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ABSTRACT

Gene regulatory networks (GRNs) capture the underlying interactions through
which transcription factors (TFs) regulate genes. Based on gene expression data,
existing GRN inference approaches generally fall into two categories: graph-
based methods, which model the GRN as a whole graph, and pairwise-based meth-
ods, which decompose the GRN into individual TF–target gene pairs for model-
ing. However, each approach exhibits limitations that are precisely the strengths
of its counterpart. Graph-based methods tend to overfit due to their reliance on
a single training graph, compared to the numerous TF–target gene pairs available
for pairwise-based methods during training. In contrast, pairwise-based meth-
ods overlook the global topological structure, which is essential to graph-based
learning. To address these limitations, we propose scUniGP, a unified framework
that jointly models global regulatory topology and local TF–target interactions.
scUniGP first extracts multi-scale topological features from the whole regulatory
graph, and then hierarchically integrates these global representations with local
features derived from pairwise modeling for comprehensive GRN inference. Ex-
tensive experiments on seven benchmark datasets demonstrate that our model con-
sistently achieves state-of-the-art performance, validating the effectiveness of our
integrative design.

1 INTRODUCTION

Gene regulatory networks (GRNs) describe the intricate relationships by which transcription factors
(TFs) control the expression of their target genes Marbach et al. (2010). A GRN is represented
as a directed graph, where nodes denote TFs or genes and edges indicate regulatory relationships.
As shown in Figure 1(a), for the transcription factor g1 and gene g5, the directed edge g1 → g5
implies that higher expression of g1 leads to increased expression of g5, reflecting the regulatory
mechanism between them Hou et al. (2020); Zhang et al. (2023). Thanks to the development of
single-cell RNA sequencing (scRNA-seq), which provides accurate expression profiles of genes and
TFs across individual cells, researchers can now investigate GRNs at the cell level by using single-
cell expression data Reuter et al. (2015); Tanay & Regev (2017); Xu et al. (2023).

However, current scRNA-seq datasets pose two major challenges for GRN inference. First, since
regulatory annotations require specialized biological knowledge, existing datasets often suffer from
incomplete edge annotations Badia-i Mompel et al. (2023). Second, scRNA-seq typically measures
tens of thousands of genes, more than the number of cells, resulting in an extremely large GRN
with limited training samples Risso et al. (2018); Sun et al. (2025). Therefore, recent methods have
moved beyond traditional statistical approaches and instead adopt deep learning methods specifically
designed for GRN inference. These methods can be categorized into two main groups: graph-based
methods and pairwise-based methods.

Graph-based methods, as shown in Figure 1(b), treat the GRN as a whole graph, leveraging graph
neural networks (GNNs) to capture global topological relationships among transcription factors and
genes Chen & Liu (2022b); Guo et al. (2023); Bai & Wang (2024). Their principal strength lies
in mitigating the challenges of incomplete annotations through the message-passing mechanisms
inherent to GNNs Kipf & Welling (2017). For example, let g1 and g2 denote two different TFs,
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Figure 1: Illustrations of GRN inference and related approaches. (a) GRN inference aims to leverage
observed regulatory relationships (black arrow) to predict unknown ones (orange dashed arrow).
(b) Graph-based methods model the entire GRN as a graph, using observed edges (gray blocks)
to predict unknown edges (orange blocks) in the adjacency matrix. (c) Pairwise-based methods
decompose the GRN into individual TF–gene pairs and predict their relationships independently.
(d) Our method integrates both paradigms to enable comprehensive GRN inference.

and let g3 denote a target gene. If g1→ g3 and g2 share similar global topological features with g1,
graph-based methods can potentially learn the regulation g2→ g3 even without explicit annotation.
However, graph-based methods typically trained on a single GRN graph, are prone to overfitting Wu
et al. (2021). Moreover, GNNs may overlook important local interactions with the vast number
of genes (nodes) during global information propagation Grønbech et al. (2020). These limitations
hinder the performance of graph-based models in practice.

Pairwise-based methods, as shown in Figure 1(c), decompose the entire GRN into individual TF-
target gene pairs, and learn each regulatory interaction independently KC et al. (2019); Wang et al.
(2024). By generating a significantly larger training set, these methods mitigate the overfitting prob-
lems inherent to graph-based methods. Moreover, they effectively capture fine-grained regulatory
interactions and exhibit strong predictive performance in practice Cho et al. (2016); Greener et al.
(2022). However, because pairwise-based methods ignore the global network structure, they suffer
from incomplete annotations, and they also fail to capture higher-order dependencies Wang et al.
(2021). For example, if transcription factor g1→ g2, and g2→ g3, the indirect regulatory influence
of g1 on g3 can be overlooked by pairwise-based methods. These limitations hinder comprehensive
GRN inference over the full regulatory network and constrain the model’s generalizability.

To leverage the strengths and mitigate the weaknesses of both methods, as shown in Figure 1(d), we
propose scUniGP (Unified Graph-Pairwise model), a novel framework that integrates topological
knowledge from regulatory graphs with Transformer-based representations of TF-target gene pairs.
scUniGP employs a two-stage architecture. In the first stage, a graph neural network processes gene
expression matrix and prior regulatory networks to learn multi-scale gene embeddings, capturing
hierarchical global features and producing edge-level confidence scores as expert guidance. In the
second stage, a Transformer encodes expression profiles of candidate TF-target pairs and fuses them
with previously learned GNN embeddings at multiple levels, ensuring that fine-grained expression
patterns are progressively aligned with the broader regulatory topology context. This hierarchical
integration not only overcomes the overfitting issues of graph-based approaches and the locality
constraints of pairwise-based methods, but also produces unified representations that reflect both
global context and local interaction, thereby facilitating accurate and comprehensive GRN inference.
We evaluate scUniGP on seven widely used benchmark datasets in comparison with state-of-the-art
graph-based and pairwise-based methods. Experimental results show that scUniGP consistently
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achieves superior performance across all datasets, validating the effectiveness of our integrative
design and the importance of combining global and local modeling in GRN inference.

Our main contributions are summarized as follows:

• We performed a deep analysis of the key challenges in GRN inference from scRNA-seq
data, categorized existing approaches into graph-based and pairwise-based methods, and
identified their respective strengths and limitations, revealing their complementary nature.

• Based on these insights, we propose scUniGP, a novel framework that integrates global
topology modeling with local interaction learning to leverage their complementary advan-
tages and address their shortcomings.

• Extensive experiments on seven widely used GRN benchmark datasets demonstrate that
scUniGP consistently outperforms state-of-the-art methods, validating the rationale behind
our findings and the effectiveness of our integrative design.

2 RELATED WORK

Traditional Methods. Early gene regulatory network (GRN) inference methods can be broadly cat-
egorized into three classes: information-theoretic models, differential equation-based frameworks,
and Boolean networks. Correlation-based approaches, such as LEAP Specht & Li (2017) and mu-
tual information methods Song et al. (2012), assume that transcription factors and their targets ex-
hibit coordinated expression patterns across conditions. Differential equation-based models, such
as SCODE Matsumoto et al. (2017), utilize pseudotime to capture temporal dynamics via ordinary
differential equations. Boolean networks Dorier et al. (2016); Schwab et al. (2020) abstract gene
states into binary logic, offering interpretable models validated through dynamic simulations. With
the rise of scRNA-seq, statistical learning techniques such as regression and probabilistic graphical
models have gained traction Cho et al. (2016). SINCERITIES Papili Gao et al. (2018) employs ridge
regression to model time-dependent changes in gene expression. Inspired by GENIE3 Huynh-Thu
et al. (2010), which models GRN inference via random forest-based regression, GRNBoost2 Moer-
man et al. (2019) and DIRECT-NET Zhang et al. (2022) adopt gradient boosting trees to improve
computational efficiency and regulatory link reliability. Bayesian models like scMTNI Zhang et al.
(2023) further integrate prior knowledge, though their reliance on Gaussian expression assumptions
may limit applicability. To address the scalability, noise, and nonlinearity challenges of scRNA-
seq, deep learning has been applied to GRN inference, mainly through graph-based methods that
exploit network structure and pairwise-based methods that model TF–gene interactions.

Graph-based Methods. Given the intrinsic graph structure of gene regulatory networks, many
approaches have employed graph neural networks (GNNs) to learn regulatory dependencies.
DeepSEM Shu et al. (2021), inspired by structural equation modeling Yu et al. (2019), encodes
GRNs as latent adjacency matrices within a variational autoencoder framework. Chen et al. pro-
posed GENELink Chen & Liu (2022b), which uses graph attention networks (GATs) to learn gene
embeddings by integrating expression data and prior topology. GNNLink Guo et al. (2023) extends
this idea with graph convolutional networks (GCNs) and matrix completion to mitigate dropout ef-
fects, while GRNNLink Bai & Wang (2024) replaces GCNs with graph recurrent neural networks to
enhance robustness and capture dynamic dependencies. These methods leverage global topological
signals, but are often limited by sparse edge annotations and single-graph supervision.

Pairwise-based Methods. To alleviate the limitation of sparse training samples, some methods treat
GRN inference as a pairwise classification task. GNE KC et al. (2019) combines prior networks and
gene expression using multi-layer perceptrons (MLPs) to embed gene pairs. CNNC Yuan & Bar-
Joseph (2019) transforms co-expression histograms into image-like representations for CNN-based
classification, though at significant computational cost. More recently, scGREAT Wang et al. (2024)
introduces a Transformer-based framework inspired by NLP, learning TF–gene pair embeddings in
a context-aware manner from gene expression and biological annotations. While pairwise methods
scale well and generate abundant training samples, they often lack global structural awareness and
struggle to capture higher-order regulatory patterns. Despite their respective strengths, graph-based
and pairwise-based methods suffer from complementary limitations in capturing multi-scale regu-
latory dependencies. Motivated by this, we propose scUniGP, a unified framework that integrates
global topology modeling with local interaction learning for robust GRN inference.
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3 METHOD

3.1 PRELIMINARIES

GRN inference. We represent the gene regulatory network as the directed graph (G,E), where
G = {gi}ni=1 denotes the set of transcription factors and target genes (i.e., the nodes), and E =
{(gi, gj)}⊆G×G denotes the set of regulatory interactions (i.e., the edges), where gi→gj denotes
that gi regulates gj . Note that we employ a slight abuse of notation, using g to refer to both TFs
and genes, without loss of generality Guo et al. (2023). The goal of GRN inference is to recover the
unknown edges.

Given single-cell RNA sequencing data from c cells, every cell contains expression values corre-
sponding to genes in G. For example, for cell i, its gene expression values are represented as
vi =(vi,1, vi,2, . . . , vi,n), n= |G|. Then, the RNA-seq data could be represented as the expression
matrix X=[ vi,j ]

j=1,...,n
i=1,...,c ∈ Rc×n. In practice, define yij ∈ {0, 1} as the ground-truth label for the

edge (gi, gj) to indicate whether gi regulates gj , and split E into training set Etr and test set Ete,
the objective for GRN inference is to minimize:

LGRN =
∑

(gi,gj)∈Etr

L (m (X;Etr) , yij) (1)

where m is the trainable model to extract features and predict yij and L denotes the loss function.

Graph-based methods regard the entire GRN as a single graph to train a Graph Neural Network
(GNN). Each node embedding is directly obtained from the expression matrix: ek =X:,k ∈Rc for
gene gk. Then, GNN propagates node information along the training edges Etr, yielding predictions
for each candidate edge. The training loss can be written as:

LGraph=
∑

(gi,gj)∈Etr

LBCE

(
mGNN({ek}nk=1;Etr)ij , yij

)
, (2)

where mGNN denotes the graph neural network, mGNN(·)ij represents the (i, j)-th entry in the
predicted adjacency matrix of the graph, and LBCE is the binary cross-entropy loss.

As shown in Eq. equation 2,the loss calculation involves all nodes and edges, and only a single
graph is available to train the GNN, introducing the aforementioned overfitting problem and thereby
hindering the performance.

Pairwise-based methods decompose GRN into independent TF–target gene pairs for the training.
For each pair (gi, gj), they first get their expression embeddings from X , e.g., (ei=X:,i, ej=X:,j)
and encode them via a shared encoder. Then, the embeddings are fused to predict the corresponding
label yij . The training loss could be written as:

LPairwise=
∑

(gi,gj)∈Etr

LBCE

(
m(ei, ej), yij

)
, (3)

where m denotes the model for encoding gene embeddings.

By generating a much larger set of training samples, pairwise-based methods mitigate the overfitting
problem. However, as shown in Eq. equation 3, they totally ignore the network structure Etr and
fail to model global information, which limits their generalizability.

3.2 OUR MODEL—SCUNIGP

Overview. To overcome the limitations of graph-based methods and pairwise-based methods, we
propose scUniGP, a unified hybrid framework that seamlessly blends global regulatory topology
with fine-grained expression dynamics. There are three interconnected components: (1) Global
Branch, which derives multi-scale gene embeddings and edge-level confidence scores from a prior
regulatory graph. (2) Pairwise Branch, which applies a Transformer encoder to the expression pro-
files of each candidate TF–target pair. (3) Multi-scale Fusion, which progressively integrates the
GNN-derived features into the pairwise outputs to yield a consolidated prediction.
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Global Branch. Given the training gene regulatory graph (G,Etr), |G|=n, the adjacency matrix
Atr∈{0, 1}n×n and the expression matrix X∈Rc×n, we can first employ a multiple-layer GNN to
extract the multi-level graph embeddings for all genes:

h = mg(X, Atr), (4)

where h ∈ RL×n×d denotes all extracted hidden features, L is the layer of GNN, d is the hidden
dimension. we employ h

(l)
i ∈R1×d to denote the l-th layer hidden features for i-th gene. In practice,

mg could be implemented as any message-passing models, such as GCN Kipf & Welling (2016),
GraphSAGE Hamilton et al. (2017) and GAT Veličković et al. (2018).

To generate further global expert guidance, we compute a global expert score for each candidate pair
(gi, gj) as:

sij = h
(L)⊤
i h

(L)
j , (5)

where h
(L)
i and h

(L)
j denote the representations of gi and gj at the final GNN layer L. Note that the

representations h encode multi-scale topological information, where shallow layers focus on local
neighborhoods, while deeper layers progressively integrate broader global context, and the expert
score sij thus reflects the most comprehensive structural semantics distilled by the GNN.

Pairwise Branch. Following conventional pairwise-based methods, we first extract the embeddings
for each candidate pair (gi, gj) using their corresponding node embeddings, i.e., ei = X:,i and
ej = X:,j . These embeddings are passed through a multilayer perceptron (MLP) to encode raw
features and then fed into a Transformer encoder to generate the initial pairwise representation for
downstream fusion:

z
(0)
ij = mp(ei, ej), (6)

where mp is the pairwise encoding model, z(0)ij denotes the layer-0 pairwise features of the pair
(gi, gj), which serve as input to the subsequent multi-scale fusion stage.

Multi-Scale Fusion. To fully exploit both expression-level dynamics and global topological context,
we design the hierarchical fusion module that injects successive GNN-derived representations h into
the pairwise representation z(0). Starting from the initial pairwise representations, we perform the
following fusion recursively:

z
(l)
ij = m

(l)
f

(
z
(l−1)
ij ,h

(l)
i ,h

(l)
j , I{l=L} · sij

)
, (7)

where m(l)
f denotes the l-th layer fusion model, I{l=L} is an indicator function that equals 1 if l = L

and 0 otherwise, ensuring that sij is only incorporated at the final fusion layer.

The output z(L)
ij thus integrates fine-grained expression cues with multi-scale global context in a

single vector, which is subsequently passed through a sigmoid-activated classifier to produce the
predicted probability. The training objective is defined:

Lours=
∑

yij∈Etr

[
yij log σ(z

(L)
ij ) + (1− yij) log(1− σ(z

(L)
ij ))

]
, (8)

where yij ∈ {0, 1} is the ground-truth label, σ denotes the sigmoid-activated classifier, and σ(z
(L)
ij )

denotes the model’s predicted probability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset We evaluate the performance of scUniGP on seven scRNA-seq datasets curated by the
BEELINE framework Pratapa et al. (2020), covering diverse human and mouse cell types: (i) hu-
man embryonic stem cells (hESC), (ii) human hepatocytes (hHEP), (iii) mouse embryonic stem
cells (mESC), (iv) mouse dendritic cells (mDC), (v) mouse hematopoietic stem cells with erythroid
lineage (mHSC-E), (vi) granulocyte-monocyte lineage (mHSC-GM), and (vii) lymphoid lineage
(mHSC-L). Ground-truth GRNs are provided for each dataset based on multiple sources of biolog-
ical evidence, including: (1) STRING functional interaction networks Szklarczyk et al. (2019), (2)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

non-specific ChIP-seq networks Liu et al. (2015); Garcia-Alonso et al. (2019), (3) cell-type-specific
ChIP-seq networks Xu et al. (2013b); Moore et al. (2020), and (4) LOF/GOF perturbation-based
networks Xu et al. (2013a) for mESC. All datasets are publicly available from GEO: GSE75748
(hESC), GSE81252 (hHEP), GSE98664 (mESC), GSE48968 (mDC), and GSE81682 (mHSC vari-
ants). Each scRNA-seq dataset consists of significantly varying transcription factors and either the
500 or 1000 most-variable genes, referred to as TFs500 and TFs1000, respectively. The distribution
and statistics of each scRNA-seq dataset with ground-truth networks are shown in the appendix.

Baselines We compare scUniGP against nine representative GRN inference methods: GE-
NIE3 Huynh-Thu et al. (2010), GRNBoost2 Moerman et al. (2019), mutual information (MI) Song
et al. (2012), Pearson correlation coefficient (PCC), DeepSEM Shu et al. (2021), GNE KC et al.
(2019), GENELink Chen & Liu (2022b), scGREAT Wang et al. (2024), and GNNLink Guo et al.
(2023). Among them, GENELink and GNNLink are representative graph-based methods, while GE-
NIE3 and scGREAT are typical pairwise-based approaches. MI and PCC are classical co-expression
analysis techniques. All models are evaluated using the same expression matrices and candidate
TF–target gene pairs to ensure a fair comparison.

Evaluation Metric In line with standard practice in GRN inference tasks, we adopt two widely
used evaluation metrics: Area Under the Receiver Operating Characteristic Curve (AUROC) and
Area Under the Precision-Recall Curve (AUPRC). AUROC reflects the model’s overall classification
performance, while AUPRC better captures its ability to identify true regulatory interactions under
class imbalance, which is common in GRN datasets.

4.2 IMPLEMENTATION DETAILS

We follow the preprocessing and splitting protocol in Chen & Liu (2022b), retaining only TF–target
interactions and filtering genes by expression variance (p < 0.01, Bonferroni-corrected) as in Prat-
apa et al. (2020). Positive samples are defined as edges in the ground-truth networks, while all
other TF–gene pairs are treated as candidate negatives. Given the sparsity of true regulatory net-
works, candidate negatives vastly outnumber positives, and some may correspond to undiscovered
regulations Thabtah et al. (2020). To address this imbalance, we adopt hard negative sampling
(HNS) Radenović et al. (2016), where for each positive TF–gene pair a negative pair with the same
TF is uniformly drawn. These hard negatives are more difficult to distinguish from positives and
thus provide stronger supervision Zhu et al. (2019a). We randomly assign 67% of positive and HNS
pairs to training and validation (90%/10%), and hold out the remaining 33% for testing, where the
proportion of positives approximately matches the network density of the underlying scRNA-seq
data. Details of sample distributions and dataset splits are provided in Appendix.

All models are trained on four NVIDIA RTX 4090 GPUs. The global branch of scUniGP employs
a two-layer GAT or GCN, projecting inputs to 128-dimensional embeddings and then compressing
them to 64 dimensions. In the pairwise branch, each TF–gene pair is encoded by two MLPs into
16-dimensional vectors, which are fused via a four-layer Transformer encoder (8 heads, embedding
size 1024). Training uses Adam with a learning rate of 5× 10−6, weight decay 1× 10−5, and a step
scheduler (γ = 0.999, step size=10). The model is trained up to 200 epochs with early stopping on
validation AUROC (patience=8). Training proceeds in two stages: first, pre-training the GNN on
the structural graph; second, jointly fine-tuning the full model with the Transformer while keeping
GNN parameters trainable. Further experimental details are provided in the Appendix.

4.3 RESULTS AND ANALYSIS

We present scUniGP analysis via Q&A, covering benchmark performance and statistical signifi-
cance, architectural contributions via ablation, and biological interpretability of embeddings.

Q1. Does scUniGP achieve superior GRN inference performance across all benchmarks?

A1. As shown in Table 1, scUniGP consistently achieves state-of-the-art GRN inference perfor-
mance across all evaluated network types(22/22) under the TFs500 benchmark. In terms of AUROC,
scUniGP attains the highest overall average of 0.911, surpassing the current best-performing method
scGREAT by 2.13% and outperforming the second-best method GNNLink by 4.61%. The perfor-
mance gap is particularly notable in sparse networks, such as STRING and non-specific ChIP-seq,
where scUniGP achieves AUROC improvements of 3.08% and 2.63% over scGREAT, respectively.
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Network Dataset
Method MI† PCC† GRN†

Boost2
Deep
SEM

GEN†

IE3 GNE GENE
Link

GNN
Link

scGR
EAT

scUni
GP

STRING

hESC 0.650 0.610 0.620 0.630 0.650 0.782 0.906 0.921 0.907 0.948
hHEP 0.620 0.700 0.610 0.630 0.640 0.776 0.913 0.929 0.918 0.941
mDC 0.510 0.540 0.570 0.620 0.640 0.831 0.941 0.933 0.938 0.956
mESC 0.670 0.640 0.610 0.630 0.640 0.802 0.926 0.924 0.934 0.951

mHSC-E 0.650 0.720 0.680 0.670 0.690 0.652 0.903 0.913 0.924 0.942
mHSC-GM 0.720 0.810 0.780 0.740 0.780 0.736 0.910 0.905 0.920 0.937

mHSC-L 0.820 0.740 0.740 0.680 0.730 0.761 0.818 0.851 0.823 0.882

Non-specific
ChIP-seq

hESC 0.480 0.530 0.520 0.550 0.510 0.659 0.853 0.843 0.882 0.896
hHEP 0.480 0.570 0.530 0.570 0.510 0.685 0.870 0.863 0.886 0.906
mDC 0.470 0.470 0.520 0.570 0.550 0.670 0.893 0.882 0.907 0.926
mESC 0.540 0.550 0.540 0.550 0.550 0.649 0.887 0.861 0.879 0.928

mHSC-E 0.590 0.570 0.610 0.580 0.610 0.533 0.861 0.869 0.874 0.893
mHSC-GM 0.650 0.610 0.640 0.600 0.660 0.562 0.851 0.861 0.880 0.882

mHSC-L 0.680 0.650 0.670 0.630 0.690 0.644 0.800 0.789 0.802 0.842

LOF/GOF mESC 0.680 0.550 0.650 0.640 0.650 0.778 0.854 0.871 0.888 0.891

Specific
ChIP-seq

hESC 0.510 0.470 0.490 0.580 0.500 0.673 0.820 0.848 0.890 0.895
hHEP 0.500 0.490 0.520 0.550 0.540 0.795 0.841 0.821 0.908 0.910
mDC 0.550 0.540 0.520 0.510 0.500 0.524 0.707 0.738 0.808 0.813
mESC 0.530 0.510 0.530 0.500 0.500 0.808 0.882 0.885 0.930 0.941

mHSC-E 0.520 0.490 0.530 0.510 0.520 0.817 0.868 0.878 0.927 0.930
mHSC-GM 0.490 0.540 0.500 0.530 0.530 0.831 0.894 0.892 0.928 0.937

mHSC-L 0.510 0.550 0.520 0.540 0.520 0.768 0.836 0.841 0.876 0.885

—— Average 0.583 0.584 0.586 0.591 0.596 0.715 0.865 0.869 0.892 0.911

Table 1: AUROC performance comparison across different GRN inference methods on benchmark
datasets. Methods marked with † are reproduced following the protocol in Wang et al. (2024),
while other baselines are our faithful reimplementation of published algorithms under the same
experimental settings. All reported results represent the average of the five independent runs with
different random seeds, and the variance can be found in the Appendix.

Figure 2: Violin plots illustrate the distribution
of AUROC scores for each method. The width
of each violin reflects data density, and the inter-
nal boxplot summarizes key statistics including
the median and quartiles. Scattered dots show
individual AUROC values (right of boxes).

Figure 3: Performance comparison of scUniGP
and competing methods on gene regulatory net-
work inference tasks. Bar heights represent
mean AUPRC values with error bars showing
standard deviations. Statistical significance be-
tween scUniGP and scGREAT is displayed.

These consistent gains also extend to specific ChIP-seq and perturbation-based networks, suggest-
ing strong generalization capabilities across heterogeneous regulatory conditions. On the larger
TFs1000 dataset, scUniGP continues to outperform scGREAT by a margin of 1.43%, achieving an
average AUROC of 0.921. This indicates that the model consistently retains its performance advan-
tage even as the feature space complexity escalates.

AUPRC evaluations further underscore the robustness of scUniGP, especially under imbalanced or
low-signal scenarios. On TFs500, scUniGP achieves an average AUPRC of 0.522, outperforming
scGREAT (0.463) and the second-best method GENELink (0.445). The relative improvements are
particularly prominent on the STRING and Non-Specific networks, with gains of approximately
26.0% and 24.7% over scGREAT, respectively, echoing the AUROC results. In high-signal con-
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Method w/o GNN embedding w/ GCN embedding w/ GAT embedding

Network STRING Non
Specific STRING Non

Specific STRING Non
Specific

hESC 0.931 0.831 0.946 0.892 0.948 0.896
hHEP 0.935 0.893 0.949 0.901 0.941 0.906
mDC 0.952 0.894 0.956 0.907 0.956 0.926
mESC 0.933 0.878 0.947 0.901 0.951 0.928

mHSC-E 0.922 0.875 0.936 0.855 0.942 0.893
mHSC-GM 0.911 0.882 0.913 0.861 0.937 0.882

mHSC-L 0.918 0.815 0.855 0.833 0.882 0.842

Average 0.918 0.867 0.929 0.879 0.937 0.896

Table 2: Ablation study of the Global Branch in our integral design: AUROC comparison of no
GNN, GCN-based, and GAT-based embeddings on TFs500 datasets.

Method Early Fusion Late Fusion Ours

Network STRING Non
Specific STRING Non

Specific STRING Non
Specific

hESC 0.923 0.828 0.932 0.902 0.948 0.896
hHEP 0.940 0.882 0.938 0.904 0.941 0.906
mDC 0.949 0.889 0.952 0.913 0.956 0.926
mESC 0.946 0.883 0.948 0.900 0.951 0.928

mHSC-E 0.924 0.877 0.936 0.883 0.942 0.893
mHSC-GM 0.904 0.878 0.928 0.880 0.937 0.882

mHSC-L 0.827 0.802 0.881 0.821 0.882 0.842

Average 0.916 0.863 0.931 0.886 0.937 0.896

Table 3: Ablation study of the Multi-Scale Fusion strategy in our integral design: AUROC compar-
ison of early fusion, late fusion, and our proposed multi-scale fusion on TFs500 datasets.

ditions, scUniGP remains competitive, achieving AUPRC values comparable to or better than the
strongest baselines. Similar trends hold on TFs1000, where scUniGP maintains a slight edge over
scGREAT, further demonstrating its scalability and reliability across diverse transcriptional feature
sets. Detailed performance comparisons across all baseline methods are provided in the Appendix.

Q2. Are the performance improvements of scUniGP over baselines statistically significant?

A2. To rigorously assess the significance of scUniGP’s performance gains, we evaluated 10
GRN inference methods on the TFs500 datasets across 22 cell types under four types of ground-
truth networks. Friedman tests reveal highly significant differences among methods for both AU-
ROC (χ2 = 159.09, p = 1.15 × 10−29, Kendall’s W = 0.803) and AUPRC (χ2 = 120.15,
p = 1.24 × 10−21, Kendall’s W = 0.607), while Nemenyi post-hoc tests confirm that scUniGP
consistently ranks first and differs significantly from most baselines. To further validate these find-
ings, we performed paired tests against the strongest baseline scGREAT, showing that scUniGP
achieves significantly higher AUROC (Cohen’s d = 1.16) and AUPRC (Cohen’s d = 0.72), with
particularly strong gains on STRING and Non-Specific networks. Figures 2 and 3 provide visual
support for these findings: the former depicts AUROC distributions with violin–scatter plots, while
the latter presents AUPRC comparisons using bar charts with error bars. Together, they show that
scUniGP’s improvements are both consistent and statistically significant. Further statistical analy-
ses, dataset-specific results, and TFs1000 evaluations are provided in the Appendix.

Q3: What is the contribution of global branch and multiscale fusion in scUniGP?

A3: To elucidate the contributions of key architectural components in scUniGP, we conduct com-
prehensive ablation experiments on seven TFs500 datasets using both the STRING and Non-Specific
cell-type networks. We first examine the effect of GNN-based gene embeddings by comparing three
variants: (i) without GNN embeddings, (ii) with GCN-based multiscale embeddings, and (iii) with
GAT-based multiscale embeddings. As shown in Table 2, the average AUROC improves from 0.918
(w/o GNN) to 0.929 with GCN and 0.937 with GAT on STRING, and from 0.867 to 0.879 and
0.896, respectively, on Non-Specific networks. GCN yields improvements on 10 out of 14 datasets,
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(a) TF-NRF1 t-SNE Visualization of Input and Output Embeddings (b) Comprehensive t-SNE Comparison of All TF-TG Interactions

TF (NRF1)

Target Genes

Non-Target Genes

Positive
Negative

Figure 4: t-SNE visualization of transcription factor-target gene interactions in both input and output
embedding spaces. (a) shows TF NRF1 and its target/non-target genes, with the left panel represent-
ing input embeddings based on raw gene expression data and the right panel showing output embed-
dings from the model’s penultimate layer. (b) presents visualizations of all TF-target interactions,
with the left panel showing input embeddings based on flattened raw gene expression data and the
right panel displaying output embeddings from the model’s penultimate layer.

whereas GAT consistently enhances performance across all cases and achieves the best overall re-
sults, demonstrating the effectiveness of GNN-based embeddings.

Next, using the GAT-embedded model, we evaluate three fusion strategies: early fusion (feature con-
catenation before the Transformer encoder), late fusion (decision-level ensemble), and our proposed
multiscale (layer-wise) fusion. As shown in Table 3, multiscale fusion achieves the best overall
AUROC, surpassing early and late fusion by 2.24% and 0.64% on STRING, and by 3.82% and
1.13% on Non-Specific networks. Notably, early fusion even underperforms the no-GNN variants,
indicating that embeddings learned at deeper GNN layers capture progressively richer features and
thus require layer-wise integration with the Pairwise Branch. These results confirm that GNN-based
embeddings and multiscale fusion are essential to the robust performance of scUniGP.

Q4: Does scUniGP learn biologically meaningful representations of gene regulation?

A4: To assess the representational effectiveness of scUniGP, we conducted two t-SNE visualization
experiments to examine whether the model can learn biologically meaningful and discriminative
embeddings that separate true TF–target gene (TG) pairs from non-target pairs. First, for the TF
*NRF1* in the mESC dataset (Cell-type-Specific network), input embeddings—constructed by flat-
tening raw expression vectors—show substantial overlap between TG and non-TG pairs. In contrast,
output embeddings from the penultimate layer, which integrate gene expression, multiscale GNN
interactions, and expert attention, exhibit clear clustering with NRF1 centered among its targets
(Figure 4a), demonstrating improved intra-class cohesion and inter-class separation. In the second
experiment, extending to all TF–TG pairs across datasets, output embeddings consistently enhance
class separation relative to the input space (Figure 4b), indicating that scUniGP transforms high-
dimensional sparse expression data into a more discriminative feature space. Additional TF-specific
and global embedding visualizations are provided in the Appendix.

5 CONCLUSION

We proposed scUniGP, a unified framework for GRN inference that integrates global graph topology
with local TF–gene interactions via hierarchical multi-scale fusion. Across diverse benchmarks,
scUniGP consistently outperforms state-of-the-art methods, and ablations verify the effectiveness
of the global branch and fusion strategy. These results demonstrate its ability to mitigate annotation
sparsity and overfitting, yielding robust and biologically meaningful representations.

Supervised GRN inference lacks reliable negatives, though our uniform sampling reduces false neg-
atives. The joint design may also trade some efficiency compared with graph- or pairwise-only
methods. In future work, we plan to extend scUniGP with richer modalities (e.g., epigenetics,
sequence, protein structure) for more comprehensive modeling. Moreover, while large-scale bio-
logical foundation models have shown limited impact on GRN-level tasks, we aim to explore their
integration within scUniGP to further enhance model generalization, scalability, and interpretability.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Detailed descriptions
of dataset preprocessing and splitting protocols are provided in Appendix A, while model architec-
tures, hyperparameter settings, and training strategies are reported in Appendix B. Comprehensive
experimental results, including performance comparisons, visualizations, and runtime analysis, are
presented in Appendix C. All algorithms and theoretical formulations are clearly specified in the
main text and Appendix, with assumptions and derivations explicitly stated where applicable. Fur-
thermore, the complete source code used for training and evaluation is included in the supplemental
materials, enabling full reproduction of our experiments.
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APPENDIX

This appendix provides additional details to supplement the main paper, including: method details,
where we present a comprehensive formulation of Eq. (4) and Eq. (6) from the main text; dataset
details, where we describe each dataset used in our experiments, including statistics and preprocess-
ing procedures; implementation details, where we elaborate on the adaptations of existing models
and the configurations of downstream tasks; and experimental details, where we provide supple-
mentary results—such as variances and significance tests omitted from the main paper—along with
extended discussions and analyses that further support our benchmark findings.

A METHOD

Overview. SCUNIGP is a hybrid framework that integrates global regulatory topology with fine-
grained expression dynamics. In the Appendix, we provide detailed formulations for each compo-
nent, focusing on the Global Branch and Pairwise Branch, which correspond to Eqs. (4) and (6).

Global Branch (Eq. (4)). We adopt a general message-passing GNN to extract multi-scale topo-
logical features from the prior regulatory graph Atr and the expression matrix X, as formulated in
Eq. (4) of the main paper. The layer-wise propagation follows a unified formulation:

h
(l)
i = AGG(l)

({
ϕ(l)(h

(l−1)
i , h

(l−1)
j , eij) | j ∈ N (i)

})
, l = 1, . . . , L (a)

where h
(l)
i ∈ Rd denotes the embedding of gene gi at layer l, N (i) is the set of its neighbors, eij

represents optional edge features, ϕ(l)(·) is a learnable message function, and AGG(l) is a layer-
specific aggregation operator such as mean, sum, or attention. Each layer optionally includes a
nonlinear activation (e.g., ReLU) and residual connection to improve gradient flow and training
stability. Our framework supports standard GNN instantiations such as GCN Kipf & Welling (2017),
where messages are aggregated via normalized adjacency, and GAT Veličković et al. (2018), which
employs attention-based neighbor weighting to enhance expressive power.

The hierarchical embeddings h(1:L) capture multi-scale topological context: shallow layers encode
local neighborhood information, intermediate layers integrate broader connectivity patterns, and the
final layer aggregates global structure. For each candidate TF–target pair (gi, gj), the global expert
score is computed based on the final-layer embeddings, as defined in Eq. (5) of the main paper.

Pairwise Branch (Eq. (6)). For each candidate pair (gi, gj), we first extract their expression vectors
xi,xj ∈ Rc from the matrix X. These vectors are projected into a shared latent space via a linear
transformation ℓ(·), and combined with learnable positional embeddings p0,p1 ∈ Rd, which are
initialized as simple 0/1 vectors to distinguish the roles of TF and target. The resulting sequence is
then jointly encoded using a Transformer encoder:

z
(0)
ij = TransformerEncoder ([ℓ(xi) + p0 ; ℓ(xj) + p1]) ∈ Rdt (b)

This representation z
(0)
ij captures cell-contextualized expression dependencies between the TF gi and

target gj , serving as the initial input for the subsequent multi-scale fusion. During fusion, these pair-
wise embeddings are concatenated with the corresponding GNN-derived multi-scale embeddings
from the Global Branch to fully integrate local expression patterns with global topological context.

Summary. In summary, SCUNIGP integrates multi-scale GNN embeddings and expert scores from
the Global Branch with fine-grained, context-specific pairwise embeddings via concatenation in the
Multi-scale Fusion module, producing a unified representation for accurate TF–target inference; the
overall training procedure is detailed in Algorithm 1.

B DATASET

We adopt seven benchmark scRNA-seq datasets provided by the BEELINE pipeline, covering a
range of biological systems and experimental conditions. To provide supervision for GRN infer-
ence, we utilize four types of ground-truth regulatory networks: (1) STRING networks, derived
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Algorithm 1 Training Procedure of SCUNIGP

1: Input: Expression matrix X ∈ Rc×n; adjacency matrix Atr ∈ {0, 1}n×n; edge labels yij for
(gi, gj) ∈ Etr

2: Output: Trained model for gene regulatory inference
3: Global Branch: Apply multi-layer GNN mg to extract multi-scale gene features:

h← mg(X,Atr) where h ∈ RL×n×d

4: for all (gi, gj) ∈ Etr do
5: Extract top-layer embeddings: h(L)

i , h(L)
j

6: Compute expert score: sij ← h
(L)⊤
i h

(L)
j

7: end for
8: for all (gi, gj) ∈ Etr do
9: Extract expression vectors: ei ←X:,i, ej ←X:,j

10: Pairwise Branch: Encode pair via Transformer:

z
(0)
ij ← mp(ei, ej)

11: for l = 1 to L do
12: if l = L then
13: Fuse with final graph embeddings and expert score:

z
(l)
ij ← m

(l)
f (z

(l−1)
ij ,h

(l)
i ,h

(l)
j , sij)

14: else
15: Fuse with intermediate graph features:

z
(l)
ij ← m

(l)
f (z

(l−1)
ij ,h

(l)
i ,h

(l)
j )

16: end if
17: end for
18: Predict score: ŷij ← σ(z

(L)
ij )

19: Compute loss:
Lij ← yij log ŷij + (1− yij) log(1− ŷij)

20: end for
21: Update model parameters via total loss:

Lours ←
∑

(gi,gj)∈Etr

Lij

from protein-protein interaction databases; (2) non-cell-type-specific ChIP-seq networks(Non-
Specific), built from TF binding profiles aggregated across diverse contexts; (3) cell-type-specific
ChIP-seq (Specific) networks, offering high-resolution, context-specific TF–target interactions; and
(4) LOF/GOF networks, based on experimentally validated perturbation-derived causal interac-
tions. Among these, the Specific networks typically include more positive TF–target pairs, resulting
in more balanced datasets. In contrast, STRING and Non-Specific networks are much sparser and
often yield highly imbalanced classification settings. Each dataset is evaluated under two scales:
TFs500 and TFs1000, referring to the top 500 and 1000 TFs respectively ranked by expression
and variability. All results are averaged over five independent trials with different random seeds to
ensure statistical robustness and reliability.

Dataset Construction and Splitting. To construct a binary classification dataset, we treat each
TF–target pair as an instance. Regulatory relationships annotated in the ground-truth networks are
taken as positive samples, while all remaining TF–gene pairs are treated as candidate negatives Mar-
bach et al. (2012). Since true regulatory networks are extremely sparse, the total number of candidate
negative pairs greatly exceeds that of positives, and some negatives may correspond to undiscovered
regulatory interactions De Smet & Marchal (2010); Blatti et al. (2015); Yang et al. (2022); Zhu et al.
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Dataset Genes Cells STRING Non-Specific
TFs Targets Positive Density Trainingsets TFs Targets Positive Density Trainingsets

hESC 910 758 343 511 4257 0.024 208614 283 753 3441 0.016 172153
hHEP 948 425 409 646 7523 0.028 259147 322 825 4129 0.015 204039
mDC 821 383 264 479 4815 0.038 144820 250 634 3067 0.019 137156
mESC 1120 421 495 638 7762 0.024 370740 516 890 6893 0.015 386511

mHSC-E 704 1071 156 291 1371 0.029 73346 144 442 1425 0.022 67712
mHSC-GM 632 889 92 201 748 0.040 38827 82 297 743 0.030 34615

mHSC-L 560 847 39 70 137 0.048 14573 35 164 279 0.048 13081

Dataset Genes Cells Cell-type Specific LOF/GOF
TFs Targets Positive Density Trainingsets TFs Targets Positive Density Trainingsets

hESC 910 758 34 815 4545 0.164 20677 - - - - -
hHEP 948 425 30 874 9939 0.379 19002 - - - - -
mDC 821 383 20 443 756 0.085 10969 - - - - -
mESC 1120 421 88 977 29613 0.345 65895 34 774 4169 0.158 25459

mHSC-E 704 1071 23 691 11557 0.578 13632 - - - - -
mHSC-GM 632 889 22 618 7364 0.543 9280 - - - - -

mHSC-L 560 847 16 525 4398 0.525 5976 - - - - -

Table 4: Statistics of TFs-500 ground-truth networks for seven datasets.

Dataset Genes Cells STRING Non-Specific
TFs Targets Positive Density Trainingsets TFs Targets Positive Density Trainingsets

hESC 1410 758 351 695 5149 0.021 331058 292 1138 4617 0.014 275435
hHEP 1448 425 414 874 9003 0.024 401011 332 1331 5351 0.013 321581
mDC 1321 383 273 664 5898 0.032 241221 254 969 3918 0.016 224444
mESC 1620 421 499 785 8479 0.021 540893 522 1214 8030 0.013 565848

mHSC-E 1204 1071 161 413 1826 0.027 129653 147 674 1960 0.020 118364
mHSC-GM 1132 889 100 344 1311 0.037 75698 88 526 1358 0.029 66621

mHSC-L 692 847 40 81 154 0.045 18487 37 192 317 0.043 17096

Dataset Genes Cells Cell-type Specific LOF/GOF
TFs Targets Positive Density Trainingsets TFs Targets Positive Density Trainingsets

hESC 1410 758 34 1260 7084 0.165 32065 - - - - -
hHEP 1448 425 31 1331 15558 0.377 30026 - - - - -
mDC 1321 383 21 684 1193 0.082 18556 - - - - -
mESC 1620 421 89 1385 42795 0.347 96460 34 1098 5742 0.154 36848

mHSC-E 1204 1071 29 1177 21975 0.566 26565 - - - - -
mHSC-GM 1132 889 23 1089 14135 0.561 17406 - - - - -

mHSC-L 692 847 16 640 5180 0.507 7392 - - - - -

Table 5: Statistics of TFs-1000 ground-truth networks for seven datasets.

(2019b). This extreme imbalance can hinder the model’s ability to focus on learning positive regu-
lations effectively. To address this issue, we adopt the hard negative sampling (HNS) strategy Chum
(2017); Chen & Liu (2022a); Radenović et al. (2016); Thabtah et al. (2020); Zhu et al. (2019a) as
in GENELink Chen & Liu (2022b). For each positive TF–target pair, a negative pair involving the
same TF is uniformly sampled from the pool of candidate negatives. These hard negatives are chal-
lenging to distinguish from positives because they share the same TF and exhibit similar expression
patterns, thereby providing stronger supervision and encouraging the model to focus on fine-grained
discriminative features Zhu et al. (2019b); Yang et al. (2022).

Following Chen & Liu (2022b), we perform stratified splitting per TF. Specifically, for each TF, 2/3
of its positive and selected hard negative samples are randomly assigned to training and validation
sets in a 9:1 ratio, and the remaining 1/3 is held out for independent testing. If a TF has only
one positive target, it is randomly assigned to either the training or testing set. For TFs with two
positives, one is used for training and the other for testing. For TFs with more than two positives, the
samples are split according to the 67%/6.7%/23.3% ratio for training/validation/testing, and negative
samples are partitioned in the same proportion. This TF-specific splitting avoids information leakage
across evaluation stages. All datasets are preprocessed by retaining only TF–target interactions and
filtering genes based on expression variance (p < 0.01, Bonferroni-corrected) following Pratapa
et al. (2020). Table 4 and Table 5 summarize the statistics of the resulting datasets. Overall, the
proportion of positive samples approximately reflects the sparsity of the ground-truth regulatory
network within each scRNA-seq dataset.
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C IMPLEMENTATIONS

In this section, we present detailed implementation strategies for our model SCUNIGP, including
the global structural embedding branch and the pairwise expression-guided prediction module. To
ensure consistency and reproducibility, all components are trained under a unified experimental pro-
tocol with standardized optimization settings, regularization strategies, and evaluation procedures.

Global Branch: GNN Embedding Generation. To provide structural priors for downstream
prediction, we pre-train a two-stage GNN architecture (either GAT or GCN) on the ground-truth
TF–target interaction graph. Both GNN models consist of three hidden layers with dimensions
128, 64, and 32, producing final embeddings of dimension 16. For GAT, we use 3 attention heads
per layer with LeakyReLU activation and concatenation; for GCN, symmetric normalization with
ReLU activation is applied. Dropout with a rate of 0.01 is used between layers. The input graph
is constructed from positive TF–target pairs in the training set, with undirected edges and without
self-loops. Training uses the Adam optimizer with a learning rate of 3× 10−3, binary cross-entropy
loss, batch size 256, early stopping after 5 epochs of no improvement, and a maximum of 30 epochs.
After training, we extract four types of embeddings: TF-specific and target-specific embeddings (16-
dimensional), as well as Level-1 and Level-2 gene embeddings (128- and 64-dimensional), which
encode local and global graph structure. These embeddings are stored for fusion with expression-
based features in the main model.

Pairwise Branch: GRN Prediction. The main prediction module adopts a dual-path fusion archi-
tecture that integrates expression features with GNN-derived structural embeddings for TF–target
interaction classification. The expression path first projects standardized expression profiles through
a linear transformation, followed by a 4-layer Transformer encoder with 8 attention heads and em-
bedding size 1024. Positional encoding is applied to capture cell-specific dependencies. In parallel,
the graph path maps multi-scale GNN embeddings into the same latent space and concatenates them
with the transformer output. The combined features are fed into a three-layer classifier with residual
connections, batch normalization, and PReLU activation. GNN prediction scores are additionally
incorporated during the final decision stage for late fusion. Training uses binary cross-entropy loss
with the Adam optimizer, a learning rate of 5 × 10−6, weight decay 1 × 10−5, dropout rate 0.2,
and L2 regularization with λ = 0.01. Batch size is set to 512, with early stopping after 8 epochs of
no improvement and a maximum of 200 epochs. To incorporate local context, up to five neighbor-
ing gene pairs are sampled from the graph during training. Model selection is based on validation
AUROC, and both the best and average performance on the test set are reported.

D EXPERIMENTS

In this section, we systematically evaluate the performance of SCUNIGP on benchmark scRNA-
seq datasets and associated regulatory networks. We compare TF–target interaction inference under
two settings, TFs500 and TFs1000, using AUROC and AUPRC as primary evaluation metrics, with
results averaged over three independent runs. In addition to predictive performance, we report the
overall computational efficiency of SCUNIGP in terms of runtime. To further interpret the model, we
also visualize the learned TF–target embeddings using t-SNE, illustrating how positive and negative
interactions are separated in the latent space and how the model enhances representation discrim-
inability during training.

Overall Performance Across All Datasets. We begin by providing a comprehensive comparison of
model performance across all datasets using AUROC and AUPRC heatmaps, as shown in Figure 5-
Figure 8. Each heatmap reports scores under both TFs500 and TFs1000 settings for all competing
methods across the four types of regulatory networks. In terms of AUROC (Figure 5 and Figure 6),
SCUNIGP achieves the best performance on 40 out of 42 datasets, consistently outperforming base-
line methods across STRING, Specific, Non-Specific and LOF/GOF networks. This reflects strong
generalization across both broad and context-specific regulatory priors. For AUPRC (Figure 7 and
Figure 8), SCUNIGP remains the top-performing model on 33 of 42 datasets, showing superior
capability in capturing true regulatory interactions under class-imbalanced settings.

Performance Comparison via Bar and Violin Plots. To comprehensively assess model perfor-
mance across various datasets and network conditions, we present bar plots (Figures 9–12) and vi-
olin plots (Figures 13–16). The bar plots illustrate the average AUROC and AUPRC scores of each
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Running time scUniGP scGREAT GNNLink GENELink GNE CNNC DeepSEM PCC MI
TF+500 genes 18m21s 15m10s 2m01s 2m10s 27m20s 10h54s 2m08s 15s 16s

TF+1000 genes 41m08s 37m40s 2m45s 3m50s 52m08s 38h14s 3m28s 28s 26s

Table 6: Comparison of running time between SCUNIGP and other methods.

method under TFs500 and TFs1000 settings across four types of ground-truth networks: STRING,
Non-Specific, LOF/GOF perturbation, and Specific. Mean values are annotated above each bar, with
error bars indicating the variation across datasets. The violin plots visualize the full score distribu-
tions for each method, capturing both central tendencies and variance. Wider regions reflect higher
score density, with internal box plots summarizing median and quartiles, and overlaid dots marking
individual values. Statistical significance tests are annotated to highlight reliable differences.

t-SNE Visualizations of TF–Target Representations. To gain insights into the internal represen-
tations learned by SCUNIGP, we visualize the embedding space of TF–target interactions using
t-SNE. Figures 17–19 illustrate four representative TFs from the mESC dataset under the Specific
network, highlighting the spatial organization of positive and negative gene pairs. Each figure shows
the input embedding from expression features (left) and the transformed output embedding from the
penultimate model layer (right). We observe that the model effectively enhances separation between
true and false targets during training. Figures 20– 22 further present a global view of all TF–target
interactions from the hESC,hHEP,mHSC-E and mHSC-GM datasets, respectively. These plots show
the distribution of positive and negative samples before and after feature transformation, revealing
that SCUNIGP consistently learns more compact and discriminative representations in the latent
space.

Computational Efficiency Analysis. To assess computational efficiency, we report the average run-
time of each method on all STRING datasets, which contain the largest number of training samples
among the benchmark networks (Table 6). All experiments were conducted on a workstation run-
ning Ubuntu 22.04.4 LTS, equipped with an Intel(R) Xeon(R) Gold 6133 CPU (40 physical cores,
80 threads, 2.50 GHz base frequency up to 3.00 GHz), 64 GB RAM, and an NVIDIA GeForce RTX
4090 GPU. On the TFs500 setting, SCUNIGP required approximately 18 minutes, while on TFs1000
the runtime increased to around 41 minutes. This demonstrates competitive scalability relative to
other deep learning–based approaches. In particular, compared to the state-of-the-art baseline sc-
GREAT (15 minutes for TFs500 and 38 minutes for TFs1000), SCUNIGP sacrifices only about
8.5% computational efficiency but achieves an average improvement of 1.4 points in predictive per-
formance (AUROC/AUPRC). By contrast, methods such as GENELink and GNNLink are faster
(2–4 minutes) but come at a significant cost in accuracy, while traditional statistical baselines (PCC
and MI) finish within seconds yet lack competitive inference quality. We also note that some models,
such as CNNC and GNE, show prohibitive runtimes: CNNC requires nearly 11 hours for TFs500
and more than 38 hours for TFs1000, while GNE needs over 25–50 minutes. These results high-
light that SCUNIGP achieves a favorable trade-off between runtime and predictive performance,
maintaining efficiency while substantially outperforming both deep learning and classical baselines.

E DISCUSSION

A central challenge in GRN inference is the sparsity and imbalance of scRNA-seq data, which limits
the effectiveness of conventional AI-based approaches. By integrating structural priors with context-
specific expression patterns, SCUNIGP achieves robust and consistent performance across diverse
datasets and regulatory priors, highlighting the benefit of combining global and local perspectives.

Despite these strengths, our framework currently relies solely on scRNA-seq input, potentially over-
looking complementary regulatory signals from other modalities such as chromatin accessibility or
DNA methylation. In future work, we plan to extend SCUNIGP into a multimodal framework and
leverage large-scale pretrained models (e.g., scGPT Cui et al. (2024)) to enhance generalization
across cell types and conditions, thereby advancing the scalability and biological interpretability of
GRN inference.
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Figure 5: AUROC heatmap comparing model performance across all datasets on TFs500. Each cell
represents the mean AUROC for a model–dataset–network combination.

Figure 6: AUROC heatmap comparing model performance across all datasets on TFs1000. Each
cell represents the mean AUROC for a model–dataset–network combination.
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Figure 7: AUPRC heatmap comparing model performance across all datasets on TFs500. Each cell
represents the mean AUPRC for a model–dataset–network combination.

Figure 8: AUPRC heatmap comparing model performance across all datasets on TFs1000. Each
cell represents the mean AUPRC for a model–dataset–network combination.
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Figure 9: Bar plot of average AUROC scores under four network types on the TFs500, with error
bars indicating normalized standard deviation across cell types and means annotated above each bar.

Figure 10: Bar plot of average AUROC scores under four network types on the TFs1000, with error
bars indicating normalized standard deviation across cell types and means annotated above each bar.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: Bar plot of average AUPRC scores under four network types on the TFs500, with error
bars indicating normalized standard deviation across cell types and means annotated above each bar.

Figure 12: Bar plot of average AUPRC scores under four network types on the TFs1000, with error
bars indicating normalized standard deviation across cell types and means annotated above each bar.

Figure 13: Violin plot of AUROC distribu-
tions across all dataset-network combinations
for TFs500, with boxplots showing median and
IQR, overlaid points, and significance markers.

Figure 14: Violin plot of AUROC distributions
across all dataset-network combinations for
TFs1000, with boxplots showing median and
IQR, overlaid points, and significance markers.
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Figure 15: Violin plot of AUPRC distribu-
tions across all dataset-network combinations
for TFs500, with boxplots showing median and
IQR, overlaid points, and significance markers.

Figure 16: Violin plot of AUPRC distributions
across all dataset-network combinations for
TFs1000, with boxplots showing median and
IQR, overlaid points, and significance markers.

Figure 17: t-SNE visualization for TF TCF12.
Left: Input embeddings based on raw expres-
sion. Right: Model-learned output embeddings.
Target genes form tighter clusters post-training.

Figure 18: t-SNE visualization for TF NANOG.
Left: Input embeddings based on raw expres-
sion. Right: Model-learned output embeddings.
Target genes form tighter clusters post-training.

Figure 19: t-SNE visualization for TF MED12.
Left: Input embeddings based on raw expres-
sion. Right: Model-learned output embeddings.
Target genes form tighter clusters post-training.

Figure 20: Global t-SNE visualization of all
TF–target pairs for the Specific hESC dataset.
Left: input space from raw expression. Right:
output space from SCUNIGP. Clear class-wise
separation is observed.

Figure 21: Global t-SNE visualization of all
TF–target pairs for the Specific hHEP dataset.
Left: input space from raw expression. Right:
output space from SCUNIGP. Clear class-wise
separation is observed.

Figure 22: Global t-SNE visualization of all
TF–target pairs for the Specific mHSC-GM
dataset. Left: input space from raw expres-
sion. Right: output space from SCUNIGP. Clear
class-wise separation is observed.
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