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Abstract

Disaggregated evaluation across subgroups is critical for assessing the fairness
of machine learning models, but its uncritical use can mislead practitioners. We
show that equal performance across subgroups is an unreliable measure of fairness
when data are representative of the relevant populations but reflective of real-world
disparities. Furthermore, when data are not representative due to selection bias,
both disaggregated evaluation and alternative approaches based on conditional
independence testing may be invalid without explicit assumptions regarding the
bias mechanism. We use causal graphical models to characterize fairness properties
and metric stability across subgroups under different data generating processes.
Our framework suggests complementing disaggregated evaluations with explicit
causal assumptions and analysis to control for confounding and distribution shift,
including conditional independence testing and weighted performance estimation.
These findings have broad implications for how practitioners design and interpret
model assessments given the ubiquity of disaggregated evaluation.

1 Introduction

A significant body of work uses disaggregated evaluation of machine learning models across sub-
groups (e.g., by race, ethnicity, or gender) to assess algorithmic fairness properties [1]. In this
paradigm, differences in a performance metric (e.g., accuracy, sensitivity, specificity, positive predic-
tive value) or other statistical property (e.g. calibration or the distribution of predictions or covariates)
across subgroups are taken as evidence of a fairness violation. In healthcare contexts, for example,
this approach has been applied to a variety of settings to evaluate machine learning models across
patient subgroups [2–4], including prognostic models of cardiovascular disease risk [5–7] as well as
diagnostic classifiers for medical images [8, 9].
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We assume a setting where the policy and fairness goal is consistent with accurate prediction for
all subgroups of interest based on historical data, which can be justified in some circumstances
[6, 7, 10–12]. However, we emphasize that fairness is not an inherent property of a model, but rather
related to the effect on outcomes that a policy leveraging the model has in a deployment context [13],
and even accurate models can introduce harm and exacerbate disparities [14, 15].

In this work, we investigate ways that disaggregated evaluation of the performance of predictive
models across subgroups can be misleading. A central issue is that models that maximize predictive
performance for each subgroup do not generally attain equal performance across subgroups. This
follows because the optimal value of a performance metric typically changes under distribution shift
[16] and data distributions tend to differ across subgroups in contexts where disparities are present
(e.g., under differential exposure to social and structural determinants of health (SDOH) [17, 18]). We
argue that disaggregated evaluation can thus mislead because differences in model performance across
subgroups do not necessarily imply misestimation for any subgroup, nor an unfair or inequitable
intervention or policy [6, 7, 12, 19]. As a consequence, disaggregated evaluation does not necessarily
allow for identification of subgroups for which further data collection or model scaling would be
beneficial. Furthermore, algorithmic strategies to develop models that attain equal performance (e.g.,
constrained optimization or post-processing [2, 20, 21]) can directly introduce harm without inducing
a contextually-meaningful notion of fairness [6, 7, 12, 19].

We emphasize that the above considerations apply in settings that are well-specified, that is, when the
prediction task is well-formulated on the basis of a specific use case and target population, and a large
and high-quality dataset representative of that target population is available for model development
and evaluation [22–24]. If this is not the case, e.g., if the observed data are misrepresentative of
the intended target population, a model that predicts outcomes well in the observed data may not
generalize to the intended target population, potentially directly introducing fairness-related harms
when the structure of the misgeneralization is systematic across subgroups. For example, under
various forms of bias affecting problem formulation, data collection, and measurement, accurate
prediction in the observed data implies structured forms of misestimation in the target population that
cannot be detected in the observed data without knowledge of the structure of the bias [22, 23, 25–29].
In this work, while we primarily operate in the ideal, well-specified setting detailed above, we do
extend our analysis to the non-ideal setting to include structured forms of selection bias [25].

We argue that building understanding of the issues discussed above is critical to the design and
interpretation of disaggregated evaluations. To that end, we make several contributions, which can be
summarized as follows:

• We characterize the properties of models learned and evaluated under a variety of data gen-
erating processes. We use causal graphical models of distribution shift to encode structured
forms of heterogeneity across subgroups and to describe explicit forms of distribution shift
through selection bias. This characterizes the fairness properties of models under various
assumptions on the data generating process. This approach builds on prior works that use
causal directed acyclic graphs to study algorithmic fairness and distribution shift [29–36],
as well as those that study incompatibilities between different notions of fairness [37–40].

• We present theoretical results that show that in simple, prototypical cases, average perfor-
mance of the optimal predictor is not expected to be the same across subgroups, but that these
differences can be directly anticipated based on the causal structure of the data generating
process. In some cases, performance differences can be directly explained by differences in
the marginal distribution of a confounder across subgroups, potentially motivating the use
of evaluation procedures that control for such confounding.

• We investigate the use of weighted evaluation procedures as a means of constructing eval-
uations that control for confounding due to distributional differences across subgroups,
building off of Cai et al. [16]. We show how such procedures can be interpreted as a class of
configurable conditional independence tests and provide guidance for the interpretation of
such techniques in concert with standard disaggregated evaluations.

• We conduct experiments with synthetic and real-world data to empirically verify the proper-
ties suggested by our theoretical analysis*.

*Code to reproduce the experiments is available at https://github.com/google-research/
google-research/tree/master/causal_evaluation.
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2 Preliminaries

We consider data with covariates X ∈ Rn, a binary label Y ∈ {0, 1}, and a categorical subgroup
indicator A ∈ A. We reason about models f that take as input Z ∈ {X, {X,A}} to produce scores
R = f(Z) that can be compared to a threshold τ to yield binary predictions Ŷ = 1[R ≥ τ ].

Several of our findings relate to the properties of oracle models f∗ that can be considered to
return E[Y | Z], such that f∗(Z) = E[Y | Z]. Following Mhasawade et al. [29], we define
f∗(X) as the population Bayes-optimal model that returns the conditional expectation of Y given
covariates X , such that R∗ = f∗(X) = E[Y | X] and the subgroup Bayes-optimal model as
R∗

A = f∗
A(X,A) = E[Y | X,A]. The subgroup Bayes-optimal model can also be represented

as a set of subgroup-specific Bayes-optimal models ({f∗
a}a∈A for f∗

a (X) = E[Y | X,A = a]).
For arbitrary, potentially non-optimal models, we refer to models that only have access to X as
subgroup-agnostic and those that have access to A as subgroup-aware. We refer to fitting separate
models for each subgroup as a type of subgroup-aware prediction called stratified prediction.

Because our scope is limited to modeling binary outcomes, it follows that E[Y | X] = P (Y = 1 | X).
This implies that the Bayes-optimal predictor f∗(Z) captures all of the information that Z has
about Y , and thus Y ⊥ Z | f∗(Z) and E[Y | f∗(Z)] = E[Y | f∗(Z), Z]. Furthermore, Bayes-
optimal predictors are calibrated, meaning that c(r) = r for all r ∈ [0, 1] for a calibration curve
c(r) = E[Y | R = r]. We note that calibration is necessary but not sufficient for Bayes-optimality:
miscalibration implies lack of Bayes-optimality, but calibration does not imply Bayes-optimality.

We assume that the model of interest is fit and evaluated based on data drawn from a source distribution
over {X,Y,A} given by P (X,Y,A) and evaluated on a target distribution indicative of the target
population for which it is of interest to deploy the model. Unless stated otherwise, we assume that
the source distribution matches the target distribution. When it is of interest to indicate a systematic
difference between source and target distributions, we use the convention of selection [25], where
we consider a model fit using data drawn from the selected, source population P (X,Y,A | S = 1)
and reason about the properties of those models evaluated on samples drawn from the full, target
population without selection P (X,Y,A).

2.1 Algorithmic Fairness and Robustness

It is common to reason about algorithmic fairness through disaggregated evaluation of model per-
formance over subgroups of the population or otherwise testing for some form of independence or
conditional independence involving subgroup membership. For disaggregated evaluation, we consider
metrics m : R × Y → R that are decomposable (i.e., can be computed at an instance-level and
aggregated), where the induced fairness condition is given by E[mj(Y,R) | A = a] = E[mj(Y,R)]
for some fixed set of subgroups {a}a∈A and metrics {mj}Mj=1.

It is also popular to operationalize fairness with statistical criteria corresponding to independence
or conditional independence. For example, this includes demographic parity (R ⊥ A) [41, 42],
separation (R ⊥ A | Y ) [20], equalized odds (Ŷ ⊥ A | Y ) [20], sufficiency (Y ⊥ A | R) [37],
and predictive parity (Y ⊥ A | Ŷ = 1) [39]. Some of these criteria can be directly interpreted as
conditions of equal performance across subgroups. For example, separation is a sufficient condition
for equalized odds, which corresponds to a condition where both true positive error rates (also known
as sensitivity or recall) and false positive error rates (also known as 1-specificity) are equal across
subgroups. Predictive parity likewise corresponds to a case where the positive predictive value (also
known as precision) of the model is equal across subgroups. In contrast, sufficiency is more naturally
described as a condition of equal calibration curves, rather than as an equal performance condition.

Other works have framed fairness as a form of robustness over subgroups [43, 44], conceptualized
in terms of worst-case performance across subgroups, with an optimization objective formulated to
maximize worst-case subgroup performance. This perspective is aligned with that implicitly taken in
disaggregated evaluation, in that some deviation in model performance across subgroups is taken as
evidence of disparities in model quality across subgroups.

A number of prior works have documented theoretical and empirical incompatibilities and trade-offs
between the notions of fairness outlined above [2, 37–40]. Particularly relevant to this work are
the findings of Liu et al. [37], where it is shown that, in settings where the prevalence of the label

3



Table 1: Causal graphs encoding assumptions regarding heterogeneity across subgroups. X
indicates covariates, Y a binary label, A subgroup membership, and S selection.

Covariate Shift Outcome Shift Complex Shift Selection

Causal
Direction

A

X

Y

A

X

Y

A

X

Y

A

X Y

S

Label Shift Presentation Shift Complex Shift Selection

Anticausal
Direction

A

Y

X

A

Y

X

A

Y

X

A

Y X

S

differs across subgroups (i.e., A ̸⊥ Y ), fitting a high-quality predictive model for each subgroup
implies satisfaction of calibration and sufficiency, but violation of separation and demographic parity,
in the sense that empirical risk minimization with a covariate set that encodes A implies some
non-zero lower bound on separation and demographic parity error while minimizing an upper bound
on calibration and sufficiency error. Other related works [7, 11, 12] show that when allocation on
the basis of a predictor is unconstrained and the utility function has a certain structure (e.g., if the
benefit of the intervention increases as a function of the risk of the outcome in the absence of the
intervention), maximizing prediction performance for each subgroup is consistent with maximizing
the utility of the allocation for each subgroup.

3 Understanding fairness through causal models of distribution shift

In this section, we provide the basis for understanding the fairness properties that can be expected for
models that fit the data well under a variety of assumptions on the data generating process. These
properties described here serve as context for the core theoretical results regarding the stability
of performance metrics and approach to controlled evaluation across subgroups that are described
subsequently in Section 4. In Section 3.1 we detail the data generating processes of interest that
we study in this work. We do so through the specification of a collection of causal directed acyclic
graphs that incorporate subgroup structure to describe distributional differences across subgroups.
In Section 3.2, we characterize the conditional independence properties of subgroup-aware and
subgroup-agnostic Bayes-optimal models fit to data drawn from each of the data generating processes
of interest.

3.1 Describing subgroup heterogeneity with causal directed acyclic graphs

We define a collection of simple, prototypical data generating processes that we use to study the
performance and fairness properties of models under varying assumptions regarding causal structure
and heterogeneity across subgroups. For that purpose, we use causal directed acyclic graphs (DAGs)
[45]. These graphs involve X , Y , and A and are analogous to those used to describe distribution shift
mechanisms in prior works [30–35]. We consider graphs in both the causal and anticausal directions,
that is, when X is a direct parent of Y and when Y is a direct parent of X [46]. While we include A
in these graphs to describe the role of heterogeneity across subgroups, we do not consider A to be a
direct cause of either X or Y . Rather, we use bidirected edges to describe cases where an unobserved
confounder that influences X or Y varies in distribution across subgroups [47].

The causal settings that we study are presented in Table 1. In brief, in both the causal and anticausal
directions, we consider two simple mechanisms of heterogeneity across subgroups, a complex shift
mechanism that combines the two simpler ones, and a configurable graph that incorporates a selection
node to describe distribution shift between a source and target distribution. To describe selection
mechanisms, we augment each of the causal graphs described thus far with a square selection node S.
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The set of variables with direct arrows into S are considered those that affect the selection process. If
the set of variables with direct edges into S are deemed Pa(S), the distribution P (S | X,Y,A) can
be simplified to P (S | Pa(S)).

For the remainder of this section, we restrict ourself to a setting without selection. In the causal
direction, the two simple cases are covariate shift and outcome shift across subgroups. Informally,
covariate shift captures the assumption that an outcome Y is generated from covariates X with the
same mechanism for all subgroups; outcome shift captures the assumption that the mechanism differs.
For example, if X is a set of clinical covariates (e.g., prior health conditions, lab test results, etc.) and
Y is a downstream clinical outcome (e.g., cardiovascular event in the next ten years), the two settings
correspond to different assumptions on whether the probability of the clinical outcome differs across
subgroups after holding the covariate values constant. In this example, the choice to represent the
edges that involve A as bidirected corresponds to an assumption that differences in the distribution of
covariates and outcomes across subgroups are not inherent properties of the subgroups but are rather
a consequence of differential exposure to unobserved SDOH variables.

More formally, under covariate shift, P (X) ̸= P (X | A) but P (Y | X) = P (Y | X,A), encoding
the invariance Y ⊥ A | X . In other words, the distribution of X differs across subgroups but
the conditional distribution Y | X is unchanged. Under outcome shift, we assume that P (X) =
P (X | A), but there exists some unobserved confounder that affects Y and is not independent of A,
such that P (Y | X) ̸= P (Y | X,A). The complex shift case combines the two settings such that
P (X) ̸= P (X | A) and P (Y | X) ̸= P (Y | X,A).

In the anticausal direction, the two simple cases are label shift and presentation shift. An example of a
plausible anticausal setting is a case where it is of interest to identify a condition Y (e.g., pneumonia)
from a chest X-ray [8, 9]. Informally, label shift captures the assumption that conditioned on a class
of Y , the distributions of covariates X are identical across subgroups, while presentation shift allows
this relationship to change and holds the prevalence of Y constant. For example, this could correspond
to a setting where it is assumed that the distribution of chest X-rays given the presence/absence of
pneumonia is the same across subgroups of differing condition prevalence. Formally, in the label
shift case, the prevalence of Y differs across subgroups, but P (X | Y ) is stable across subgroups
(i.e., P (X | Y ) = P (X | Y,A)). In the presentation shift case, the prevalence of Y is the same
across subgroups, but P (X | Y ) differs across subgroups (i.e., P (X | Y ) ̸= P (X | Y,A)). This
could occur, for example, if there were systematic differences in the imaging technology used
across subgroups. As in the causal direction, a complex anticausal shift can be constructed if we let
P (Y ) ̸= P (Y | A) and P (X | Y ) ̸= P (X | Y,A).

3.2 The effect of causal structure on the properties of Bayes-optimal models

In this section, we describe the conditional independence properties of Bayes-optimal models learned
and evaluated on data drawn from each of the DAGs described in Table 1. We do so to establish
the properties that are expected to be satisfied for models that fit the data well, as a foundation for
the investigation into the stability of performance metrics across subgroups in Section 4. To derive
the key results, we consider the conditional independencies among X , Y , and A that are directly
implied by each of the causal graphical structures. This allows us to identify cases where the structure
of the causal graph implies that the Bayes-optimal predictor satisfies the sufficiency or separation
criteria. We note that we focus on sufficient conditions where Bayes-optimality is sufficient to imply
the fairness criteria of interest, which are weaker than impossibility results [37–40].

To evaluate the conditions of interest, we use the conditional independencies implied by the relevant
DAG and consider scores R as a deterministic function of Z ∈ {X, {X,A}}. For conditional
independence statements of the form R ⊥ V1 | V2, for any other variables V1 and V2, we consider
R as a deterministic function of Z and use the result that Z ⊥ V1 | V2 implies R ⊥ V1 | V2 ([48],
Lemma 4.2). For Bayes-optimal models, we additionally have the constraint that Y ⊥ Z | R when
R = f∗(Z) is Bayes-optimal.

We present the key results in Supplementary Table B1. We find that while the sufficiency fairness
criterion must be satisfied by a subgroup Bayes-optimal predictor regardless of the causal graph,
population Bayes-optimal prediction implies sufficiency only when Y ⊥ A | X (i.e., in the covariate
shift setting) or in the case of extreme subgroup separability (Section 3.2.1). The condition Y ⊥ A | X
is further central to understanding the properties of evaluations that control for the distribution of
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Table 2: Stability of model performance metrics across subgroups. ✓ indicates cases in which
prediction is sufficient to induce {R, Y } ⊥ A | V ; ✗ indicates otherwise. f indicates prediction with
an arbitrary model. f∗ and f∗

A indicate the population and subgroup Bayes-optimal models.
Setting {R, Y } ⊥ A | V

Setting Z ∈ {X, {X,A}} Model V = {} X Y R

Covariate shift X

{X,A}

f∗

f
f∗
A
f

✗
✗
✗
✗

✓
✓
✓
✗

✗
✗
✗
✗

✓
✗
✓
✗

Label shift X

{X,A}

f∗

f
f∗
A
f

✗
✗
✗
✗

✗
✗
✗
✗

✓
✓
✗
✗

✗
✗
✓
✗

Other Y ̸⊥ A | X( Outcome Shift )
Presentation Shift

Complex Shift

X

{X,A}

f∗

f
f∗
A
f

✗
✗
✗
✗

✗
✗
✗
✗

✗
✗
✗
✗

✗
✗
✓
✗

X (Section 4.2) and the potential for subgroup-aware modeling to improve over subgroup-agnostic
modeling. In particular, when the causal graph implies Y ⊥ A | X , the population Bayes-optimal
predictor is also subgroup Bayes-optimal and there is no expected benefit to subgroup-aware modeling.
In contrast, when Y ̸⊥ A | X , the population Bayes-optimal predictor is not generally subgroup
Bayes-optimal, and subgroup-aware prediction may improve performance.

Analysis of the separation criterion serves as an interesting special case for our general findings
regarding the stability of performance metrics across subgroups, given the connection between
separation and equalized odds (i.e., the control of true positive and false positive error rates across
subgroups). We find that the separation criterion is implied only by the label shift graph and then only
when prediction is subgroup-agnostic, regardless of whether the model is Bayes-optimal or arbitrary.
This is consistent with prior findings [37] showing that models that fit the data well for subgroups
satisfy sufficiency but do not generally satisfy the separation and equalized odds criteria.

In Supplementary Section A.2, we extend this analysis to settings with selection bias, enumerating
the conditions analogous to those described thus far for each of the base graphs augmented with a
selection mechanism that depends on combinations of X , Y , and A (Supplementary Table B2). For
brevity, we defer a summary of the results to Supplementary Section A.2.

3.2.1 Subgroup Separability

We highlight the properties of a special case where the distribution of covariates are separable across
subgroups [9, 49]. In this setting, there is little overlap in the distribution of X for any pair of
subgroups ai and aj , such that the ratio P (X|A=ai)

P (X|A=aj)
is large for any X where P (X | A = ai) is

non-trivial. This implies that each region of X with non-trivial density is associated with exactly one
subgroup, and A can be predicted with high accuracy from X .

Under subgroup separability, we observe that the population and subgroup Bayes-optimal models
behave similarly, as if Y ⊥ A | X , regardless of the underlying causal structure that generated the
data. To see this, consider that E[Y | X] =

∑
a∈A E[Y | X,A = a]P (A = a | X) [49]. As such,

for X where P (X | A) ≫ 0, we have that P (A | X) ≈ 1 and E[Y | X] ≈ E[Y | X,A]. We then
have that, as in the case of covariate shift, the population Bayes-optimal predictor satisfies sufficiency
and control for X is enough to explain differences in performance for any performance metric.

4 Understanding disaggregated evaluations of algorithmic fairness

We now present the core results regarding the stability of performance metrics across subgroups
for both optimal and arbitrary subgroup-aware and subgroup-agnostic models. We argue that distri-
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butional differences across subgroups directly contribute to model performance differences across
subgroups, constituting a form of confounding, distinct from the effects of estimation error. Critically,
even Bayes-optimal models do not generally achieve equal performance across subgroups despite
zero estimation error. However, we show in Section 4.1 that the stability of performance metrics
across subgroups can be understood as a consequence of causal structure. Finally, in Section 4.2, we
show how this characterization motivates an approach to controlled evaluation across subgroups.

4.1 Performance metric stability

To characterize the stability of model performance across subgroups for each of the causal settings
discussed thus far, we rely on a sufficient condition for equal average performance across subgroups
for arbitrary performance metrics. Specifically, we note that {R, Y } ⊥ A is sufficient to induce
E[m(R, Y ) | A] = E[m(R, Y )] for any performance metric m.

A key result is that in none of the settings discussed thus far does {R, Y } ⊥ A hold (Table 2), implying
that in general we should not expect equal performance across subgroups for an arbitrary performance
metric. This simple observation regarding instability of model performance across subgroups can be
enriched if we consider the extent to which differences in model performance metrics across subgroups
can be explained by causal structure. We do so here through characterization of the condition
{R, Y } ⊥ A | V for a control variable V ∈ {X,Y,R} for each of the causal settings discussed,
focusing on cases where selection bias is not present. The condition {R, Y } ⊥ A | V then serves
as a sufficient condition for E[m(R, Y ) | V,A] = E[m(R, Y ) | V ]. We then say that differences in
performance across subgroups are explained by V if we have E[m(R, Y ) | A] ̸= E[m(R, Y )], but
{R, Y } ⊥ A | V and V ̸⊥ A.

In Table 2, we summarize whether control for V ∈ {X,Y,R} is sufficient to induce {R, Y } ⊥ A | V
based on the conditional independencies implied by each of the graphical settings discussed. These
results are relevant to both Bayes-optimal and arbitrary models, with some differences depending
on whether optimality is achieved. For models that are subgroup-agnostic, we find that X explains
performance differences only for the covariate shift graph, and Y explains performance differences
only for the label shift graph. However, these relationships no longer hold if the model is subgroup-
aware because now {R, Y } ⊥ A | V no longer necessarily holds. As an exception, in the covariate
shift graph, subgroup Bayes-optimality implies equal performance conditioned on X .

In graphs where Y ̸⊥ A | X , performance differences are expected in general and neither X nor Y
alone explains those differences. However, note that when V = R, {R, Y } ⊥ A | V reduces to the
sufficiency fairness criterion. This implies that for any model satisfying sufficiency, differences in
performance can be explained by differences in the distribution of the score R.

4.2 Controlled evaluation

The observation that performance differences across subgroups may be attributed to specific dis-
tributional differences across subgroups suggests that evaluations that control for this source of
confounding may be constructed through balancing of the confounding variable V in comparisons
of model performance across subgroups or between subgroups and the overall population. Here,
we present an approach to doing so, building off of Cai et al. [16], and discuss the interpretation of
such evaluations for algorithmic fairness. Note that such evaluations do not require an assumption
of Bayes-optimality, even if the interpretation can depend on whether the model is optimal. In
Supplementary Table B3, we detail the set of implications and conclusions that can be drawn from
controlled evaluations in a setting where the causal graph is unknown under various assumptions (i.e.,
the choice of control and covariate variable sets and whether the model is Bayes-optimal).

We consider a controlled comparison of each subgroup with the overall population. Specifically, we
compare the performance of a model for subgroup A = a with the performance Ma on the weighted
aggregate distributionQ :=

∫
P (R, Y | V = v)P (V = v | A = a)dv, corresponding to sampling V

from the subgroup distribution P (V | A = a) and {R, Y } from the aggregate population distribution
P (R, Y | V ) =

∫
P (R, Y | V,A = a′)P (A = a′ | V )da′. Concretely, Ma can be computed via a

weighted average in the aggregate population with weights w ∝ P (A = a | V ):

Ma :=

∫
P (A = a | v)
P (A = a)

m(R, Y )P (R, Y | v)P (v)dv =

∫
w ∗m(R, Y )P (R, Y | v)P (v)dv.
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Ta: Subgroup log loss - weighted estimate
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0
1

Figure 1: Controlled evaluation for confounding across subgroups. Plotted are the statistics
Ta with 95% confidence intervals, corresponding to differences between unweighted disaggregated
performance with population performance weighted to match the distribution of X , Y , or R on the
subgroups. The first row corresponds to subgroup-agnostic prediction and the second row corresponds
to subgroup-aware prediction where A is used as a covariate.

We then define Ta := E[m(R, Y ) | A = a] −Ma as the difference between the performance for
subgroup A = a and Ma. In Supplementary Section A.1, we provide additional details regarding this
approach and describe alternative configurations of the weights, including the approach of Cai et al.
[16] that maps the data to a region of shared overlap between a pair of distributions. Pseudo-code for
calculating Ta in a setting where P (A = a | V ) is given or estimated is given in Algorithms 1 and 2,
respectively.

This form of controlled evaluation is perhaps best understood as a form of conditional independence
testing. Consider that if {R, Y } ⊥ A | V , the distribution that Ma is computed with respect to is
identical to the subgroup distribution, and thus Ta must be zero. It follows that a hypothesis test
for whether Ta differs from zero corresponds to a conditional independence test against the null
hypothesis that {R, Y } ⊥ A | V . A few specific configurations of V and Z correspond to notable
conditional independence tests. For example, when V = X and Z = X , the test corresponds to a
test against the null hypothesis Y ⊥ A | X . Furthermore, if V = R, regardless of whether Z is X or
{X,A}, the test corresponds to a test for sufficiency, as {R, Y } ⊥ A | R simplifies to Y ⊥ A | R.

For the causal settings we study in this work, Ta is expected to be zero when V is chosen to be a
variable marked with ✓ in Table 2. Therefore, in a setting where the causal structure is not known,
observing that Ta is non-zero provides evidence against the set of assumptions and conditions that
imply {R, Y } ⊥ A | V . For example, observing that Ta for a subgroup-agnostic model is non-zero
after controlling for X provides evidence against the hypothesis that the data were generated under
the covariate shift graph, regardless of whether the model is Bayes-optimal or arbitrary.

Viewing controlled evaluation as a form of conditional independence testing clarifies some challenges
related to interpretation. For example, as is shown in Table 2, any subgroup-agnostic predictor satisfies
{R, Y } ⊥ A | X in a covariate shift setting. The implication is that a weighted evaluation procedure
for X in a covariate shift setting does not distinguish between differences in model performance
that would remain under Bayes-optimality from those that follow from poor fit of the model (e.g.,
due to underrepresentation or model misspecification) for some values of X of differing prevalence
across subgroups. Similarly, an evaluation that controls for R inherits the same limitations as a test
for sufficiency, in that it is possible for a poorly-fit model to satisfy sufficiency [11, 19].

5 Experiments

We conduct a simulation study and experiment with real-world tabular data. The purpose of these
experiments is to empirically verify the properties discussed in Section 3. We briefly describe the
design of the experiments here and defer additional details to Supplementary Sections A.3 and A.4.
For the simulation study, we generate data corresponding to each of the settings described in Table
1. For the real-world data experiments, we follow Ding et al. [50] to derive prediction tasks from
the American Community Survey (ACS) Public Use Microdata Sample (PUMS) provided by the
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U.S. Census Bureau [51]. We use the ‘ACSIncome’ (prediction of whether an individual’s income
exceeds $50, 000) and ‘ACSPublicCoverage’ (prediction of whether an individual is enrolled in a
public health insurance plan) task definitions [50], stratifying the data by race and ethnicity (cohort
characteristics provided in Supplementary Table B4).

The properties we assess mirror those discussed in Section 3: we assess properties related to (1) the
informativeness of subgroup membership (Section 3.2), (2) calibration and sufficiency (Section 3.2),
and (3) controlled evaluation (Section 4.2). To assess properties with respect to the informativeness of
subgroup membership, we assess differences in performance between subgroup-aware and subgroup-
agnostic models (as in Liu et al. [52]). In the main text, we report results for subgroup-aware
models that leverage A as a covariate and include additional results with stratified models in the
supplementary material. To assess calibration and sufficiency violation, we visualize calibration
curves for each subgroup and conduct evaluations that control for R. To verify empirical consistency
with the properties presented in Table 2 and Supplementary Table B3, we compute Ma and Ta to
control for X , Y , or R in the evaluation of model performance.

Simulation study results: The results of the simulation study generally coincide with those that
are expected based on the theoretical analysis. We find that subgroup-aware models generally
improve predictive performance overall and for subgroups when Y ̸⊥ A | X , i.e., in all settings
except for covariate shift, with the exception of the case where subgroups are separable based on
X (Supplementary Figure B1). Specifically, we observe improvements overall and for subgroups
in log-loss and non-negative changes in AUC-ROC. We note that sensitivity and specificity do not
strictly improve; rather an increase in one is often paired with a reduction in the other. However, we
observe that net benefit [53], a decision-theoretic metric that combines sensitivity and specificity
based on an assumed tradeoff between true positives and false negatives, improves like the log-loss.

The effect of subgroup-aware prediction on calibration and sufficiency mirrors the effects on overall
model performance (Supplementary Figure B2). In cases where Y ̸⊥ A | X and prediction is
subgroup-agnostic, we observe miscalibration for subgroups and sufficiency violation. In all cases,
subgroup-aware prediction results in calibrated models that satisfy sufficiency. As expected, there is
no difference in calibration between subgroup-agnostic and subgroup-aware models when there is
minimal overlap in X across subgroups.

We conduct a small experiment to verify a subset of the properties expected under selection. We
adapt the complex causal shift setting and introduce three selection mechanisms corresponding to
cases where the selection mechanism depends on X , Y , or {Y,A}. Further methodological details
are provided in Supplementary Section A.3.1. We visualize calibration curves in Supplementary
Figure B3, finding that they correspond to the properties presented in Supplementary Table B2.

We find the results of controlled evaluation are generally consistent with those presented in Table
2. In general, we find that only for the covariate shift graph or when subgroups are separable,
control for X is sufficient to control for differences in the average log loss between the population
and subgroups for subgroup-agnostic models, consistent with the interpretation of this form of the
controlled evaluation as a conditional independence test for Y ⊥ A | X (Figure 1). This same pattern
holds for other metrics (Supplementary Figures B5–B10). We further find that performance is not
generally stable after control for Y , except in the label shift setting, and then only when prediction
is subgroup-agnostic. Consistent with the interpretation of control for R as corresponding to a test
for sufficiency, we note that the statistic Ta takes on a value not statistically significantly different
from zero in cases where calibration and sufficiency are satisfied and a non-zero value otherwise. For
completeness, we report the absolute values of the performance of each of the models of interest
in each setting for each subgroup as well as the weighted population estimates Ma (Supplementary
Figures B11–B17). For comparison, we further apply the approach of Cai et al. [16] (Supplementary
Figures B18–B24), finding that the results are largely qualitatively consistent with ours.

Results on ACS PUMS: For the experiments with ACS PUMS, we report the change in perfor-
mance attained through subgroup-aware prediction (Supplementary Figure B25), visualize calibration
curves (Supplementary Figure B26), and apply the approach to controlled evaluation (Supplementary
Figures B27–B40). While the structure of the causal graph underlying these data is not available, our
approach can be used for conditional independence testing and attribution of performance differences
to distribution shifts. We generally observe greater evidence against the hypothesis Y ⊥ A | X for
the ‘ACSPublicCoverage’ task than we do for the ‘ACSIncome’ task. Specifically, for ‘ACSPublic-
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Coverage‘, we find that subgroup-aware prediction outperforms subgroup-agnostic prediction for
nearly all race/ethnicity subgroups (Supplementary Figure B25) and that differences in performance
between subgroups and the aggregate population are not generally explained by control for X; for
‘ACSIncome’, improvements in performance through subgroup-aware prediction are more minor,
and differences in performance are explained to a greater degree by X (Supplementary Figure B27).
Furthermore, while the extent of miscalibration appears to be minor for both tasks (Supplementary
Figure B26), we do observe evidence of sufficiency violation for subgroup-agnostic prediction for
both tasks, affecting the “Other” subgroup for ‘ACSIncome‘ and nearly all subgroups for ‘ACSPub-
licCoverage’. Stratified prediction, but not subgroup-aware prediction with a race/ethnicity covariate
mitigates the sufficiency violation for the “Other” subgroup for the ‘ACSIncome‘ task, potentially as
a result of suboptimality due to relative underrepresentation of this subgroup in the data.

6 Discussion

Our work highlights the challenges of interpretation of disaggregated evaluations over subgroups, con-
sistent with findings of prior work studying related challenges for evaluation under distribution shift
(e.g., Cai et al. [16] and Liu et al. [52]) and incompatibility among fairness criteria [6, 7, 12, 19, 37–
39]. Through vignettes corresponding to prototypical data generating processes represented as causal
DAGs, we show how performance differences across subgroups can arise as a consequence of condi-
tional dependencies implied by causal structure. This perspective further allows for understanding
the properties of evaluations designed to control for confounding across subgroups, as well as the
effects that subgroup-aware prediction and subgroup separability have on the properties of models.

Our findings suggest that disaggregated evaluations may be enriched if combined with controlled
procedures that effectively match the distribution of a set of control variables across subgroups. We
interpret such evaluations as a form of conditional independence test that, when rejected, provides
evidence towards falsification of assumptions consistent with the conditional independence criteria
of interest (e.g., causal assumptions). More broadly, controlled evaluation allows for assessment of
hypotheses related to causal structure and aids in the assessment of model fit and fairness violation.
We provide further guidance as to the interpretation of such evaluations in Supplementary Table B3.

Our work has several limitations that pose opportunities for future work. As our scope was limited
to the analysis of binary outcomes, our findings may not generalize to continuous or multi-class
outcomes. Furthermore, while the dependence of several of the findings on an assumption of Bayes-
optimality clarifies that the challenges related to the interpretation of disaggregated evaluations
remain even under optimal prediction, it may limit the extent to which those findings are relevant in
practical settings where Bayes-optimality cannot be assumed nor directly tested for. Relatedly, our
analysis of controlled evaluations assumed access to an oracle weight model P (A | V ), which must
be estimated in practice. There is a need for future work to conduct further theoretical and empirical
characterization of the role that estimation error has on the properties that we study here, e.g., by
casting the evaluation procedure within a semiparametric estimation framework that considers the
models for Y and A as imperfectly estimated nuisance functions [54, 55].

We offer a concrete conceptual reorientation of analytic practice for algorithmic fairness. First, it is
important to understand differences in optimal model performance across subgroups as a consequence
of distributional differences that may be caused by disparities. Observing model performance
differences thus motivates deeper investigation to understand the causes of distributional differences
and to disambiguate such differences from observational biases (e.g., selection bias) and estimation
error. Second, we argue that fairness (as well as related concepts such as equity or justice) is a
downstream property of a policy or intervention that may leverage a predictive model [13, 56–58].
Subgroup performance differences are then relevant to fairness to the extent that they reflect a
contextually-meaningful notion of fairness in the context of the policy. Our results show that if
it is of interest to model well outcomes that may be disparate across subgroups, we should not in
general expect parity in model performance across subgroups. However, we emphasize that the
assumptions underpinning this setting should not be taken for granted, and that there are several
unresolved normative questions outside of the scope of this work pertaining to the justification for the
prediction of disparate outcomes across populations and control for proxies of disparity in evaluations.
Designing effective evaluation procedures that are grounded in understanding of both the societal
context contributing to inequities and the capacity for interventions and policies that incorporate
predictive models to promote equity and fairness goals is a critical area of future work.
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Supplementary Material

A Supplementary methods

A.1 Weighting approaches to controlled evaluation

The approach to weighting model performance metrics to control for distributional differences across
subgroups builds on a general approach to estimating model performance under distribution shift. For
a source distribution P and target distribution Q over {R, Y }, performance on Q can be estimated
using data from P with appropriate weights. Formally, this is EQ[m(Y,R)] = EP [w ∗m(Y,R)]

for w ∝ PQ(R,Y )
PP(R,Y ) , assuming positivity (PQ(R, Y ) > 0 → PP(R, Y ) > 0). From some mixture

distribution over P and Q, where examples from Q are indexed by D = 1 and those from P by
D = 0, we note that the weights can be reformulated as w ∝ P (R,Y |D=1)

P (R,Y |D=0) ∝ P (D = 1 | R, Y ).

As described in Section 4.2, we construct controlled evaluations by setting the distribution of a
variable V to a reference distribution. We consider a source distribution P and target distribution Q
over V such that we are computing the performance in P after fixing the marginal to PQ(V ). The
resulting expectation is given by

∫
w ∗m(R, Y )PP(R, Y | v)PP(v)dv for weights w ∝ PQ(V )

PP(V ) ∝
P (D = 1 | V ), where D indicates the identity of the distribution, as before.

In this work, we primarily consider setting P = P (R, Y ) and Q = P (R, Y | A = a) with weights
w ∝ P (A = a | V ). This yields a mapping of the marginal population distribution P (V ) onto the
subgroup distribution P (V | A = a), implicitly fixing the conditional distribution of P (R, Y | V ) to
that of the aggregate population. It follows that if {R, Y } ⊥ A | V , then PP(R, Y | v) = PQ(R, Y |
v) and thus weighted performance Ma :=

∫
w ∗m(R, Y )P (R, Y | v)P (v)dv in P is equal to the

marginal performance E[m(R, Y ) | A = a] in Q. If weighted performance in P is not equal to the
marginal performance in Q, then {R, Y } ̸⊥ A | V .

It is possible to construct alternative weight configurations that can be used for the same purpose as
the approach that we present. For example, if the distributions are set such that P = P (R, Y | A = a)
and Q = P (R, Y ), then the weights are given by w ∝ 1

P (A=a|V ) , corresponding to a mapping of
the subgroup A = a onto the population distribution, analogous to approaches to inverse propensity
score weighting for treatment effect estimation [59]. Alternatively, if we consider a pair of subgroups
A = a and A = a′ where P = P (R, Y | A = a) and Q = P (R, Y | A = a′), the weights are given
by w ∝ P (A=a′|V )

P (A=a|V ) . However, both of these formulations are susceptible to returning unstable and
high-variance estimates when small values in the denominator induce extreme weights. We note that
our approach is not susceptible to this issue given that P (A = a | V ) is bounded between 0 and 1.

Cai et al. [16] presented an alternative weighting strategy for pairwise comparisons motivated to ad-
dress the extreme weights issue by considering mapping the data to a shared distribution of sufficient
overlap between the distributions of covariates for a pair of subgroups. This approach considers a
target distribution Q ∝ P (V |A=a)P (V |A=a′)

P (V |A=a)+P (V |A=a′) for two source distributions Pa and Pa′ . This has the
effect of defining a target density that takes on a value of zero in cases where the control variable
has zero support in either of the subgroup distributions. The weights for this approach are given by
w ∝ P (A=a′|V )

P (A=a)P (A=a′|V )+P (A=a′)P (A=a|V ) for A = a and w ∝ P (A=a|V )
P (A=a)P (A=a′|V )+P (A=a′)P (A=a|V )

for A = a′.

A.2 Properties under selection

In this section, we consider fairness properties under explicit distribution shift through the lens of
selection bias [25]. We consider models fit using data drawn from the selected, source population
P (X,Y,A | S = 1) and reason about the properties of those models evaluated on samples drawn
from the full, target population without selection P (X,Y,A). Graphically, we represent the selection
variable S with a square node to indicate conditioning on selection in the observed data, where a
directed edge in to S indicates dependence of the selection mechanism on the originating node (Table
1). This formulation allows for us to anticipate the fairness properties of models under selection based
on the structure of the causal graph and the connectivity of the selection node (Supplementary Table
B1).

15



Algorithm 1: Calculation of the weighted metric difference Ta with oracle access to P (A =
a | V ). This procedure computes the difference between the mean of a metric function m
evaluated on a subgroup A = a and the weighted metric Ma computed on the aggregate data.
The weighted metric Ma corresponds to evaluation of m with respect a distribution where
V ∼ P (V | A = a) and Y ∼ P (Y | V ). See Section 4.2 and Supplementary Section A.1 for
further details
Data:

Dataset D = {(Xi, Yi, Ai, Ri)}Ni=1
Target subgroup a ∈ A
Metric function m : Y ×R → R
Selection function get_v that selects V from {X,Y,R}
Function g : V → [0, 1], that returns P (A = a | V )

Result: The statistic Ta

begin
//Get weights for all N data points
for i = 1 to N do

vi ← get_v(Xi, Yi, Ri) //Extract features V for instance i
wi ← g(vi) //Apply model g to get weight wi

end
//Calculate weighted and subgroup means

Ma ←
∑N

i=1 wi·m(Yi,Ri)∑N
i=1 wi

//Weighted mean metric

Mmean ←
∑N

i=1 1(Ai=a)·m(Yi,Ri)∑N
i=1 1(Ai=a)

//Mean metric on subgroup A=a

//Compute the final statistic
Ta ←Mmean −Ma

return Ta
end
.

Intuitively, the model learned in the selected population generalizes to the full population if E[Y |
Z, S = 1] = E[Y | Z], for a set of predictor variables Z. To reason about this, we consider the
sufficient condition that S ⊥ Y | Z, which implies that

P (Y | Z)

P (Y | Z, S = 1)
=

P (S = 1 | Z)

P (S = 1 | Z, Y )
= 1. (1)

The implication is that a Bayes-optimal model will generalize under selection if the variables used
as predictors d-separate the selection node S from Y . For example, in a graph where the subgroup
covariate shift assumption holds and selection depends on X and A, a Bayes-optimal model fit in
the selected population using only X generalizes to all subgroups in the full population. However,
following the results described previously, average performance will not be stable under selection,
generally, or across subgroups in the selected or full population.

For cases where the graph structure does not imply that a model learned in the selected population is
subgroup Bayes-optimal in the full target population, we reason about whether sufficiency is implied
by reasoning about whether each of the ratios in the following identity are equal to 1:

P (Y | R,A)

P (Y | R)︸ ︷︷ ︸
Y⊥A|R

=
P (Y | S = 1, R,A)

P (Y | S = 1, R)︸ ︷︷ ︸
Y⊥A|R,S=1

∗ P (S = 1 | R,A)

P (S = 1 | R)︸ ︷︷ ︸
S⊥A|R

∗ P (S = 1 | Y,R)

P (S = 1 | Y,R,A)︸ ︷︷ ︸
S⊥A|Y,R

(2)

In other words, if the model satisfies sufficiency in the selected population (Y ⊥ A | R) and the
selection node is d-separated from A given R and {R, Y }, then the model satisfies sufficiency in the
full population. This allows us to, for example, claim that a population Bayes-optimal model satisfies
sufficiency in the subgroup covariate shift graph if selection depends only on Y , such that the model
is miscalibrated to the same extent for all subgroups. We note that equation (2) permits a re-ordering
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Algorithm 2: Calculation of the weighted metric difference Ta with cross-fitting. This
procedure computes the difference between the mean of a metric function m evaluated on a
subgroup A = a and the weighted metric Ma computed on the aggregate data. The weighted
metric Ma corresponds to evaluation of m with respect a distribution where V ∼ P (V | A = a)
and Y ∼ P (Y | V ). See Section 4.2 and Supplementary Section A.1 for further details.
Data:

Dataset D = {(Xi, Yi, Ai, Ri)}Ni=1
Target subgroup a ∈ A
Metric function m : Y ×R → R
Number of folds K
Function get_foldid that maps data indices i ∈ {1, . . . , N} to fold indices j ∈ {1, . . . ,K}
Selection function get_v that selects V from {X,Y,R}
Algorithm Alg for estimating P (A = a | V )

Result: The statistic Ta

begin
Split data D into K folds using get_foldid: {Dj}Kj=1

//Train K models for P (A = a | V ), one for each fold
for j = 1 to K do
Dtrain ←

⋃
m̸=j Dm //Use K-1 folds for training

gj ← Alg(Dtrain) //Train model gj
end
//Get held-out predictions for all N data points
for i = 1 to N do

vi ← get_v(Xi, Yi, Ri) //Extract features V for instance i
j ← get_foldid(i) //Get the fold index for instance i
wi ← gj(vi) //Apply model gj to get weight wi

end
//Calculate weighted and subgroup means

Ma ←
∑N

i=1 wi·m(Yi,Ri)∑N
i=1 wi

//Weighted mean metric

Mmean ←
∑N

i=1 1(Ai=a)·m(Yi,Ri)∑N
i=1 1(Ai=a)

//Mean metric on subgroup A=a

//Compute the final statistic
Ta ←Mmean −Ma

return Ta
end

that allows for reasoning about a different set of conditional independencies:

P (Y | R,A)

P (Y | R)︸ ︷︷ ︸
Y⊥A|R

=
P (Y | S = 1, R,A)

P (Y | S = 1, R)︸ ︷︷ ︸
Y⊥A|R,S=1

∗ P (S = 1 | Y,R)

P (S = 1 | R)︸ ︷︷ ︸
S⊥Y |R

∗ P (S = 1 | R,A)

P (S = 1 | Y,R,A)︸ ︷︷ ︸
S⊥Y |R,A

(3)

For reasoning about separation, we use analogous logic and reason about the terms in the following
two identities:

P (R | Y,A)

P (R | Y )︸ ︷︷ ︸
R⊥A|Y

=
P (R | Y,A, S = 1)

P (R | Y, S = 1)︸ ︷︷ ︸
R⊥A|Y,S=1

∗ P (S = 1 | Y,A)

P (S = 1 | Y )︸ ︷︷ ︸
S⊥A|Y

∗ P (S = 1 | Y,R)

P (S = 1 | Y,R,A)︸ ︷︷ ︸
S⊥A|Y,R

, (4)

and
P (R | Y,A)

P (R | Y )︸ ︷︷ ︸
R⊥A|Y

=
P (R | Y,A, S = 1)

P (R | Y, S = 1)︸ ︷︷ ︸
R⊥A|Y,S=1

∗ P (S = 1 | Y,R)

P (S = 1 | Y )︸ ︷︷ ︸
S⊥R|Y

∗ P (S = 1 | Y,A)

P (S = 1 | Y,R,A)︸ ︷︷ ︸
S⊥R|Y,A

. (5)

To summarize the results that follow (Supplementary Table B2), a Bayes-optimal model generalizes
under selection if the variables used as covariates d-separate the selection node S from Y in the
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causal graph. For example, when selection depends on only X or A, subgroup Bayes-optimal
predictors generalize and satisfy sufficiency in the target domain, regardless of other components
of the graph. When selection depends only on Y , subgroup Bayes-optimality implies sufficiency
without calibration in the target domain. When selection depends on Y and either X or A, subgroup
Bayes-optimality in the source domain does not imply sufficiency in the target domain. Furthermore,
separation in the target domain is implied by Bayes-optimal prediction only in the label shift graph
when the selection mechanism does not depend on A, and then only when the model does not depend
on A.

A.3 Simulation study

We conduct a simulation study to verify the properties studied in this work. We construct data
generating processes satisfying each of the settings studied in this work. The data generating
processes are provided in Supplementary Section A.3.1. For each data generating process, we sample
70,000 independent samples and use 50,000 for training and 20,000 as a held-out testing dataset for
evaluation.

All model fitting and evaluation procedures are repeated and conducted separately for cases where
prediction of Y is conducted with (1) X alone, (2) X and an additional categorical covariate indicating
subgroup membership A, and (3) a set of models using X alone fit separately for each subgroup.
For model fitting, we use the scikit-learn version [60] 1.6.1 implementation of gradient boosting
classification trees (specifically, HistGradientBoostingClassifier) with stratified five-fold
cross-validation, with a hyperparameter grid over the maximum number of leaf nodes in {10, 25, 50},
refitting the model over the training data using the hyperparameter setting with the minimum average
log-loss over the held-out cross-validation folds. The refit model is then used to make predictions on
the held-out testing data.

For the experiment involving selection, we modify the complex causal shift graph with three selection
mechanisms (see Supplementary Section A.3.1), and for each data generating process, sample 50,000
samples conditioned on S = 1 for training and 20,000 samples from the full population (i.e., without
selection). We repeat the same training procedure described above.

To get estimates of P (A | V ) for use in weighted estimation of model performance, we fit models to
predict A from V . When V is X or Y , the fitting procedure is identical to that used for fitting the
models for Y , in that we conduct cross-validation with gradient boosting trees on the training data
and make predictions with the resulting model on the testing dataset. For cases where V = R, we
instead conduct a nested cross-validation procedure using only the testing data, similar to cross-fitting
[55]. Here, we use an outer stratified five-fold cross-validation partition of the testing data, which,
for each outer fold, conducts an inner stratified five-fold cross-validation procedure that returns a
model used to make held-out predictions on the corresponding held-out outer fold. Metrics are then
computed on the full test set.

For evaluation, we compute unweighted and weighted performance estimates for the log-loss, area
under the receiver operating characteristic curve (AUC-ROC), sensitivity (recall), specificity, pre-
cision, and net benefit [53]. We compute sensitivity, specificity, and precision using a threshold of
0.5. For net benefit, we use the parametrization presented in Pfohl et al. [7], where the preference
trade-off is encoded by a choice of threshold. We use a threshold of 0.5 for both the classifier
decision threshold and the preference trade-off threshold. To generate confidence intervals, we use
the percentile bootstrap with 10,000 bootstrap samples of the testing data. For weighted metrics, the
un-normalized sample weights are treated as fixed based on the result of the procedure described
above and sampled alongside the data elements. The resulting samples are then used for weighted
computation of metrics.

To generate calibration curves, we quantile-discretize the range of scores R into ten bins and take
the empirical mean of Y for the data in each bin. We compute confidence intervals for each bin
separately using the Wilson Score Interval Method [61] with the implementation provided by the
Statsmodels package version 0.12.1 [62].

The simulation study was conducted on machines with 32 CPUs and 32 GB of RAM. Computing the
bootstrap confidence intervals for each of the settings and metrics was the most significant contributor
to the overall run time, taking approximately two hours per setting (i.e., approximately 14 hours for
the seven settings considered in the primary analyses).
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A.3.1 Data generating processes

Causal-direction data generating processes This description encompasses the covariate shift,
outcome shift and complex causal shift settings. We consider X to be univariate, Y to be binary,
and A to be binary, taking on a value of 0 or 1. We use a binary latent variable U to encode the
relationship between X and A. For the covariate shift setting, we set µ0 = −2, µ1 = 0, γA = 1,
βa0

= βa1
= 0.5, and αa0

= αa1
= 0. For the outcome shift setting, we set µ0 = −2, µ1 = 0,

γA = 0, βa0
= 0.5, βa1

= −1, and αa0
= 0.1, αa1

= 0. For the complex causal shift setting, the
settings are identical to the outcome shift case except that γA = 1, which has the effect of introducing
a covariate shift. To verify properties in a setting where the subgroup covariates distributions are
separable, we further increase the extent of the covariate shift present in the complex causal shift case
by setting µ1 = 2.

U ∼ Bernoulli
(
0.5)

X | U = 0 ∼ N (µ0, 1)

X | U = 1 ∼ N (µ1, 1)

A | U ∼ γAU + (1− γA) ∗ Bernoulli
(
0.5
)

Y | A = 0 ∼ Bernoulli
(
logit−1

(
βa0x+ αa0

))
Y | A = 1 ∼ Bernoulli

(
logit−1

(
βa1x+ αa1

))
We construct three settings with selection bias through augmentation of the complex causal shift
setting. We implement three settings, corresponding to cases where the selection mechanism depends
on X , Y , or {Y,A}, correspond to SX , SY , and SY A. The selected dataset is constructed by filtering
the data to cases where S = 1.

SX ∼ Bernoulli(− 4

25
X2 + 1)

SY ∼ Bernoulli(0.8Y + 0.4(1− Y ))

SY A | A = 0 ∼ Bernoulli(0.5Y + 0.8(1− Y ))

SY A | A = 1 ∼ Bernoulli(0.25Y + 0.8(1− Y ))

Anticausal data generating processes This description encompasses the label shift, presentation
shift, and complex anticausal shift settings. We consider X to be univariate, Y to be binary, and A
to be binary, taking on a value of 0 or 1. For simplicity, we define this data generating process as
having A-dependent effects, rather than using a latent variable U . For the label shift case, we set
πY0

= 0.5, πY1
= 0.1, µA0Y0

= −1, µA0Y1
= 1, µA1Y0

= −1, µA1Y1
= 1. For the presentation

shift case, we set πY0
= 0.5, πY1

= 0.5, µA0Y0
= 1, µA0Y1

= 0, µA1Y0
= −1, µA1Y1

= 1. The
complex anticausal shift setting uses the same parameters as the presentation shift setting except
πY0

= 0.5, πY1
= 0.1.

A ∼ Bernoulli
(
0.5
)

Y ∼ Bernoulli
(
AπY0

+ (1−A)πY1

)
X | A, Y ∼ N (µAY , 1)

A.4 Experiments with the American Community Survey (ACS) Public Use Microdata Sample
(PUMS)

As described in the main text, we follow Ding et al. [50] to define prediction tasks from ACS PUMS
[51]. We use the ‘ACSIncome’ and ‘ACSPublicCoverage’ tasks definitions provided by the folktables
Python package version 0.0.12 [50]. For all experiments, we use the 5-Year horizon California
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‘person’ files, encompassing census records from 2013-2018. The ‘ACSIncome’ task definition is to
predict whether an individual’s income is greater than $50, 000 per year for adults of age 18 years or
older with an income of at least $100 that have worked greater than zero hours in the past twelve
months. The ‘ACSPublicCoverage’ task definition is to predict whether an individual is enrolled in a
public health insurance plan, restricted to individuals of age 65 years or younger making less than
$30, 000 per year. The standard covariates used for the ‘ACSIncome’ task are age (AGEP), class of
worker (COW), educational attainment (SCHL), marital status (MAR), occupation (OCCP), place of
birth (POBP), relationship (RELP), usual hours worked per week past 12 month (WKHP), and race
(RAC1P). The standard covariates used for the ‘ACSPublicCoverage’ task are AGEP, SCHL, MAR,
sex, disability (DIS), employment status of parents (ESP), citizenship status (CIT), mobility status
(MIG), military service (MIL), ancestry (ANC), nativity (NAT), hearing difficulty (DEAR), vision
difficulty (DEYE), cognitive difficulty (DREM), income, employment status (ESR), state (ST), gave
birth to child within the past 12 months (FER), and RAC1P.

To define subgroups, we create a custom combined race and ethnicity field that combines the RA1CP
field with the hispanic origin flag (HISP) and groups rare categories. The combined race/ethnicity
field takes on the value “Hispanic” for individuals of Hispanic origin and the value of RA1CP field
otherwise. We then combine the American Indian and Alaska Native with the Native Hawaiian and
Pacific Islander into a group called “Other”. For modeling, we remove RAC1P from the covariate set,
and use the combined race/ethnicity field for subgroup-aware prediction.

For modeling and evaluation, we replicate the procedure used in the simulation study, using gradient
boosting trees for classification with the same cross-validation and hyperparameter selection pro-
cedure. As is standard for the prediction tasks proposed by Ding et al. [50], we do not directly use
the person weights provided in the ACS PUMS data, which implies that the derived estimates and
models may not be representative of the underlying populations.

As in the case of the simulation study, we conduct these experiments using machines with 32 CPUs
and 32 GB of RAM. Computation of the bootstrap confidence intervals was the most significant
contributor to the overall run time, taking approximately 14 hours per setting (i.e., approximately 28
hours for the two tasks considered).
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B Supplementary figures and tables

Supplementary Table B1: Conditional independence properties of Bayes-optimal models. ✓
indicates conditions where Bayes-optimal prediction is a sufficient condition for the listed criteria.
✗ indicates that Bayes-optimal prediction is not a sufficient condition for the property. f∗(Z)
corresponds to the Bayes-optimal predictor that depends on Z.

Sufficiency (Y ⊥ A | f∗(Z)) Separation (f∗(Z) ⊥ A | Y )

Setting Z = X Z = {X,A} Z = X Z = {X,A}
Covariate Shift ✓ ✓ ✗ ✗
Outcome Shift ✗ ✓ ✗ ✗
Causal Complex Shift ✗ ✓ ✗ ✗
Label Shift ✗ ✓ ✓ ✗
Presentation Shift ✗ ✓ ✗ ✗
Anticausal Complex Shift ✗ ✓ ✗ ✗

Supplementary Table B2: Properties of Bayes-optimal models under selection. ✓ indicates
cases where Bayes-optimal prediction in the selected population P (· | S = 1) is sufficient to induce
the listed property in the full population P (·). “Other Y ̸⊥ A | X” indicate the outcome shift,
presentation shift, and complex causal and anticausal shift graphs.

Sufficiency Subgroup calibration Separation

Setting Z = X Z = {X,A} Z = X Z = {X,A} Z = X Z = {X,A}
Covariate shift

X → S
A→ S

{X,A} → S
Y → S

{X,Y } → S
{A, Y } → S

{X,Y,A} → S
Label shift

X → S
A→ S

{X,A} → S
Y → S

{X,Y } → S
{A, Y } → S

{X,Y,A} → S
Other Y ̸⊥ A | X

X → S
A→ S

{X,A} → S
Y → S

{X,Y } → S
{A, Y } → S

{X,Y,A} → S

✓
✓
✓
✓
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗

✓
✓
✓
✓
✗
✗
✗

✓
✓
✓
✓
✗
✗
✗

✓
✓
✓
✓
✗
✗
✗

✓
✓
✓
✗
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗

✓
✓
✓
✗
✗
✗
✗

✓
✓
✓
✗
✗
✗
✗

✓
✓
✓
✗
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗

✓
✗
✗
✓
✓
✗
✗

✗
✗
✗
✗
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗

✗
✗
✗
✗
✗
✗
✗
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Supplementary Table B3: Implications of findings of controlled evaluations. Each row cor-
responds to a different setting of the control variable, covariates, test result, and assumption of
Bayes-optimality. Results assume that the weight model P (A = a | V ) is correct.

Control Variable Covariates Reject(Ta = 0) Bayes-optimal Implications
X X Yes Yes

• Subgroup-dependent error struc-
ture conditioned on X is present.

• Evidence that data is not gener-
ated under covariate shift.

• Sufficiency violation may be
present.

• Subgroup performances differ-
ences not explained by covariate
shift.

• Possible to improve performance
with subgroup-aware prediction.

• Improving prediction on the basis
of X alone is not possible.

X X Yes No
• Same as the Bayes-optimal case,

with the exception that it may be
possible to improve prediction on
the basis of X .

X X No Yes
• Results consistent with (i.e., can-

not reject) the hypothesis of no
subgroup-dependent error struc-
ture conditioned on X .

• Results consistent with (i.e., can-
not reject) the hypothesis that
data generated under covariate
shift.

• Results consistent with (i.e., can-
not reject) the hypothesis that
all performance differences ex-
plained by covariate shift.

X X No No
• Results consistent with (i.e., can-

not reject) the hypothesis of no
subgroup-dependent error struc-
ture conditioned on X .

• Results consistent with (i.e., can-
not reject) the hypothesis that
data generated under covariate
shift.

• Cannot rule out the hypothesis
that performance differences ex-
plained by systematic underper-
formance for some values of X .

Continued on next page
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Supplementary Table B3 – continued from previous page
Control Var Covariates Reject(Ta = 0) Bayes-optimal Implications

X {X,A} Yes Yes
• Subgroup-dependent error struc-

ture conditioned on X is present.
• Evidence that data is not gener-

ated under covariate shift.
• Subgroup performances differ-

ences not explained by covariate
shift.

X {X,A} Yes No
• Subgroup-dependent error struc-

ture conditioned on X is present.

X {X,A} No Yes
• Results consistent with (i.e., can-

not reject) the hypothesis of no
subgroup-dependent error struc-
ture conditioned on X .

• Results consistent with (i.e., can-
not reject) the hypothesis that
data generated under covariate
shift.

• Results consistent with (i.e., can-
not reject) the hypothesis that
all performance differences ex-
plained by covariate shift.

X {X,A} No No
• Results consistent with (i.e., can-

not reject) the hypothesis of no
subgroup-dependent error struc-
ture conditioned on X .

Y X Yes Yes
• Subgroup-dependent error struc-

ture conditioned on Y is present.
• Evidence that data is not gener-

ated under label shift.

Y X Yes No
• Same as the Bayes-optimal case.

Continued on next page
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Supplementary Table B3 – continued from previous page
Control Var Covariates Reject(Ta = 0) Bayes-optimal Implications
Y X No Yes

• Results consistent with (i.e., can-
not reject) the hypothesis of no
subgroup-dependent error struc-
ture conditioned on Y .

• Results consistent with (i.e., can-
not reject) the hypothesis that
data generated under label shift.

• Results consistent with (i.e., can-
not reject) the hypothesis that the
separation and equalized odds cri-
teria hold.

• If label shift holds, properties im-
plied by covariate shift violation
may hold (i.e., sufficiency viola-
tion and informativeness of sub-
group membership).

Y X No No
• Same as the Bayes-optimal case.

Y {X,A} Yes Yes
• Subgroup-dependent error struc-

ture conditioned on Y is present.

Y {X,A} Yes No
• Same as the Bayes-optimal case.

Y {X,A} No Yes
• Cannot reject hypothesis of no

subgroup-dependent error struc-
ture conditioned on Y .

Y {X,A} No No
• Same as the Bayes-optimal case.

R X Yes Yes
• Evidence of sufficiency violation.
• Subgroup-aware prediction likely

to improve performance.
• Evidence that data not generated

under covariate shift.

R X Yes No
• Evidence of sufficiency violation.
• Subgroup-aware prediction likely

to improve performance.
• Evidence that data either not

generated under covariate shift
or that model underperforms for
subgroups.

Continued on next page
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Supplementary Table B3 – continued from previous page
Control Var Covariates Reject(Ta = 0) Bayes-optimal Implications
R X No Yes

• Results consistent with (i.e., can-
not reject) the hypothesis that suf-
ficiency is satisfied.

• Results consistent with (i.e., can-
not reject) the hypothesis that
data generated under covariate
shift.

R X No No
• Results consistent with (i.e., can-

not reject) the hypothesis that suf-
ficiency is satisfied.

R {X,A} Yes Yes
• This state should not be possible

since subgroup Bayes-optimality
implies Ta = 0 under control for
R.

R {X,A} Yes No
• Evidence of sufficiency violation.
• Indicates that the model could be

improved for one or more sub-
groups.

R {X,A} No Yes
• Results consistent with (i.e., can-

not reject) the hypothesis that suf-
ficiency is satisfied.

R {X,A} No No
• Same as the Bayes-optimal case.

Supplementary Table B4: ACS PUMS cohort characteristics. Shown are the number of individuals
and the prevalence of the label for each race/ethnicity subgroup for the two tasks derived from the
ACS PUMS data.

ACSIncome ACSPublicCoverage

Count Prevalence Count Prevalence

Asian 151,163 0.449 104,642 0.286
Black 40,764 0.327 41,090 0.507
Hispanic 313,007 0.200 317,534 0.393
Multiracial 23,781 0.374 20,734 0.323
Other 8,910 0.304 8,590 0.397
White 412,572 0.504 236,842 0.299
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Supplementary Figure B1: Simulation study: the effect of subgroup-aware prediction on
model performance. We report the difference in performance between models that have access to
subgroup membership as an additional covariate as compared to those that do not. Plotted are average
differences with 95% confidence intervals for each setting and for several performance metrics.
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Supplementary Figure B2: Simulation study: calibration curves. Plotted are calibration curves
for each subgroup with 95% confidence intervals. The first row corresponds to subgroup-agnostic
prediction, the second row to prediction with A as an additional covariate, and the third row to
stratified prediction by A.
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Supplementary Figure B3: Simulation study: calibration with selection bias. Plotted are
calibration curves for each subgroup with 95% confidence intervals. Models are fit in the selected
population and evaluated in the full population without selection. The first row corresponds to
subgroup-agnostic prediction, the second row to prediction with A as an additional covariate, and the
third row to stratified prediction by A.
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Supplementary Figure B4: Simulation study: controlled evaluation of log loss. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B5: Simulation study: controlled evaluation of AUC-ROC. Plotted are
the statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B6: Simulation study: controlled evaluation of sensitivity. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B7: Simulation study: controlled evaluation of specificity. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B8: Simulation study: controlled evaluation of net benefit. Plotted are
the statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B9: Simulation study: controlled evaluation of precision. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B10: Simulation study: controlled evaluation of classification rate.
Plotted are the statistics Ta with 95% confidence intervals, corresponding to differences between
the unweighted disaggregated performance with the population performance weighted to match
the distribution of X , Y , or R on the subgroups. The first row corresponds to subgroup-agnostic
prediction, the second row to prediction with A as an additional covariate, and the third row to
stratified prediction by A.
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Supplementary Figure B11: Simulation study: weighted estimation of log loss. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B12: Simulation study: weighted estimation of AUC-ROC. Plotted
are the weighted estimates of performance Ma with 95% confidence intervals, corresponding to
weighted estimates of population performance weighted to match the distribution of X , Y , or R for
each subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B13: Simulation study: weighted estimation of sensitivity. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B14: Simulation study: weighted estimation of specificity. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B15: Simulation study: weighted estimation of net benefit. Plotted
are the weighted estimates of performance Ma with 95% confidence intervals, corresponding to
weighted estimates of population performance weighted to match the distribution of X , Y , or R for
each subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.

35



0.5 0.6 0.7

Subgroup

X

Y

R

Features: X

0.5 0.6 0.7

Features: XA

0.5 0.6 0.7

Covariate Shift

Features: X_strat

0.4 0.6 0.8

Subgroup

X

Y

R
0.4 0.6 0.8 0.4 0.6 0.8

Outcom
e Shift

0.4 0.6

Subgroup

X

Y

R
0.4 0.6 0.4 0.6

Com
plex Causal

0.4 0.6 0.8

Subgroup

X

Y

R
0.4 0.6 0.8 0.4 0.6 0.8

Separable

0.6 0.8

Subgroup

X

Y

R
0.6 0.8 0.6 0.8

Label Shift

0.4 0.6 0.8

Subgroup

X

Y

R
0.4 0.6 0.8 0.4 0.6 0.8

Presentation Shift

0.00 0.25 0.50 0.75

Subgroup

X

Y

R
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

Com
plex Anticausal

Co
nt

ro
l v

ar
ia

bl
e

Weighted model performance (precision)

Group
0
1

Supplementary Figure B16: Simulation study: weighted estimation of precision. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B17: Simulation study: weighted estimation of classification rate. Plotted
are the weighted estimates of performance Ma with 95% confidence intervals, corresponding to
weighted estimates of population performance weighted to match the distribution of X , Y , or R for
each subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B18: Simulation study: shared space subgroup log loss. Plotted are the
average performance with 95% confidence intervals for subgroup performance following weighting
to a shared space, using the approach of Cai et al. [16]. Columns correspond to different conditioning
variables used to construct the weights and rows correspond data generating processes.

38



0.4

0.5

0.6

0.7
Weights: None Weights: X Weights: Y

Covariate Shift
Weights: R

0.4

0.6

0.8 Outcom
e Shift

0.4
0.5
0.6
0.7

Com
plex Causal

0.4

0.6

0.8

Separable

0.900
0.925
0.950 Label Shift

0.4

0.6

0.8

Presentation Shift

X XA X_strat
0.4

0.6

0.8

X XA X_strat X XA X_strat X XA X_strat

Com
plex Anticausal

Sh
ar

ed
 sp

ac
e 

pe
rfo

rm
an

ce
 (A

UC
-R

OC
)

Covariate set

Group
0
1
Population

Supplementary Figure B19: Simulation study: shared space subgroup AUC-ROC. Plotted
are the average performance with 95% confidence intervals for subgroup performance following
weighting to a shared space, using the approach of Cai et al. [16]. Columns correspond to different
conditioning variables used to construct the weights and rows correspond data generating processes.
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Supplementary Figure B20: Simulation study: shared space subgroup sensitivity. Plotted are the
average performance with 95% confidence intervals for subgroup performance following weighting
to a shared space, using the approach of Cai et al. [16]. Columns correspond to different conditioning
variables used to construct the weights and rows correspond data generating processes.
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Supplementary Figure B21: Simulation study: shared space subgroup specificity. Plotted are the
average performance with 95% confidence intervals for subgroup performance following weighting
to a shared space, using the approach of Cai et al. [16]. Columns correspond to different conditioning
variables used to construct the weights and rows correspond data generating processes.
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Supplementary Figure B22: Simulation study: shared space subgroup net benefit. Plotted
are the average performance with 95% confidence intervals for subgroup performance following
weighting to a shared space, using the approach of Cai et al. [16]. Columns correspond to different
conditioning variables used to construct the weights and rows correspond data generating processes.
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Supplementary Figure B23: Simulation study: shared space subgroup precision. Plotted are the
average performance with 95% confidence intervals for subgroup performance following weighting
to a shared space, using the approach of Cai et al. [16]. Columns correspond to different conditioning
variables used to construct the weights and rows correspond data generating processes.
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Supplementary Figure B24: Simulation study: shared space subgroup classification rate. Plotted
are the average performance with 95% confidence intervals for subgroup performance following
weighting to a shared space, using the approach of Cai et al. [16]. Columns correspond to different
conditioning variables used to construct the weights and rows correspond data generating processes.
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Supplementary Figure B25: ACS PUMS: the effect of subgroup-aware prediction on model
performance. We report the difference in performance between models that have access to subgroup
membership as an additional covariate as compared to those that do not. Plotted are average
differences with 95% confidence intervals for each setting and for several performance metrics.
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Supplementary Figure B26: ACS PUMS: calibration curves. Plotted are calibration curves
for each subgroup with 95% confidence intervals. The first row corresponds to subgroup-agnostic
prediction, the second row to prediction with A as an additional covariate, and the third row to
stratified prediction by A.
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Supplementary Figure B27: ACS PUMS: controlled evaluation of log loss. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B28: ACS PUMS: controlled evaluation of AUC-ROC. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B29: ACS PUMS: controlled evaluation of sensitivity. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B30: ACS PUMS: controlled evaluation of specificity. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B31: ACS PUMS: controlled evaluation of net benefit. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B32: ACS PUMS: controlled evaluation of precision. Plotted are the
statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second row
to prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B33: ACS PUMS: controlled evaluation of classification rate. Plotted are
the statistics Ta with 95% confidence intervals, corresponding to differences between the unweighted
disaggregated performance with the population performance weighted to match the distribution of X ,
Y , or R on the subgroups. The first row corresponds to subgroup-agnostic prediction, the second to
row prediction with A as an additional covariate, and the third row to stratified prediction by A.
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Supplementary Figure B34: ACS PUMS: weighted estimation of log loss. Plotted are the weighted
estimates of performance Ma with 95% confidence intervals, corresponding to weighted estimates of
population performance weighted to match the distribution of X , Y , or R for each subgroups. The
entry labeled “subgroup” corresponds to the unweighted estimate of subgroup performance. The first
column corresponds to subgroup-agnostic prediction, the second column to prediction with A as an
additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B35: ACS PUMS: weighted estimation of AUC-ROC. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B36: ACS PUMS: weighted estimation of sensitivity. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B37: ACS PUMS: weighted estimation of specificity. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B38: ACS PUMS: weighted estimation of net benefit. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B39: ACS PUMS: weighted estimation of precision. Plotted are the
weighted estimates of performance Ma with 95% confidence intervals, corresponding to weighted
estimates of population performance weighted to match the distribution of X , Y , or R for each
subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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Supplementary Figure B40: ACS PUMS: weighted estimation of classification rate. Plotted
are the weighted estimates of performance Ma with 95% confidence intervals, corresponding to
weighted estimates of population performance weighted to match the distribution of X , Y , or R for
each subgroups. The entry labeled “subgroup” corresponds to the unweighted estimate of subgroup
performance. The first column corresponds to subgroup-agnostic prediction, the second column to
prediction with A as an additional covariate, and the third column to stratified prediction by A.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are specific and are an accurate
reflection of the paper’s contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes. The discussion section discusses limitations. In particular, we discuss
how the generalizability of our findings may be limited due to the restricted scope of our
work (e.g., primarily for binary outcomes and the restriction to Bayes-optimal predictors for
some findings).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]

Justification: We present theoretical results in the main text and supplementary material
without structuring them formally as theorems and lemmas. However, we do assert that our
presentation is rigorous and appropriate given the results presented.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: The experiments are conducted with simulated data and open, public datasets.
The data generating processes for the simulated data are described in full in the paper. The
experimental procedures are described with sufficient detail for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is released and available at a public repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and evaluation details are described in sufficient detail in the
detailed methods section provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report confidence intervals for all statistics. As described in the paper,
these are typically bootstrap confidence intervals computed with the percentile bootstrap.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Yes, the relevant details are provided in the detailed methods section provided
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics and verified that this is true.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Societal impact is integral to the topic of the work. Potential negative impacts
due to misinterpretation of the procedures we propose are discussed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No high risk data or models have been released as a part of this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No existing assets used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Released code is appropriately licensed.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No research with human subjects conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research involving crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs not used.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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