) = O(m~2), yielding McDiarmid-type deviations O(1/m). (i)
A union-and-net step makes the bound uniform over P(X). (iii) Amin-strong convexity converts the
uniform deviation into the same 1/m rate for the barycentre itself, producing (1). Full details are
provided in Appendix A.1. OJ

4 Experimental Results

We evaluate the proposed Wasserstein-barycenter consensus approach through a simple experiment
on cooperative multi-agent tasks. The environment consists of N = 3 agents operating in a con-
tinuous two-dimensional space. Each agent is assigned a target location and must navigate toward



Under review for the Reinforcement Learning Conference (RLC)

Agent Policy Distributions Across States
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Figure 2: Comparison of action probability distributions between baseline (Independent PPO)
agents (top) and Wasserstein-Barycenter Consensus (WBC) agents (bottom) across five represen-
tative states. Cell values indicate the probability of selecting each action in the given state, with
higher probabilities shown in brighter colors.

it while avoiding collisions with other agents. The state space for each agent ¢ comprises its own
position p; € R?, its target position t; € R?, and the positions of all other agents {p; }#i. The
action space is discrete, consisting of five actions: A = { stay, right, left, up, down }. At each
time step, agents receive rewards r; = —d (Pi, t;) — >4 ¢ij, Where d(-,-) is the Euclidean distance
and ¢;; is a collision penalty incurred when agents i and j are within a threshold distance. This
reward structure incentivizes both target-reaching and collision avoidance. Agents are implemented
as policy networks with parameters 6; that map states to action probabilities. We compare our
Wasserstein-barycenter consensus approach against the Independent PPO (IPPO) baseline, which
serves as a representative non-consensus multi-agent method. The WBC implementation uses an
entropic regularization parameter ¢ = 0.1 and consensus weight A = 0.5. The ground metric balanc-
ing parameter 5 = 0.8 determines the relative importance of state versus action discrepancies in the
computation of the Wasserstein distance.

Figure 1 illustrates the comparison of learned policies between our WBC approach and the IPPO
baseline. Each panel depicts a 2D grid where colors represent the most likely action taken at
each position in the state space, holding other state variables constant (i.e., fixing target position
and other agents’ positions). The yellow star indicates the target location. Omne could see that
the WBC policy (left panel) exhibits a highly structured and coherent spatial organization, with
clearly delineated regions corresponding to different actions. The action selection follows an intuitive
pattern relative to the target location: "right" actions (red) dominate the left side of the grid, "left"
actions (blue) predominate on the right side, and "up" actions (green) are prevalent in the lower
portion. This spatial organization creates an efficient flow field that guides agents toward the target
while maintaining consistent behavior across the team. In contrast, the baseline policy (right panel)
displays a fragmented and less coherent structure. Although some broad patterns are discernible,
the policy contains numerous small, isolated patches of inconsistent actions that disrupt the overall
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Method Comparison: Cooperative Navigation Task
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Figure 3: Average team reward over training iterations comparing WBC against baseline methods.
WBC achieves superior convergence speed and final performance.

navigation flow. This spatial incoherence is indicative of the lack of coordination between agents
learning independently, resulting in a strategy that is less effective for team-based navigation.

Figure 2 presents the action probability distributions for each agent in a set of representative states,
visualizing the degree of policy alignment achieved by each method. The baseline agents exhibit
high variance in their action preferences, with substantially different probability distributions across
identical states. For instance, in State 1, Agent 1 assigns highest probability (0.42) to "right" actions,
Agent 2 strongly prefers "stay" (0.63), and Agent 3 favors "up" (0.58). This divergence in action
preferences illustrates the coordination failure that occurs when agents learn independently without
a consensus mechanism. In contrast, WBC-trained agents display remarkably consistent action
probability distributions across all three agents. For State 1, all three agents assign their highest
probability to the 'right" action (0.51, 0.56, and 0.60, respectively), while for State 2, they all
prioritize the "left" action. This alignment confirms the theoretical guarantee of policy convergence
provided by our consensus mechanism. Figure 3 demonstrates that WBC achieves superior final
performance compared to baseline methods, with approximately 2x improvement over IPPO and
50% improvement over KL-regularized approaches.

Limitations. Despite the theoretical appeal and encouraging preliminary results, the proposed
approach is subject to several limitations. The fast-rate guarantee hinges on strong-convexity and
density-boundedness assumptions that seldom hold in high-dimensional continuous control tasks.
The entropic Sinkhorn step scales quadratically with support size, making the algorithm memory-
and time-intensive when agents collect large, uncompressed replay buffers. Performance is cur-
rently demonstrated on a single small-scale grid world, so generalizability to standard multi-agent
benchmarks (e.g., SMAC, MPE) remains unverified; and finally, the proposed method introduces
additional hyper-parameters (adaptive ¢ schedule, consensus weight A, metric temperature ) whose
sensitivity has not yet been systematically analyzed.

5 Conclusion

In this work, we proposed an approach to cooperative MARL by leveraging the geometry of optimal
transport to enforce a soft consensus among agent policies. Modeling the team’s collective strategy
as the entropic-regularized Wasserstein barycenter provides a mathematically grounded alternative
to conventional coordination techniques. Through a proof-of-concept experiment, we have shown
that OT-barycenter consensus accelerates learning and achieves superior coverage in a multi-agent
navigation task compared to KL-based and parameter-sharing baselines. Future directions include
hierarchical barycenters for sub-team formation, adaptive regularization schedules to foster special-
ization post-consensus, and application to high-dimensional continuous-control benchmarks. We
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anticipate that geometry-aware consensus will open new avenues for robust, efficient coordination
in complex multi-agent systems.
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6 Appendix

A Deferred Proofs

A.1 Proof of Theorem 3.2

Proof. Throughout the proof we abbreviate F(u) := %Zfil Wye, (i) and  F(p) =
+ Zf\il Wy.e,. (1, fi;), and recall that e, = DP/m.

Step 1. Bounded differences. Fix any p€ P(X) and replace a single sample X; ; in the data

(i

(,j ~ ;. Writing fi, 9) for the perturbed empirical measure,

3

set by an independent copy X

. Nl 1 i,j
|[B(p) = FOD ()] = 55 [Whe,, () = Wi, (1, 15)].

Because only a mass 1/m is moved and the ground cost is bounded by DP, the entropic cost varies
by at most DP/m (see, e.g., Lemma 2.1 in Genevay et al. (2018)). Hence

. s DP
Fu) = FOD ()] <A = ——.
|F () ()] < N
With S = N m samples in total, McDiarmid’s inequality yields for every ¢ > 0

2 2Nmt2>

PH|E(n) — F(u)| 1] < 2exp(~ o 2.

gaz) = 2o(-

(2)
Step 2. Uniform concentration via an e—net. Let v > 0 be chosen later and pick an y—net
{u(k)}kMgl of (P(X),W,). Standard metric-entropy bounds for probability measures on a compact
d-dimensional space give log M., < Cy~y~ for a constant Cyy (Villani et al., 2009, Th. 6.18). Applying
(A.1) to each p®) and taking a union bound gives, with probability at least 1 — §/2,

. DP

max |F(u™) — F(u®)| <
max [P = Fe] =~
Next, for arbitrary u € P(X) choose k with Wp(u,u(k)) < ~. Using the Lipschitz property
Wy e(p,v) — Wy (1, V)] < DPWy(p, 1) (Lemma 2.1 of Genevay et al. (2018)) and averaging over
i yields |F(p) — F(u®)|, |F(u) — F(u™®)| < DP~. Combining this with (A.2) shows that the event

\/ Card +log(4/5). (A.2)

N DP
E:=1¢ sup |F(u)-—F < 2DPy + Cyvy—d+log(4/6
{ s 1FG) = Fol 207+~ Cantlogt4/0)}

has probability at least 1 —§. Set v = m ™! to balance the two terms; since =~
obtain

d—ma and m > 2 we

C; log(4N/5)

A.
- on &, (A.3)

sup |F(p) = F(p)| <
o
for a constant C; depending on d and DP.

Step 3. Stability of the barycentre map. Because F' is Ay, —strongly convex,
F(p) = F(") + Amin Wpee,, (1, 1%) - Vi € P(X). (A4)
Let A :=sup, |F'(1) — F(u)|. By optimality of p* for F, F(p*) < F(u*), so F(p*) < F(i*) + A <

A~

F(p*)+ A < F(p*) + 2A. Plugging this into (A.4) gives

A~k * ~k * QA
Amin Wpe,, (07, p07) < 28 = W, (0" p") < N
Inserting the bound A < C log(4N/é&)/m from (A.3) completes the proof with C' = 2C}. O
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