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Abstract

The automated vulnerability repair technology
aims to reduce security risks for end users
by repairing vulnerable code. Currently, ma-
chine translation-based models are becoming
the mainstream approach in the field of vulner-
ability repair, focusing on modeling the condi-
tional probability distribution functions of the
patch subspace. However, the distribution of
repair patches is complex and unknown, and
excessive complexity makes it difficult for tra-
ditional models to effectively fit unknown data.
To address this, this paper introduces a novel
automated vulnerability repair method based on
diffusion models, called DiffusionAVR. Com-
pared to traditional models, DiffusionAVR pro-
gressively adds noise, allowing the complex
distribution of repair patch data to gradually ap-
proximate a standard Gaussian distribution, and
then achieves the process of going from simple
to complex distribution through denoising and
reverse modeling. In this context, the model
can more easily learn the characteristics of vul-
nerability patch distributions, significantly im-
proving the success rate of repairing unknown
code. Furthermore, this paper optimizes the
loss function in the traditional diffusion model
for repair tasks, significantly enhancing repair
accuracy. In tests involving 8,482 real vulnera-
bility cases, DiffusionAVR achieved a perfect
repair rate in single predictions that was 14%
higher than existing Transformer-based models,
with a generation speed increase of 20 times.

1 Introduction

As the scale and complexity of software systems
continue to increase, the number of software vulner-
abilities is rising at an unprecedented rate, present-
ing a severe challenge to global cybersecurity. Soft-
ware vulnerabilities refer to code defects or security
weaknesses that allow attackers to bypass normal
security mechanisms, perform unauthorized oper-
ations or access, and even cause system crashes.

According to statistics from NDV!, the number
of vulnerabilities has been climbing year by year,
forcing engineers to spend a significant amount of
time and resources on repairs. However, traditional
manual repair methods are inefficient and struggle
to meet the growing demand.

Vulnerability detection is a prerequisite for vul-
nerability repair, and deep learning has been widely
applied in this area Recently (Chakraborty et al.,
2021), automatic vulnerability repair (AVR) meth-
ods have been extensively used to address the grow-
ing cybersecurity threat (Fu et al., 2024). By learn-
ing the mapping between vulnerable code and cor-
responding repair patches, these models generate
patches for new vulnerabilities, accelerating the
manual repair process(Britton et al., 2012; Mu
et al., 2018).

Currently, AVR methods based on the Trans-
former (Vaswani et al., 2017) architecture have
shown certain advantages in predicting vulnerabili-
ties. For example, VulRepair (Fu et al., 2022), by
fine-tuning the pre-trained CodeT5 model (Wang
etal., 2021), can correctly predict 30% of the repair
patches in the test set; in contrast, decoder-only ar-
chitecture models like ChatGPT-4 have failed to
successfully predict any repair patches (Fu et al.,
2023). Previous methods can be summarized as
learning a conditional generation model for repair
patches. As shown in Figure 1.a, VulRepair is
dedicated to modeling the conditional probability
distribution of repair patches for specific vulnera-
ble functions. However, the distribution of repair
patches is complex and unknown, and directly mod-
eling such a complex distribution severely impacts
the model’s performance, leading to poor results
on unknown data (i.e., data outside the training
set). Additionally, the fine-tuning scheme heav-
ily relies on pre-trained models, which, while pro-
viding some performance improvement, also in-
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troduces limitations in adaptability. For example,
the CodeT5 model based on the Transformer ar-
chitecture restricts text length during pre-training,
and the fine-tuned CodeT5 model cannot handle
longer vulnerability codes or generate longer repair
patches. Currently, the best-performing model can
only accept vulnerability code lengths of 512 to-
kens and generates repair code that does not exceed
256 tokens.

(a) (b)

Figure 1: (a) Traditional vulnerability remediation meth-
ods. (b) Diffusion-based vulnerability remediation meth-
ods.

Additionally, repair patches are generally highly
related to the source code and only require mod-
ifications to a portion of the code. For example,
as shown in Figure 2, the repair patch retains a
large amount of the original source code, removing
only a small part. However, existing models use
the decoder module to generate repair patches se-
quentially and calculate the attention between the
pre-generated tokens and the already generated to-
kens, which severely affects the model’s generation
speed.
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Figure 2: Example of Vulnerability Repair

Traditional fine-tuning methods focus on mod-
eling the conditional probability model of com-
plex distributions (Repaired patches) under another
complex distribution (vulnerability function). To
learn the characteristics of vulnerability patches
in complex distributions, this paper proposes an

automated vulnerability repair method based on
diffusion models—DiffusionAVR. DiffusionAVR
models the conditional probability of complex dis-
tributions (fix patches) under a simple Gaussian
distribution during the denoising process and in-
jects the fix patches as conditional information into
the denoising process. This allows the model to
learn the more essential distribution characteristics
of vulnerability patches. Additionally, we improve
the loss function of traditional diffusion models to
ensure the generation of high-precision fix patches.

As shown in Figure 1.b, DiffusionAVR gradu-
ally approaches a standard Gaussian distribution by
progressively adding noise to the complex distribu-
tion of repair patches, and subsequently achieves
the process of moving from a simple distribution
to a complex distribution through denoising and
reverse modeling. Compared to directly modeling
complex distributions, the model can more easily
learn the deep characteristics of the repair patch dis-
tribution, significantly improving the success rate
of repairing unknown code. To enable controllable
generation of repair patches, we map the vulnera-
bility patches to the same latent space as the repair
patches during the denoising process and inject this
as conditional information into the denoising pro-
cess. The trained model can start from any point
in the latent space that conforms to the Gaussian
distribution, using source code representations as
conditions. The model then iteratively denoises
the data, bringing it back to specific points in the
repair patch subspace to generate repair patches.
Experimental results indicate that in single-round
generation, DiffusionAVR achieved a perfect gen-
eration rate of 44.4%, which is 14.4% higher than
VulRepair and slightly above the 44% result from
its provision of 50 candidate patches.

Compared to Transformer-based models, Dif-
fusionVR’s denoising module uses a parallel gen-
eration Encoder-only structure. When generating
repair patches, this module does not need to incre-
mentally calculate the attention weights between
the generated tokens and the pre-generated tokens,
thereby improving the generation speed by approx-
imately 20 times.

In summary,we highlight the following contribu-
tions of our proposed DiffusionAVR

* Introducing Diffusion Models for Auto-
mated Vulnerability Repair: Compared to
existing Transformer-based methods, Diffu-
sionAVR can learn the more essential distri-



bution characteristics of vulnerability patches
by modeling the conditional probability dis-
tribution functions of complex vulnerability
patches under a simple Gaussian distribution.
This significantly improves the accuracy of
repair patch generation.

e Optimizing the Diffusion Model’s Loss
Function for Vulnerability Repair Tasks:
We propose a novel loss function specifically
tailored for automated vulnerability repair
tasks, improving model accuracy in generat-
ing repair patches and increasing adaptability
to complex code scenarios.

* Eliminating Dependency on Pre-Trained
Models to Optimize Generation Efficiency
and Accuracy: DiffusionAVR overcomes the
token length limitations of Transformer archi-
tectures, enabling it to handle more complex
repair scenarios. Through its parallel gener-
ation mechanism, DiffusionAVR achieves a
repair patch generation speed approximately
20 times faster than the best existing models,
with a 14% improvement in single-round per-
fect repair rates.

2 DiffusionAVR

In this section, we will provide a detailed introduc-
tion to the architecture of DiffusionAVR, which
is a diffusion-based automatic vulnerability repair
method that consists of three main parts: code rep-
resentation, forward noise injection, and backward
denoising. Finally, we will explain how to use the
trained DiffusionAVR to generate repair patches.

2.1 Code Representation

The purpose of code representation is to transform
code into a vectorized format, shifting the state
space of the code from discrete to continuous for
the subsequent diffusion process. The code repre-
sentation consists of two components: a subword
tokenization algorithm and an embedding layer.

¢ BPE Subword Tokenization. BPE (Sennrich,
2015) can split uncommon tokens into mean-
ingful subwords while preserving the format
of common words. For example, the variable
name [unix_dgram_peer_wake_disconnect]
can be represented as [un, ix, d, gram, peer,
wake, dis, connect]. BPE not only accom-
modates long variable names but also con-
strains the vocabulary size to prevent exces-

sive vocabulary leading to sparse semantic
information. In DiffusionAVR, we use the
BPE pre-trained by Feng et al. (Feng et al.,
2020) on CodeSearchNet (CSN) (Husain et al.,
2019), hereinafter referred to as CodeBERT
Tokenization. The tokenization algorithm of
CodeBERT is based on BERT’s WordPiece
(Wu, 2016) and optimizes for the characteris-
tics of both code and natural language. This
paper retains the four special subwords added
in VulRepair: [“<StartLoc>" ,“<EndLoc>"
,“<ModStart>" ,“<ModEnd>"]. The use of
BPE ensures the model’s ability to handle un-
seen words and constrains the vocabulary size.

* Embedding Layer. After the source code is
processed by the BPE algorithm, it is trans-
formed from the original long text into multi-
ple independent subword tokens. The mean-
ing of each token depends on its context (i.e.,
surrounding tokens) and its position within the
function. Therefore, it is necessary to capture
the context of the tokens and their positional
information. The purpose of this section is
to generate embedding vectors to capture the
semantic meaning of code tokens and their
positions within the function.

We generate a 1x768 embedding vector for each
token and combine them into an embedding ma-
trix to represent the relative dependencies between
the selected token and its surrounding tokens. To
capture the positional information of the tokens
in the code, we adopt the absolute position em-
beddings from BERT, which explicitly encode the
positional information of the tokens. To address the
token length limitation imposed by the pre-trained
model, both the embedding layer and position em-
beddings in DiffusionAVR are randomly initial-
ized and adjusted during training without using
any pre-trained parameters. As shown in Figure
3, the repair patches and vulnerability functions
share the same tokenization algorithm and embed-
ding layer, so their representation vectors X and
Y exist in the same vector space. This facilitates
the direct injection of Y as conditional information
into the denoising process during subsequent diffu-
sion, eliminating the need for additional alignment
operations.

2.2 Forward Noise Injection

Unlike traditional methods, after obtaining the rep-
resentation vectors X and Y for repair patches and
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Figure 3: Embedding Layer. (a) is the embedding vector
X for the repair patch, and (b) is the repair patch Y for
the vulnerability function.

vulnerability functions, DiffusionAVR does not di-
rectly model P(X | Y) . Instead, it first disrupts
X: gradually and iteratively adding Gaussian noise
to the repair patches in the training set, causing
them to “move out of or away" from the existing
subspace. This process can be represented by a
closed-form formula, which allows for the direct
calculation of noisy data at a specific time step
without the need for iterative noise addition.

Xt =vVouXo+ V1 —ayl (1)

Equation 1 represents the noise addition formula
for the repair patches, where X denotes the origi-
nal representation vector of the repair patches, oy
indicates the noise scale, and I is standard Gaus-
sian noise. The value of a; decreases as the time
step t increases, ranging from [0,1]. The longer
the time step, the greater the noise scale, causing
the disrupted representation vector of the repair
patches to become closer to the standard Gaussian
distribution.

At the end of the noise addition process, the re-
pair patches become completely unrecognizable.
The complex distribution is transformed into a sim-
ple Gaussian distribution, with each repair patch
being mapped to a space outside the data subspace.
In the forward process, there exists a simple condi-
tional probability distribution function P(X;|Xy)
that expresses the mapping from the original repair
patch to the external space, which can be described
by Equation 1.

2.3 Backward Denoising

The core idea of the denoising process is to iter-
atively reverse the damage inflicted on the repair
patches by the forward process. The reversal pro-
cess begins with the simple distribution X; gener-

ated by the forward process, which has the advan-
tage that we know how to sample a point from this
simple distribution. The goal of the reverse process
is to find the path back to the repair patch subspace,
that is, to model P(X|X};). However, the problem
lies in the fact that we can start from a point in this
“simple" space and advance along countless paths,
but only a small fraction of those paths can lead us
back to the repair patch subspace.

Therefore, at this stage, we need to use neural
networks to reverse fit the parameters of the condi-
tional probability distribution function P(Xy|X})
of the forward process. To achieve parallel gener-
ation of repair patches, DiffusionAVR adopts the
Bert (Kenton and Toutanova, 2019) architecture for
denoising. At the same time, to ensure the control-
lability of the generated repair patches, we need
to inject the corresponding vulnerability code as
conditioning information during the denoising pro-
cess. The specific approach is to concatenate the
vulnerability code representation vector Y gener-
ated during the code representation stage with the
vector X; generated during the noise-adding stage
to serve as the model input Z.
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Figure 4: Denoising Process

Figure 4 provides a detailed description of the
model architecture for the denoising process. The
model consists of 12 Transformer encoder blocks,
with each block starting with layer normalization
(Lei Ba et al., 2016), followed by a multi-head at-
tention layer (Li et al., 2018) and a feedforward
neural network. During the stepwise denoising
process, the self-attention mechanism calculates
the weights between various tokens in Z,,. Mean-
while, the undamaged vulnerability code informa-
tion is multiplied by the computed weights and
integrated into the damaged repair patch vector X4,
thereby injecting conditional information into the
mapping from X; to Xy. DiffusionAVR employs
timestep encoding, with the denoising model input
being Z,, augmented with positional and timestep
encodings. Unlike traditional diffusion models that



predict noise, DiffusionAVR directly predicts Zy
. Furthermore, to ensure the generation of high-
precision repair patches, we have improved the
common loss function used in text diffusion; the
original loss function is as follows:

ming Ly, = miny [Zthz 20 — fo (2, 8)|?
+[|EMB (w™) = fy (21, 1)]*
—log py (W™ | 29)]

2

Where Zj is formed by concatenating the vul-
nerability code Y and the patch X. The Lvy1p loss
minimizes the distance between Z( and the denois-
ing model’s output by calculating the mean squared
loss between the model output and the original Zj.
Gong et al. suggest that during the reconstruction
of Zy, the model learns the distributional relation-
ship between X and Y. However, in vulnerability
repair tasks that require precise patch generation,
an Ly1p loss based on Euclidean distance may lead
the model to generate tokens that are similar but
incorrect. Therefore, we compute the word prob-
ability of each vector in the predicted code patch
sequence Xg output by the denoising model us-
ing a linear layer, resulting in a probability vector
p aligned with the vocabulary length. This vec-
tor is then concatenated to form a matrix P where
P ¢ R™*¢ with n as the number of tokens and ¢ as
the vocabulary size. One-hot vectorize each token
in X as labels; we calculate the cross-entropy loss:

L=~ 3" Xilog (%) 3)
i=1

where C'is the vocabulary length, and 5(\1 e P.
Finally, the loss function used in DiffusionAVR is:

Lyvr = LviB + Ly “4)

The necessity of this additional loss for vulnera-
bility repair is discussed and verified in Appendix
A.

2.4 Generating Repair Patches

After being trained through the denoising process,
DiffusionAVR is able to learn how to map a simple
Gaussian distribution to the repair patch subspace.
During this process, the corresponding vulnerabil-
ity source code serves as conditioning information
in the mapping. Thus, the generation process be-
gins with a matrix of randomly sampled vectors
that conform to a Gaussian distribution, which is

then concatenated with the embedding matrix of
the vulnerability function. This undergoes iterative
denoising, ultimately resulting in a repair patch
corresponding to the input vulnerability function.

DiffusionAVR employs the diffusion ODE
method proposed by DPM-solver++ (Lu et al.,
2022) during the generation process. This method,
applied in DiffuSeq-v2 (Gong et al., 2023), signif-
icantly accelerates inference speed, using DDIM
(Zhang et al., 2022) to further accelerate the gener-
ation process and achieving results similar to 2000
steps with only 10 sampling steps.

We also experimented with an unaccelerated gen-
eration process, which required over 4 hours to gen-
erate 20 repair patches. This high time cost makes
the original diffusion method infeasible for vul-
nerability repair tasks. In contrast, with the ODE
method, generating 1,706 repair patches takes only
107 seconds, making the generation speed approx-
imately 20 times faster than other non-diffusion
methods.

3 Evalution

In this section, we present the baseline models used
for comparison, the dataset, and the experimental
setup.

3.1 Baseline Models

In recent years, the Transformer architecture has
been widely adopted for vulnerability repair. Vul-
Repair, proposed by Fu et al. (Fu et al., 2022),
achieved the highest perfect repair rate and pro-
vides reproducible code for VRepair and Code-
BERT, making comparison straightforward. There-
fore, we selected baseline models consistent with
those used by Fu et al. , as follows:

1. VulRepair (Fu et al., 2022): This model uses
CodeT5 (Wang et al., 2021) for vulnerabil-
ity repair. Based on the TS5 (Raffel et al.,
2020) text-to-text Transformer model, Vul-
Repair fine-tunes CodeT5 on a vulnerability
dataset in a fully parameterized manner.

2. VRepair (Chen et al., 2022): This standard
Transformer model is first trained on a patch
dataset and then fine-tuned on vulnerability-
related repair code.

3. CodeBERT (Feng et al., 2020): Developed by
Microsoft Research, this Transformer-based
model is a decoder-only variant similar to



BERT, pre-trained on CodeSearchNet (Hu-
sain et al., 2019). The version of Code-
BERT used in this study comprises 12 Trans-
former encoder blocks (CodeBERT) and a
six-layer Transformer decoder for generation
tasks. Hemmati et al. (Mashhadi and Hem-
mati, 2021) employed this CodeBERT model
with a stacked decoder for automated program
repair of Java vulnerabilities, achieving signif-
icantly better performance compared to RNN
models.

3.2 Dataset

We used the CVEFixes_BigVul vulnerability
dataset?, consistent with previous studies. This
dataset is available on Hugging Face, and we re-
tained 8,428 pairs of vulnerable functions and re-
pair patches without additional filtering.

To ensure accurate comparison with the baseline
models, we strictly adhered to the dataset prepro-
cessing methods provided by Chen et al. (Chen
et al., 2022). Each vulnerable function includes a
special label indicating its CWE type, with “<Start-
Loc>" and “<EndLoc>" tags marking the start and
end positions of the vulnerable code segments. Sim-
ilarly, the repair patches use “<ModStart>" and
“<ModEnd>" tags to denote the modified sections.
To prevent the tokenizer from splitting these spe-
cial tags, we explicitly added them to the tokenizer
vocabulary. These tags help the model focus on the
vulnerable code segments and the corresponding
repair content.

3.3 Experimental Setup

Following Fu et al. (Fu et al., 2022), we split the
dataset into 70% for training, 10% for validation,
and 20% for testing, ensuring that the test set ex-
actly matches the one used by Fu et al.

We implemented DiffusionAVR using the Trans-
formers (Wolf, 2019) and PyTorch (Collobert et al.,
2011) libraries. The Transformers library was used
to initialize BertEncoder for the denoising model,
and PyTorch handled computations during training,
including backpropagation and parameter optimiza-
tion. The model was trained on an NVIDIA A100
with Ubuntu 20.04 and CUDA 11.4.

We initialized the denoising model using the
configuration file from CodeBERT, increasing the
maximum position encoding length from 512 to
768 and excluding any pre-trained weights.

2h'ctps ://huggingface.co/datasets/MickyMike/
cvefixes_bigvul

3.4 Evaluation Metrics

We used the percentage of perfect predictions
(%pp) to assess the model’s accuracy in gener-
ating software vulnerability repairs. This metric
measures how closely the generated repair patch
matches the manually created patch.

4 Experimental Result

We conducted a detailed evaluation of Diffusion-
AVR and baseline models through experiments to
address the following four research questions:

1. RQ1: What is the accuracy of DiffusionAVR
in generating software vulnerability repairs?

2. RQ2: What is the time cost of DiffusionAVR?

3. RQ3: How do sampling steps affect Diffu-
sionAVR’s generation capability?

4.1 RQI1: What is the accuracy of
DiffusionAVR in generating software
vulnerability repairs?

We compared DiffusionAVR with baseline models
using configurations provided by Fu et al. Diffu-
sionAVR’s inference model is based on an encoder-
only architecture that supports parallel outputs but
does not support beam search; therefore, we gener-
ated only a single candidate vulnerability patch in
this study.

Table 1 shows the superiority of DiffusionAVR;
compared to VulRepair, it has achieved a 14.4%
improvement in %pp on the same dataset, and it
also significantly outperforms all models based on
the Transformer architecture. Unlike VulRepair,
DiffusionAVR only utilizes the Encoder part, re-
sulting in a reduction of model parameters by half.
Traditional Transformer architectures extract latent
space vectors from vulnerability code using atten-
tion mechanisms and use a Decoder to generate
the corresponding sequence, establishing a map-
ping relationship between vulnerability code and
vulnerability repair code. However, the existing
vulnerability repair dataset is too small (only 8482
samples), and the cost of collecting high-quality
data is excessively high, making it difficult for
all Transformer-based automatic vulnerability re-
pair methods to model the conditional probability
of complex distributions (repair code) under an-
other complex distribution (vulnerability patches)
in practical applications.
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Table 1: Performance Metrics and Generation Times of
DiffusionAVR and Baseline Models.

DiffusionAVR  VulRepair CodeBERT VRepair

%opp 44.4% 30% 18% 21%
IT(ms) 167 2356 2785 1987

DiffusionAVR, using a limited dataset, gradually
transfers the repair patch from the original distribu-
tion space to a simple Gaussian distribution through
forward noise addition, and then models the pro-
cess of restoring the vulnerability patch from the
Gaussian distribution. We can restore the vulnera-
bility patch starting from any sample that conforms
to a Gaussian distribution; therefore, this modeling
approach of first disrupting and then restoring can
learn a more intrinsic distribution on a limited set of
vulnerability patches, achieving stronger structural
generalization ability.

4.2 RQ2: What is the Time Cost of
DiffusionAVR?

VulRepair, which employs a beam search algorithm
(Freitag and Al-Onaizan, 2017), achieves an accu-
racy rate of 44% with a 50-round search. However,
beam search primarily enhances output diversity,
and generating 50 candidate repair codes requires
manual screening, increasing labor and time costs.
This additional effort makes it less suitable for prac-
tical deployment in automated vulnerability repair.
In this study, we consider time cost as one of the
model evaluation criteria. By setting the beam
search size to 1, we compare the time required for
each baseline model and DiffusionAVR to gener-
ate an equal number of candidate repair patches.
Results are shown in Table 1.

DiffusionAVR not only achieves the highest per-
fect generation rate but also requires only about
1/20 of the generation time compared to other mod-
els. This advantage in time cost is due to Diffusion-
AVR’s model architecture: it uses only the encoder
component and generates tokens in parallel dur-
ing inference. In Transformer-based models, token
generation is sequential, with each token depend-
ing on previously generated ones, which increases
time costs. Since repair code is highly related to
the original vulnerable code and does not depend
on previously generated tokens, using only the en-
coder to generate repair code from noise maintains
model performance while significantly reducing
generation time. VulRepair relies on beam search
to produce 50 candidate repair codes to approach

DiffusionAVR’s perfect generation rate; however,
its high time cost and the manual selection required
make it impractical.

4.3 RQ3: How Does the Number of Sampling
Steps Affect DiffusionAVR’s Generation
Capability?

To investigate how DiffusionAVR acquires repair

capabilities through diffusion, we examined the re-

lationship between sampling steps and %pp. As
shown in Figure 5, there is a clear positive correla-
tion between sampling steps and perfect prediction
rate. Notably, shorter repair patches require fewer
sampling steps to reach peak performance. For ex-
ample, repair patches of 0—10 tokens reach peak

%opp at 25,000 sampling steps, while patches with

50 or more tokens achieve only 1% %pp at that

point.
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Figure 5: Relationship Between Sampling Steps and
Repair Patch Length

DiffusionAVR learns to generate relatively sim-
ple short repair patches through a diffusion process.
As the number of sampling steps increases, the
amount of data involved in denoising sharply rises,
and the model gradually learns how to reconstruct
long repair patches from a standard Gaussian distri-
bution. In the final convergence scenario, it demon-
strates similar repair capabilities when dealing with
repair patches of various lengths.

5 Related Work

5.1 Automated Vulnerability Repair (AVR)
Methods

Auto vulnerability repair(AVR) can be viewed as
a sequence-to-sequence task, aiming to learn the
mapping between vulnerable code X and repair
code Y by establishing the following relationship:

Fp(X)=Y 6)



where Fj is the mapping function. The core
of AVR lies in using neural networks to approxi-
mate this function. Typically, the neural network
comprises an encoder and a decoder: the encoder
receives the vulnerable code X and maps it to a
vector H in latent space; the decoder then generates
the repair code Y based on H.

Early approaches widely used RNNs (Sutskever,
2014) for implementing encoders and decoders
(Chen et al., 2019; Tufano et al., 2019). However,
as the length of vulnerable code increased, RNN-
based methods often suffered from catastrophic
forgetting, where early information is lost in long
sequences.

The introduction of the Transformer enabled self-
attention mechanisms (Shaw et al., 2018), allowing
dependencies to be established between any posi-
tions in the sequence, unlike the sequential process-
ing of RNNs. This solves the long-range depen-
dency problem, and Transformer-based sequence-
to-sequence methods outperform RNNs in gen-
eration capability. Consequently, Transformer-
based AVR methods (e.g., VRepair (Chen et al.,
2022) and VulRepair (Fu et al., 2022)) have been
proposed, achieving state-of-the-art perfect repair
rates.

Unlike NMT-based methods, DiffusionAVR in-
troduces diffusion models to the AVR field, ad-
dresses differences between natural language and
code text, and provides solutions. Through denois-
ing, the model learns deeper syntactic information,
highlighting diffusion models’ advancements over
NMT-based methods.

5.2 Diffusion Models

Diffusion models have achieved notable success
in image generation, as exemplified by Stable Dif-
fusion, which generates high-quality images from
brief prompts. Inspired by this, Gong et al. (Li
et al., 2022) proposed adding continuous Gaus-
sian noise in discrete text space, introducing the
sequence-to-sequence diffusion model DiffuSeq
(Gong et al., 2022). DiffuSeq consists of three
parts:

1. Forward Noise injection Process: In the for-
ward process, DiffuSeq adds noise only to the
target sequence, leaving the source sequence
unaltered, and concatenates the noisy target
with the source sequence as a noisy sequence
for denoising.

2. Backward Denoising Process: During de-

noising, the BERT (Kenton and Toutanova,
2019) model is used as the denoising model,
with input as the selectively noisy sequence
and target as the original sequence. The model
learns to generate the target sequence from the
unnoised source sequence and the noisy target
sequence.

3. Generation Process: The input for genera-
tion is the source sequence and a standard
Gaussian noise sequence. The trained denois-
ing model iteratively removes noise at each
timestep, ultimately generating the target se-
quence.

While DiffuSeq shows good generation capabil-
ities, its high training and generation times limit
its applicability to short-sequence tasks. Recently,
Gong et al. proposed DiffuSeq-V2 (Gong et al.,
2023), significantly improving training speed and
generation efficiency, making it suitable for more
complex, long-sequence generation. DiffusionAVR
builds on DiffuSeq-V2, further optimizing loss cal-
culation to enhance generation accuracy, making
DiffusionAVR suitable for AVR, where perfect re-
pair is required.

6 Conclusion

In this paper, we proposed DiffusionAVR, a diffu-
sion model-based automated vulnerability repair
method, and adapted the loss function to account
for the unique characteristics of code text. In ex-
perimental evaluations, DiffusionAVR achieved a
14.4% higher accuracy in single-round generation
compared to the previous SOTA model, VulRe-
pair, while improving generation speed by approx-
imately 20 times, showcasing the advantages of
diffusion models in vulnerability repair. Diffusion-
AVR successfully generated 758 repair patches out
of 1,706 real-world vulnerabilities, compared to
only 513 generated by VulRepair. Notably, for the
top 10 most dangerous CWE types, DiffusionAVR
generated 46.54% of repair patches, 8.54% higher
than VulRepair, highlighting its practicality.

In the discussion, we conducted an in-depth anal-
ysis of the impact of the loss function, CWE types,
and other factors on model performance. We con-
cluded that the distribution of CWE types in the
training set does not introduce bias in model capa-
bility, providing future researchers with a pathway
for further exploration.
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A Impact of the Loss Function

Before discussing the impact of the loss function
on the vulnerability repair task, it is essential to
clarify the fundamental differences between code
text and natural language text. In natural language,
part-of-speech tags help group semantically similar
words in neighboring positions upon model con-
vergence, forming clusters based on part of speech.
Code text, however, lacks this property. Although
MSE loss (Marmolin, 1986) calculates vector dis-
tances, these distances are insufficient to reflect
similarity in code’s semantic space. Additionally,
code generation tasks demand higher logical ac-
curacy, as generated outputs must precisely match
the dataset answers; even minor character devia-
tions can render code non-functional. Therefore,
we added a cross-entropy loss term to the origi-
nal diffusion model loss to constrain the model’s
generation scope. To validate the necessity of this
added loss, we compared the performance of mod-
els trained with each loss type (see Table 3).

Table 2: Model Performance with Different Loss Func-
tions.

Method %pp
DiffusionAVR+Lvy15 0%
DiffusionAVR+EVLB + Lnll 44 4%

We found that when using only MSE loss, Dif-
fusionAVR failed to generate any correct repair
patches. The output contained a large number of
“_", which, based on training set statistics, is the
most frequent token. Supervising model updates
with only Lyrp loss causes the model to “take
shortcuts"; due to the data’s uneven distribution,
the distances between all tokens in the converged
vocabulary space and “_" become similar. By out-
putting a large number of “_" tokens, the model
minimizes the loss. Adding cross-entropy loss to
MSE loss as a constraint restores the model’s gen-
eration capability.

In DiffuSeq, which handles natural language
text-to-text tasks, MSE loss alone can capture syn-
tactic information. During training with MSE loss,
the cross-entropy loss also decreases simultane-
ously. However, this phenomenon does not occur
with code text; only by explicitly backpropagating
cross-entropy loss can the model generate correct
and valid content.



B Impact of CWE Types on Vulnerability
Repair

CWE is a classification standard used to assess soft-
ware security issues and their severity. To evaluate
the practical effectiveness of DiffusionAVR, we
analyzed its repair capability on the Top 103 most
dangerous vulnerabilities and across various CWE
categories. The experimental results are presented
in Table 3.

Table 3: Perfect Predictions for Top 10 CWE Types.

Rank  CWE Type Name %PP  Proportion

1 CWE-787 Out-of-bounds Write 39.62% 21/53
2 CWE-79 Cross-site Scripting 100.00% 1/1
3 CWE-89 SQL Injection 60.00% 3/5
4 CWE-20 Improper Input Validation ~ 40.79% 62/152
5 CWE-125 Out-of-bounds Read 48.82% 83/170
6 CWE-78 OS Command Injection 66.67% 2/3
7 CWE-416 Use After Free 56.36% 31/55
8 CWE-22 Path Traversal 50.00% 4/8
9 CWE-352 Cross-Site Request Forgery ~ 0.00% 0/2
10 CWE-434 Dangerous Type - -

TOTAL 46.54%  209/449

As shown in Table 3, DiffusionAVR achieved
a perfect generation rate of 46.54% on the top 10
high-risk vulnerabilities. The top three CWE types
by perfect generation rate are CWE-79 (Cross-Site
Scripting), CWE-78 (OS Command Injection), and
CWE-89 (SQL Injection). Notably, although these
three CWE types represent a small portion of the
test set, another similarly small category, CWE-
352, has a perfect generation rate of 0%. This
suggests that the proportion of instances is not a
decisive factor in influencing the perfect generation
rate.

CWE Type Statistics: Total Counts and Accuracy

Total Counts

Figure 6: Relationship Between Generation Accuracy
and Quantity for Each CWE Type.

To further investigate the impact of different
CWE types on model performance, we analyzed
the relationship between the quantity of each CWE

3https ://cwe.mitre.org/top25/archive/2022/
2022_cwe_top25.html
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type in the training set and the prediction accuracy
metric %pp. The results are shown in Figure 6.

From the fig 6, we observe no clear correlation
between %pp and the number of data samples in
the training set. For example, CWE-119, which has
the largest number of samples in the training set,
achieves a perfect generation rate of less than 40%.
In contrast, CWE-79, with fewer than 10 samples,
has a perfect generation rate of 100%. The diffu-
sion model’s noise-augmented approach flattens
distribution differences across various CWE types.
Notably, DiffusionAVR fails to generate any cor-
rect patch code for the five CWE types absent in
the training set. This analysis suggests that Diffu-
sionAVR exhibits varying repair capabilities across
different CWE types and cannot handle previously
unseen vulnerability types.

C Limitations

DiffusionAVR represents the first attempt to apply
diffusion models to automated vulnerability repair,
achieving significant performance improvements
over non-diffusion models. However, more than
half of the vulnerable code samples still fail to
generate correct repair patches. Currently, Diffu-
sionAVR uses continuous Gaussian noise, which
prevents the use of pre-trained parameters and lim-
its its ability to generate tokens outside the training
set vocabulary, leaving the out-of-vocabulary issue
unresolved.

Although pre-training can restrict model flexi-
bility, incorporating a pre-trained model could par-
tially address the OOV issue when the training set
cannot be effectively expanded. Our next step is
to explore the use of discrete Gaussian noise and
introduce pre-trained weights to mitigate the OOV
problem.

D Impact of Token Length on Model
Performance

VulRepair is constrained by its pre-trained model,
with an input token length of 512 and an output
of 256. To maintain consistency with VulRepair,
DiffusionAVR sets the input token length to 768
(vulnerable function concatenated with the repair
patch). To study the effect of token length on model
performance, we tested three variants of Diffusion-
AVR:

1. DiffusionAVR+768+No Pre-training: Input
length is 768, without pre-trained weights.


https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

2. DiffusionAVR+512+No Pre-training: Input
length is 512, without pre-trained weights.

3. DiffusionAVR+512+Pre-training: Input
length is 512, using the pre-trained Code-
BERT.

The experimental results are shown in Table 4.
We observed that reducing the input token length
from 768 to 512 nearly halved performance, with
the number of perfectly generated repair patches de-
creasing from 758 to 451. Using pre-trained Code-
BERT model parameters further reduced correct
patch generation to almost zero (only 25 correct
patches).

Table 4: Model Performance of DiffusionAVR Variants
with Different Input Lengths.

Method %pp  Proportion IT(ms)

DiffusionAVR+768+No Pre-training 44.4%  758/1706 167
DiffusionAVR+512+No Pre-training  26.4%  451/1706 134
DiffusionAVR+512+Pre-training 1.4%  25/1706 148

This performance reduction occurs because Dif-
fusionAVR uses noise addition in a continuous
space, while the pre-trained BERT model oper-
ates in a discrete space, with its final converged
state also being discrete. Adding continuous Gaus-
sian noise to a discrete state space disrupts the
data’s original distribution, preventing the denois-
ing model from effectively removing continuous
noise in this discrete setting. As a result, the per-
fect generation rate drops to only 1.4%. In contrast,
the randomly initialized state space in Diffusion-
AVR converges to a noise-consistent space during
training, allowing the denoising model to learn the
essential data distribution within this unified space.
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