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ABSTRACT

A highly desirable property of a reinforcement learning (RL) agent – and a major
difficulty for deep RL approaches – is the ability to generalize policies learned on
a few tasks over a high-dimensional observation space to similar tasks not seen
during training. Many promising approaches to this challenge consider RL as a
process of training two functions simultaneously: a complex nonlinear encoder
that maps high-dimensional observations to a latent representation space, and a
simple linear policy over this space. We posit that a superior encoder for zero-shot
generalization in RL can be trained by using solely an auxiliary SSL objective if the
training process encourages the encoder to map behaviorally similar observations
to similar representations, as reward-based signal can cause overfitting in the
encoder (Raileanu and Fergus, 2021). We propose Cross Trajectory Representation
Learning (CTRL), a method that runs within an RL agent and conditions its encoder
to recognize behavioral similarity in observations by applying a novel SSL objective
to pairs of trajectories from the agent’s policies. CTRL can be viewed as having
the same effect as inducing a pseudo-bisimulation metric but, crucially, avoids the
use of rewards and associated overfitting risks. Our experiments1 ablate various
components of CTRL and demonstrate that in combination with PPO it achieves
better generalization performance on the challenging Procgen benchmark suite
(Cobbe et al., 2020).

1 INTRODUCTION

Deep reinforcement learning (RL) has emerged as a powerful tool for building decision-making
agents for domains with high-dimensional observation spaces, such as video games (Mnih et al.,
2015), robotic manipulation (Levine et al., 2016), and autonomous driving (Kendall et al., 2019).
However, while deep RL agents may excel at the specific task variations they are trained on, learning
behaviors that generalize across a large family of similar tasks, such as handling a variety of objects
with a robotic manipulator, driving under a variety of conditions, or coping with different levels in
a game, remains a challenge. This problem is especially acute in zero-shot generalization (ZSG)
settings, where only a few sequential tasks are available to learn policies that are meant to perform
well on different yet related tasks without further parameter adaptation. ZSG settings highlight
the fact that generalization often cannot be solved by more training, as it can be too expensive or
impossible to instantiate all possible real-world deployment scenarios a-priori.

∗Equal contribution. †The author did part of the work for this paper while at Microsoft.
1Code link: https://github.com/bmazoure/ctrl_public
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In this work, we aim to improve ZSG in RL by proposing a new way of training the agent’s
representation, a low-dimensional summary of information relevant to decision-making extracted
from the agent’s high-dimensional observations. Outside of RL, representation learning can help
with ZSG, e.g. using unsupervised learning to obtain a representation that readily transfers to unseen
classes in vision tasks (Bucher et al., 2017; Sylvain et al., 2020; Wu et al., 2020). In RL, unsupervised
representation learning in the form of auxiliary objectives can be used to provide a richer learning
signal over learning from reward alone, which helps the agent avoid overfitting on task-specific
information (Raileanu and Fergus, 2021). However, to our knowledge, no unsupervised learning
method used in this way in RL has thus far been shown to substantially improve performance in ZSG
over end-to-end reward-based methods (e.g., Cobbe et al., 2020).

We posit that using unsupervised (reward-free) learning to find representations that capture behav-
ioral similarity across different trajectories will improve ZSG in RL. We note that the bisimulation
framework (Ferns et al., 2004) does this directly with rewards, optimizing an agent to treat states
as behaviorally similar based on the expected reward, and this has been shown to help in visual
generalization settings (Zhang et al., 2021). We expand on this framework to improve ZSG per-
formance, using unsupervised learning to train an agent that recognizes behavior similarity in a
reward-free fashion. To do so, we propose Cross Trajectory Representation Learning (CTRL), which
applies a novel self-supervised learning (SSL) objective to pairs of trajectories drawn from the agent’s
policies. For optimization, CTRL defines a prediction objective across trajectory representations
from nearby partitions defined by an online clustering algorithm. The end result is an agent whose
encoder maps behaviorally similar trajectories to similar representations without directly referencing
reward, which we show improves ZSG performance over using pure RL or RL in conjunction with
other unsupervised or SSL methods.

Our main contributions are as follows:

• We introduce Cross Trajectory Representation Learning (CTRL), a novel SSL algorithm for
RL that defines an auxiliary objective across trajectories in order to capture the notion of
behavioral similarity in the representations of the agent’s belief states. CTRL’s approach
is two-fold: (i) it uses a clustering loss to group representations of behaviorally similar
trajectories and (ii) boosts cross-predictivity between trajectory representations from nearby
clusters.

• We empirically show that CTRL improves zero-shot generalization in the challenging
Procgen benchmark suite (Cobbe et al., 2020). Through a series of ablations, we highlight
the importance of cross-trajectory views in boosting behavioral similarity.

• We connect CTRL to the class of bisimulation methods, and provide sufficient conditions
under which both formalisms can be equivalent.

2 BACKGROUND, MOTIVATION, AND RELATED WORKS

There are a broad class of ZSG settings in RL, such as generalization across reward functions (Barreto
et al., 2016; Touati and Ollivier, 2021; Misra et al., 2020), observation spaces (Zhang et al., 2021;
Li et al., 2021; Raileanu and Fergus, 2021), or task dynamics (Rakelly et al., 2019). For each of
these settings, there are a number of promising directions for improving ZSG performance: giving
the agent better exploration policies (Van Roy and Wen, 2016; Misra et al., 2020; Agarwal et al.,
2020), meta learning (Oh et al., 2017; Gupta et al., 2018; Rakelly et al., 2019), or planning (Sohn
et al., 2018). In this work, we focus on directly improving the agent’s representations. The agent’s
representations are high-level abstractions of observations or trajectories from the environment (e.g.,
the output of an encoder), and the desired property here is that one can easily learn a policy on top
of that representation such that the combined model (i.e., the agent) generalizes to novel situations.
The tasks are assumed to share a common high-level goal and are set in environments that have the
same dynamics, but each task may need to be accomplished under different initial conditions and
may differ visually. As the policy is built upon the agent’s representations, this motivates the focus of
this work for improving generalization: unless the agent’s representations generalize well, one cannot
expect its policy to readily do so.

Unsupervised representation learning has been shown to improve generalization across domains,
including zero-shot in vision (Sylvain et al., 2020; Wu et al., 2020) and sample-efficiency in RL (Ey-
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senbach et al., 2019; Schwarzer et al., 2021; Stooke et al., 2021). In RL, unsupervised objectives
can be used as an auxiliary objective (or auxiliary task, Jaderberg et al., 2017), which provide an
alternative signal to reward-based learning signal. Due to the potential role the RL loss may play
in overfitting (Raileanu and Fergus, 2021), we believe that having a learning objective for agent’s
representation that is separate from that of its policy is crucial for good ZSG performance.

Self-supervised learning and reinforcement learning. A successful class of models that incorpo-
rate unsupervised objectives to improve RL use self-supervised learning (SSL) (Anand et al., 2019;
Srinivas et al., 2020; Mazoure et al., 2020; Schwarzer et al., 2021; Stooke et al., 2021; Higgins et al.,
2017). SSL formulates objectives by generating different views of the data, which are essentially
transformed versions of the data, e.g., generated by using data augmentation or by sampling patches.
While successful in their own way, prior works that combine SSL with RL do so by applying known
SSL algorithms (e.g., from vision, Hjelm et al., 2018; van den Oord et al., 2019; Bachman et al.,
2019; Chen et al., 2020; He et al., 2020; Grill et al., 2020) to RL in a nearly off-the-shelf manner,
predicting state representations within a given trajectory, only potentially using other trajectories
as counterexamples in a contrastive loss. As such, these methods’ representations can have trouble
generalizing latent behavioral patterns present in ostensibly different trajectories.

Bisimulation metrics in reinforcement learning. Our hypothesis is that ZSG is achievable if
the agent recognizes behavioral similarity between trajectories based on their long-term evolution.
Learning this sort of behavior similarity is a central characteristic of bisimulation metrics (Ferns et al.,
2004), which assign a value of 0 to states which are behaviorally indistinguishable and have the same
reward. Reward-based bisimulation metrics have been shown to learn representations that have a num-
ber of useful properties, e.g.: smoothness (Gelada et al., 2019), visual invariance (Zhang et al., 2021),
action equivariance (van der Pol et al., 2020) and multi-task adaptation (Zhang et al., 2020). For ZSG
however, encoding relational information based on reward may not actually help (Misra et al., 2020;
Touati and Ollivier, 2021; Yang and Nachum, 2021; Agarwal et al., 2021), as the agent may overfit
to spurious correlations between high-dimensional observations and the reward signal seen during
training. HOMER (Misra et al., 2020) expands on the concept of bisimulation to learn behavioral
similarity between states using unsupervised exploration at deployment. Among the existing methods,
PSEs (Agarwal et al., 2021) reward-free notion of behavioral similarity is conceptually the closest to
CTRL’s, and we compare these algorithms empirically in Section 6. However, algorithmically and in
terms of their modes of operation, CTRL and PSE are very different. PSE assumes the availability
of expert policies for training tasks and learns a representation using trajectories from these experts
and an action distance measure, which it also assumes to be provided. CTRL doesn’t make these
assumptions and learns a representation online from trajectories simultaneously generated by its
substrate RL algorithm.

Mining views across unsupervised clusters. Given our hypothesis that a model that learns be-
havioral similarities using signal other than reward will perform well on ZSG, there are still many
potential models available to learn said similarities in an unsupervised way. A simple and natural
choice is to collect agent trajectories as examples of behaviors, then do clustering (online, similar to
Asano et al., 2020; Caron et al., 2020) over trajectories. In RL, Proto-RL (Yarats et al., 2021) also uses
clustering to obtain a pre-trained set of prototypical states, but for a different purpose – to estimate
state visitation entropy in hard exploration problems. However, clustering alone may not be sufficient
to recognize behaviors necessary for ZSG, as representations built on clustering only need to partition
behaviors, which may bias the model towards similarities evident training experience. This would be
counter-productive for our generalization goal. We therefore use a second objective built on top of
the structure provided by clustering to learn a more diverse set of similarities. Drawing inspiration
from Mine Your Own View (MYOW, Azabou et al., 2021), CTRL selects (mines) representational
nearest neighbors from different, nearby clusters and applies a predictive SSL objective to them.
This cross-cluster objective encourages CTRL to recognize a larger set of similarities than would be
necessary to cluster on the training set, which we show improves ZSG performance.

3 PROBLEM STATEMENT AND PRELIMINARIES

Formally, we define our problem setting w.r.t. a discrete-time Markov decision process (MDP)
M ≜ ⟨S,A,P,R⟩, where S is a state space, A is an action space, P : S × A × S → [0, 1] is a
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transition function characterizing environment dynamics, and R : S ×A → R is a reward function.
M ’s state and action spaces may be discrete or continuous, but in the rest of the paper we assume
them to be discrete to simplify exposition. In practice, an agent usually receives observations but
not the full information about the environment’s current state. Consider an observation space O and
an observation function Z : S × O → [0, 1] that define what observations an agent may receive
and how these observations are generated (possibly stochastically) from M ’s states. We define a
task T as a partially observable MDP (POMDP) T = ⟨S,A,P,R,O,Z, s0⟩, where s0 ∈ S is an
initial state. Although many RL agents make decisions in a POMDP based only on the current
observation ot or at most a few recent ones, in general this may require using information from the
entire observation history o1, . . . , ot so far. Denoting the space of such histories as H, computing
an agent’s behavior for task T amounts to finding a policy π : H×A → [0, 1] with the optimal or
near-optimal expected return from the initial state V π

T ≜ E
[∑∞

t=0 γ
tR(St, π(Ht) | S0 = s0

]
, where

St and Ht are random variables for the POMDP’s underlying state and agent’s observation history
at time step t, respectively, and γ is a discount factor. For an MDP M = ⟨S,A,P,R⟩, a set O of
observation spaces, and a set Z of observation functions w.r.t. S , let a task family be the POMDPs set
TM,O,Z ≜ {⟨S,A,P,R,O,Z, s0⟩}O∈O,Z∈Z ,s0∈S . We assume that different observation spaces
in O have the same mathematical form, e.g., pixel tensors representing possible camera images,
but correspond to qualitatively distinct subspaces of this larger space, such as subspaces of images
depicting brightly and dimly lit scenes.

Our training and evaluation protocol is formalized w.r.t. a task distribution d(TM,O,Z ) ≜ P (O,Z,S)
over task family TM,O,Z , where P (O,Z,S) is a joint probability mass over observation spaces,
observation functions, and initial states. In the rest of the paper, M , O , and Z will be clear from
context, and we will denote the task family as T and the task distribution as d(T ). For agent
training, we choose N tasks from T , and denote the distribution d(T ) restricted to these N tasks as
d(TN ). During the training phase, the RL agent learns via a series of epochs (themselves composed
of episodes), by sampling a task from d(T ) independently at the start of each episode, until the total
number of time steps exceeds its training budget. In each epoch, an RL algorithm uses a batch of
trajectories gathered from episodes in order to compute gradients of an RL objective and update
the parameters of the agent’s policy π. In representation learning-aided RL, a policy is viewed as
a composition π = θ ◦ ϕ of an encoder ϕ : H → E and a policy head θ : E × A → [0, 1], both of
which are the outputs of the training phase. The training phase is followed by an evaluation phase,
during which the policy is applied to tasks sampled from d(T \ TN ), distribution d restricted to
the set of tasks T \ TN not seen during training. Our focus on generalization means that we seek
a policy π whose encoder ϕ allows it to maximize ET∼d(T \TN )[V

π
T ] despite being trained only on

distribution d(TN ).

4 ALGORITHM

CTRL’s key conceptual insight is that capturing reward-agnostic behavioral similarity improves ZSG,
because it enables ϕ to correctly associate previously unseen observation histories with those for
which the agent’s RL-trained behavior prescribes a good action. CTRL runs synchronously with
an online RL algorithm, which is crucial to ensure that as the agent’s policies improve, so does the
notion of behavioral similarity induced by CTRL.

Like most online RL methods themselves, our algorithm operates in epochs, learning from a batch of
trajectories in each epoch. CTRL assumes that all trajectories within each of its training batches come
from the same policy. Before the RL algorithm updates the policy head in a given epoch, CTRL uses
a trajectory batch from the current policy to update the encoder with gradients of a novel auxiliary
loss LCTRL that we describe in this section.

4.1 INTUITION AND HIGH-LEVEL DESCRIPTION

Algorithm overview. For each trajectory batch, CTRL performs 4 operations:

1. Apply the observation history (belief state) encoder ϕ to generate a low-dimensional reward-
agnostic representation (“view”) of each trajectory.

2. Group trajectories’ views into C sets (C is a tunable hyperparameter) using an online
clustering algorithm with loss Lclust (Equation (4), Section 4.2).

4



Published as a conference paper at ICLR 2022

Figure 1: Schematic view of CTRL’s key steps for every trajectory batch. (i) Generating trajectory views (top
left). For each trajectory in a batch, CTRL samples a subsequence of its time steps, computes belief-state/action
embeddings uti with encoder ϕ, and concatenates them into a trajectory representation (view) u. (ii) Clustering
trajectory views (bottom right). CTRL uses the online Sinkhorn-Knopp clustering procedure (Caron et al.,
2020): for each trajectory view u, it produces two new views v and w, soft-clusters all trajectories’ vs and ws
into C clusters, and uses a measure of consistency between these two clusterings as a loss Lclust. In the diagram,
variables ec denote cluster centroids. (iii) Encouraging cross-cluster behavioral similarity (bottom left). After
computing trajectory view clusters, CTRL applies a variant of MYOW (Azabou et al., 2021) to them. Namely, it
repeatedly samples a trajectory view v′, computes a new view w′ for it, and computes a loss Lpred that penalizes
differences between w′ and views v′

ci of randomly chosen trajectories from v′’s neighboring clusters. Encoder
ϕ and auxiliary predictors used by CTRL are then updated using LCTRL = Lclust + Lpred’s gradients (top right).

3. Using trajectory pairs selected from neighboring clusters, apply a predictive loss Lpred
(Equation (6), Section 4.2) to encourage ϕ to capture cross-cluster behavioral similarities.

4. Update ϕ with gradients of the total loss: LCTRL = Lclust + Lpred.

The schema in Figure 1 provides a high-level outline of these steps’ implementation and explains
their interplay within CTRL, accompanied by an intuition for each step (below) a more detailed
description in Section 4.2. We conduct ablations to show the effect of removing the clustering and
predictive objectives of CTRL, with details in Appendix 8.3.

Clustering. C clusters can be viewed as corresponding to C latent “situations” in which an RL agent
may find itself. Each situation is essentially a group of belief states. CTRL’s implicit hypothesis is
that a given policy should behave roughly similarly across all belief states corresponding to the same
“situation”, i.e., generalize across similar belief states. Under this hypothesis, an agent’s policy can
be expected to produce C sets of roughly similar trajectories. CTRL’s clustering step (#2 above) is an
attempt to recover these trajectory sets. Since each trajectory consists of belief states, the purpose of
Lclust is to force the encoder ϕ to compute belief state representations that make trajectories within
each cluster look similar in the latent space.

Since we would like to evolve clustering online as new trajectory batches arrive, we employ a common
online clustering algorithm, the Sinkhorn-Knopp procedure (Caron et al., 2020), which has been used
as an auxiliary RL loss (e.g., Proto-RL, Yarats et al., 2021).

Cross-cluster prediction. Note, however, that the clustering loss emphasizes the recognition of
behavioral similarities within clusters. This may hurt generalization, as the resulting centroids may
not faithfully represent behaviors encountered at test time. Our hypothesis is that encouraging encoder
ϕ to induce latent-space similarities between trajectories from different but adjacent clusters will
increase its ability to recognize behaviors in unseen test trajectories.

While there are several ways to encourage cross-cluster representational similarity, using a mechanism
similar to MYOW (Azabou et al., 2021) on trajectories drawn from neighboring clusters captures this
idea particularly well. Namely, to get the cross-predictive loss Lpred, we sample trajectory view pairs
from neighboring clusters and apply the cosine-similarity loss to those pairs.
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Using reward guidance without reward signal for representation learning. CTRL trains en-
coder ϕ only using the gradients of LCTRL; the RL algorithm’s loss LRL trains only the policy head.
Thus, encoder ϕ is isolated from the previously observed dangers of overfitting to the reward func-
tion (Raileanu and Fergus, 2021) that shapes LRL. However, we emphasize that CTRL’s representation
learning is nonetheless very much guided by the reward function, although indirectly: the training
batches of belief state and action trajectories are still collected from policies learned by the policy
head via LRL’s gradients, which are reward-dependent.

4.2 DETAILS

Below we describe the details of each of CTRL’s steps, with CTRL’s pseudocode presented in
Algorithm 1 in Appendix 8.1. While in general the agent’s belief state at step t of a trajectory is the
entire observation history ht = (o1, . . . , ot), in the rest of the section we will assume ht = (ot) and,
in a slight abuse of notation, use ϕ(ot) instead of ϕ(ht) to simplify explanations2. We emphasize,
however, that CTRL equally applies in settings where the agent uses a much longer history of
observations as its state. In this case, ϕ would be recurrent or process stacks of frames.

We also note that our CTRL implementation’s high-level algorithmic choices for clustering and
cross-cluster prediction – Sinkhorn-Knopp and MYOW, respectively – come from prior works (Caron
et al., 2020; Azabou et al., 2021).

Generating low-dimensional trajectory views with encoder ϕ. CTRL’s input in each epoch is a
trajectory batch {traji}Bi=1 of size B. Assume all trajectories in the batch have the same length L.
For an integer hyperparameter T ≤ L, for each trajectory traji = (o0, a0, r0, . . . oTb

, aL, rL) we
independently and uniformly sample a subset of its steps τi = t1, . . . , tT to form a subtrajectory
(ot1 , at1 , rt1 , . . . otT , atT , rtT ). We then encode this subtrajectory as

u
(τi)
i = (FiLM(ϕ(ot1), at1), .., F iLM(ϕ(otT ), atT )), (1)

where FiLM(ϕ(otj ), atj ) is a common way of combining representations of different objects, akin
to conditioning Perez et al. (2018), and the resulting vector u(τi)

i is in a low-dimensional space U .
Note two aspects of the process of generating these vectors: (1) it drops rewards from the original
trajectory and (2) it critically relies on ϕ whose parameter values are learned from previous epochs.
Vectors u(τi)

i produced in this way are the trajectory views that the next steps of CTRL operate on.

Clustering trajectory views. CTRL groups trajectories from the epoch’s batch by clustering the set
of their views {u(τi)

i }Bi=1. Since we would like to evolve clustering online as new trajectory batches
arrive, we employ a common online clustering algorithm, the Sinkhorn-Knopp procedure (Caron
et al., 2020), which has been used as an auxiliary RL loss (e.g., Proto-RL, Yarats et al., 2021). Since
CTRL operates online, Sinkhorn-Knopp is better-suited for the task than other clustering methods.

The clustering branch computes two views of each input u(τi)
i in a cascading fashion: first by passing

it through a clustering encoder ψclust : U → V , e.g. an RNN, to obtain a lower-dimensional view
vi = ψclust(u

(τi)
i ), and then by passing vi through yet another network, an MLP θclust : V → W ,

to produce view wi = θclust(vi). The parameters of ψclust and θclust are learned through the epochs
jointly with ϕ’s. Like u

(τi)
i , each vi and wi is a view of trajectory i; the approach then consists

in projecting vi’s and wi’s onto centroids of C clusters in two different ways and then computes a
clustering loss that enforces consistency between vi’s and wi’s cluster projections.

Specifically, we represent the centroid of each cluster c with a vector ec ∈ V , which are stacked
into a matrix E. These vectors are additional parameters in the joint optimization problem CTRL
solves. They can be regarded as views of C typical behaviors around which the trajectories’ views
are regrouped. To project trajectory i’s vi views onto behavioral centroids learned from previous
trajectory batches, CTRL computes a vector of soft assignments of vi to each centroid ec:

Qi = Softmax
1≤c≤C

(
v⊤
i ec

||vi||2||ec||2

)
(2)

2While, in theory, the Procgen suite is indeed a POMDP, most RL algorithms take the most recent observation
as the belief state – a simplification which was shown not to hinder ZSG on Procgen (Cobbe et al., 2020).
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and forms a B × C matrix Q whose i-th row is the soft assignment of vi. The resulting assignments
may be very unbalanced, with most probability mass assigned to only a few clusters. Applying the
Sinkhorn-Knopp algorithm solves this issue by iteratively re-normalizing Q in order to obtain a more
equal cluster membership (Cuturi, 2013), where the degree of re-normalization is controlled by a
temperature parameter β. The output of this operation is a matrix Q̃.

For each view wi (the projection of trajectory view vi) CTRL computes the logarithm of its soft
cluster assignments and treats these vectors as rows of another B × C matrix P:

Pi = log

[
Softmax
1≤c≤C

(
w⊤

i ec
)]
. (3)

Finally, we compute the cross entropy between Q̃ and P, which measures their inconsistency. This
measure is taken as the clustering loss:

Lclust = CrossEntropy(Q̃,P). (4)

Encouraging cross-cluster behavioral similarity. Note, however, that the clustering loss in the
above step emphasizes the recognition of behavioral similarities within clusters. This may hurt
generalization, as the resulting centroids may not faithfully represent behaviors encountered at test
time. Our hypothesis is that encouraging encoder ϕ to induce latent-space similarities between
trajectories from different but adjacent clusters will increase its ability to recognize behaviors in
unseen test trajectories.

While there are several ways to encourage cross-cluster representational similarity, using a mechanism
similar to MYOW (Azabou et al., 2021) on trajectories drawn from neighboring clusters captures this
idea particularly well. Namely, to get the cross-predictive loss Lpred, we sample trajectory view pairs
from neighboring clusters and apply the cosine-similarity loss to those pairs.

To implement this idea, we define a measure of cluster proximity via a matrix D of cosine similarities
between cluster centroids: for clusters k and l, Dkl = ||ek − el||22 (Grill et al., 2020). Recall that in
the previous step, the clustering branch computed a matrix Q whose rows Qi are soft assignments
of trajectory i’s view vi to clusters. In this step, we convert these soft assignments to hard ones
by associating a trajectory’s view vi with cluster ci = argmax1≤c′≤CQ̃i and treating a cluster c
as consisting of trajectories with indices in the set Tc = {i | c = argmax1≤c′≤CQ̃i}. To assess
how predictive a trajectory embedding ui is of a trajectory embedding uj , like in the clustering
step we will use two special helper maps, ψpred : U → V to obtain a reduced-dimensionality view
v′ = ψpred(u) and θpred to further project v′ to w′ = θpred(v

′).

CTRL proceeds by repeatedly sampling trajectories, which we call anchor trajectories, from the batch,
with their associated embeddings u. For each anchor trajectory n, consider K clusters c1, . . . , cK
nearest to n’s cluster cn, as defined by the indices of K largest values in row cn of matrix D (we
exclude cn itself when determining cn’s nearest clusters). Borrowing ideas from the MYOW approach
Azabou et al. (2021), CTRL mines a view for un by randomly choosing a trajectory with embedding
u
(n)
ck from each of the neighboring clusters and computing its view v′

ck
= ψpred(u

(n)
ck ). We call the

neighbors’ views v′
c1 , . . . ,v

′
cK trajectory n’s mined views.

For the final operation in this step, CTRL computes trajectory n’s predictive view w′
n =

θpred(ψpred(un)) and measures the distance from it to trajectory n’s mined views:

L(n)
pred =

K∑
k=1

||w′
n − v′

ck
||22 (5)

N regulates the number of anchor trajectories to be sampled, so the total prediction loss is

Lpred =

N∑
n=1

L(n)
pred (6)

Updating encoder ϕ using reward guidance without reward signal for representation learning.
Note that CTRL’s total loss LCTRL depends on the parameters of encoder ϕ as well as of clustering
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networks ϕclust and θclust, prediction networks ϕclust and θclust, and cluster centroids ec, 1 ≤ c ≤ C.
In each epoch, CTRL updates all these parameters to minimize LCTRL.

5 CONNECTION TO BISIMULATION

Deep bisimulation metrics are tightly connected to the underlying mechanism of mining behaviorally
similar trajectories of CTRL. They operate on a latent-dimensional space and, as is the case for
DeepMDP (Gelada et al., 2019) and DBC (Zhang et al., 2021), ensure that bisimilar states (i.e.
behaviorally similar states with identical reward) are located close to each other in that latent space.
In this section, we aim to highlight a functional similarity between bisimulation metrics and CTRL.

Definition 1 A bisimilation relation E ⊆ S × S is a binary relation which satisfies, ∀(s, t) ∈ E:

1. ∀a ∈ A,R(s, a) = R(t, a)

2. ∀a ∈ A,∀c ∈ S,
∑

s′∈c P(s, a)(s′) =
∑

s′∈c P(t, a)(s′)

In practice, rewards and transition probabilities rarely match exactly. For this reason, Ferns et al.
(2004) proposed a smooth alternative to bisimulation relations in the form of bisimulation metrics,
which can be found by solving a recursive equation involving the Wasserstein-1 distance W1 between
transition probabilities. W1 can be found by solving the following linear programming (Villani,
2008), where we let Γ = {v ∈ R|V| : 0 ≤ vi ≤ 1 ∀1 ≤ i ≤ |V|}:

Wd
1 (P ||Q) := max

µ∈Γ

∑
s∈S

(P (s)−Q(s))µ(s) s.t. µ(s)− µ(s′) < d(s, s′)∀s, s′ ∈ S, (7)

where µ is a vector whose elements are constrained between 0 and 1. In practice, bisimulation metrics
are used to enforce a temporal continuity of the latent space by minimization of the W1 loss between
training state-action pairs. Therefore, to show a connection of CTRL to (reward-free) bisimulation
metrics, it is sufficient to show that two trajectories are mapped to the same partition if their induced
W1 distance is arbitrarily small. In our (informal) argument that follows, we assume that CTRL
samples two consecutive timesteps and encodes them into v; the exact form of v dictates the nature
of the behavioral similarity. The proof can be found in Appendix 8.7.

Proposition 1 (Informal) Let M be an MDP where R(s, a) = 0 for all (s, a) ∈ S × A and let
v,v′ ∈ V be two dynamics embeddings in M . The clustering operation between v,v′ induces a
reward-free bisimilarity metric W1(P[v],P[v′]) between induced distributions P[v] and P[v′].

6 EMPIRICAL EVALUATION

We compare CTRL against strong RL baselines: DAAC (Raileanu and Fergus, 2021) – the current
state-of-the-art on the challenging generalization benchmark suite Procgen (Cobbe et al., 2020),
and PPO (Schulman et al., 2017). DAAC optimizes the PPO loss (Schulman et al., 2017) through
decoupling the training of the policy and value functions, which updates the advantage function
during the policy network updates. We then compare to several unsupervised and SSL auxiliary
objectives used in conjunction with PPO. DIAYN (Eysenbach et al., 2019) is an unsupervised skill-
based exploration method which we adapt to the online setting by uniformly sampling skills. Its
notion of skills has some similarities to the notion of clusters in CTRL. We also compare with
two SSL-based auxiliary objectives: CURL (Srinivas et al., 2020), a common SSL baseline which
contrasts augmented instances of the same state, and Proto-RL (Yarats et al., 2021), which we
adapt for this generalization setting. Finally, we provide a comparison against bisimulation-based
algorithms: DBC (Zhang et al., 2021), which was shown to perform well on robotic control tasks
with visual distractor features, and PSE (Agarwal et al., 2021). PSE assumes policies for training
tasks to be given and, like Agarwal et al. (2021), we ran it both with random and high-quality policies
pretrained with extra computation budget. See Appendix 8.2 for details.

The Procgen benchmark suite, which we use in our experiments, consists of 16 video games (see
Table 1). Procgen procedurally generates distinct levels for each game. The number of levels for each
game is virtually unlimited. Levels within a game which share common game rules and objectives
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but differ in level design such as the number of projectiles, background colors, item placements
throughout the level and other game assets. All of this makes Procgen a suitable benchmark for
zero-shot generalization. Using our notation from Section 3, for each of 16 games, we train on a
uniform distribution d(TN ) over N = 200 “easy” levels of the game and evaluate on d(T \ TN ),
i.e., a uniform distribution over the game’s “easy” levels not seen during training. Following Mohanty
et al. (2021), we report results after 8M steps of training, since this demonstrates the quality of ZSG
that various representation learning methods can achieve quickly. However, Figure 4 in Appendix 8.3
also provides results after 25M steps of training, as in the original Procgen paper (Cobbe et al., 2020).

RL RL+Bisim. RL+Unsup. RL+SSL Ours

Env PPO DAAC PPO+DBC PPO+PSE (random) PPO+PSE (pretrained) PPO+DIAYN Proto-RL PPO+CURL CTRL
bigfish 2.3±0.1 4.3±0.3 1.8±0.1 2.3 ± 0.1 1.8 ± 0.2 2.2±0.1 2.4±0.1 2.2±0.2 4.7±0.2
bossfight 5.2±0.3 1.7±0.7 5±0.1 0.9 ± 0.2 0.7 ± 0.1 1.1±0.2 6.1±0.5 4.6±0.8 8.2±0.1
caveflyer 4.4±0.3 4.3±0.1 3.6±0.1 2.6 ± 0.1 3.6 ± 0.3 1.0±1.9 4.7±0.1 4.6±0.3 4.7±0.2
chaser 7.2±0.2 7.1±0.1 4.8±0.1 8.7 ± 0.5 4.2 ± 0.2 5.6±0.5 7.6±0.2 7.2±0.2 7.1±0.2
climber 5.1±0.1 5.5±0.2 4.1±0.4 2.9 ± 0.1 3.9 ± 0.2 0.8±0.7 5.5±0.3 5.5±0.1 5.9±0.2
coinrun 8.3±0.2 8.1±0.1 7.9±0.1 5.5 ± 0.5 7.3 ± 0.2 6.4±2.6 8.2±0.1 8.1±0.1 8.7±0.3
dodgeball 1.3±0.1 1.8±0.2 1.0±0.3 1.6 ± 0.1 1.3 ± 0.1 1.4±0.2 1.6±0.1 1.4±0.1 1.8±0.1
fruitbot 12.4±0.2 11.5±0.3 7.6±0.2 1.0 ± 0.1 1.1 ± 0.2 7.2±3.0 12.3±0.4 12.3±0.2 13.3±0.3
heist 2.7±0.2 3.4±0.2 3.3±0.2 3.1 ± 0.3 2.9 ± 0.4 0.2±0.2 3.0±0.3 2.5±0.1 3.1±0.3
jumper 5.8±0.3 6.3±0.1 3.9±0.4 4.1 ± 0.3 5.3 ± 0.2 2.6±2.3 6.0±0.1 5.9±0.1 6.0±0.1
leaper 3.5±0.4 3.5±0.4 2.7±0.1 2.7 ± 0.2 2.6 ± 0.1 2.5±0.2 3.2±0.8 3.6±0.5 2.8±0.2
maze 5.4±0.2 5.6±0.2 5.0±0.1 5.4 ± 0.2 5.3 ± 0.1 1.6±1.2 5.5±0.3 5.4±0.1 5.7±0.1
miner 8.7±0.3 5.7±0.1 4.8±0.1 5.6 ± 0.1 4.3 ± 0.3 1.3±2.0 8.8±0.5 8.6±0.2 6.5±0.2
ninja 5.5±0.2 5.2±0.1 3.5±0.1 3.4 ± 0.2 3.5 ± 0.3 2.8±2.0 5.4±0.3 5.6±0.1 5.8±0.1
plunder 6.2±0.4 4.1±0.1 5.1±0.1 4.0 ± 0.1 4.1 ± 0.2 2.1±2.5 6.0±0.9 6.5±0.3 6.6±0.3
starpilot 4.7±0.2 4.1±0.2 2.8±0.1 3.2 ± 0.2 3.0 ± 0.1 5.8±0.6 5.2±0.2 5.0±0.1 7.7±0.5

Table 1: Average evaluation returns collected after 8M training frames, ± one standard deviation over 10 seeds.

Main results. As Table 1 shows, PPO+CTRL outperforms all other baselines, including DAAC,
on most games. Notably, bisimulation-based approaches other than CTRL– DBC as well as PSE
with both random and expert data-gathering policies – exhibit lower gains than others. While this
can be surprising, recent work has seen similar results when applying DBC to tasks with unseen
backgrounds (Li et al., 2021). PSE’s inferior performance may be due to the policy similarity metric,
which PSE requires as input and which we took from Agarwal et al. (2021), being poorly suited to
Procgen. This highlights an important difference between CTRL and PSE: CTRL doesn’t need a
policy similarity metric, since it implicitly induces such a metric based on trajectory “signatures”.

Despite training static prototypes for 8M timesteps and adapting the RL head for 8M additional
timesteps (see Appendix 8.2 for details), Proto-RL performs worse than CTRL. This suggests that
the temporal aspect of clustering is key for ZSG, a hypothesis we explore further in Section 8.4.
Likewise, PPO+DIAYN uses its pre-training phase to find a diverse set of skills, which can be useful
in robotics domains, but does not help much in the ZSG setting of Procgen. DAAC also exhibits good
generalization performance, but inherits from PPG (Cobbe et al., 2021) the separation of the value
and policy branches both parameter-wise and by introducing distinct training phases, an overhead
which CTRL manages to avoid. In addition, we describe a number of ablation studies (Appendix 8.3),
empirically show that slow clustering convergence leads to better generalization (Appendix 8.4), and
demonstrate on a toy example how learning behavioral similarities captures local perceptual changes
(Appendix 8.5).

7 CONCLUSIONS

This work proposed CTRL, a novel representation learning algorithm that facilitates zero-shot
generalization of RL policies in high-dimensional observation spaces. CTRL can be viewed as
inducing an unsupervised reward-agnostic bisimulation metric over observation histories, learned
over transitions encountered by policies from an RL algorithm’s value improvement path (Dabney
et al., 2021). We hope that in the future CTRL will inspire other representation learning methods
based on capturing belief states’s behavioral similarity, which will be capable of policy generalization
across greater variations in environment dynamics.
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8 APPENDIX

8.1 CTRL PSEUDOCODE

Algorithm 1: Cross Trajectory Representation Learning
Inputs :online encoder ϕ, cluster projector θclust, cluster encoder ψclust, mining

projector θpred, mining encoder ψpred , cluster basis matrix E
Hyperparameters :B – trajectory batch size, C – num. of trajectory clusters, T – subtrajectory

length, K – num. of nearest clusters for view mining, L – trajectory length,
N – num. of anchors for view mining, β – Sinkhorn temperature

1 for each iteration itr = 1, 2, .. do
2 for each minibatch B do
3 for each trajectory τi in B do
4 t1, .., tT ∼Uniform(L) // Sample temporal keypoints

5 u(τi) = [FiLM(ϕ(st1), at1), ..., F iLM(ϕ(stT ), atT )]
// cluster dynamics

6 ui = [u(τ1), ..., u(τm)] // batch dynamics
7 vi = ψclust(ui) // fetch embeddings
8 wi = θclust(vi) // fetch projections
9 vi =

vi

||vi||2 // normalize embeddings

10 Q = Softmax
(
v⊤
i E/β

)
// Compute latent dynamics scores

11 Q̃ = Sinkhorn(Q) // normalize scores through Sinkhorn
12 P = log

[
Softmax(w⊤

i E/β)
]
// Compute projected dynamics scores

13 Lclust(ϕ, ψcluster, θcluster) = CrossEntropy(Q̃,P)
// Predicting neighbors

14 Dij = ||ei − ej ||22 // find pairwise basis distances
15 Lpred = 0
16 for each anchor j = 1, ..., N do
17 τj ∼ B // Sample anchor trajectory

18 un = u(τj) // Set anchor embedding

19 c
(1)
i , .., c

(k)
i = top-knn(D, k, ci) // Find nearby clusters

20 uc1 , ..., uck ∼ p(u
c
(1)
i
), ..., p(u

c
(k)
i

) // Sample views from clusters

21 v′
c1 , . . . ,v

′
cK = ψpred(uc1), ..., ψpred(uck) // embed mined views

22

23 w′
n = θpred(ψpred(un)) // mining target

24 L(n)
pred =

∑K
k=1 ||w′

n − StopGrad(v′ck)||
2
2

25 Lpred =
∑N

n=1 L
(n)
pred

26 LCTRL = Lclust + Lpred // update networks
27 ϕ, ψclust, θclust, θpred, ψpred = Adam(ϕ, ψclust, θclust, θpred, ψpred;LCTRL)
28 for each minibatch B do
29 π, V π = Adam(π, V π;LRL(B)) // update RL parameters

8.2 EXPERIMENT DETAILS

We implemented all algorithms on top of the IMPALA architecture, which was shown to perform well
on Procgen (Cobbe et al., 2020). In the Procgen experiments, Proto-RL was ran without any intrinsic
rewards (since the domains are not exploration-focused) by first jointly training the representation
and RL losses for 8M timesteps, after which only the RL loss was optimized for an additional 8M
steps (16M steps in total). Similarly, DIAYN was also run with the pre-training phase of 8M and then
RL only objective for the second 8M phase.

Like Proto-RL and DIAYN, PSE needed extra training budget and extra adjustments for a fair
comparison to CTRL (see Section 2). Agarwal et al. (2021) used PSE only with Soft Actor-Critic,
which doesn’t perform well on Procgen. Therefore, we carried over PSE’ available implementation
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Name Description Value
γ Discount factor 0.999
λ Decay 0.95

ntimesteps Number of timesteps per rollout 256
nepochs Number of epochs for RL and representation learning 1
nsamples Number of samples per epoch 8192

Entropy bonus Entropy loss coefficient 0.01
Clip range Clip range for PPO 0.2

Learning rate Learning rate for RL and representation learning 5× 10−4

Number of environments Number of parallel environments 32
Optimizer Optimizer for RL and representation learning Adam

Frame stack Frame stack X Procgen frames 1

E Number of clusters 200
k Number of k-NN nearest neighbors 3
T Number of clustering timesteps 2
β Clustering temperature 0.3

Table 2: Experiments’ parameters

from https://agarwl.github.io/pse/ to our codebase, with the help of PSE’ authors, to combine it with
the same PPO implementation that CTRL used.

PSE assumes being given policies for training problem instances (Procgen levels). Like Agarwal et al.
(2021), we ran PSE using both random and high-quality pretrained policies for these problems. In
the latter case, we pretrained expert policies for the first 40 levels of Procgen to generate training
trajectories for PSE. Each level’s expert was trained on 0.5M environment steps. Note that this is
much less than 8M steps we used for policy training in experiments with other algorithms, but this is
because each expert needed to be good only for a single level, and we verified that they indeed were.
We did this only for the first 40 levels because even for 40 levels this took 20M training steps per
game and had to be done for 16 games. We don’t believe more than 40 experts per game would have
made a difference.

Given policies for the training levels, PPO+PSE’s training on Procgen mimicked CTRL’s: PPO+PSE
trained by interacting with the first 200 levels for 8M steps and was evaluated on the rest. However,
during the training, PPO+PSE sampled an additional 1M interactions from the pretrained traiing-level
policies. the process was repeated for all 16 games, for 10 seeds each.

We did hyperparameter grid search on PPO+PSE’s hyperparameters for PSE – loss coefficient values
of (0.1, 1, 2) and temperature (0.1, 0.3, 0.7). PPO’s hyperparameters were the same as in CTRL.

Thus, due to the need to pretrain and gather data with per-level expert policies, PPO+PSE received
0.5 · 20M + 1M = 21M extra environment interactions compared to CTRL, i.e., used 21M/8M =
2.6× more training data than the latter.

8.3 ADDITIONAL RESULTS

ZSG over 8M and 25M training steps and policy performance throughout training We provide
the performance plots of various representation learning and RL algorithms for the 8M and the 25M
benchmarks, which test zero-shot generalization under different sample regimes. Figure 2 shows
the training performance of agents on 8M frames, Figure 3 the test performance of agents on 8M
frames and all levels, and, finally, Figure 4 shows the test performance of agents on 25M frames and
all levels.

Ablations on algorithm components We ran multiple versions of the algorithm to identify the key
components which make CTRL perform well in Procgen. The first modification, CTRL consecutive
T consists in running our algorithm but sampling consecutive timesteps, that is ti+1 = t1+ i for all t1
and 0 ≤ i ≤ T . The second modification, CTRL no action removes the action conditioning layer in
the log-softmax probability pt and in the cluster scores qt, to test the importance of action information
for cluster membership prediction. The third modification, CTRL no cluster removes the clustering
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Figure 2: Training results over the 8M frames benchmark.

loss, and only restricts to mining and predicting nearby neighbors in the batch. Finally, the last
modification, CTRL no pred removes the loss predicting samples from neighboring partitions and
only relies on the clustering loss to update its representation.

Results suggest that (1) using consecutive timesteps as for the dynamics vector embedding yields
lower average rewards than non-consecutive timesteps, (2) action conditioning helps the agent to pick
up on the local dynamics present in the MDP and (3) both clustering and predictive objectives are
essential to the good performance of our algorithm. Results of the last column are computed over 10
seeds, rest over 3 seeds.

Ablation on number of clusters and clustering timesteps How should one determine the optimal
number of clusters in a complex domain? Can the number of clusters be chosen a priori running any
training?

Below, we provide some partial answers to these questions. First, the optimal (or true) number of
clusters is domain-specific, as it depends on the exact connectivity structure of the MDP at hand.
Second, the length of the clusters, i.e. the number of trajectory timesteps passed to Sinkhorn-Knopp
can widely impact the nature of learned representations, and hence the downstream performance of
the agent.

Temporal connectivity of the clusters Are clusters consistent in time for a given trajectory? To
verify this, we trained CTRL on 1 million frames of the bigfish game. For every T states in a
given trajectory, we have computed the hard cluster assignment to the nearest cluster, which yields
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Figure 3: Evaluation results over the 8M frames benchmark.

Table 3: Average evaluation returns collected after 8M of training frames, ± one standard deviation.

Env CTRL consecutive T CTRL no action CTRL no cluster CTRL no pred CTRL

bigfish 3.9±0.3 3.2±0.3 2.5±0.3 3.7±0.1 4.7±0.2
bossfight 8.9±0.1 6.9±0.9 7.8±0.3 6.6±0.8 8.2±0.1
caveflyer 4.6±0.2 4.7±0.1 4.6±0.1 4.6±0.1 4.7±0.2
chaser 7.4±0.3 6.7±0.2 7.0±0.5 6.5±0.1 7.1±0.2
climber 6.2±0.4 5.5±0.1 5.3±0.4 5.7±0.4 5.9±0.2
coinrun 8.8±0.1 8.5±0.3 8.1±0.2 8.4±0.3 8.7±0.3
dodgeball 1.8±0.1 1.7±0.1 1.7±0.2 1.7±0.1 1.8±0.1
fruitbot 13.1±0.3 12.9±0.4 13.0±0.5 12.5±0.6 13.3±0.3
heist 3.0±0.1 3.2±0.3 3.2±0.1 3.0±0.2 3.1±0.3
jumper 6.1±0.2 6.0±0.1 5.9±0.1 5.9±0.1 6.0±0.1
leaper 3.4±1.1 3.2±0.4 2.6±0.3 3.3±0.2 2.8±0.2
maze 5.6±0.2 5.6±0.1 5.7±0.1 5.8±0.1 5.7±0.1
miner 7.0±0.9 5.9±0.4 5.6±0.1 6.0±0.2 6.5±0.2
ninja 5.7±0.1 5.3±0.2 5.5±0.1 5.6±0.1 5.8±0.1
plunder 6.4±0.2 5.6±0.1 5.9±0.5 6.1±0.2 6.6±0.3
starpilot 7.0±0.2 4.9±0.6 4.9±0.2 5.8±0.4 7.7±0.5

a sequence of partitions. We then computed the cosine similarity between time-adjacent cluster
centroids, the metric reported on the smoothed graph below.
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Figure 4: Evaluation results over the 25M frames benchmark.

Figure 5: Ablation on the clustering timesteps used in the dynamics embedding

Figure 6: Ablation on the number of clusters used in CTRL

Loss landscape of Lclust and Lpred Works relying on non-colinear signals, e.g. behavioral similarity
and rewards, as is the case for DeepMDP (Gelada et al., 2019), show that interference can occur
between various loss components. For example, (Gelada et al., 2019) showed how their dynamics and
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Figure 7: Average within-trajectory cluster similarity over 1M consecutive timesteps.

Figure 8: Average values of Lclust and Lpred over time.

reward losses are inversely proportional to each other early on in the training, taking a considerable
amount of frames to converge.

We observe a similar pattern in Figure 8: the clustering loss first jumps up while the predictive loss is
minimized, then the trend reverses, and both losses get minimized near the end of the training.

Case study: splitting other dynamics-aware losses Similar to the postulate of ATC (Stooke
et al., 2021), we hypothesize that training the encoder only with the representation loss has the most
beneficial effect when the representation loss contains information about dynamics. To validate this,
we conducted an additional set of experiments on two well-known self-supervised learning algorithms
which leverage predictive information about future timesteps: Deep Reinforcement and InfoMax
Learning (DRIML) (Mazoure et al., 2020) and Self-Predictive Representations (SPR) (Schwarzer
et al., 2021). We ran (i) the default version of the algorithms with joint RL and representation updates,
as well as (ii) RL updates propagated only through the layers above the encoder.

Qualitative assessment of clusters Figure 9 shows, for 5 environments, 4 randomly sampled
states for 2 behavioral clusters (4 clusters for Starpilot – differences between clusters are easier to
visualize in this environment). Note that clustered states go beyond visual similarity, and capture
action sequences, agent position, presence of enemies and even topological equivalence of various
levels. The choice of environments for this demonstration is dictated by the nature of the action
space, e.g. projectiles in Starpilot and path tracing in Miner allow to better visualize agent’s behavior.
Note that, for Bigfish, CTRL implicitly picks up the notion of reward density by learning to separate
states abundant of fish from those without fish (due to the policy being trained on rewards and thus
exhibiting different behavior in those two settings).

Figure 10 shows the t-SNE of from randomly sampled states along the CTRL training path on
Starpilot – embeddings learned by CTRL can be seen to concentrate into distinct clusters and around
their respective centroids.
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Env DRIML SPR

bigfish +0.17 +0.15
bossfight +0.56 +10.36
caveflyer +0.23 -0.02
chaser -0.14 -0.13
climber 0.15 +0.14
coinrun -0.37 +2.05
dodgeball -0.39 +0.12
fruitbot -0.53 -0.1
heist -0.3 -0.03
jumper +0.04 +0
leaper -0.04 +0.08
maze +0.01 -0.15
miner +0.88 +0.03
ninja -0.13 -0.31
plunder -0.02 -0.18
starpilot -0.11 -0.15

Norm. score +0.01 +0.74

Table 4: Normalized improvement scores of split updates over joint updates of the encoder, averaged over 3
random seeds.

Figure 9: Sample states from behavioral clusters found by CTRL after 2M of training frames for 5 representative
environments. The two gray squares in top left is added to indicate the agent’s velocity.

8.4 SHOWCASE: SLOW CLUSTERING CONVERGENCE LEADS TO BETTER GENERALIZATION

Trajectory clustering is key to representation learning not only in CTRL but also in a prior method,
Proto-RL. However, while Proto-RL uses it to pretrain a representation which it then keeps frozen
during RL, CTRL applies clustering to evolve the representation as RL progresses. This raises a
question: how important is online clustering convergence rate for learning a good representation?
Intuitively, if online clustering converges too quickly and behavioral similarities are “pinned down”
early in the training process, the resulting representation will not be robust to distribution shifts
induced by improved policies. Therefore, it seems crucial to learn the behavioral similarities at a
rate that allows cluster centroids to adapt to the value improvement path (Dabney et al., 2021). To
validate this hypothesis, we conducted an analysis of the correlation between the clustering quality
and the test performance as a function of training progress on three representative games.
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Figure 10: t-SNE of 1024 randomly sampled states from data collected by CTRL after 0.5,1,1.5 and 2M frames
in Starpilot, with β = 0.1, T = 4. As learning progresses, agent behavior clusters become more and more
distinct.

To measure the clustering quality, we report the silhouette score (Rousseeuw, 1987), a commonly used
unsupervised goodness-of-fit measure which balances inter- and intra-cluster variance. Results shown

Figure 11: Goodness-of-clustering measured by silhouette scores (top) and average test returns (bottom) as a
function of training samples.

in Figure 11 provide evidence that picking the unsupervised learning procedure which converges
the fastest (i.e. uses the lowest temperature β) does not necessarily lead to the best generalization
performance. Based on Figure 11, we conjecture that fast clustering convergence hinders the
performance of the RL agent due to clusters being fixed early on and not adapting to the distribution
shift induced by the evolving RL policy.

8.5 SHOWCASE: LEARNING BEHAVIORAL SIMILARITIES CAPTURES LOCAL PERCEPTUAL
CHANGES

To demonstrate the importance of identifying behavioral similarities, we designed a toy example
problem with 5 behavioral clusters, where clustering the behaviors correctly leads to finding a
near-optimal policy.
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Our example problem is based on the standard Ising model3 – a 32× 32 binary lattice, each entry of
which evolves at every timestep according to the values of its neighbors, with strengths of neighbor
dependencies being regulated by a temperature parameter 1/β. We randomly initialize 5 Ising models,
each parametrized by an inverse temperature parameter on a uniform grid β ∈ [0.01, 0.3]. The system
state is given by the state of all 5 models, and all models evolve in parallel at every step. At each
timestep, the agent needs to choose one of the models, and has 5 actions corresponding to these
choices. At timestep t, the agent is allowed to observe only the state of the model it chose at this step,
and gets a reward based only on this model’s state. The reward yielded by Ising model i at timestep t
is given by rt = −||si,t −G||22, where G is a goal state. For a given problem instance, we sample G
randomly by instantiating a 6th Ising model with an unknown inverse temperature parameter β∗ and
letting G be its final configuration after evolving it for a random number of steps. Figure 12 outlines
the experimental setting for this study case.

The 5 behavioral clusters in our setting correspond to the 5 Ising models. The optimal strategy
to solve this task is to 1) identify the Ising model (i.e., the behavioral cluster) whose temperature
parameter is closest to β∗ and 2) choose that model and collect the corresponding rewards.

Figure 12: The composite Ising matching problem: the agent has to match a given Ising configuration by
swapping branches of various transition dynamics

Table 5 outlines the results we obtained by deploying CTRL with different number-of-clusters
parameter value. One can see that the largest improvement in silhouette score occurs from E = 4
to E = 5 (14.5%), suggesting that monitoring the largest change in silhouette score can be used
to set the true number of clusters in CTRL which, in turn, corresponds to the highest-return policy
discovered by CTRL.

E = 2 E = 4 E = 5 E = 6 . . . E = 50

Returns -0.78 -0.96 -0.02 -0.07 . . . -0.54
Silhouette 0.875 0.796 0.651 0.554 . . . 0.039
Silhouette change - 0.079 0.145 0.097 . . . 0.515

Table 5: Returns and silhouette scores obtained by CTRL in the composite Ising matching domain.

8.6 ADDITIONAL THEORETICAL FINDINGS

Do uncorrelated local changes to state embeddings affect the clustering?

Theorem 8.1 Let M be an MDP and let v ∈ V be a dynamics embeddings in M . Define{
δi = δ1i 1 ≤ i ≤ |V|
δi = δ2i h < i ≤ T |V| (8)

and pick δ1 s.t. it lies on the positive half-plane spanned by E⊤
j −E⊤

j′ for some 1 ≤ j′ ≤ E. Then,
v′ = v + δ and v belong to the same partition j.

It becomes apparent from the above statement that perturbations to a single state or groups of state
embeddings do not modify the partition membership as long as their direction aligns with that of the
cluster embeddings.

3https://en.wikipedia.org/wiki/Ising_model
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8.7 PROOFS

Throughout this section, we assume that the policy π is fixed, and that CTRL optimizes Lclust only.

Proof 1 (Theorem 8.1) For two dynamics embeddings to be assigned to the same cluster j, the
following should hold

|V|∑
i=1

viE
⊤
ji >

|V|∑
i=1

viE
⊤
j′i,

|V|∑
i=1

(vi + δi)E
⊤
ji >

|V|∑
i=1

(vi + δi)E
⊤
j′i

(9)

for any 1 ≤ j′ ≤ E s.t. j′ ̸= j.

|V|∑
i=1

viE
⊤
ji +

|V|∑
i=1

δiE
⊤
ji >

|V|∑
i=1

viE
⊤
j′i +

|V|∑
i=1

δiE
⊤
j′i

|V|∑
i=1

vi(E
⊤
ji −E⊤

j′i) +

|V|∑
i=1

δi(E
⊤
ji −E⊤

j′i) > 0

(10)

Taking the difference between both equations yields the necessary condition for two dynamics to
belong to the same cluster

sup
1≤j′≤E

(E⊤
ji −E⊤

j′i)δi ≥ 0, 1 ≤ i ≤ |V|. (11)

Corollary 8.1.1 Let v,v′ be two dynamics embeddings, and define δ = v′ − v. If v belongs to
cluster j and j = argmax1≤j′≤E E⊤

j′δ, then v′ also belongs to cluster j.

Perturbations are of the form
∑|V|

i=1(E
⊤
ij − E⊤

ij′)δi. If δ = 0, then the cluster assignment doesn’t
change. Let v be of size kh = |V|. Define, without loss of generality{

δi = δ1i 1 ≤ i ≤ h

δi = δ2i h < i ≤ kh
(12)

and pick δ1 s.t. it lies on the positive half-plane spanned by E⊤
ij −E⊤

ij′ .

Then,

|V|∑
i=1

(E⊤
ij −E⊤

ij′)δi =

h∑
i=1

(E⊤
ij −E⊤

ij′)δ
1
i +

kh∑
i=h

(E⊤
ij −E⊤

ij′)δ
2
i ≥

kh∑
i=h

(E⊤
ij −E⊤

ij′)δ
2
i ≥ 0 (13)

which concludes the proof.

Proof 2 (Theorem 1) Since the W1 metric is defined between distribution functions, we use v = P[v]
throughout the proof to denote the probability distribution over elements of the dynamics vector v. In
practice, this amounts to re-normalizing the representation.

For two dynamics to be assigned to the same cluster j, the following has to hold:

|V|∑
i=1

viE
⊤
ji >

|V|∑
i=1

viE
⊤
j′i,

|V|∑
i=1

v′
iE

⊤
ji >

|V|∑
i=1

v′
iE

⊤
j′i

(14)
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for any 1 ≤ j′ ≤ E s.t. j′ ̸= j. Then, adding both inequalities yields, for all 1 ≤ j ≤ E

|V|∑
i=1

viE
⊤
ji +

|V|∑
i=1

v′
iE

⊤
ji ≥

|V|∑
i=1

viE
⊤
j′i +

|V|∑
i=1

v′
iE

⊤
j′i

|V|∑
i=1

viE
⊤
ji +

|V|∑
i=1

viE
⊤
j′i ≥

|V|∑
i=1

v′
iE

⊤
ji +

|V|∑
i=1

v′
iE

⊤
j′i

|V|∑
i=1

vi(E
⊤
ji −E⊤

j′i) ≥
|V|∑
i=1

v′
i(E

⊤
ji −E⊤

j′i)

|V|∑
i=1

vi(E
⊤
ji −E⊤

j′i) ≥
|V|∑
i=1

v′
i(E

⊤
ji −E⊤

j′i)

(15)

and the constraint of two vectors belonging to the same cluster j becomes

|V|∑
i=1

(vi − v′
i)(E

⊤
ji −E⊤

j′i) ≥ 0

min
1≤j′≤E

|V|∑
i=1

(vi − v′
i)(E

⊤
ji −E⊤

j′i) ≥ 0

min
1≤j′≤E

(v − v′)(Ej −Ej′)
⊤ ≥ 0

(16)

Now, denote E(j) := Ej . Our constraint satisfaction problem can be written as

min
1≤j′≤E

(v − v′)(E(j)−E(j′))⊤ ≥ 0 (17)

By comparing Eq. 7 with Eq. 17, we observe that in our case, µ is restricted to the set of vectors
in R|V|. Therefore, we pick µ ∈ Γ(E), where Γ(E) = {ω ∈ V : ω = E(j, i) − E(j′, i), 0 ≤
ωi ≤ 1, cos(v − v′,ω) ∈ [0, π]|1 ≤ i ≤ |V|, 1 ≤ j′ ≤ E}. The set Γ(E) is non-empty if
maxl,l′ ||El −El′ ||∞ ≤ 1, which holds due to ℓp norm ordering and since E is normalized in the Q̃
scores expression. Adopting this notation simplifies the previous expression to

min
µ∈Γ(E)

(v − v′)µ⊤ (18)

Once again, recall that E is normalized. Therefore, we have(
eij

||ej ||2
− ei′j

||ej ||2

)
+

(
eij

||ej ||2
− ei′j′

||ej ||2

)
≤ d(i, i′) (19)

which equivalently can be re-stated as (for ei ≥ ej WLOG):

eij − ei′j ≤
||ej ||2

2
d(i, i′)

eij − ei′j ≤
||ej ||22

2

(
Eij −Eij′

)
eij − ei′j ≤

||ej ||2
2

(
eij − ei′j

)
,

(20)

where we take, as an example, d(i, i′) = ||ej ||2
(
Eij −Eij′

)
.
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The final expression for the sufficient condition for two dynamics embeddings to belong to the same
partition is

min
µ∈Γ(E)

(v − v′)µ⊤

s.t. µ(i)− µ(i′) ≤ d(i, i′)
(21)

for d(i, i′) = ||ej ||2
(
Eij − Eij′

)
, which is similar to the Wasserstein-1 distance under d, i.e.

Wd
1 (v,v

′).

We constructed an operator similar to F(d) in Ferns et al. (2004). d can be computed by recursively
applying F(d) at each v,v′ ∈ V pointwise, which is similar to what is done in CTRL. This concludes
our proof and shows how our clustering procedure can be viewed as finding reward-free bisimulations.

However, note that the exact interpretation of reward-free bisimulation relation depends on how v is
defined. Taking v to be two consecutive timesteps of state-action pairs yields the closest possible to
the original definition of bisimulation, while sampling temporal keypoints far across the trajectory
will induce a different set of properties.

24


	Introduction
	Background, motivation, and related works
	Problem statement and preliminaries
	Algorithm
	Intuition and high-level description
	Details 

	Connection to bisimulation
	Empirical evaluation
	Conclusions
	Appendix
	CTRL pseudocode 
	Experiment details
	Additional results 
	Showcase: Slow clustering convergence leads to better generalization
	Showcase: Learning behavioral similarities captures local perceptual changes 
	Additional theoretical findings
	Proofs


