
DiffusionAVR: Automated Software Vulnerability Repair Via Diffusion
Models

Anonymous ACL submission

Abstract001

The automated vulnerability repair technology002
aims to reduce security risks for end users003
by repairing vulnerable code. Currently, ma-004
chine translation-based models are becoming005
the mainstream approach in the field of vulner-006
ability repair, focusing on modeling the condi-007
tional probability distribution functions of the008
patch subspace. However, the distribution of009
repair patches is complex and unknown, and010
excessive complexity makes it difficult for tra-011
ditional models to effectively fit unknown data.012
To address this, this paper introduces a novel013
automated vulnerability repair method based on014
diffusion models, called DiffusionAVR. Com-015
pared to traditional models, DiffusionAVR pro-016
gressively adds noise, allowing the complex017
distribution of repair patch data to gradually ap-018
proximate a standard Gaussian distribution, and019
then achieves the process of going from simple020
to complex distribution through denoising and021
reverse modeling. In this context, the model022
can more easily learn the characteristics of vul-023
nerability patch distributions, significantly im-024
proving the success rate of repairing unknown025
code. Furthermore, this paper optimizes the026
loss function in the traditional diffusion model027
for repair tasks, significantly enhancing repair028
accuracy. In tests involving 8,482 real vulnera-029
bility cases, DiffusionAVR achieved a perfect030
repair rate in single predictions that was 14%031
higher than existing Transformer-based models,032
with a generation speed increase of 20 times.033

1 Introduction034

As the scale and complexity of software systems035

continue to increase, the number of software vulner-036

abilities is rising at an unprecedented rate, present-037

ing a severe challenge to global cybersecurity. Soft-038

ware vulnerabilities refer to code defects or security039

weaknesses that allow attackers to bypass normal040

security mechanisms, perform unauthorized oper-041

ations or access, and even cause system crashes.042

According to statistics from NDV1, the number 043

of vulnerabilities has been climbing year by year, 044

forcing engineers to spend a significant amount of 045

time and resources on repairs. However, traditional 046

manual repair methods are inefficient and struggle 047

to meet the growing demand. 048

Vulnerability detection is a prerequisite for vul- 049

nerability repair, and deep learning has been widely 050

applied in this area Recently (Chakraborty et al., 051

2021), automatic vulnerability repair (AVR) meth- 052

ods have been extensively used to address the grow- 053

ing cybersecurity threat (Fu et al., 2024). By learn- 054

ing the mapping between vulnerable code and cor- 055

responding repair patches, these models generate 056

patches for new vulnerabilities, accelerating the 057

manual repair process(Britton et al., 2012; Mu 058

et al., 2018). 059

Currently, AVR methods based on the Trans- 060

former (Vaswani et al., 2017) architecture have 061

shown certain advantages in predicting vulnerabili- 062

ties. For example, VulRepair (Fu et al., 2022), by 063

fine-tuning the pre-trained CodeT5 model (Wang 064

et al., 2021), can correctly predict 30% of the repair 065

patches in the test set; in contrast, decoder-only ar- 066

chitecture models like ChatGPT-4 have failed to 067

successfully predict any repair patches (Fu et al., 068

2023). Previous methods can be summarized as 069

learning a conditional generation model for repair 070

patches. As shown in Figure 1.a, VulRepair is 071

dedicated to modeling the conditional probability 072

distribution of repair patches for specific vulnera- 073

ble functions. However, the distribution of repair 074

patches is complex and unknown, and directly mod- 075

eling such a complex distribution severely impacts 076

the model’s performance, leading to poor results 077

on unknown data (i.e., data outside the training 078

set). Additionally, the fine-tuning scheme heav- 079

ily relies on pre-trained models, which, while pro- 080

viding some performance improvement, also in- 081

1https://nvd.nist.gov/vuln

1

https://nvd.nist.gov/vuln

troduces limitations in adaptability. For example,082

the CodeT5 model based on the Transformer ar-083

chitecture restricts text length during pre-training,084

and the fine-tuned CodeT5 model cannot handle085

longer vulnerability codes or generate longer repair086

patches. Currently, the best-performing model can087

only accept vulnerability code lengths of 512 to-088

kens and generates repair code that does not exceed089

256 tokens.090

Repair Patch Subspace

Vulnerable
Function Subspace

(a)

Repair Patch Subspace

Vulnerable Function
Subspace

(b)

Figure 1: (a) Traditional vulnerability remediation meth-
ods. (b) Diffusion-based vulnerability remediation meth-
ods.

Additionally, repair patches are generally highly091

related to the source code and only require mod-092

ifications to a portion of the code. For example,093

as shown in Figure 2, the repair patch retains a094

large amount of the original source code, removing095

only a small part. However, existing models use096

the decoder module to generate repair patches se-097

quentially and calculate the attention between the098

pre-generated tokens and the already generated to-099

kens, which severely affects the model’s generation100

speed.

Vulnerable Function
void modifyBytes(unsigned char *byte, int length) {
 if (byte == NULL || length <= 0) {
 printf("Invalid input.\n");
 return;
 }

 int i, j;
 for (i = 0; i < length; i++) {
 if (byte[i] & 0x7f) {
 break;
 }
 }

 if (byte[i] & 0x40) {
 i--;
 }

 byte[i] &= 0x7f;

 for (j = 4; j >= i; j--) {
 byte[j] &= 0x7f;
 }
}

Repaired Function
void modifyBytes(unsigned char *byte, int length) {
 if (byte == NULL || length <= 0) {
 printf("Invalid input.\n");
 return;
 }

 int i, j;
 for (i = 0; i < length; i++) {
 if (byte[i] & 0x7f) {
 break;
 }
 }

 - if (byte[i] & 0x40) {
 + if (byte[i] & 0x40 &&i>0)
 i--;
 }

 byte[i] &= 0x7f;

 for (j = 4; j >= i; j--) {
 byte[j] &= 0x7f;
 }
}

Vulnerable Function
void modifyBytes(unsigned char *byte, int length) {
 if (byte == NULL || length <= 0) {
 printf("Invalid input.\n");
 return;
 }

 int i, j;
 for (i = 0; i < length; i++) {
 if (byte[i] & 0x7f) {
 break;
 }
 }

 if (byte[i] & 0x40) {
 i--;
 }

 byte[i] &= 0x7f;

 for (j = 4; j >= i; j--) {
 byte[j] &= 0x7f;
 }
}

Repaired Function
void modifyBytes(unsigned char *byte, int length) {
 if (byte == NULL || length <= 0) {
 printf("Invalid input.\n");
 return;
 }

 int i, j;
 for (i = 0; i < length; i++) {
 if (byte[i] & 0x7f) {
 break;
 }
 }

 - if (byte[i] & 0x40) {
 + if (byte[i] & 0x40 &&i>0)
 i--;
 }

 byte[i] &= 0x7f;

 for (j = 4; j >= i; j--) {
 byte[j] &= 0x7f;
 }
}

Figure 2: Example of Vulnerability Repair

101
Traditional fine-tuning methods focus on mod-102

eling the conditional probability model of com-103

plex distributions (Repaired patches) under another104

complex distribution (vulnerability function). To105

learn the characteristics of vulnerability patches106

in complex distributions, this paper proposes an107

automated vulnerability repair method based on 108

diffusion models—DiffusionAVR. DiffusionAVR 109

models the conditional probability of complex dis- 110

tributions (fix patches) under a simple Gaussian 111

distribution during the denoising process and in- 112

jects the fix patches as conditional information into 113

the denoising process. This allows the model to 114

learn the more essential distribution characteristics 115

of vulnerability patches. Additionally, we improve 116

the loss function of traditional diffusion models to 117

ensure the generation of high-precision fix patches. 118

As shown in Figure 1.b, DiffusionAVR gradu- 119

ally approaches a standard Gaussian distribution by 120

progressively adding noise to the complex distribu- 121

tion of repair patches, and subsequently achieves 122

the process of moving from a simple distribution 123

to a complex distribution through denoising and 124

reverse modeling. Compared to directly modeling 125

complex distributions, the model can more easily 126

learn the deep characteristics of the repair patch dis- 127

tribution, significantly improving the success rate 128

of repairing unknown code. To enable controllable 129

generation of repair patches, we map the vulnera- 130

bility patches to the same latent space as the repair 131

patches during the denoising process and inject this 132

as conditional information into the denoising pro- 133

cess. The trained model can start from any point 134

in the latent space that conforms to the Gaussian 135

distribution, using source code representations as 136

conditions. The model then iteratively denoises 137

the data, bringing it back to specific points in the 138

repair patch subspace to generate repair patches. 139

Experimental results indicate that in single-round 140

generation, DiffusionAVR achieved a perfect gen- 141

eration rate of 44.4%, which is 14.4% higher than 142

VulRepair and slightly above the 44% result from 143

its provision of 50 candidate patches. 144

Compared to Transformer-based models, Dif- 145

fusionVR’s denoising module uses a parallel gen- 146

eration Encoder-only structure. When generating 147

repair patches, this module does not need to incre- 148

mentally calculate the attention weights between 149

the generated tokens and the pre-generated tokens, 150

thereby improving the generation speed by approx- 151

imately 20 times. 152

In summary,we highlight the following contribu- 153

tions of our proposed DiffusionAVR 154

• Introducing Diffusion Models for Auto- 155

mated Vulnerability Repair: Compared to 156

existing Transformer-based methods, Diffu- 157

sionAVR can learn the more essential distri- 158

2

bution characteristics of vulnerability patches159

by modeling the conditional probability dis-160

tribution functions of complex vulnerability161

patches under a simple Gaussian distribution.162

This significantly improves the accuracy of163

repair patch generation.164

• Optimizing the Diffusion Model’s Loss165

Function for Vulnerability Repair Tasks:166

We propose a novel loss function specifically167

tailored for automated vulnerability repair168

tasks, improving model accuracy in generat-169

ing repair patches and increasing adaptability170

to complex code scenarios.171

• Eliminating Dependency on Pre-Trained172

Models to Optimize Generation Efficiency173

and Accuracy: DiffusionAVR overcomes the174

token length limitations of Transformer archi-175

tectures, enabling it to handle more complex176

repair scenarios. Through its parallel gener-177

ation mechanism, DiffusionAVR achieves a178

repair patch generation speed approximately179

20 times faster than the best existing models,180

with a 14% improvement in single-round per-181

fect repair rates.182

2 DiffusionAVR183

In this section, we will provide a detailed introduc-184

tion to the architecture of DiffusionAVR, which185

is a diffusion-based automatic vulnerability repair186

method that consists of three main parts: code rep-187

resentation, forward noise injection, and backward188

denoising. Finally, we will explain how to use the189

trained DiffusionAVR to generate repair patches.190

2.1 Code Representation191

The purpose of code representation is to transform192

code into a vectorized format, shifting the state193

space of the code from discrete to continuous for194

the subsequent diffusion process. The code repre-195

sentation consists of two components: a subword196

tokenization algorithm and an embedding layer.197

• BPE Subword Tokenization. BPE (Sennrich,198

2015) can split uncommon tokens into mean-199

ingful subwords while preserving the format200

of common words. For example, the variable201

name [unix_dgram_peer_wake_disconnect]202

can be represented as [un, ix, d, gram, peer,203

wake, dis, connect]. BPE not only accom-204

modates long variable names but also con-205

strains the vocabulary size to prevent exces-206

sive vocabulary leading to sparse semantic 207

information. In DiffusionAVR, we use the 208

BPE pre-trained by Feng et al. (Feng et al., 209

2020) on CodeSearchNet (CSN) (Husain et al., 210

2019), hereinafter referred to as CodeBERT 211

Tokenization. The tokenization algorithm of 212

CodeBERT is based on BERT’s WordPiece 213

(Wu, 2016) and optimizes for the characteris- 214

tics of both code and natural language. This 215

paper retains the four special subwords added 216

in VulRepair: [“<StartLoc>" ,“<EndLoc>" 217

,“<ModStart>" ,“<ModEnd>"]. The use of 218

BPE ensures the model’s ability to handle un- 219

seen words and constrains the vocabulary size. 220

• Embedding Layer. After the source code is 221

processed by the BPE algorithm, it is trans- 222

formed from the original long text into multi- 223

ple independent subword tokens. The mean- 224

ing of each token depends on its context (i.e., 225

surrounding tokens) and its position within the 226

function. Therefore, it is necessary to capture 227

the context of the tokens and their positional 228

information. The purpose of this section is 229

to generate embedding vectors to capture the 230

semantic meaning of code tokens and their 231

positions within the function. 232

We generate a 1×768 embedding vector for each 233

token and combine them into an embedding ma- 234

trix to represent the relative dependencies between 235

the selected token and its surrounding tokens. To 236

capture the positional information of the tokens 237

in the code, we adopt the absolute position em- 238

beddings from BERT, which explicitly encode the 239

positional information of the tokens. To address the 240

token length limitation imposed by the pre-trained 241

model, both the embedding layer and position em- 242

beddings in DiffusionAVR are randomly initial- 243

ized and adjusted during training without using 244

any pre-trained parameters. As shown in Figure 245

3, the repair patches and vulnerability functions 246

share the same tokenization algorithm and embed- 247

ding layer, so their representation vectors X and 248

Y exist in the same vector space. This facilitates 249

the direct injection of Y as conditional information 250

into the denoising process during subsequent diffu- 251

sion, eliminating the need for additional alignment 252

operations. 253

2.2 Forward Noise Injection 254

Unlike traditional methods, after obtaining the rep- 255

resentation vectors X and Y for repair patches and 256

3

Repair Patch

Subword Tokenization

Subword Tokenized Codes

Embedding Layer

Vulnerable Function

Subword Tokenization

Subword Tokenized Codes

Embedding Layer

Y0

(b) Encode Vulnerable Function(a) Encode Repair Patch

X0

Figure 3: Embedding Layer. (a) is the embedding vector
X for the repair patch, and (b) is the repair patch Y for
the vulnerability function.

vulnerability functions, DiffusionAVR does not di-257

rectly model P (X | Y) . Instead, it first disrupts258

X: gradually and iteratively adding Gaussian noise259

to the repair patches in the training set, causing260

them to “move out of or away" from the existing261

subspace. This process can be represented by a262

closed-form formula, which allows for the direct263

calculation of noisy data at a specific time step264

without the need for iterative noise addition.265

Xt =
√
αtX0 +

√
1− αtI (1)266

Equation 1 represents the noise addition formula267

for the repair patches, where X0 denotes the origi-268

nal representation vector of the repair patches, αt269

indicates the noise scale, and I is standard Gaus-270

sian noise. The value of αt decreases as the time271

step t increases, ranging from [0,1]. The longer272

the time step, the greater the noise scale, causing273

the disrupted representation vector of the repair274

patches to become closer to the standard Gaussian275

distribution.276

At the end of the noise addition process, the re-277

pair patches become completely unrecognizable.278

The complex distribution is transformed into a sim-279

ple Gaussian distribution, with each repair patch280

being mapped to a space outside the data subspace.281

In the forward process, there exists a simple condi-282

tional probability distribution function P (Xt|X0)283

that expresses the mapping from the original repair284

patch to the external space, which can be described285

by Equation 1.286

2.3 Backward Denoising287

The core idea of the denoising process is to iter-288

atively reverse the damage inflicted on the repair289

patches by the forward process. The reversal pro-290

cess begins with the simple distribution Xt gener-291

ated by the forward process, which has the advan- 292

tage that we know how to sample a point from this 293

simple distribution. The goal of the reverse process 294

is to find the path back to the repair patch subspace, 295

that is, to model P (X0|Xt). However, the problem 296

lies in the fact that we can start from a point in this 297

“simple" space and advance along countless paths, 298

but only a small fraction of those paths can lead us 299

back to the repair patch subspace. 300

Therefore, at this stage, we need to use neural 301

networks to reverse fit the parameters of the condi- 302

tional probability distribution function P (X0|Xt) 303

of the forward process. To achieve parallel gener- 304

ation of repair patches, DiffusionAVR adopts the 305

Bert (Kenton and Toutanova, 2019) architecture for 306

denoising. At the same time, to ensure the control- 307

lability of the generated repair patches, we need 308

to inject the corresponding vulnerability code as 309

conditioning information during the denoising pro- 310

cess. The specific approach is to concatenate the 311

vulnerability code representation vector Y gener- 312

ated during the code representation stage with the 313

vector Xt generated during the noise-adding stage 314

to serve as the model input Z0. 315

(a) Jonintly Denoise Process

XtY

Zt = (X0||Yt) Jointly Denoise P(Zt,t)->Zt-1

B
er
t
E
nc
od
e
r

After many time steps, Jointly Denoise P(Z2,2)->Z1

 Jointly Denoise P(Z1,1)->Z0

Zn

Transformer Block

Transformer Block

Transformer Block

Transformer Block

Transformer Block

Transformer Block

……

Zn-1

 Jointly Denoise P(Zt-1,t-1)->Zt-2

(b) Denoise Model

Figure 4: Denoising Process

Figure 4 provides a detailed description of the 316

model architecture for the denoising process. The 317

model consists of 12 Transformer encoder blocks, 318

with each block starting with layer normalization 319

(Lei Ba et al., 2016), followed by a multi-head at- 320

tention layer (Li et al., 2018) and a feedforward 321

neural network. During the stepwise denoising 322

process, the self-attention mechanism calculates 323

the weights between various tokens in Zn. Mean- 324

while, the undamaged vulnerability code informa- 325

tion is multiplied by the computed weights and 326

integrated into the damaged repair patch vector Xt, 327

thereby injecting conditional information into the 328

mapping from Xt to X0. DiffusionAVR employs 329

timestep encoding, with the denoising model input 330

being Zn augmented with positional and timestep 331

encodings. Unlike traditional diffusion models that 332

4

predict noise, DiffusionAVR directly predicts Z0333

. Furthermore, to ensure the generation of high-334

precision repair patches, we have improved the335

common loss function used in text diffusion; the336

original loss function is as follows:337

minθ LVLB = minθ

[∑T
t=2 ∥z0 − fθ (zt, t)∥2

+ ∥EMB (wx⊕y)− fθ (z1, 1)∥2

− log pθ (w
x⊕y | z0)]

(2)338

Where Z0 is formed by concatenating the vul-339

nerability code Y and the patch X . The LVLB loss340

minimizes the distance between Z0 and the denois-341

ing model’s output by calculating the mean squared342

loss between the model output and the original Z0.343

Gong et al. suggest that during the reconstruction344

of Z0, the model learns the distributional relation-345

ship between X0 and Y0. However, in vulnerability346

repair tasks that require precise patch generation,347

an LVLB loss based on Euclidean distance may lead348

the model to generate tokens that are similar but349

incorrect. Therefore, we compute the word prob-350

ability of each vector in the predicted code patch351

sequence Xθ
0 output by the denoising model us-352

ing a linear layer, resulting in a probability vector353

p aligned with the vocabulary length. This vec-354

tor is then concatenated to form a matrix P where355

P ∈ Rn×c, with n as the number of tokens and c as356

the vocabulary size. One-hot vectorize each token357

in X as labels; we calculate the cross-entropy loss:358

Lnll = −
C∑
i=1

Xi log
(
X̂i

)
(3)359

where C is the vocabulary length, and X̂i ∈ P .360

Finally, the loss function used in DiffusionAVR is:361

LVR = LVLB + Lnll (4)362

The necessity of this additional loss for vulnera-363

bility repair is discussed and verified in Appendix364

A.365

2.4 Generating Repair Patches366

After being trained through the denoising process,367

DiffusionAVR is able to learn how to map a simple368

Gaussian distribution to the repair patch subspace.369

During this process, the corresponding vulnerabil-370

ity source code serves as conditioning information371

in the mapping. Thus, the generation process be-372

gins with a matrix of randomly sampled vectors373

that conform to a Gaussian distribution, which is374

then concatenated with the embedding matrix of 375

the vulnerability function. This undergoes iterative 376

denoising, ultimately resulting in a repair patch 377

corresponding to the input vulnerability function. 378

DiffusionAVR employs the diffusion ODE 379

method proposed by DPM-solver++ (Lu et al., 380

2022) during the generation process. This method, 381

applied in DiffuSeq-v2 (Gong et al., 2023), signif- 382

icantly accelerates inference speed, using DDIM 383

(Zhang et al., 2022) to further accelerate the gener- 384

ation process and achieving results similar to 2000 385

steps with only 10 sampling steps. 386

We also experimented with an unaccelerated gen- 387

eration process, which required over 4 hours to gen- 388

erate 20 repair patches. This high time cost makes 389

the original diffusion method infeasible for vul- 390

nerability repair tasks. In contrast, with the ODE 391

method, generating 1,706 repair patches takes only 392

107 seconds, making the generation speed approx- 393

imately 20 times faster than other non-diffusion 394

methods. 395

3 Evalution 396

In this section, we present the baseline models used 397

for comparison, the dataset, and the experimental 398

setup. 399

3.1 Baseline Models 400

In recent years, the Transformer architecture has 401

been widely adopted for vulnerability repair. Vul- 402

Repair, proposed by Fu et al. (Fu et al., 2022), 403

achieved the highest perfect repair rate and pro- 404

vides reproducible code for VRepair and Code- 405

BERT, making comparison straightforward. There- 406

fore, we selected baseline models consistent with 407

those used by Fu et al. , as follows: 408

1. VulRepair (Fu et al., 2022): This model uses 409

CodeT5 (Wang et al., 2021) for vulnerabil- 410

ity repair. Based on the T5 (Raffel et al., 411

2020) text-to-text Transformer model, Vul- 412

Repair fine-tunes CodeT5 on a vulnerability 413

dataset in a fully parameterized manner. 414

2. VRepair (Chen et al., 2022): This standard 415

Transformer model is first trained on a patch 416

dataset and then fine-tuned on vulnerability- 417

related repair code. 418

3. CodeBERT (Feng et al., 2020): Developed by 419

Microsoft Research, this Transformer-based 420

model is a decoder-only variant similar to 421

5

BERT, pre-trained on CodeSearchNet (Hu-422

sain et al., 2019). The version of Code-423

BERT used in this study comprises 12 Trans-424

former encoder blocks (CodeBERT) and a425

six-layer Transformer decoder for generation426

tasks. Hemmati et al. (Mashhadi and Hem-427

mati, 2021) employed this CodeBERT model428

with a stacked decoder for automated program429

repair of Java vulnerabilities, achieving signif-430

icantly better performance compared to RNN431

models.432

3.2 Dataset433

We used the CVEFixes_BigVul vulnerability434

dataset2, consistent with previous studies. This435

dataset is available on Hugging Face, and we re-436

tained 8,428 pairs of vulnerable functions and re-437

pair patches without additional filtering.438

To ensure accurate comparison with the baseline439

models, we strictly adhered to the dataset prepro-440

cessing methods provided by Chen et al. (Chen441

et al., 2022). Each vulnerable function includes a442

special label indicating its CWE type, with “<Start-443

Loc>" and “<EndLoc>" tags marking the start and444

end positions of the vulnerable code segments. Sim-445

ilarly, the repair patches use “<ModStart>" and446

“<ModEnd>" tags to denote the modified sections.447

To prevent the tokenizer from splitting these spe-448

cial tags, we explicitly added them to the tokenizer449

vocabulary. These tags help the model focus on the450

vulnerable code segments and the corresponding451

repair content.452

3.3 Experimental Setup453

Following Fu et al. (Fu et al., 2022), we split the454

dataset into 70% for training, 10% for validation,455

and 20% for testing, ensuring that the test set ex-456

actly matches the one used by Fu et al.457

We implemented DiffusionAVR using the Trans-458

formers (Wolf, 2019) and PyTorch (Collobert et al.,459

2011) libraries. The Transformers library was used460

to initialize BertEncoder for the denoising model,461

and PyTorch handled computations during training,462

including backpropagation and parameter optimiza-463

tion. The model was trained on an NVIDIA A100464

with Ubuntu 20.04 and CUDA 11.4.465

We initialized the denoising model using the466

configuration file from CodeBERT, increasing the467

maximum position encoding length from 512 to468

768 and excluding any pre-trained weights.469

2https://huggingface.co/datasets/MickyMike/
cvefixes_bigvul

3.4 Evaluation Metrics 470

We used the percentage of perfect predictions 471

(%pp) to assess the model’s accuracy in gener- 472

ating software vulnerability repairs. This metric 473

measures how closely the generated repair patch 474

matches the manually created patch. 475

4 Experimental Result 476

We conducted a detailed evaluation of Diffusion- 477

AVR and baseline models through experiments to 478

address the following four research questions: 479

1. RQ1: What is the accuracy of DiffusionAVR 480

in generating software vulnerability repairs? 481

2. RQ2: What is the time cost of DiffusionAVR? 482

3. RQ3: How do sampling steps affect Diffu- 483

sionAVR’s generation capability? 484

4.1 RQ1: What is the accuracy of 485

DiffusionAVR in generating software 486

vulnerability repairs? 487

We compared DiffusionAVR with baseline models 488

using configurations provided by Fu et al. Diffu- 489

sionAVR’s inference model is based on an encoder- 490

only architecture that supports parallel outputs but 491

does not support beam search; therefore, we gener- 492

ated only a single candidate vulnerability patch in 493

this study. 494

Table 1 shows the superiority of DiffusionAVR; 495

compared to VulRepair, it has achieved a 14.4% 496

improvement in %pp on the same dataset, and it 497

also significantly outperforms all models based on 498

the Transformer architecture. Unlike VulRepair, 499

DiffusionAVR only utilizes the Encoder part, re- 500

sulting in a reduction of model parameters by half. 501

Traditional Transformer architectures extract latent 502

space vectors from vulnerability code using atten- 503

tion mechanisms and use a Decoder to generate 504

the corresponding sequence, establishing a map- 505

ping relationship between vulnerability code and 506

vulnerability repair code. However, the existing 507

vulnerability repair dataset is too small (only 8482 508

samples), and the cost of collecting high-quality 509

data is excessively high, making it difficult for 510

all Transformer-based automatic vulnerability re- 511

pair methods to model the conditional probability 512

of complex distributions (repair code) under an- 513

other complex distribution (vulnerability patches) 514

in practical applications. 515

6

https://huggingface.co/datasets/MickyMike/cvefixes_bigvul
https://huggingface.co/datasets/MickyMike/cvefixes_bigvul

Table 1: Performance Metrics and Generation Times of
DiffusionAVR and Baseline Models.

DiffusionAVR VulRepair CodeBERT VRepair

%pp 44.4% 30% 18% 21%
IT(ms) 167 2356 2785 1987

DiffusionAVR, using a limited dataset, gradually516

transfers the repair patch from the original distribu-517

tion space to a simple Gaussian distribution through518

forward noise addition, and then models the pro-519

cess of restoring the vulnerability patch from the520

Gaussian distribution. We can restore the vulnera-521

bility patch starting from any sample that conforms522

to a Gaussian distribution; therefore, this modeling523

approach of first disrupting and then restoring can524

learn a more intrinsic distribution on a limited set of525

vulnerability patches, achieving stronger structural526

generalization ability.527

4.2 RQ2: What is the Time Cost of528

DiffusionAVR?529

VulRepair, which employs a beam search algorithm530

(Freitag and Al-Onaizan, 2017), achieves an accu-531

racy rate of 44% with a 50-round search. However,532

beam search primarily enhances output diversity,533

and generating 50 candidate repair codes requires534

manual screening, increasing labor and time costs.535

This additional effort makes it less suitable for prac-536

tical deployment in automated vulnerability repair.537

In this study, we consider time cost as one of the538

model evaluation criteria. By setting the beam539

search size to 1, we compare the time required for540

each baseline model and DiffusionAVR to gener-541

ate an equal number of candidate repair patches.542

Results are shown in Table 1.543

DiffusionAVR not only achieves the highest per-544

fect generation rate but also requires only about545

1/20 of the generation time compared to other mod-546

els. This advantage in time cost is due to Diffusion-547

AVR’s model architecture: it uses only the encoder548

component and generates tokens in parallel dur-549

ing inference. In Transformer-based models, token550

generation is sequential, with each token depend-551

ing on previously generated ones, which increases552

time costs. Since repair code is highly related to553

the original vulnerable code and does not depend554

on previously generated tokens, using only the en-555

coder to generate repair code from noise maintains556

model performance while significantly reducing557

generation time. VulRepair relies on beam search558

to produce 50 candidate repair codes to approach559

DiffusionAVR’s perfect generation rate; however, 560

its high time cost and the manual selection required 561

make it impractical. 562

4.3 RQ3: How Does the Number of Sampling 563

Steps Affect DiffusionAVR’s Generation 564

Capability? 565

To investigate how DiffusionAVR acquires repair 566

capabilities through diffusion, we examined the re- 567

lationship between sampling steps and %pp. As 568

shown in Figure 5, there is a clear positive correla- 569

tion between sampling steps and perfect prediction 570

rate. Notably, shorter repair patches require fewer 571

sampling steps to reach peak performance. For ex- 572

ample, repair patches of 0–10 tokens reach peak 573

%pp at 25,000 sampling steps, while patches with 574

50 or more tokens achieve only 1% %pp at that 575

point. 576

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Sampling steps

0-
10

11
-2

0
21

-3
0

31
-4

0
41

-5
0

50
+

Re
pa

ir
Le

ng
th

s (
#R

ep
ai

r T
ok

en
s)

0% 4% 23% 48% 53% 53% 53% 53% 53% 53%

0% 0% 2% 40% 49% 50% 50% 51% 50% 49%

0% 0% 0% 19% 50% 51% 52% 52% 50% 48%

0% 0% 0% 1% 38% 44% 45% 45% 45% 44%

0% 0% 0% 0% 26% 48% 52% 53% 53% 50%

0% 0% 0% 0% 1% 9% 21% 32% 37% 39%

Figure 5: Relationship Between Sampling Steps and
Repair Patch Length

DiffusionAVR learns to generate relatively sim- 577

ple short repair patches through a diffusion process. 578

As the number of sampling steps increases, the 579

amount of data involved in denoising sharply rises, 580

and the model gradually learns how to reconstruct 581

long repair patches from a standard Gaussian distri- 582

bution. In the final convergence scenario, it demon- 583

strates similar repair capabilities when dealing with 584

repair patches of various lengths. 585

5 Related Work 586

5.1 Automated Vulnerability Repair (AVR) 587

Methods 588

Auto vulnerability repair(AVR) can be viewed as 589

a sequence-to-sequence task, aiming to learn the 590

mapping between vulnerable code X and repair 591

code Y by establishing the following relationship: 592

Fθ (X) = Y (5) 593

7

where Fθ is the mapping function. The core594

of AVR lies in using neural networks to approxi-595

mate this function. Typically, the neural network596

comprises an encoder and a decoder: the encoder597

receives the vulnerable code X and maps it to a598

vector H in latent space; the decoder then generates599

the repair code Y based on H.600

Early approaches widely used RNNs (Sutskever,601

2014) for implementing encoders and decoders602

(Chen et al., 2019; Tufano et al., 2019). However,603

as the length of vulnerable code increased, RNN-604

based methods often suffered from catastrophic605

forgetting, where early information is lost in long606

sequences.607

The introduction of the Transformer enabled self-608

attention mechanisms (Shaw et al., 2018), allowing609

dependencies to be established between any posi-610

tions in the sequence, unlike the sequential process-611

ing of RNNs. This solves the long-range depen-612

dency problem, and Transformer-based sequence-613

to-sequence methods outperform RNNs in gen-614

eration capability. Consequently, Transformer-615

based AVR methods (e.g., VRepair (Chen et al.,616

2022) and VulRepair (Fu et al., 2022)) have been617

proposed, achieving state-of-the-art perfect repair618

rates.619

Unlike NMT-based methods, DiffusionAVR in-620

troduces diffusion models to the AVR field, ad-621

dresses differences between natural language and622

code text, and provides solutions. Through denois-623

ing, the model learns deeper syntactic information,624

highlighting diffusion models’ advancements over625

NMT-based methods.626

5.2 Diffusion Models627

Diffusion models have achieved notable success628

in image generation, as exemplified by Stable Dif-629

fusion, which generates high-quality images from630

brief prompts. Inspired by this, Gong et al. (Li631

et al., 2022) proposed adding continuous Gaus-632

sian noise in discrete text space, introducing the633

sequence-to-sequence diffusion model DiffuSeq634

(Gong et al., 2022). DiffuSeq consists of three635

parts:636

1. Forward Noise injection Process: In the for-637

ward process, DiffuSeq adds noise only to the638

target sequence, leaving the source sequence639

unaltered, and concatenates the noisy target640

with the source sequence as a noisy sequence641

for denoising.642

2. Backward Denoising Process: During de-643

noising, the BERT (Kenton and Toutanova, 644

2019) model is used as the denoising model, 645

with input as the selectively noisy sequence 646

and target as the original sequence. The model 647

learns to generate the target sequence from the 648

unnoised source sequence and the noisy target 649

sequence. 650

3. Generation Process: The input for genera- 651

tion is the source sequence and a standard 652

Gaussian noise sequence. The trained denois- 653

ing model iteratively removes noise at each 654

timestep, ultimately generating the target se- 655

quence. 656

While DiffuSeq shows good generation capabil- 657

ities, its high training and generation times limit 658

its applicability to short-sequence tasks. Recently, 659

Gong et al. proposed DiffuSeq-V2 (Gong et al., 660

2023), significantly improving training speed and 661

generation efficiency, making it suitable for more 662

complex, long-sequence generation. DiffusionAVR 663

builds on DiffuSeq-V2, further optimizing loss cal- 664

culation to enhance generation accuracy, making 665

DiffusionAVR suitable for AVR, where perfect re- 666

pair is required. 667

6 Conclusion 668

In this paper, we proposed DiffusionAVR, a diffu- 669

sion model-based automated vulnerability repair 670

method, and adapted the loss function to account 671

for the unique characteristics of code text. In ex- 672

perimental evaluations, DiffusionAVR achieved a 673

14.4% higher accuracy in single-round generation 674

compared to the previous SOTA model, VulRe- 675

pair, while improving generation speed by approx- 676

imately 20 times, showcasing the advantages of 677

diffusion models in vulnerability repair. Diffusion- 678

AVR successfully generated 758 repair patches out 679

of 1,706 real-world vulnerabilities, compared to 680

only 513 generated by VulRepair. Notably, for the 681

top 10 most dangerous CWE types, DiffusionAVR 682

generated 46.54% of repair patches, 8.54% higher 683

than VulRepair, highlighting its practicality. 684

In the discussion, we conducted an in-depth anal- 685

ysis of the impact of the loss function, CWE types, 686

and other factors on model performance. We con- 687

cluded that the distribution of CWE types in the 688

training set does not introduce bias in model capa- 689

bility, providing future researchers with a pathway 690

for further exploration. 691

8

References692

Tom Britton, Lisa Jeng, Graham Carver, and Paul693
Cheak. 2012. Quantify the time and cost saved us-694
ing reversible debuggers. Cambridge Judge Business695
School, Tech. Rep.696

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding,697
and Baishakhi Ray. 2021. Deep learning based vul-698
nerability detection: Are we there yet. IEEE Trans-699
actions on Software Engineering.700

Zimin Chen, Steve Kommrusch, and Martin Monperrus.701
2022. Neural transfer learning for repairing secu-702
rity vulnerabilities in c code. IEEE Transactions on703
Software Engineering, 49(1):147–165.704

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-705
Noël Pouchet, Denys Poshyvanyk, and Martin Mon-706
perrus. 2019. Sequencer: Sequence-to-sequence707
learning for end-to-end program repair. IEEE Trans-708
actions on Software Engineering, 47(9):1943–1959.709

Ronan Collobert, Koray Kavukcuoglu, and Clément710
Farabet. 2011. Torch7: A matlab-like environment711
for machine learning. In BigLearn, NIPS workshop.712

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-713
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,714
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A715
pre-trained model for programming and natural lan-716
guages. arXiv preprint arXiv:2002.08155.717

Markus Freitag and Yaser Al-Onaizan. 2017. Beam718
search strategies for neural machine translation.719
arXiv preprint arXiv:1702.01806.720

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki721
Kume, Van Nguyen, Dinh Phung, and John Grundy.722
2024. Aibughunter: A practical tool for predict-723
ing, classifying and repairing software vulnerabilities.724
Empirical Software Engineering, 29(1):4.725

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van726
Nguyen, and Dinh Phung. 2022. Vulrepair: a t5-727
based automated software vulnerability repair. In728
Proceedings of the 30th ACM joint european soft-729
ware engineering conference and symposium on the730
foundations of software engineering, pages 935–947.731

Michael Fu, Chakkrit Kla Tantithamthavorn, Van732
Nguyen, and Trung Le. 2023. Chatgpt for vulner-733
ability detection, classification, and repair: How far734
are we? In 2023 30th Asia-Pacific Software Engi-735
neering Conference (APSEC), pages 632–636. IEEE.736

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,737
and LingPeng Kong. 2022. Diffuseq: Sequence to se-738
quence text generation with diffusion models. arXiv739
preprint arXiv:2210.08933.740

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,741
and Lingpeng Kong. 2023. Diffuseq-v2: Bridg-742
ing discrete and continuous text spaces for accel-743
erated seq2seq diffusion models. arXiv preprint744
arXiv:2310.05793.745

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 746
Allamanis, and Marc Brockschmidt. 2019. Code- 747
searchnet challenge: Evaluating the state of semantic 748
code search. arXiv preprint arXiv:1909.09436. 749

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina 750
Toutanova. 2019. Bert: Pre-training of deep bidirec- 751
tional transformers for language understanding. In 752
Proceedings of naacL-HLT, volume 1. Minneapolis, 753
Minnesota. 754

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin- 755
ton. 2016. Layer normalization. ArXiv e-prints, 756
pages arXiv–1607. 757

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R 758
Lyu, and Tong Zhang. 2018. Multi-head attention 759
with disagreement regularization. arXiv preprint 760
arXiv:1810.10183. 761

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S 762
Liang, and Tatsunori B Hashimoto. 2022. Diffusion- 763
lm improves controllable text generation. Advances 764
in Neural Information Processing Systems, 35:4328– 765
4343. 766

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx- 767
uan Li, and Jun Zhu. 2022. Dpm-solver++: Fast 768
solver for guided sampling of diffusion probabilistic 769
models. arXiv preprint arXiv:2211.01095. 770

Hans Marmolin. 1986. Subjective mse measures. 771
IEEE transactions on systems, man, and cybernetics, 772
16(3):486–489. 773

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying 774
codebert for automated program repair of java simple 775
bugs. In 2021 IEEE/ACM 18th International Confer- 776
ence on Mining Software Repositories (MSR), pages 777
505–509. IEEE. 778

Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang 779
Hu, Xinyu Xing, Bing Mao, and Gang Wang. 2018. 780
Understanding the reproducibility of crowd-reported 781
security vulnerabilities. In 27th USENIX Security 782
Symposium (USENIX Security 18), pages 919–936. 783

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 784
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 785
Wei Li, and Peter J Liu. 2020. Exploring the lim- 786
its of transfer learning with a unified text-to-text 787
transformer. Journal of machine learning research, 788
21(140):1–67. 789

Rico Sennrich. 2015. Neural machine translation of 790
rare words with subword units. arXiv preprint 791
arXiv:1508.07909. 792

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. 793
Self-attention with relative position representations. 794
arXiv preprint arXiv:1803.02155. 795

I Sutskever. 2014. Sequence to sequence learning with 796
neural networks. arXiv preprint arXiv:1409.3215. 797

9

Michele Tufano, Jevgenija Pantiuchina, Cody Watson,798
Gabriele Bavota, and Denys Poshyvanyk. 2019. On799
learning meaningful code changes via neural machine800
translation. In 2019 IEEE/ACM 41st International801
Conference on Software Engineering (ICSE), pages802
25–36. IEEE.803

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob804
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz805
Kaiser, and Illia Polosukhin. 2017. Attention806
is all you need.(nips), 2017. arXiv preprint807
arXiv:1706.03762, 10:S0140525X16001837.808

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH809
Hoi. 2021. Codet5: Identifier-aware unified810
pre-trained encoder-decoder models for code un-811
derstanding and generation. arXiv preprint812
arXiv:2109.00859.813

T Wolf. 2019. Huggingface’s transformers: State-of-814
the-art natural language processing. arXiv preprint815
arXiv:1910.03771.816

Yonghui Wu. 2016. Google’s neural machine translation817
system: Bridging the gap between human and ma-818
chine translation. arXiv preprint arXiv:1609.08144.819

Qinsheng Zhang, Molei Tao, and Yongxin Chen. 2022.820
gddim: Generalized denoising diffusion implicit821
models. arXiv preprint arXiv:2206.05564.822

A Impact of the Loss Function 823

Before discussing the impact of the loss function 824

on the vulnerability repair task, it is essential to 825

clarify the fundamental differences between code 826

text and natural language text. In natural language, 827

part-of-speech tags help group semantically similar 828

words in neighboring positions upon model con- 829

vergence, forming clusters based on part of speech. 830

Code text, however, lacks this property. Although 831

MSE loss (Marmolin, 1986) calculates vector dis- 832

tances, these distances are insufficient to reflect 833

similarity in code’s semantic space. Additionally, 834

code generation tasks demand higher logical ac- 835

curacy, as generated outputs must precisely match 836

the dataset answers; even minor character devia- 837

tions can render code non-functional. Therefore, 838

we added a cross-entropy loss term to the origi- 839

nal diffusion model loss to constrain the model’s 840

generation scope. To validate the necessity of this 841

added loss, we compared the performance of mod- 842

els trained with each loss type (see Table 3). 843

Table 2: Model Performance with Different Loss Func-
tions.

Method %pp

DiffusionAVR+LVLB 0%
DiffusionAVR+LVLB + Lnll 44.4%

We found that when using only MSE loss, Dif- 844

fusionAVR failed to generate any correct repair 845

patches. The output contained a large number of 846

“_", which, based on training set statistics, is the 847

most frequent token. Supervising model updates 848

with only LVLB loss causes the model to “take 849

shortcuts"; due to the data’s uneven distribution, 850

the distances between all tokens in the converged 851

vocabulary space and “_" become similar. By out- 852

putting a large number of “_" tokens, the model 853

minimizes the loss. Adding cross-entropy loss to 854

MSE loss as a constraint restores the model’s gen- 855

eration capability. 856

In DiffuSeq, which handles natural language 857

text-to-text tasks, MSE loss alone can capture syn- 858

tactic information. During training with MSE loss, 859

the cross-entropy loss also decreases simultane- 860

ously. However, this phenomenon does not occur 861

with code text; only by explicitly backpropagating 862

cross-entropy loss can the model generate correct 863

and valid content. 864

10

B Impact of CWE Types on Vulnerability865

Repair866

CWE is a classification standard used to assess soft-867

ware security issues and their severity. To evaluate868

the practical effectiveness of DiffusionAVR, we869

analyzed its repair capability on the Top 103 most870

dangerous vulnerabilities and across various CWE871

categories. The experimental results are presented872

in Table 3.

Table 3: Perfect Predictions for Top 10 CWE Types.

Rank CWE Type Name %PP Proportion

1 CWE-787 Out-of-bounds Write 39.62% 21/53
2 CWE-79 Cross-site Scripting 100.00% 1/1
3 CWE-89 SQL Injection 60.00% 3/5
4 CWE-20 Improper Input Validation 40.79% 62/152
5 CWE-125 Out-of-bounds Read 48.82% 83/170
6 CWE-78 OS Command Injection 66.67% 2/3
7 CWE-416 Use After Free 56.36% 31/55
8 CWE-22 Path Traversal 50.00% 4/8
9 CWE-352 Cross-Site Request Forgery 0.00% 0/2

10 CWE-434 Dangerous Type - -

TOTAL 46.54% 209/449

873

As shown in Table 3, DiffusionAVR achieved874

a perfect generation rate of 46.54% on the top 10875

high-risk vulnerabilities. The top three CWE types876

by perfect generation rate are CWE-79 (Cross-Site877

Scripting), CWE-78 (OS Command Injection), and878

CWE-89 (SQL Injection). Notably, although these879

three CWE types represent a small portion of the880

test set, another similarly small category, CWE-881

352, has a perfect generation rate of 0%. This882

suggests that the proportion of instances is not a883

decisive factor in influencing the perfect generation884

rate.885

100

101

102

103

To
ta

l C
ou

nt
s

CW
E-

11
9

CW
E-

12
5

CW
E-

40
1

CW
E-

39
9

CW
E-

18
9

CW
E-

83
4

CW
E-

41
6

CW
E-

20
CW

E-
00

0
CW

E-
40

0
CW

E-
83

5
CW

E-
78

7
CW

E-
47

6
CW

E-
20

0
CW

E-
17

CW
E-

86
2

CW
E-

76
3

CW
E-

26
4

CW
E-

36
2

CW
E-

28
4

CW
E-

19
CW

E-
26

9
CW

E-
41

5
CW

E-
19

0
CW

E-
59

CW
E-

77
CW

E-
22

CW
E-

78
CW

E-
28

5
CW

E-
52

2
CW

E-
36

9
CW

E-
61

7
CW

E-
31

0
CW

E-
79

CW
E-

61
1

CW
E-

29
5

CW
E-

20
3

CW
E-

77
2

CW
E-

12
0

CW
E-

40
4

CW
E-

19
1

CW
E-

25
4

CW
E-

55
2

CW
E-

28
7

CW
E-

67
4

CW
E-

77
0

CW
E-

63
9

CW
E-

17
2

CW
E-

44
4

CW
E-

74
CW

E-
35

2
CW

E-
89

CW
E-

25
2

CW
E-

82
4

CW
E-

13
4

CW
E-

90
8

CW
E-

43
6

CW
E-

66
8

CW
E-

32
6

CW
E-

34
6

CW
E-

75
5

CW
E-

35
8

CW
E-

66
7

CW
E-

73
2

CW
E-

91
8

CW
E-

18
CW

E-
25

5
CW

E-
34

7
CW

E-
35

4
CW

E-
38

8
CW

E-
12

9
CW

E-
70

4
CW

E-
70

6
CW

E-
66

5

CWE Type Statistics: Total Counts and Accuracy

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Total Counts
Accuracy (%)

Figure 6: Relationship Between Generation Accuracy
and Quantity for Each CWE Type.

To further investigate the impact of different886

CWE types on model performance, we analyzed887

the relationship between the quantity of each CWE888

3https://cwe.mitre.org/top25/archive/2022/
2022_cwe_top25.html

type in the training set and the prediction accuracy 889

metric %pp. The results are shown in Figure 6. 890

From the fig 6, we observe no clear correlation 891

between %pp and the number of data samples in 892

the training set. For example, CWE-119, which has 893

the largest number of samples in the training set, 894

achieves a perfect generation rate of less than 40%. 895

In contrast, CWE-79, with fewer than 10 samples, 896

has a perfect generation rate of 100%. The diffu- 897

sion model’s noise-augmented approach flattens 898

distribution differences across various CWE types. 899

Notably, DiffusionAVR fails to generate any cor- 900

rect patch code for the five CWE types absent in 901

the training set. This analysis suggests that Diffu- 902

sionAVR exhibits varying repair capabilities across 903

different CWE types and cannot handle previously 904

unseen vulnerability types. 905

C Limitations 906

DiffusionAVR represents the first attempt to apply 907

diffusion models to automated vulnerability repair, 908

achieving significant performance improvements 909

over non-diffusion models. However, more than 910

half of the vulnerable code samples still fail to 911

generate correct repair patches. Currently, Diffu- 912

sionAVR uses continuous Gaussian noise, which 913

prevents the use of pre-trained parameters and lim- 914

its its ability to generate tokens outside the training 915

set vocabulary, leaving the out-of-vocabulary issue 916

unresolved. 917

Although pre-training can restrict model flexi- 918

bility, incorporating a pre-trained model could par- 919

tially address the OOV issue when the training set 920

cannot be effectively expanded. Our next step is 921

to explore the use of discrete Gaussian noise and 922

introduce pre-trained weights to mitigate the OOV 923

problem. 924

D Impact of Token Length on Model 925

Performance 926

VulRepair is constrained by its pre-trained model, 927

with an input token length of 512 and an output 928

of 256. To maintain consistency with VulRepair, 929

DiffusionAVR sets the input token length to 768 930

(vulnerable function concatenated with the repair 931

patch). To study the effect of token length on model 932

performance, we tested three variants of Diffusion- 933

AVR: 934

1. DiffusionAVR+768+No Pre-training: Input 935

length is 768, without pre-trained weights. 936

11

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

2. DiffusionAVR+512+No Pre-training: Input937

length is 512, without pre-trained weights.938

3. DiffusionAVR+512+Pre-training: Input939

length is 512, using the pre-trained Code-940

BERT.941

The experimental results are shown in Table 4.942

We observed that reducing the input token length943

from 768 to 512 nearly halved performance, with944

the number of perfectly generated repair patches de-945

creasing from 758 to 451. Using pre-trained Code-946

BERT model parameters further reduced correct947

patch generation to almost zero (only 25 correct948

patches).949

Table 4: Model Performance of DiffusionAVR Variants
with Different Input Lengths.

Method %pp Proportion IT(ms)

DiffusionAVR+768+No Pre-training 44.4% 758/1706 167
DiffusionAVR+512+No Pre-training 26.4% 451/1706 134

DiffusionAVR+512+Pre-training 1.4% 25/1706 148

This performance reduction occurs because Dif-950

fusionAVR uses noise addition in a continuous951

space, while the pre-trained BERT model oper-952

ates in a discrete space, with its final converged953

state also being discrete. Adding continuous Gaus-954

sian noise to a discrete state space disrupts the955

data’s original distribution, preventing the denois-956

ing model from effectively removing continuous957

noise in this discrete setting. As a result, the per-958

fect generation rate drops to only 1.4%. In contrast,959

the randomly initialized state space in Diffusion-960

AVR converges to a noise-consistent space during961

training, allowing the denoising model to learn the962

essential data distribution within this unified space.963

12

	Introduction
	DiffusionAVR
	Code Representation
	Forward Noise Injection
	Backward Denoising
	Generating Repair Patches

	Evalution
	Baseline Models
	Dataset
	Experimental Setup
	Evaluation Metrics

	Experimental Result
	RQ1: What is the accuracy of DiffusionAVR in generating software vulnerability repairs?
	RQ2: What is the Time Cost of DiffusionAVR?
	RQ3: How Does the Number of Sampling Steps Affect DiffusionAVR's Generation Capability?

	Related Work
	Automated Vulnerability Repair (AVR) Methods
	Diffusion Models

	Conclusion
	Impact of the Loss Function
	Impact of CWE Types on Vulnerability Repair
	Limitations
	Impact of Token Length on Model Performance

