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Abstract

Uncertainty Quantification (UQ) is vital for decision makers as it offers insights into
the potential reliability of data and model, enabling more informed and risk-aware
decision-making. Graphical models, capable of representing data with complex de-
pendencies, are widely used across domains. Existing sampling-based UQ methods
are unbiased but cannot guarantee convergence and are time-consuming on large-
scale graphs. There are fast UQ methods for graphical models with closed-form
solutions and convergence guarantee but with uncertainty underestimation. We pro-
pose LinUProp, a UQ method that utilizes a novel linear propagation of uncertainty
to model uncertainty among related nodes additively instead of multiplicatively, to
offer linear scalability, guaranteed convergence, and closed-form solutions without
underestimating uncertainty. Theoretically, we decompose the expected prediction
error of the graphical model and prove that the uncertainty computed by LinUProp
is the generalized variance component of the decomposition. Experimentally,
we demonstrate that LinUProp is consistent with the sampling-based method but
with linear scalability and fast convergence. Moreover, LinUProp outperforms
competitors in uncertainty-based active learning on four real-world graph datasets,
achieving higher accuracy with a lower labeling budget.

1 Introduction

Graphical models are known for their capability to represent data with complex dependencies. These
models have been extensively applied to various fields, ranging from social networks [9, 39], fraud
detection [26, 8], recommendation [14, 37] and crowdsourcing [25, 16], to more recent applications
in enhancing graph neural networks (GNNs) [10, 28] and large language models (LLMs) [15, 34].
Among the many inference techniques in graphical models [19, 13, 12, 17], Belief Propagation (BP)
[27] stands out as a powerful iterative message-passing algorithm. BP takes an initial guess (or “prior
belief”) of each node and refines it using information propagation, resulting in an updated, more
accurate estimate called “posterior belief”. However, a crucial limitation of BP is that it only provides
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point estimates for these posterior beliefs [7] and does not capture their potential uncertainty, leading
to decisions unaware of the underlying data and model unreliability. For example, in a social network,
a higher inferred probability of Alice’s interest in sports over Bob’s may lead to erroneous decisions
if, in fact, Alice’s inferred probability has high uncertainty and only a slightly higher interest.

To handle the uncertainty present in the beliefs, some well-known sampling-based uncertainty
quantification (UQ) tools, such as Monte Carlo (MC) simulations, can provide unbiased UQ. However,
these techniques are time-consuming for large-scale graphs and cannot ensure convergence within
a reasonable time frame in practice [21]. Existing works [7, 35], based on Bayesian theory, have
derived UQ methods with provable convergence and scalability by modeling beliefs as Dirichlet
distributions and treating neighboring nodes as observations. However, this means that any neighbor
of a node will necessarily reduce the uncertainty, even neighbors with noise or missing information.
As illustrated in Figure 1, consider a user A with no preference information about being a music
enthusiast, and A has two friends who are music enthusiasts (represented by a strong preference
with Beta distribution parameters like B(3, 1), where the parameters represent positive and negative
preference counts). If A gains an additional friend D who has no preference information (represented
by a uniform distribution B(1, 1)), the existing methods still reduce A’s uncertainty, incorrectly
suggesting increased confidence that A is a music enthusiast. This results in an underestimation
of posterior uncertainty. Furthermore, none of existing works provided a theoretical relationship
between the computed uncertainty and the expected model prediction error, making it difficult for
decision-makers to understand and trust the UQ results.
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Figure 1: The impact of more neighbors on posterior
uncertainty. NETCONF [7] or SocNL [35] underesti-
mates posterior uncertainty of A in G2 by considering
high-uncertainty node D as neighbor that reduce uncer-
tainty. LinUProp represents the uncertainty of a posterior
using interval widths, where increased uncertainty from
more neighbors leads to higher posterior uncertainty. The
proposed interval ways can be interpret as a generalized
variance component of the expected prediction error
(Sec. 4.2). Furthermore, LinUProp is interpretable due to
the additive of neighbor uncertainty (Eq. (12)).

To address the challenges mentioned above, we
introduce Linear Uncertainty Propagation (Lin-
UProp), a method to quantify the uncertainty
in posterior beliefs resulting from multiple it-
erations of propagation of uncertainty in node
priors, which offers the following advantages:

• Methodologically, we propose LinUProp
(Sec. 3), a novel linear method that spreads
the uncertainty from each node to the entire
graph and additively aggregates this uncer-
tainty to avoid underestimating posterior un-
certainty. LinUProp offers interpretability
due to the additive of neighbor uncertainty
(Fig. 1), enabling tracking the contributions
of other nodes to the computed uncertainty
and allowing users to understand its sources.

• Theoretically, LinUProp possesses a closed-
form solution, provable convergence related
to the spectral radius of a matrix representing
the dependencies between nodes (Sec. 4.1),
and proven linear scalability (Appendix A.3).
Moreover, by employing the bias-variance
decomposition, we demonstrate that the pos-
terior uncertainty is a generalized variance
component of the expected model prediction
error (Sec. 4.2).

• Experimentally, we demonstrate the follow-
ing with LinUProp: (1) The uncertainty quan-
tified by LinUProp is accurate due to its
strong positive correlation with MC simu-
lations (Fig. 7 in Appendix B.1); (2) LinUProp exhibits both fast convergence and linear scalability
(Fig. 4); (3) LinUProp is interpretable (Fig. 3); (4) When applied to graph active learning guided by
uncertainty, LinUProp achieves superior accuracy with a smaller budget compared to the baseline
method that underestimates uncertainty (Figs. 5-6)

Project page including code at https://github.com/chenghuaguo/LinUProp
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2 Preliminaries

Belief Propagation (BP) [27] iteratively passes messages on a graph to infer posterior distributions
of variables on a graphical model. We focus on the uncertainty in the inferred posteriors used for
node classification on Markov Random Field (MRF). Bayesian networks are another important type
of graphical models that can be converted into MRF [27].

Consider a graph G = (V, E) with n random variable nodes, each with k possible classes. The prior
es for node s is a k-dimension probability distribution and es(i) specifies the prior probability for
node s belonging to class i. Each edge (s, t) from G represents the dependencies between the two
random variables s and t. In particular, the dependency is represented by a pairwise potential function,
which is a k × k compatibility matrix H and H(i, j) denotes the degree of association between class
i of node s and class j of node t. We assume that H is a symmetric matrix, as in [11, 7]. Specifically,
for binary classification, the compatibility matrix is assumed to be

H =

[
0.5 + ϵ 0.5− ϵ
0.5− ϵ 0.5 + ϵ

]
. (1)

Similarly, an example form of H for multi-class problems is setting the diagonal elements to
1
k + (k − 1)ϵ and the other elements to 1

k − ϵ. |ϵ| is typically close to 0, and a positive/negative ϵ
specifies a homophily/heterophily relationship between any two connected nodes. Unlike existing
methods that require all edges to have the same compatibility matrix, our proposed LinUProp can
handle situations where each edge has a different compatibility matrix.

BP updates the k-dimensional message mts sent from node t to node s by:

mts(i)←
k∑

j=1

H(i, j)et(j)
∏

u∈N (t)\{s}

mut(j), i = 1, . . . , k, (2)

where N (t) is the set of neighboring nodes of t. Eq. (2) is applied iteratively until convergence or a
maximum number of iterations is reached. Then the posterior bs for node s is

bs(i)←
1

Zs
es(i)

∏
t∈N (s)

mts(i), i = 1, . . . , k, (3)

where Zs is for normalization such that
∑k

i=1 bs(i) = 1.

Centered BP [11] is a linearized version of Eqs. (2-3):

m̂ts (i)← k

k∑
j=1

Ĥ (i, j)

(
b̂t (j)−

1

k
m̂st (j)

)
, (4) b̂s (i)← ês (i) +

1

k

∑
t∈N (s)

m̂ts(i), (5)

where ês(i) = es(i)− 1
k , b̂s(i) = bs(i)− 1

k , m̂ts(i) = mts(i)− 1, Ĥ (i, j) = H (i, j)− 1
k , are the

centralized version of the prior, belief, message, and compatibility matrix.

NETCONF [7] models both the belief and uncertainty of each node using a Dirichlet distribution.
The certainty of a node is represented by the sum of its Dirichlet parameters, where a higher sum
indicates greater certainty. Each node u is initialized with a prior Dirichlet belief vector ěu. The
posterior Dirichlet belief b̌u is updated using multinomial messages from its neighbors:

b̌u ← ěu +
∑

v∈N (u)

m̌vu, m̌vu ←M

ěv +
∑

w∈N (v)\u

m̌wv

 ,

where m̌vu is the message from node v to u, and M is a modulation matrix derived from H.

Problem 1 (Quantifying Uncertainty in Posteriors).

Given: (1) An undirected graph G = (V, E) consisting of n nodes and an adjacency matrix A, (2)
|E| compatibility matrices, where each matrix illustrates the dependency relationship between a pair
of connected nodes, and (3) n k-dimensional prior uncertainty vectors ei(i = 1, . . . , n), with each
vector representing the uncertainty in prior beliefs for a node as interval widths across the k classes.
Find n k-dimensional posterior uncertainty vectors bi(i = 1, . . . , n), where each vector represents
the uncertainty of posterior beliefs for k classes of a node based on interval width, with wider interval
indicating higher uncertainty.
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Ĥ′ 232Ĥ′ 232
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Figure 2: An illustration of LinUProp quantifying uncertainty in posterior beliefs for each node in a 3-node
chain. Inputs: (1) Uncertainty in prior beliefs of each node represented as interval widths (e1,e2,e3) (2) Edge
potentials (H12 and H23, with H21 = H12 and H32 = H23 due to the undirected graph). Outputs: uncertainty
in posterior beliefs of each node also represented as interval widths. LinUProp can set a different compatibility
matrix for each edge, allowing it to handle edge-dependent potentials, while previous methods cannot do this.

3 Linear Bound Propagation

Recall that our objective is to quickly quantify the uncertainty in posterior beliefs and not assume
that neighbors necessarily reduce uncertainty, in order to avoid uncertainty underestimation. Interval
arithmetic [6] is a non-probabilistic method for quantifying uncertainty without assumptions regarding
neighbors. However, it is unclear how to directly apply interval arithmetic rules to Eqs. (2-3) of BP
while meeting the above objectives.

A solution to these challenges lies in linearization. The linearized BP is more amenable to interval
arithmetic due to its exclusive reliance on interval addition, sidestepping the interval multiplication
that may underestimate uncertainty. Consequently, this facilitates the derivation of closed-form
solution, endowing the method with linear scalability, interpretability, and guaranteed convergence.

We will next introduce LinUProp and its iterative variant, which is computationally efficient in
practical applications. Prior to that, we need some additional notation pertinent to LinUProp. Let
vec denotes the operation that vertically concatenates the rows of a given matrix into a single
column vector, and let Diag denote the transformation of an nk × k block matrix into a block
diagonal matrix. E = [e1,e2, · · · ,en]T and B = [b1,b2, · · · ,bn]

T respectively represent the
uncertainties of prior and posterior beliefs for all n nodes, each of dimension n × k. Q is an
nk × k matrix formed by vertically stacking n identity matrices, each of size k × k. Ψ

′

1 and Ψ
′

2

are nk × nk block matrices formed from Ĥ
′

st and Ĥ
′2
st, respectively. For any given edge (s, t), Ĥ

′

st

denotes the centralized compatibility matrix corresponding to that edge, with entries Ĥ
′

st defined as
Ĥ

′

st(i, j) = |Hst(i, j)− 1
k |. In cases where the edge (s, t) does not exist, the matrix defaults to zero.

Diag


L1

...
Ln


 =

L1

. . .
Ln

 Ψ
′

1 =

Ĥ
′

11 · · · Ĥ
′

1n
...

. . .
...

Ĥ
′

n1 · · · Ĥ
′

nn

 Ψ
′

2 =

Ĥ
′2
11 · · · Ĥ

′2
1n

...
. . .

...
Ĥ

′2
n1 · · · Ĥ

′2
nn


Theorem 3.1 (LinUProp). For a multi-class node classification task on an MRF, given the matrix
E which represents the prior belief uncertainty of all nodes, matrices Ψ

′

1 and Ψ
′

2 which denote the
dependencies among these nodes. The posterior belief uncertainty for all nodes, represented byB
and in terms of interval widths, is determined by the linear equation system:

vec(B) = vec(E) +
(
Ψ

′

1 + Diag
(
Ψ

′

2Q
))

vec(B). (6)

Figure (2) illustrates Eq. (6) using a 3-node chain as an example. From this, it can be observed
that LinUProp can be implemented using matrix multiplication without computing the uncertainty
propagated between each pair of nodes. In practice, a more effective strategy for computing the
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posterior belief interval widths vec(B) is to use an iterative update version of LinUProp:

vec(B)(l+1) = vec(E) +
(
Ψ

′

1 + Diag
(
Ψ

′

2Q
))

vec(B)(l), (7)

where l denotes the iteration round and vec(B)(0) can be set to vec(E). Although Eq. (6) is similar in
form to another method, LinBP (Eq. (13), [11]), which is a point estimation inference approach rather
than a UQ method, simply replacing prior and posterior beliefs in LinBP with interval widths does
not yield LinUProp. LinUProp is specifically designed to quantify uncertainty through derivations
involving the upper and lower bounds of messages and beliefs. For detailed derivations, please
refer to Appendix A.1. Its guaranteed convergence is proven in Sec. 4.1. The proof of its linear
scalability is provided in Appendix A.3, showing that the time complexity per iteration is O(|V|)
when |V| > |E|, otherwise O(|E|).

4 Analysis

We present theoretical analyses of LinUProp, including the derivation of a closed-form solution, the
proof of its convergence, and the provision of an interpretable approach to the uncertainty quantified
by LinUProp. Furthermore, by employing the bias-variance decomposition, we addressed the question
of what the uncertainty computed by LinUProp represents and established the connection between
this uncertainty and the expected prediction error.

4.1 Theoretical Analysis of LinUProp

Closed-form solution. By simplifying Eq. (6), we can derive a closed-form solution for LinUProp:

vec(B) = (I−Ψ
′

1 − Diag(Ψ
′

2Q))−1︸ ︷︷ ︸
F′

vec(E), (8)

where I represents the identity matrix. This closed-form solution is primarily used for subsequent
theoretical analysis; in practice, the iterative version Eq. (7) is employed, which does not require the
computation of the matrix inverse.

Convergence. Let Ψ
′

1 + Diag(Ψ
′

2Q) be denoted as T. The sufficient and necessary criteria for the
convergence of LinUProp is that the spectral radius of T is less than 1:

LinUProp converges ⇐⇒ ρ(T) < 1 (9)

Proof. The closed-form solution of LinUProp (Eq. (8)) conforms to a general linear equation system,
y = (I−P)

−1
x, where y, P, and x are generic terms. Such linear equation systems can be solved

by the Jacobi method [29], which converges if and only if the spectral radius of P is less than 1.

From the above convergence condition, LinUProp has a limitation: in large graphs with strong global
(most edges) homophily/heterophily, ρ(T) may be large, leading to non-convergence. However,
LinUProp can still converge if such strong homophily/heterophily is only local (a few edges).

Interpretability. When LinUProp converges, with ρ (T) < 1, we can expand the closed-form
solution Eq. (8) using the Neumann series, yielding:

vec(B) =
(
I+T+T2 + · · ·

)
vec(E). (10)

The uncertainty of the posterior belief for a certain class of a node, vec(B)v can be expanded as

vec(B)v = vec(E)v +Tvvec(E) +
(
T2

)
v

vec(E) + · · · , (11)

where Tvvec(E),
(
T2

)
v

vec(E), etc. can be expanded to
∑

w Tv,wvec(E)w,∑
w

(
T2

)
v,w

vec(E)w and so on, the subscript v represents the v-th row of matrices T,T2, · · · ,
while the subscript w represents the w-th column of matrices T,T2, · · · and the w-th component of
vec(E). Finally, we derive the contribution of the prior uncertainty of a certain class of any other
variable node vec(E)w towards the posterior belief uncertainty vec(B)v as

cw→v = Tv,wvec(E)w +
(
T2

)
v,w

vec(E)w +
(
T3

)
v,w

vec(E)w + · · · (12)
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This linear equation facilitates simple explanations of the uncertainty computed by LinUProp. Since
ρ(T) < 1 ensures convergence, the influence of higher-order terms, such as T3 and T4, decays
rapidly. Therefore, in practice, considering only the first few terms often provides an accurate and
interpretable estimate of uncertainty contributions.

4.2 Theoretical Connection with Bias-Variance Decomposition

To delve into the theoretical understanding of the uncertainty in the node’s posterior belief, we
employed the bias-variance decomposition [2], an effective tool for analyzing prediction errors and
decomposing model uncertainty [41]. We demonstrated that the posterior uncertainty computed
by LinUProp is a generalized variance component of the expected model prediction error, giving
LinUProp a solid theoretical basis. This relationship between the uncertainty computed by UQ
methods and the expected model prediction error has seldom been explored by existing work [7, 36,
35]. To begin with, we first derive a linearized BP suitable for edges with distinct potential functions
to facilitate bias-variance decomposition.

From the update equation of message m̂ts as shown in Eq. (4), we can derive the update rule for
the reverse message m̂st and substitute it back. This leads us to the stable message m̂ts when the
algorithm converges. By inserting the stable message into Eq. (5) and simplifying, we can derive the
closed-form solution for posterior beliefs where each edge has a distinct potential function (detailed
proof in Appendix A):

vec(B̂) = (I−Ψ1 + Diag(Ψ2Q))−1︸ ︷︷ ︸
F

vec(Ê), (13)

Ψ1 =

Ĥ11 · · · Ĥ1n

...
. . .

...
Ĥn1 · · · Ĥnn

 Ψ2 =

Ĥ
2
11 · · · Ĥ2

1n
...

. . .
...

Ĥ2
n1 · · · Ĥ2

nn


where vec and Diag are the same as those in Eq. (6). B̂ = [b̂1, b̂2, · · · , b̂n]

T and Ê =
[ê1, ê2, · · · , ên]T are n × k matrices composed of the centralized posterior and prior beliefs of
all nodes. Q is an nk× k matrix formed by vertically stacking n identity matrices, each of size k× k.
Ψ1 and Ψ2 are nk × nk block matrices formed from Ĥst and Ĥ2

st, respectively. For any given edge
(s, t), Ĥst denotes the centralized compatibility matrix corresponding to that edge, with entries Ĥst

defined as Ĥst(i, j) = Hst(i, j)− 1
k . If the edge (s, t) does not exist, the matrix defaults to zero.

This closed-form solution shows that the posterior belief can be regarded as a linear model of the
prior belief. Specifically, consider the element vec(B̂)v. This element represents the centralized
posterior belief of a specific class corresponding to a particular node. It is formulated as a linear
combination of all centralized prior beliefs, represented by Fvvec(Ê). Here, Fv denotes the v-th row
of F. This linear equation enables us to derive a bias-variance decomposition of the uncertainty in the
posterior belief. We define h(Ê) as the centralized posterior belief corresponding to a specific class
for a particular node in an unknown true linear model, and represent the centralized belief about Ê
computed using Eq. (13) as vec(B̂)v . Then, the expected model prediction error can be decomposed
into bias and variance as

E

[(
h(Ê)− vec(B̂)v

)2
]
=

(
h(Ê)−E

[
vec(B̂)v

])2

︸ ︷︷ ︸
(Bias)2

+E

[(
vec(B̂)v −E

[
vec(B̂)v

])2
]

︸ ︷︷ ︸
Variance

.

(14)

Expanding the variance term yields

E

[(
vec(B̂)v −E[vec(B̂)v]

)2
]
= FvΣvec(Ê)F

T
v , (15)

where Σvec(Ê) is the covariance matrix of vec(Ê) (proof in Appendix A.4). If we assume that the
priors of different nodes and class probabilities within each node’s prior are nearly independent,
Σvec(Ê) can be approximated as a diagonal matrix. Consequently, the sign of the elements in Fv
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will not affect the result of Eq. (15). Ignoring the small term Diag(·), the variance component can
be approximated as F

′

vΣvec(Ê)F
′T
v . The posterior interval width for v computed by LinUProp is

vec(B)v = F
′

vvec(E), leading to vec(B)v(vec(B)T )v = F
′

v(vec(E)vec(E)T )F
′T
v . This implies

that the variance component is a special case of LinUProp where the outer product of the prior
interval width vec(E)vec(E)T is the covariance matrix Σvec(Ê). In other words, the uncertainty
computed by LinUProp is a generalized variance component of the expected prediction error.

5 Experiments

We begin with a simple case study to illustrate the correctness and interpretability of quantified
uncertainty. We then present quantitative evidence of our method’s ability to accurately quantify
uncertainty, and demonstrate the convergence and scalability of our methods on real-world datasets.
Finally, we compare the efficacy of LinUProp to other competitors in graph active learning tasks.

5.1 Case Study on a Simple Graph

Correctness of quantified uncertainty. To verify the correctness of the uncertainty quantified by
LinUProp for posterior beliefs, we first qualitatively analyze the belief bounds on a simple graph.
Specifically, we conduct the experiment on a 4×4 grid, as shown in Figure 3(a), with priors set to

(a)
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0.30

(b)

Figure 3: Case Study. (a) A 4×4 grid with two classes.
The nodes colored in red and green are labeled, while
the rest are unlabeled. The bold unlabeled node indi-
cates the node we aim to explain the source of uncer-
tainty. (b) An interpretation of the uncertainty in the
belief of the bold node computed by LinUProp. The
colors represent the contribution of each node to the
uncertainty of the bold node, with warmer colors in-
dicating more significant contributions; the radius of
the white circles indicates the belief bound width com-
puted by LinUProp for each node, with a larger radius
indicating higher uncertainty in the beliefs.
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Figure 4: (a) Convergence of average belief bound
width by LinUProp. (b) Scalability. Each data point
represents the running time of LinUProp for 10 itera-
tions with a certain number of edges. The y-axis is the
running time in seconds.

B(9, 1) (red nodes) or B(1, 9) (green node) for labeled nodes, and B(1, 1) for the unlabeled nodes.
We use Beta distributions as priors in binary classification because they are a natural choice for binary
random variables [2]. For each variable node, the prior interval width for each class is set to twice
the standard deviation of the corresponding prior Beta distribution. For each edge, the compatibility
matrix is set as in Eq. (1), with ϵ = 0.1.

Figure 3(b) shows that the more labeled nodes around each node s, the smaller the uncertainty in
the belief; the more unlabeled nodes around s, the larger the uncertainty in the belief, which is
intuitive. In addition to the qualitative analysis mentioned above, we also compared the uncertainty
quantified by LinUProp with that quantified by MC simulations. MC simulations are adopted as
the ground-truth due to its ability to provide accurate approximations through a sufficient amount
of sampling [30], which are feasible for small-scale graphs. The experimental results show a strong
positive correlation between the uncertainties quantified by the two methods (PCC=0.9084), which
can be found in Appendix B.1.
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Interpretability. By Eq. (12), we can compute the contribution of any node t to the uncertainty in the
belief of node s computed by LinUProp. Figure 3(b) shows that the main source of uncertainty for the
bold node is itself because it is an unlabeled node. The unlabeled nodes in the neighborhood are the
secondary sources, and the unlabeled nodes within 2 hops are the tertiary sources. It demonstrates that
the uncertainty in the beliefs quantified by LinUProp has good interpretability, which can enhance
users’ trust in UQ results computed by LinUProp.

5.2 Experiments on Real Data

We validate the properties of LinUProp on three popular citation networks (Cora, Citeseer, and
PubMed) [18] and a political blog hyperlink network (PolBlogs) [1]. For further details regarding
these datasets and experimental configurations, please refer to Appendix B.2. Our experimental
findings can be summarized into the following three aspects.

Convergence. We set node priors based on classification type: Beta distributions for binary and
Dirichlet distributions for multi-class (k classes), both using parameter vector α of length k. In
datasets, 30% of nodes are randomly labeled; if labeled as class i, αi = 10, otherwise, entries are 1.
Unlabeled nodes have α = 1. Prior interval widths for each class are twice the standard deviation of
the distribution, capturing uncertainty by representing the interval as mean±std.

To simulate the diversity of dependencies between nodes, each edge’s ϵ is randomly selected from
{1e-4, 5e-4, 1e-3, 5e-3, 1e-2} and linked to a k × k compatibility matrix. Diagonal elements are
1
k + (k − 1)ϵ, and other elements are 1

k − ϵ. We monitor LinUProp ’s convergence (iterative version
in Eq. (7)) by measuring the average belief bound width,

∑n
p=1

∑k
q=1B(p, q)/(n ∗ k).

Figure 4(a) shows that LinUProp converges within 10 iterations across all four datasets, demonstrating
its rapid convergence. Using an iterative update version of LinUProp, the posterior belief bound
width for each node increases over iterations due to uncertainty propagation from other nodes.

Scalability. We initialize the prior interval width for nodes and the compatibility matrix for edges
following the same procedure as in the convergence experiment. Then we uniformly sampled different
numbers of edges from four datasets and recorded the running time of LinUProp for 10 iterations.
Figure 4(b) shows that the running time scales linearly in the number of edges. For more details on
the runtime comparison between NETCONF and LinUProp, please refer to Appendix B.4.

Effectiveness. For large-scale graphs, MC sampling is computationally impractical due to the signifi-
cantly increased time required for each sample. Therefore, we evaluate LinUProp’s effectiveness
using active learning as a downstream task. Specifically, we use uncertainty-based sampling to select
the next node for label acquisition, as detailed in [23]. In this context, users seek a labeled dataset
with minimal uncertainty, maximum accuracy, and minimal labeling budget.

We simulate a realistic scenario as in [40], using training set Vtrain, validation set Vval, test set
Vtest, and unlabeled pool Vulp (node numbers in Table 1, Appendix B.2), with query batch size b.
Initially, training set nodes are labeled and others are unlabeled. Node priors follow the convergence
experiment procedure. Edge compatibility matrices match the correctness experiment, enabling
comparisons with existing methods that cannot handle diverse potential functions. Due to noisy
labeling, the unlabeled pool remains unchanged to allow re-labeling [31].

For each selected node s, we update its Dirichlet prior by incrementing the parameter for the given
label class by 1. After each labeling iteration, all nodes undergo inference. Noisy labels may
not guarantee improved inference accuracy, so we use the iteration yielding the highest validation
accuracy to evaluate the test set, which determines the test accuracy for the current labeling budget.
MC-based methods are unsuitable for active learning as it requires time-consuming sampling for
each iteration. We use the following strategies in each iteration:

• Random: Select b nodes randomly.
• Least Confidence (LC): Calculate uncertainty as ULC(s) = 1− argmaxi bs(i).
• Entropy: Calculate uncertainty as UEntropy(s) = −

∑
i bs(i) log bs(i).

• Certainty Score (CS): Let b̆s be the parameter vector of the posterior Dirichlet distribution of
node s inferred by NETCONF [7]. Uncertainty is UCS(s) = −

∑
i b̆s(i). Due to assumptions on

distribution forms of priors, messages, and posterior beliefs, only applicable with NETCONF.
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Figure 5: Test accuracy for varying labeling budgets with BP inferring posterior beliefs. Each subplot title
includes two components, which represent the labeling accuracy and dataset. Each column corresponds to a
dataset. In each subplot, the node selection strategies based on LinUProp and its variant are represented by red
▼ and purple ▲. Under the same labeling budget, the higher the test accuracy, the better.
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Figure 6: Test accuracy for varying labeling budgets with NETCONF inferring posterior beliefs. Each subplot
title includes two components, which represent the labeling accuracy and dataset. Each column corresponds to a
dataset. In each subplot, the node selection strategies based on LinUProp and its variants are represented by ▼
and purple ▲, while the strategies based on the native UQ method in NETCONF and its variants are represented
by brown ◀ and pink ▶. NETCONF-based strategies (CS/LC+CS) often prioritize labeling low-degree nodes
due to their assumption that neighbors serve as evidence, leading to persistent high uncertainty in most nodes
and slowly increasing accuracy. Under the same labeling budget, the higher the test accuracy, the better.

• Belief Bound (BB): Based on LinUProp with the same prior bound width setting as in the
convergence experiment, uncertainty is UBB(s) = bs.

• LC+CS: Perform Min-Max normalization on ULC(s) and UCS(s) to obtain Unorm
LC (s) and

Unorm
CS (s). Uncertainty is ULC+CS(s) = Unorm

LC (s) + Unorm
CS (s).

• LC+BB: Combine LC and BB. Compute uncertainty as: ULC+BB(s) = Unorm
LC (s) + Unorm

BB (s).

We set query batch size b = 2k (k is the number of classes) and maximum labeling budget to 20b.
We evaluate node selection strategy performance with annotator labeling accuracy at 70%, 80%, 90%,
and 100%. To reduce randomness in results, we repeat each method ten times (re-partitioning datasets
and changing random seeds) and record the mean of test set inference accuracies. To demonstrate
labeling budget impact, we conduct experiments evaluating various node selection strategies under
different labeling budgets on four datasets, varying the budget from 2b to 20b.

As shown in Figures 5 and 6, whether using BP or NETCONF for inference, the test accuracy of
the LinUProp-based node selection strategy (BB) and its variations (LC+BB) generally grow faster
than other baselines as the budget increases. This is especially the case when compared to the native
UQ method in NETCONF (CS) and its variations (LC+CS). As shown in Figure 6, strategies based
on NETCONF (CS/LC+CS) prioritize labeling low-degree nodes due to their inherent assumption
that neighbors necessarily reduce the uncertainty. As a result, nodes with many neighbors are often
mistakenly viewed as having low uncertainty and are left unlabeled, which further leads to high
uncertainty in the majority of nodes. This phenomenon is more pronounced in graphs with a large
number of low-degree nodes, like PolBlogs, leading to a very slow increase in accuracy. Experiments
with a lower labeling accuracy yielded similar conclusions, as shown in Appendix B.3.1.

We also evaluate all strategies under a fixed labeling budget of 20b for a fair comparison, with results
displayed in Appendix B.3.2. The conclusion is that whether using BP or NETCONF for inference,
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BB and LC+BB outperform baselines across different labeling accuracies and datasets in most cases.
From the results in active learning tasks, we see node selection strategies guided by LinUProp’s UQ
results achieves higher labeling accuracy with lower labeling budget. This indicates that uncertainty
quantified by LinUProp is accurate, effective, and insensitive to the inference method.

6 Related Work

Uncertainty in posterior belief. In addition to traditional UQ methods like MC simulations, which
require extensive sampling, some research focuses on modeling uncertainty in posterior belief by
deriving closed-form solutions to incorporate uncertainty into inference results. Existing methods
[7, 36, 35] exhibit scalability but limited as they assume uniform potential functions across all edges.
Furthermore, these methods with closed-form solutions assume that any neighbor of a node will
necessarily reduce the uncertainty even neighbors affected by noise or lacking information, potentially
leading to uncertainty underestimation. Moreover, few existing studies have theoretically linked
calculated uncertainty to the expected model prediction error, making it difficult for decision-makers
to understand and trust the UQ results.

Existing works [22, 20] utilize bound propagation without the aforementioned assumptions regarding
neighbors. However, they focus on quantifying the error between the posterior beliefs and the true
marginal probabilities of the variable nodes, rather than quantifying uncertainty. This fundamen-
tally differs from LinUProp, which quantifies the posterior uncertainty as the generalized variance
component of the expected prediction error.

Human understanding of PGM inference. Humans are unlikely to adopt inference outcomes
without reasonable interpretation [33]. In [24, 32], the authors studied explainable Bayesian networks.
Recently, explanations of inference on Bayesian network and MRF were found by differentiation
[3, 5], so that a set of important network parameters (potentials) can explain the changes in the
inferred posterior distribution of a target variable. Interpretable graphical models are also studied
under the hood of topic models [4] or GNN [38]. None of the aforementioned studies can provide an
explanation for the uncertainty in the inference results.

7 Conclusion

In this paper, we proposed LinUProp, a UQ method for graphical model inference that utilizes a novel
linear propagation of uncertainty to model uncertainty among related nodes additively. LinUProp
provides linear scalability, guaranteed convergence, and is interpretable. Unlike its competitors,
LinUProp does not assume neighbors necessarily reduce uncertainty and thus avoids uncertainty
underestimation. To gain deeper insights, we decompose the expected prediction error of the graphical
model and prove that the uncertainty computed by LinUProp is the generalized variance component
of the decomposition. Experimental analysis shows LinUProp possesses aforementioned properties
and outperforms competitors in downstream tasks. However, the study has not yet explored the
interpretability of uncertainty with human involvement in real-world decision-making processes, an
area we aim to address in future research. We would also like to apply LinUProp to more applications
of graphical models to demonstrate its utility in the future.
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A Proofs

A.1 Proof of Theorem 3.1

Let vec denotes the operation that vertically concatenates the rows of a given matrix into a single
column vector, and let Diag denote the transformation of an nk × k block matrix into a block
diagonal matrix. E = [e1,e2, · · · ,en]T and B = [b1,b2, · · · ,bn]

T respectively represent the
uncertainties of prior and posterior beliefs for all n nodes, each of dimension n × k. Q is an
nk × k matrix formed by vertically stacking n identity matrices, each of size k × k. Ψ1 and Ψ2

are nk × nk block matrices formed from Ĥ
′

st and Ĥ
′2
st, respectively. For any given edge (s, t), Ĥ

′

st

denotes the centralized compatibility matrix corresponding to that edge, with entries Ĥ
′

st defined as
Ĥ

′

st(i, j) = |Hst(i, j)− 1
k |. In cases where the edge (s, t) does not exist, the matrix defaults to zero.

Diag


L1

...
Ln


 =

L1

. . .
Ln

 Ψ
′

1 =

Ĥ
′

11 · · · Ĥ
′

1n
...

. . .
...

Ĥ
′

n1 · · · Ĥ
′

nn

 Ψ
′

2 =

Ĥ
′2
11 · · · Ĥ

′2
1n

...
. . .

...
Ĥ

′2
n1 · · · Ĥ

′2
nn


Theorem 3.1 (LinUProp). For a multi-class node classification task on an MRF, given the matrix
E which represents the prior belief uncertainty of all nodes, matrices Ψ

′

1 and Ψ
′

2 which denote the
dependencies among these nodes. The posterior belief uncertainty for all nodes, represented byB
and in terms of interval widths, is determined by the linear equation system:

vec(B) = vec(E) +
(
Ψ

′

1 + Diag
(
Ψ

′

2Q
))

vec(B). (6)

Proof. Based on the linear approximation of BP messages defined in Eq. (4), we can approximate
the lower and upper bounds of BP messages using interval arithmetic rules [6]:

m̂−
ts (i)← k

∑
j

Ĥst (i, j)b̂
(1)
t\s (j) , (16)

m̂+
ts (i)← k

∑
j

Ĥst (i, j)b̂
(2)
t\s (j) , (17)

b̂
(1)
t\s (j) =

{
b̂−t (j)− 1

k m̂
+
st (j) , Ĥ (i, j) > 0,

b̂+t (j)− 1
k m̂

−
st (j) , Ĥ (i, j) < 0,

(18)

b̂
(2)
t\s (j) =

{
b̂−t (j)− 1

k m̂
+
st (j) , Ĥ (i, j) < 0,

b̂+t (j)− 1
k m̂

−
st (j) , Ĥ (i, j) > 0.

(19)

The idea behind Eqs. (16-19) is that the determination of the lower and upper bounds of m̂ts(i) is
contingent upon the sign of Ĥst(i, j). Specifically, when determining the lower bound of m̂ts(i), if
Ĥst(i, j) < 0, then b̂t\s(j) should be maximized, i.e., taking its upper bound b̂+t (j)− 1

k m̂
−
st (j); if

Ĥst(i, j) > 0, then b̂t\s(j) should be minimized, i.e., taking its lower bound b̂−t (j)− 1
k m̂

+
st (j). A

similar idea applies to the computation of the upper bound of m̂ts(i). Then by subtracting Eq. (16)
from Eq. (17), we obtain the interval widthmts(i) to reflect the uncertainty of m̂ts(i):

mts (i)← k
∑
j

|Ĥst (i, j) |
(
bt(j) +

1

k
mst(j)

)
, (20)

where bt is the interval width vector reflecting the posterior belief uncertainty at node t, as defined
in the “Problem Definitions” of Sec. 2. Eq. (20) leaves only the interval width, making the specific
location irrelevant for subsequent steps. Thus, LinUProp is also unaffected by the exact location of
the interval. Similarly, the uncertainty of the message in the opposite direction can be quantified by
interval width as:

mst (i)← k
∑
j

|Ĥst (i, j) |
(
bs(j) +

1

k
mts(j)

)
. (21)
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Substituting Eq. (21) into Eq. (20) leads to

mts (i)← k
∑
j

|Ĥst (i, j) |
(
bt(j) +

∑
g

|Ĥst (g, j) |
(
bs(g) +

1

k
mts(g)

))
. (22)

When the algorithm converges, all messages are at a stable state, so we can treatmts on both sides of
Eq. (22) as equal and replace the update formula with the equation:

mts (i)−
∑
j

|Ĥst (i, j) |
∑
g

|Ĥst (g, j) |mts(g)

= k
∑
j

|Ĥst (i, j) |bt(j) + k
∑
j

|Ĥst (i, j) |
∑
g

|Ĥst (g, j) |bs(g).
(23)

Let us denote |Hst(i, j)− 1
k | as Ĥ

′

st(i, j), then the stable state message bound can be simplified as:

(I− Ĥ
′2
st)mts = kĤ

′

stbt + kĤ
′2
stbs

mts = k(I− Ĥ
′2
st)

−1Ĥ
′

st(bt + Ĥ
′

stbs), (24)

where the message bound width, denoted asmts, and the posterior belief bound width of nodes s
and t, denoted as bs and bt respectively, are all k-dimensional vectors. Then the interval width
bs reflecting the uncertainty of posterior belief b̂s can be calculated by subtracting its lower bound
b̂−
s = ê−s + 1

k

∑
t∈N (s) m̂

−
ts from its upper bound b̂+

s = ê+s + 1
k

∑
t∈N (s) m̂

+
ts :

bs = es +
1

k

∑
t∈N (s)

mts, (25)

where es is the prior bound width vector with k-dimensional. Then plugging Eq. (24) into Eq. (25):

bs = es +
∑

t∈N (s)

(I− Ĥ
′2
st)

−1Ĥ
′

stbt +
∑

t∈N (s)

(I− Ĥ
′2
st)

−1Ĥ
′2
stbs.

Due to Ĥ
′

st being the centralized matrix, (I− Ĥ
′2
st) ≈ I, then (I− Ĥ

′2
st)

−1Ĥ
′

st ≈ Ĥ
′

st and we get

bs = es +
∑

t∈N (s)

Ĥ
′

stbt +
∑

t∈N (s)

Ĥ
′2
stbs. (26)

By using the matrices introduced at the outset of this section, Eq. (26) can be rewritten as Eq. (6).

A.2 Proof of Eq. (13)

Proof. Based on the linear approximation of BP messages (Eq. (4)), we can similarly get m̂st:

m̂st (i)← k
k∑

j=1

Ĥst (i, j)

(
b̂s (j)−

1

k
m̂ts (j)

)
. (27)

Substituting Eq. (27) into Eq. (4) leads to

m̂ts (i)← k
∑
j

Ĥst (i, j)
(
b̂t(j)−

∑
g

Ĥst (g, j)
(
b̂s(g)−

1

k
m̂ts(g)

))
. (28)

When the algorithm converges, all messages are at a stable state, so we can treat m̂ts on both sides of
Eq. (28) as equal and replace the update formula with the equation:

m̂ts (i)−
∑
j

Ĥst (i, j)
∑
g

Ĥst (g, j) m̂ts(g)

= k
∑
j

Ĥst (i, j) b̂t(j)− k
∑
j

Ĥst (i, j)
∑
g

Ĥst (g, j) b̂s(g).
(29)

This stable state message can be simplified as:

(I− Ĥ2
st)m̂ts = kĤstb̂t − kĤ2

stb̂s

m̂ts = k(I− Ĥ2
st)

−1Ĥst(b̂t − Ĥstb̂s). (30)
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Then plugging Eq. (30) into Eq. (5):

b̂s = ês +
∑

t∈N (s)

(I− Ĥ2
st)

−1Ĥstb̂t +
∑

t∈N (s)

(I− Ĥ2
st)

−1Ĥstb̂s.

Due to Ĥst being the centralized matrix, (I− Ĥ2
st) ≈ I, then (I− Ĥ2

st)
−1Ĥst ≈ Ĥst and we get

b̂s = ês +
∑

t∈N (s)

Ĥstb̂t +
∑

t∈N (s)

Ĥ2
stb̂s. (31)

By using Ψ1 and Ψ2 introduced at the outset of Sec. 4.2, Eq. (31) can be rewritten as Eq. (13).

Ψ1 =

Ĥ11 · · · Ĥ1n

...
. . .

...
Ĥn1 · · · Ĥnn

 Ψ2 =

Ĥ
2
11 · · · Ĥ2

1n
...

. . .
...

Ĥ2
n1 · · · Ĥ2

nn



A.3 Proof of the Linear Scalability of LinUProp

Proof. To demonstrate the linear scalability of LinUProp, we will start with the time complexity
analysis of the iterative version of LinUProp (Eq. (7)):

vec(B)(l+1) = vec(E) +
(
Ψ

′

1 + Diag
(
Ψ

′

2Q
))

vec(B)(l).

Before the iteration starts, vec(E) and Ψ
′

1 + Diag(Ψ
′

2Q) (denoted as T) are known and fixed as
input. In the l-th iteration, we need to compute the matrix-vector multiplication T · vec(B)(l) and
then add the result to vec(E). Since T is a block sparse matrix, we can use sparse matrix operations
to simplify the computation. The number of non-zero elements in T is k2 ∗ (|E|+ |V|), where |E| is
the number of edges, |V| is the number of nodes and k is the number of node classes. Then the time
complexity of T · vec(B)(l) is O(k2 ∗ (|E|+ |V|)). Adding this result to vec(E) has a complexity of
O(k|V|). Therefore, the time complexity of each iteration of LinUProp is O(k2(|E|+ |V|) + k|V|).
From this, we can conclude that the time complexity is O(|V|) when |V| > |E|, otherwise O(|E|),
which reflects the linear scalability of LinUProp.

A.4 Proof of Eq. 15

In order to expand the variance term, we first apply the property of variance, which states that the
variance of a random variable is equal to the difference between the expected value of its square and
the square of its expected value. Next, we substitute the linear function vec(B̂)v = Fvvec(Ê) into
the equation and appropriately expand the squared terms. Following this, we manipulate and simplify
the terms using the properties of expectation and matrix operations. At this point, we factor out the
linear function’s coefficient vector Fv . The resulting expression includes the covariance matrix of the
random vector, denoted as Σvec(Ê). Finally, we present the concise form of the expression, which
demonstrates the linear relationship between the variance term of each node and the prior covariances
of all nodes. The detailed proof steps are provided below:

E

[(
vec(B̂)v −E[vec(B̂)v]

)2
]

= E

[(
vec(B̂)v

)2
]
−
(
E

[
vec(B̂)v

])2

= E

[(
Fvvec(Ê)

)2
]
−
(
E

[
Fvvec(Ê)

])2

= E
[
Fvvec(Ê)vec(Ê)TFT

v

]
−E

[
Fvvec(Ê)

] (
E

[
Fvvec(Ê)

])T

= FvE

[
vec(Ê)vec(Ê)T

]
FT

v − FvE

[
vec(Ê)

] (
E

[
vec(Ê)

])T

FT
v

= Fv

(
E

[
vec(Ê)vec(Ê)T

]
−E

[
vec(Ê)

] (
E

[
vec(Ê)

])T
)
FT

v = FvΣvec(Ê)F
T
v
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B Additional Details and Results

B.1 Quantitative Validation of Correctness on a 4×4 Grid

We also quantitatively verify the correctness of LinUProp by comparing it with the uncertainty
computed by MC simulations on a 4× 4 grid. Specifically, we first sample prior beliefs based on the
prior distributions of each node, and then run BP to infer the posterior beliefs of each node. After
repeating the above sampling process for 100,000 times, we use the empirical standard deviation of
the posterior belief of each node sampled as an estimation of the ground truth uncertainty.

Figure 7 shows that the uncertainties quantified by MC simulation and LinUProp have a strong
positive correlation, as evidenced by a Pearson Correlation Coefficient (PCC) of 0.9084 between
the uncertainties obtained for all nodes using both approaches. This confirms the consistency of the
uncertainty in the beliefs quantified by our method with that of MC simulation.
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Figure 7: Correctness. The two axes represent two UQ methods: the x-axis is the empirical standard deviation
of the beliefs obtained by MC simulation (an estimation of the ground truth uncertainty), and the y-axis is the
belief bound width computed by LinUProp. In fact, there are 16 points in this figure, corresponding to the 16
variable nodes in Fig. 3(a). Some points appear to overlap because they have similar uncertainties quantified
by both methods. The Pearson Correlation Coefficient (PCC) between the uncertainties quantified by the two
methods is 0.9084, indicating a strong positive correlation.

B.2 More Experimental Details

Running environment. We conducted convergence and scalability experiments on the Apple M2
chip, and convergence experiments on a 2.2 GHz Intel Xeon CPU.

Datasets. Table 1 shows the statistical information and partitioning of three citation network datasets.

Table 1: Statistical information and partitioning of datasets. The subsets, Vtrain, Vval and Vtest are sampled
from the original node set. The remaining nodes are in Vulp. We use these subsets in the effectiveness
experiments.

Dataset #Nodes #Edges #Classes #Vtrain #Vval #Vtest

Cora 2,708 5,429 7 14 500 1,000
Citeseer 3,327 4,732 6 12 500 1,000
PubMed 19,717 44,338 3 6 500 1,000
PolBlogs 1,490 19,090 2 4 250 500
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B.3 More Effectiveness Results for LinUProp

B.3.1 Results under Varying Labeling Budgets with More Labeling Accuracy Settings
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Figure 8: Test accuracy for varying labeling budgets with BP inferring posterior beliefs using noisy labeled
nodes. Each subplot title includes two components, which represent the labeling accuracy and dataset. Each
row corresponds to a dataset, and each column corresponds to a labeling accuracy. In each subplot, the node
selection strategies based on LinUProp and its variant are represented by red ▼ and purple ▲. Under the same
labeling budget, the higher the test accuracy, the better.
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Figure 9: Test accuracy for varying labeling budgets with NETCONF inferring posterior beliefs using noisy
labeled nodes. Each subplot title includes two components, which represent the labeling accuracy and dataset.
Each row corresponds to a dataset, and each column corresponds to a labeling accuracy. In each subplot, the
node selection strategies based on LinUProp and its variants are represented by ▼ and purple ▲, while the
strategies based on the native UQ method in NETCONF and its variants are represented by brown ◀ and pink ▶.
NETCONF-based strategies (CS/LC+CS) often prioritize labeling low-degree nodes due to their assumption that
neighbors serve as evidence, leading to persistent high uncertainty in most nodes and slowly increasing accuracy.
Under the same labeling budget, the higher the test accuracy, the better.
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B.3.2 Results under a fixed Labeling Budgets

Tables 2 and 3 show the mean test accuracies and standard deviations for a fixed labeling budget
(20b) with BP/NETCONF inference on noisy labeled nodes. LinUProp achieves the highest mean
accuracy in 28 of 32 cases, consistently outperforming its competitors across all four datasets, two
inference methods, and four labeling accuracies. While the performance improvements are not always
statistically significant, LinUProp maintains lower standard deviations (below 7%) and avoids poor
accuracy. In contrast, LC achieves only 55% accuracy on Polblogs in Table 3, while LinUProp
consistently exceeds 80%. The Entropy method shows high standard deviations (up to 14%) on
Polblogs, whereas LinUProp generally has more stable performance, as underlined in the results.

Table 2: Mean test accuracies and their standard deviations for a fixed labeling budget (20b) with BP inferring
posterior beliefs using noisy labeled nodes. Each cell shows the mean accuracy and its standard deviation on the
test set for different labeling accuracy and node selection strategies, on different datasets. BB and LC+BB are
node selection strategies based on LinUProp. Bold values indicate the highest mean accuracy. Underlined values
emphasize the method with the lower standard deviation between the LinUProp winner and the non-LinUProp
winner. Superscripts indicate significant superiority between the LinUProp winner and the non-LinUProp winner
(pairwise t-test at a 5% significance level (*), 10% significance level (†)).

Dataset Random LC Entropy BB LC+BB

Cora

100% 66.900±1.987 66.450±3.188 66.590±3.853 60.270±2.451 68.380±1.130∗

90% 63.280±2.665 63.560±3.463 63.060±3.640 58.230±2.450 65.140±1.748†

80% 60.130±3.031 60.230±3.764 60.880±3.894 57.010±2.221 59.970±3.378
70% 56.400±2.352 56.950±3.798 57.570±3.793 53.910±4.266 54.880±5.502

Citeseer

100% 41.450±1.370 39.580±3.261 40.790±1.957 42.180±2.144 44.360±1.737∗

90% 39.120±1.584 38.200±2.279 38.420±3.069 40.570±1.521 41.860±2.689∗

80% 37.130±1.920 35.560±3.482 36.610±2.678 38.470±2.410 40.360±2.516∗

70% 34.600±1.849 33.990±3.734 33.220±3.160 36.800±2.426 37.340±2.183∗

Pubmed

100% 56.360±4.270 53.440±3.001 57.350±1.827 67.030±1.057∗ 67.030±1.057∗

90% 54.070±5.053 52.530±4.403 55.730±3.071 63.900±1.825 63.940±1.943∗

80% 50.550±5.762 50.180±3.624 52.750±4.055 60.560±2.696 60.740±2.996∗

70% 47.350±6.072 44.740±5.398 48.580±4.519 57.210±2.763∗ 56.760±4.201

PolBlogs

100% 86.920±1.847 61.280±7.838 80.520±11.685 88.140±1.051 88.340±1.230∗

90% 82.200±8.908 59.540±5.826 75.880±12.847 86.600±0.934† 84.920±1.443
80% 80.980±8.674 59.180±5.475 72.960±14.731 84.560±2.874 82.880±2.685
70% 78.700±7.382 56.740±4.103 70.520±13.114 80.620±6.167 75.280±6.752

Table 3: Mean test accuracies and their standard deviations for a fixed labeling budget (20b) with NETCONF
inferring posterior beliefs using noisy labeled nodes. Each cell shows the mean accuracy and its standard
deviation on the test set for different labeling accuracy and node selection strategies, on different datasets. BB
and LC+BB are node selection strategies based on LinUProp. CS and LC+CS are node selection strategies based
on the native UQ methods of NETCONF. Bold values indicate the highest mean accuracy. Underlined values
emphasize the method with the lower standard deviation between the LinUProp winner and the non-LinUProp
winner. Superscripts indicate significant superiority between the LinUProp winner and the non-LinUProp winner
(pairwise t-test at a 5% significance level (*), 10% significance level (†)).

Dataset Random LC Entropy BB LC+BB CS LC+CS

Cora

100% 67.380±2.458 64.520±4.241 68.570±3.373 61.060±2.621 68.670±1.311 60.950±3.300 61.000±3.305
90% 64.150±2.727 62.090±5.278 65.110±4.112 59.130±2.384 65.580±1.736 58.170±2.981 58.770±3.515
80% 61.260±3.017 60.160±4.021 61.500±3.731 57.850±2.570 61.770±3.223 56.450±2.987 57.730±3.473
70% 57.810±2.089 57.660±3.696 58.310±4.051† 54.740±4.113 55.720±4.635 53.910±2.542 55.080±2.740

Citeseer

100% 44.340±1.322 42.600±3.907 44.340±2.480 43.440±2.406 45.250±1.806 32.360±4.584 32.400±4.658
90% 41.740±1.796 41.860±4.742 41.860±1.489 41.950±1.941 42.910±1.980 32.190±4.598 32.200±4.635
80% 39.460±2.398 40.370±4.609 38.960±3.186 39.810±2.461 40.980±2.813 32.000±4.556 31.990±4.636
70% 36.950±2.916 38.800±4.364 36.980±3.543 37.940±2.441 38.690±1.842 31.840±4.595 32.020±4.725

Pubmed

100% 63.730±2.287 58.110±2.653 64.180±2.755 67.820±1.036∗ 67.820±1.036∗ 44.450±5.637 44.450±5.637
90% 60.870±2.950 56.520±2.546 63.710±2.926 64.790±2.438 64.560±2.229 44.350±5.547 44.380±5.627
80% 57.310±4.673 54.700±3.656 58.980±4.245 60.980±4.326 61.520±2.747† 44.190±5.397 44.270±5.498
70% 54.070±5.093 52.760±2.634 55.770±4.171 57.380±4.829 57.540±4.408 43.850±5.528 44.190±5.592

PolBlogs

100% 86.360±2.095 55.000±2.475 69.380±9.463 87.560±1.397 88.240±1.311∗ 55.000±2.475 55.000±2.475
90% 81.180±7.845 55.000±2.475 68.780±10.411 86.240±1.402† 84.460±1.103 55.000±2.475 55.000±2.475
80% 79.540±8.048 55.000±2.475 66.720±9.959 84.360±2.707† 83.140±2.265 55.000±2.475 55.000±2.475
70% 76.800±7.949 55.000±2.475 67.760±11.368 81.880±5.860† 76.540±5.536 55.000±2.475 55.000±2.475
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B.4 Additional Runtime Results

Under the same experimental conditions as the linear scalability experiments in Figure 4(b), we
tested NETCONF on four datasets, comparing its computation time (including all edges) with that of
LinUProp. As shown in Table 4, the computation times of NETCONF and LinUProp are quite similar.
However, LinUProp demonstrates a significant performance advantage over the NETCONF-based
UQ method, as evident from Table 3 (BB/LC+BB vs. CS/LC+CS).

Table 4: Runtime comparison including all edges across different datasets (in seconds)

Method Cora Citeseer Pubmed Polblogs

NETCONF 0.0225 0.0216 0.0627 0.0126
LinUProp 0.0256 0.0181 0.0559 0.0084
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction present the main contributions, including theo-
retical, methodological, and experimental contributions.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have outlined the limitations in the conclusion and discussed convergence
limitations in Sec. 4.1.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The complete and correct proofs for the theoretical analyses and results are
provided in Sec. 4 and Appendix A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information needed to reproduce all the experimental results are
disclosed in Sec. 5 and Appendix B.2.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is public at https://github.com/chenghuaguo/LinUProp.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The sufficient information concerning the experimental settings is comprehen-
sively disclosed in Sec. 5 and Appendix B.2.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All figures and tables related to test accuracy for varying/fixed labeling budgets
have provided error bars.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: The sufficient information concerning the computation resources is compre-
hensively disclosed in Appendix B.2.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers for the datasets are cited properly.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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