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ABSTRACT

Several recently proposed unsupervised meta-learning approaches rely on synthetic
meta-tasks created using techniques such as random selection, clustering and/or
augmentation. In this work, we describe a novel approach that generates meta-
tasks using generative models. The proposed family of algorithms generate pairs
of in-class and out-of-class samples from the latent space in a principled way,
allowing us to create synthetic classes forming the training and validation data
of a meta-task. We find that the proposed approach, LAtent Space Interpolation
Unsupervised Meta-learning (LASIUM), outperforms or is competitive with current
unsupervised learning baselines on few-shot classification tasks on the most widely
used benchmark datasets.

1 INTRODUCTION

Few-shot meta-learning algorithms for neural networks such as Mishra et al. (2018); Finn et al.
(2017); Snell et al. (2017) prepare networks to quickly adapt to unseen tasks. This is done in a
meta-training phase that typically involves a large number of supervised learning tasks. Generating
supervised tasks depends on large, labeled datasets and hand-specified task distribution. Very recently,
several approaches had been proposed that perform the meta-training by generating synthetic training
tasks from an unsupervised dataset. This requires us to generate samples with specific pairwise
information: in-class pairs of samples that are with high likelihood in the same class, and out-of-class
pairs that are with high likelihood not in the same class. For instance, UMTRA by Khodadadeh et al.
(2019) and AAL by Antoniou & Storkey (2019) achieve this through random selection from a domain
with many classes for out-of-class pairs and by augmentation for in-class pairs. Hsu et al. (2019)
propose CACTUs that creates synthetic labels through unsupervised clustering of the domain.

In this paper, we rely on recent advances in the field of generative models, such as the variants of
generative adversarial networks (GANs) and variational autoencoders (VAEs), to generate the in-class
and out-of-class pairs of meta-training data. The fundamental idea of our approach is that in-class
pairs are close while out-of-class pairs are far away in the latent space representation of the generative
model. Thus, we can generate in-class pairs by interpolating between two out-of-class samples in
the latent space and choosing interpolation ratios that put the new sample close to one of the objects.
From this latent sample, the generative model creates the new in-class object. Our approach requires
little domain-specific tweaking, and the necessary tweaks are human-comprehensible. For instance,
we need to choose thresholds for latent space distance that ensure that classes are in different domains,
as well as interpolation ratio thresholds that ensure that the sample is in the same class as the nearest
edge. Another advantage of the approach is that we can utilize off-the-shelf, pre-trained generative
models. The main contributions of this paper can be summarized as follows:
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• We describe an algorithm, LAtent Space Interpolation Unsupervised Meta-learning (LA-
SIUM), that creates training data for a downstream meta-learning algorithm starting from an
unlabeled dataset by leveraging interpolation in the latent space of a generative model.

• We show that on the most widely used few-shot learning datasets, LASIUM outperforms or
performs competitively with other unsupervised meta-learning algorithms, significantly out-
performs transfer learning in all cases, and in a number of cases approaches the performance
of supervised meta-learning algorithms.

2 RELATED WORK

Meta-learning or “learning to learn” in the field of neural networks is an umbrella term that covers
a variety of techniques that involve training a neural network over the course of a meta-training
phase, such that when presented with the target task, the network is able to learn it much more
efficiently than a randomly initialized network would. Such techniques had been proposed since
the 1980s (Schmidhuber (1987); Bengio et al. (1990); Naik & Mammone (1992); Thrun & Pratt
(1998)). In recent years, meta-learning has gained a resurgence, through approaches that either “learn
to optimize” (Finn et al. (2017); Ravi & Larochelle (2016); Mishra et al. (2017); Nichol et al. (2018);
Rusu et al. (2019); Rajeswaran et al. (2019)) or learn embedding functions in a non-parametric
setting (Snell et al. (2017); Vinyals et al. (2016); Ren et al. (2018); Liu et al. (2019)). Hybrids
between these two approaches had also been proposed (Triantafillou et al. (2020); Wang et al. (2019)).

Most approaches use labeled data during the meta-learning phase. While in some domains there is an
abundance of labeled datasets, in many domains such labeled data is difficult to acquire. Unsupervised
meta-learning approaches aim to learn from an unsupervised dataset from a domain similar from
that of the target task. Typically these approaches generate synthetic few-shot learning tasks for the
meta-learning phase through a variety of techniques. CACTUs (Hsu et al. (2019)) uses a progressive
clustering method. UMTRA (Khodadadeh et al. (2019)) utilizes the statistical diversity properties and
domain-specific augmentations to generate synthetic training and validation data. AAL (Antoniou
& Storkey (2019)) uses augmentation of the unlabeled training set to generate the validation data.
The accuracy of these approaches was shown to be comparable with but lower than supervised
meta-learning approaches, though with the advantage of requiring orders of magnitude less labeled
training data. A common weakness of these approaches is that the techniques used to generate the
synthetic tasks (clustering, augmentation, random sampling) are highly domain dependent.

Our proposed approach, LASIUM, takes advantage of generative models trained on the specific
domain to create the in-class and out-of-class pairs of meta-training data. By creating new training
data through interpolation between training samples, LASIUM-OC has similarities with mixup Zhang
et al. (2017). The most successful neural-network based generative models in recent years are
variational autoencoders (VAE) (Diederik & Welling (2014)) and generative adversarial networks
(GANs) (Goodfellow et al. (2014)). The implementation variants of the LASIUM algorithm described
in this paper rely on the original VAE model and on two specific variations of the GAN concept,
respectively. MSGAN (aka Miss-GAN) (Mao et al. (2019)) aims to solve the missing mode problem
of conditional GANs through a regularization term that maximizes the distance between the generated
images with respect to the distance between their corresponding input latent codes. Progressive
GAfNs (Karras et al. (2018)) are growing both the generator and discriminator progressively, and
approach resembling the layer-wise training of autoencoders.

3 LATENT SPACE INTERPOLATION UNSUPERVISED META-LEARNING

Preliminaries: We define an N -way, K(tr)-shot supervised classification task, T , as a set D(tr)
T

composed of i ∈ {1, . . . , N×K(tr)} data points (xi, yi) such that there are exactlyK(tr) samples for
each categorical label yi ∈ {1, . . . , N}. During meta-learning, an additional set ,D(val)

T , is attached
to each task that contains another N ×K(val) data points separate from the ones in D(tr)

T . We have
exactly K(val) samples for each class in D(val)

T as well.
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Figure 1: 3-way, K(tr)-shot task generation with K(val) images for validation by a pre-trained GAN
generator G. a) Sample 3 random vectors. b) Generate new vectors by one of the proposed in-class
sampling strategies. c) Generate images from all of the latent vectors and put them into train and
validation set to construct a task. The images in this figure have been generated by our algorithm.
The colored edge of each image indicates that it was generated from its corresponding latent vector.

It is straightforward to packageN -way, K(tr)-shot tasks withD(tr)
T andD(val)

T from a labeled dataset.
However, in unsupervised meta-learning setting, a key challenge is how to automatically construct
tasks from the unlabeled dataset U = {xi}.

3.1 GENERATING META-TASKS USING GENERATIVE MODELS

We have seen that in order to generate the training data for the meta-learning phase, we need
to generate N -way training tasks with K(tr) training and K(val) validation samples. The label
associated with the classes in these tasks is not relevant, as it will be discarded after the meta-
learning phase. Our objective is simply to generate samples of the type xi,j with i ∈ {1 . . . N} and
j ∈ {1 . . .K(tr)+K(val)} with the following properties: (a) all the samples xi,j are different (b) any
two samples with the same i index are in-class samples and (c) any two samples with different i index
are out-of-class samples. In the absence of human provided labels, the class structure of the domain
is defined only implicitly by the sample selection procedure. Previous approaches to unsupervised
meta-learning chose samples directly from the training data xi,j ∈ U , or created new samples through
augmentation. For instance, we can define the class structure of the domain by assuming that certain
types of augmentations keep the samples in-class with the original sample. One challenge of such
approaches is that the choice of the augmentation is domain dependent, and the augmentation itself
can be a complex mathematical operation.

In this paper, we approach the sample selection problem differently. Instead of sampling xi,j from U ,
we use the unsupervised dataset to train a generative model p(x). Generative models represent the
full probability distribution of a model, and allow us to sample new instances from the distribution.
For many models, this sampling process can be computationally expensive iterative process. Many
successful neural network based generative models use the reparametrization trick for the training
and sampling which concentrate the random component of the model in a latent representation z.
By choosing the latent representation z from a simple (uniform or normal) distribution, we can
obtain a sample from the complex distribution p(x) by passing z through a deterministic generator
G(Z) → X . Two of the most popular generative models, variational autoencoders (VAEs) and
generative adversarial networks (GANs) follow this model.

The idea of the LASIUM algorithm is that given a generator G(.), nearby latent space values z1 and
z2 map to in-class samples x1 and x2 that belong to the same class. Conversely, z1 and z2 values that
are far away from each other, map to out of class samples that belong to different classes. Naturally,
we still need to define what we mean by “near” and “far” in the latent space and how to choose the
corresponding z values. However, this is a significantly simpler task than, for instance, defining the
set of complex augmentations that might retain class membership.

Training a generative model Our method for generating meta-tasks is agnostic to the choice of
training algorithm for the generative model and can use either a VAE or a GAN with the only

3



Published as a conference paper at ICLR 2021

(b) Encoding (c) In-class sampling(a) Sampling

K(tr)  K(val)

𝓭 (z′
i) 𝓭 (z″

i) ...

N

(d) Task generation

... ... ...z1

z2
z3

z′
1

z′
2

z′
3

z″
1 z″

2z″
3

Figure 2: 3-way, K(tr)-shot task generation by VAE on Omniglot dataset with K(val) images for
validation set of each task. a) Sample 3 images from dataset. b) Encode the images into latent space
and check if they are distanced. c) Use proposed in-class sampling techniques to generate new latent
vectors. d) Generate images from the latent vectors and put them alongside with sampled images
from step a into train and validation set to construct a task.

Algorithm 1: LASIUM for unsupervised meta-learning task generation
require :Unlabeled dataset U = {xi}, Pre-trained generator G
require :N : class-count, NMB : meta-batch size, ε: minimum threshold, σ or α: sampling

hyperparameters
require :Sampling Strategy S: could be N(σ2), RO(α), or OC(α)
require :K(tr), K(val): number of samples for train and validation during meta-learning

1 B = {} ; // meta-batch of tasks
2 for i in 1, . . . , NMB do
3 Sample N class-vectors in latent space of G and add them to task-vectors until they are at

least ε units away from each other in euclidean space
4 for ω in 1, . . . ,K(tr) +K(val) − 1 do
5 Generate new-vectors = S(class-vectors, ω) and add them to task-vectors
6 end
7 Generate N × (K(tr) +K(val)) images by feeding task-vectors to generator G
8 Construct task Ti by putting the first N ×K(tr) images in task train set and the last

N ×K(val) images in task validation set
9 B ← B ∪ Ti

10 end
11 return B

constraint of having appropriately structured latent space. In our VAE experiments, we used a
network trained with the standard VAE training algorithm (Diederik & Welling (2014)). For the
experiments with GANs we used two different methods mode seeking GANs (MSGAN) (Mao et al.
(2019)) and progressive growing of GANs (ProGAN) (Karras et al. (2018)). MSGAN is trained for
Omniglot and ProGAN is trained for CelebA.

Algorithm 1 describes the steps of our method. We will delve into each step in the following parts of
this section.

Sampling out of class instances from the latent space representation: Our sampling techniques
differ slightly whether we are using a GAN or VAE. For GAN, we use rejection sampling to find
N latent space vectors that are at a pairwise distance of at least threshold ε - see Figure 1(a). When
using a VAE, we also have an encoder network that allows us to map from the domain to the latent
space. Taking advantage of this, we can additionally sample data points from our unlabeled dataset
U and embed them into a latent space. If the latent space representation of these N images are too
close to each other, we re-sample, otherwise we can use the N images and their representations and
continue the following steps exactly the same as GANs - see Figure 2(a) and (b). We will refer to the
vectors selected here as anchor vectors.

Generating in-class latent space vectors Next, having N sampled anchor vectors {z1, . . . , zN}
from the latent space representation, we aim to generate N new vectors {z′1, . . . , z′N} from the latent
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Figure 3: Latent space representation visualization of proposed strategies for generating in-class
candidates. Left: LASIUM-N, adding random noise to the sample vector. Middle: LASIUM-RO,
interpolate with random out-of-class samples. Right: LASIUM-OC, interpolate with other classes’
samples.

space representation such that the generated image G(zi) belongs to the same class as the one of
G(z′i) for i ∈ 1, . . . , N . This process needs to be repeated for K(tr) +K(val) − 1 times.

The sampling strategy takes as input the sampled vectors and a number ω ∈ {1 . . .K(tr)+K(val)−1}
and returns N new vectors such that zi and z′i are an in-class pair for i ∈ {1 . . . N}. This ensures that
no two z′i belong to the same class and creates N groups of (K(tr) +K(val)) vectors in our latent
space. We feed these vectors to our generator to get N groups of (K(tr) +K(val)) images. From
each group we pick the first K(tr) for D(tr)

T and the last K(val) for D(val)
T .

What remains is to define the strategy to sample the individual in-class vectors. We propose three
different sampling strategies, all of which can be seen as variations of the idea of latent space
interpolation sampling. This motivates the name of the algorithm LAtent Space Interpolation
Unsupervised Meta-learning (LASIUM).

LASIUM-N (adding Noise): This technique generates in-class samples by adding Gaussian noise to
the anchor vector z′i = zi+ ε where ε ∼ N (0, σ2) (see Figure 3-Left). In the context of LASIUM, we
can see this as an interpolation between the anchor vector and a noise vector, with the interpolation
factor determined by σ. For the impact of different choices of σ see the ablation study in the
supplemental material.

LASIUM-RO (with Random Out-of-class samples) To generate a new in-class sample to anchor
vector zi we first find a random out-of-class sample vi, and choose an interpolated version closer
to the anchor: z′i = zi + α× (vi − zi) (see Figure 3-Middle). Here, α is a hyperparameter, which
can be tuned to define the size of the class. As we are in a comparatively high-dimensional latent
space (in our case, 512 dimensions), we need relatively large values of α, such as α = 0.4 to define
classes of reasonable size. This model effectively allows us to define complex augmentations (such
as a person seen without glasses, or in a changed lighting) with only one scalar hyperparameter to
tune. By interpolating towards another sample we ensure that we are staying on the manifold that
defines the dataset (in the case of Figure 3, this being human faces).

LASIUM-OC (with Other Classes’ samples) This technique is similar to LASIUM-RO, but instead
of using a randomly generated out-of-class vector, we are interpolating towards vectors already chosen
from the other classes in the same task (see Figure 3-Right). This limits the selection of the samples
to be confined to subspace of the convex hull containing the initial anchor points. The intuition behind
this approach is that choosing the samples this way focuses the attention of the meta-learner towards
the hard to distinguish samples that are between the classes in the few shot learning class (eg. they
share certain attributes).
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Finally, failure cases exist for these sampling strategies. For example, if z1, z2, and z3 lie on a line,
we end up generating poor out of class samples that belong to other classes in our task. However, as
we are in high dimensional latent space(e.g. 512), the likelihood for three points being approximately
colliniar is very low (as the volume fraction in which the middle point would have to be shrinks
exponentially with the dimensionality). Note that meta-learning algorithms are not sensitive to a small
fraction of bad training examples in the meta-training phase (e.g. see Hsu et al. (2019); Khodadadeh
et al. (2019)).

4 EXPERIMENTAL VALIDATION

We tested the proposed algorithms on three few-shot learning benchmarks: (a) the 5-way Om-
niglot (Lake et al. (2011)), a benchmark for few-shot handwritten character recognition, (b) the
5-way CelebA few-shot identity recognition, and (c) the CelebA attributes dataset (Liu et al. (2015))
proposed as a few-shot learning benchmark by (Hsu et al. (2019)). The latter benchmark comprises
binary classification (2-way) tasks in which each task is defined by selecting 3 different attributes and
3 boolean values corresponding to each attribute. Every image in a certain task-specific class has the
same attributes with each other while does not share any of these attributes with images in the other
class.

We partition each dataset into meta-training, meta-validation, and meta-testing splits between classes.
To evaluate our method, we use the classes in the test set to generate 1000 tasks as described in
section 3. We set K(val) to be 15. Note that unlike meta-training, where we use synthetic generated
tasks, for evaluation we use 1000 tasks from real unseen labeled data. Furthermore, we fix the
random seed to make sure we compare on the exact same tasks with other baselines. We average
the accuracy on all tasks and report a 95% confidence interval. To ensure that comparisons are
fair, we use the same random seed in the whole task generation process. For the Omniglot dataset,
we report the results for K(tr) ∈ {1, 5}, and K(val) = 15. For CelebA identity recognition, we
report our results for K(tr) ∈ {1, 5, 15} and K(val) = 15. For CelebA attributes, we follow the
K(tr) = 5 and K(val) = 5 tasks as proposed by Hsu et al. (2019). More ablation studies over the
hyperparameters and result visualizations are provided in the supplemental material. Since excessive
tuning of hyperparameters can lead to the overestimation of the performance of a model (Oliver et al.
(2018)), we keep the hyperparameters of the unsupervised meta-learning as constant as possible
(including the MAML, and ProtoNets model architectures) in all experiments. Our model architecture
consists of four stacked convolutional blocks. Each block comprises 64 filters that carry out 3× 3
convolutions, followed by batch normalization, a ReLU non-linearity, and 2× 2 max-pooling. For the
MAML experiments, classification is performed by a fully connected layer, whereas for the ProtoNets
model we compute distances based on the feature vectors produced by the last convolution module
without any dense layers. The input size to our model is 84× 84× 3 for CelebA and 28× 28× 1 for
Omniglot. The detail of the neural networks architectures for each experiment is described in the
supplemental material.

4.1 BASELINES

As baseline algorithms for our approach we follow the practice of recent papers in the unsupervised
meta-learning literature. The simplest baseline is to train the same network architecture from scratch
with N × K(tr) images. More advanced baselines can be obtained by learning an unsupervised
embedding on U and use it for downstream task training. We used the ACAI (Berthelot et al. (2019)),
BiGAN (Donahue et al. (2017); Dumoulin et al. (2017)), and DeepCluster (Caron et al. (2018))
as representative of the unsupervised learning literature. On top of these embeddings, we report
accuracy for Knn-nearest neighbors, linear classifier, multi layer perceptron (MLP) with dropout,
and cluster matching.

The direct competition for our approach are the current state-of-the-art algorithms in unsupervised
meta-learning. We compare our results with CACTUs-MAML, CACTUs-ProtoNets (Hsu et al.
(2019)) and UMTRA Khodadadeh et al. (2019). Finally, it is useful to compare our approach
with algorithms that require supervised data. We include results for supervised standard transfer
learning from VGG19 pre-trained on ImageNet (Simonyan & Zisserman (2015)) and two supervised
meta-learning algorithms, MAML (Finn et al. (2017)), and ProtoNets (Snell et al. (2017)).
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Table 1: Accuracy results on the Omniglot dataset averaged over 1000, 5-way,K(tr)-shot downstream
tasks with K(val) = 15 for each task. ± indicates the 95% confidence interval. The top three
unsupervised results are reported in bold. The baseline results are from Hsu et al. (2019) section 4.1.

Algorithm Feature Extractor K(tr) = 1 K(tr) = 5

Training from scratch N/A 51.64± 0.65 71.44± 0.53
K-nearest neighbors ACAI 57.46± 1.35 81.16± 0.57
Linear Classifier ACAI 61.08± 1.32 81.82± 0.58
MLP with dropout ACAI 51.95± 0.82 77.20± 0.65
Cluster matching ACAI 54.94± 0.85 71.09± 0.77
K-nearest neighbors BiGAN 49.55± 1.27 68.06± 0.71
Linear Classifier BiGAN 48.28± 1.25 68.72± 0.66
MLP with dropout BiGAN 40.54± 0.79 62.56± 0.79
Cluster matching BiGAN 43.96± 0.80 58.62± 0.78

CACTUs-MAML BiGAN 58.18± 0.81 78.66± 0.65
CACTUs-MAML ACAI 68.84± 0.80 87.78± 0.50
UMTRA-MAML N/A 81.91± 0.58 94.58± 0.25
LASIUM-RO-GAN-MAML N/A 83.26± 0.55 95.29± 0.22
LASIUM-N-VAE-MAML N/A 76.11± 0.64 94.42± 0.26

CACTUs-ProtoNets BiGAN 54.74± 0.82 71.69± 0.73
CACTUs-ProtoNets ACAI 68.12± 0.84 83.58± 0.61
LASIUM-RO-GAN-ProtoNets N/A 80.15± 0.64 91.10± 0.35
LASIUM-OC-VAE-ProtoNets N/A 73.22± 0.73 85.05± 0.46

Transfer Learning (VGG-19) N/A 54.49± 0.90 89.57± 0.44
Supervised MAML N/A 94.46± 0.35 98.83± 0.12
Supervised ProtoNets N/A 98.35± 0.22 99.58± 0.09

4.2 RESULTS ON OMNIGLOT

Table 1 shows the results on the Omniglot dataset. We find that the LASIUM-RO-GAN-MAML
configuration outperforms all the unsupervised approaches, including the meta-learning based ones
like CACTUs and UMTRA. Beyond the increase in performance, we must note that the (one-
dimensional) search for the intra-class shift was much cheaper than fine-tuning the currently popular
augmentation strategies. We also find that on this benchmark, LASIUM outperforms transfer learning
using the much larger VGG-19 network.

As expected even the best LASIUM result is worse than the supervised meta-learning models.
However, we need to consider that the unsupervised meta-learning approaches use several orders
of magnitude less labels. For instance, the 95.29% accuracy of LASIUM-RO-GAN-MAML was
obtained with only 25 labels, while the supervised approaches used 25,000.

4.3 RESULTS ON CELEBA

Table 2 shows our results on the CelebA identity recognition tasks where the objective is to recognize
N different people givenK(tr) images for each. We find that on this benchmark as well, the LASIUM-
RO-GAN-MAML configuration performs better than other unsupervised meta-learning models as
well as transfer learning with VGG-19 - it only falls slightly behind LASIUM-RO-GAN-ProtoNets
on the one-shot case. As we have discussed in the case of Omniglot results, the performance remains
lower then the supervised meta-learning approaches which use several orders of magnitude more
labeled data.

Finally, Table 3 shows our results for CelebA attributes benchmark introduced in (Hsu et al. (2019)).
A peculiarity of this dataset is that the way in which classes are defined based on the attributes, the
classes are unbalanced in the dataset, making the job of synthetic task selection more difficult. We
find that LASIUM-N-GAN-MAML obtains a performance of 75.07± 1.08, within the confidence
interval of the second best, CACTUs MAML with BiGAN 74.98± 1.02. In this benchmark, transfer
learning with the VGG-19 network performed better than all unsupervised meta-learning approaches,

7



Published as a conference paper at ICLR 2021

Table 2: Accuracy results of unsupervised learning on CelebA for different unsupervised methods.
The results are averaged over 1000, 5-way, K(tr)-shot downstream tasks with K(val) = 15 for each
task. ± indicates the 95% confidence interval. The top three unsupervised results are reported in
bold.

Algorithm K(tr) = 1 K(tr) = 5 K(tr) = 15

Training from scratch 34.69± 0.50 56.50± 0.55 70.56± 0.49
CACTUs 41.42± 0.64 62.71± 0.57 74.18± 0.68
UMTRA 39.30± 0.59 60.44± 0.56 72.41± 0.48
LASIUM-RO-GAN-MAML 43.88± 0.57 66.98± 0.53 78.13± 0.44
LASIUM-RO-VAE-MAML 41.25± 0.57 58.22± 0.54 71.05± 0.49
LASIUM-RO-GAN-ProtoNets 44.39± 0.61 60.83± 0.58 66.66± 0.53
LASIUM-RO-VAE-ProtoNets 43.22± 0.58 61.12± 0.54 68.51± 0.51

Transfer Learning (VGG-19) 33.28± 0.57 58.74± 0.62 74.04± 0.49
Supervised MAML 85.46± 0.55 94.98± 0.25 96.18± 0.19
Supervised ProtoNets 84.17± 0.61 90.84± 0.38 90.85± 0.36

Table 3: Results on CelebA attributes benchmark 2-way, 5-shot tasks with K(val) = 5. The results
are averaged over 1000 downstream tasks and ± indicates 95% confidence interval. The top three
unsupervised results are reported in bold. The baseline results are from Hsu et al. (2019) section 4.1.

Algorithm Feature Extractor Accuracy

Training from scratch N/A 63.19± 1.06
K-nearest neighbors BiGAN 56.15± 0.89
Linear Classifier BiGAN 58.44± 0.90
MLP with dropout BiGAN 56.26± 0.94
Cluster matching BiGAN 56.20± 1.00
K-nearest neighbors DeepCluster 61.47± 0.99
Linear Classifier DeepCluster 59.57± 0.98
MLP with dropout DeepCluster 60.65± 0.98
Cluster matching DeepCluster 51.51± 0.89

CACTUs MAML BiGAN 74.98± 1.02
CACTUs MAML DeepCluster 73.79± 1.01
LASIUM-N-GAN-MAML N/A 75.07± 1.08

CACTUs ProtoNets BiGAN 65.58± 1.04
CACTUs ProtoNets DeepCluster 74.15± 1.02
LASIUM-N-GAN-ProtoNets N/A 73.41± 1.10

Transfer Learning (VGG-19) N/A 79.76± 1.03
Supervised MAML N/A 87.10± 0.85
Supervised ProtoNets N/A 85.13± 0.92

possibly due to existing representations of the discriminating attributes in that much more complex
network.

4.4 RESULTS ON MINI-IMAGENET

Table 4 shows the comparison results on the Mini-ImageNet benchmark. Mini-ImageNet has a large
sample fidelity among the datasets considered in this paper, and it is hard for generative models to
capture this diversity given a relatively small dataset such as Mini-ImageNet train set. Thus, we used
as the GAN a pre-trained BigBiGAN1 trained on the whole Imagenet dataset with no supervision.
Examples of meta-training tasks constructed by LASIUM-N with σ2 = 1.0 are shown in Figure 4.
We notice that LASIUM-N-GAN-MAML outperforms all other unsupervised learning algorithms for
K=1, 5 and 20. For K=50, it is in the second place behind CACTUs MAML with DeepCluster, the
accuracy difference being within the margin of error.

1https://tfhub.dev/deepmind/bigbigan-resnet50/1
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Train Validation

... ...

Figure 4: Meta-training tasks for Mini-ImageNet constructed by LASIUM-N with σ2 = 1.0

Table 4: Results on Mini-Imagenet benchmark for 5-way, K(tr)-shot tasks with K(val) = 15. The
results are averaged over 1000 downstream tasks and ± indicates 95% confidence interval. The top
three unsupervised results are reported in bold. The baselines are from Hsu et al. (2019) section
4.1. Note that the BigBiGAN is trained on the unlabeled Imagenet dataset which is larger than
Mini-ImageNet training set that used by Hsu et al. (2019) for training.

Algorithm Embedding K(tr) = 1 K(tr) = 5 K(tr) = 20 K(tr) = 50

Training from scratch N/A 27.59± 0.59 38.48± 0.66 51.53± 0.72 59.63±0.74
K-nearest neighbors BiGAN 25.56± 1.08 31.10± 0.63 37.31± 0.40 43.60±0.37
Linear Classifier BiGAN 27.08± 1.24 33.91± 0.64 44.00± 0.45 50.41±0.37
MLP with dropout BiGAN 22.91± 0.54 29.06± 0.63 40.06± 0.72 48.36±0.71
Cluster matching BiGAN 24.63± 0.56 29.49± 0.58 33.89± 0.63 36.13±0.64
K-nearest neighbors DeepCluster 28.90± 1.25 42.25± 0.67 56.44± 0.43 63.90±0.38
Linear Classifier DeepCluster 29.44± 1.22 39.79± 0.64 56.19± 0.43 65.28±0.34
MLP with dropout DeepCluster 29.03± 0.61 39.67± 0.69 52.71± 0.62 60.95±0.63
Cluster matching DeepCluster 22.20± 0.50 23.50± 0.52 24.97± 0.54 26.87±0.55

CACTUs MAML BiGAN 36.24± 0.74 51.28± 0.68 61.33± 0.67 66.91±0.68
CACTUs MAML DeepCluster 39.90± 0.74 53.97± 0.70 63.84± 0.70 69.64± 0.63
UMTRA MAML N/A 39.93 50.73 61.11 67.15
LASIUM-N-GAN-
MAML

N/A 40.19± 0.58 54.56± 0.55 65.17± 0.49 69.13± 0.49

CACTUs ProtoNets BiGAN 36.62± 0.70 50.16± 0.73 59.56± 0.68 63.27±0.67
CACTUs ProtoNets DeepCluster 39.18± 0.71 53.36±0.70 61.54±0.68 63.55±0.64
LASIUM-N-GAN-
ProtoNets

N/A 40.05±0.60 52.53± 0.51 59.45± 0.48 61.43±0.45

Transfer Learning N/A 44.06± 0.66 70.11± 0.67 86.12± 0.36 92.67±0.22
Supervised MAML N/A 46.81± 0.77 62.13± 0.72 71.03± 0.69 75.54±0.62
Supervised ProtoNets N/A 46.56± 0.76 62.29± 0.71 70.05± 0.65 72.04±0.60

5 DISCUSSION

We described LASIUM, an unsupervised meta-learning algorithm for few-shot classification. The
algorithm creates synthetic meta-tasks using interpolation in the latent space of a generative model
with the general idea that points that are close in the latent space will likely generate in-class samples,
while points far in the latent space will likely generate out-of-class samples. In this, LASIUM
differs from techniques such as UMTRA and AAL that generate in-class samples through pixel-
space augmentation and techniques such as CACTUs which uses clustering to separate unsupervised
training data into in-class and out-of-class samples. We found that LASIUM outperforms or comes
within the margin of error to state-of-the-art unsupervised algorithms on Omniglot, Mini-ImageNet,
CelebA attributes learning benchmark and the CelebA identity recognition benchmarks.
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7 HYPERPARAMETERS AND ABLATION STUDIES

In this section, we report the hyperparameters of LASIUM-MAML in Table 5 and LASIUM-ProtoNets
in Table 6 for Omniglot, CelebA, CelebA attributes and Mini-ImageNet datasets. Our source code is
also available on Github 2.

Table 5: LASIUM-MAML hyperparameters summary
Hyperparameter Omniglot CelebA CelebA attributes Mini-ImageNet

Number of classes 5 5 2 5
Input size 28× 28× 1 84× 84× 3 84× 84× 3 84× 84× 3
Inner learning rate 0.4 0.05 0.05 0.05
Meta learning rate 0.001 0.001 0.001 0.001
Meta-batch size 4 4 4 4
K(tr) meta-learning 1 1 5 1
K(val) meta-learning 5 5 5 5
K(val) evaluation 15 15 5 15
Meta-adaptation steps 5 5 5 5
Evaluation adaptation steps 50 50 50 50

Table 6: LASIUM-ProtoNets hyperparameters summary
Hyperparameter Omniglot CelebA CelebA attributes Mini-ImageNet

Number of classes 5 5 2 5
Input size 28× 28× 1 84× 84× 3 84× 84× 3 84× 84× 3
Meta learning rate 0.001 0.001 0.001 0.001
Meta-batch size 4 4 4 4
K(tr) meta-learning 1 1 5 1
K(val) meta-learning 5 5 5 5
K(val) evaluation 15 15 5 15

We also report the ablation studies on different strategies for task construction in Table 7. We run all
the algorithm for just 1000 iterations and compared between them. We also apply a small translation
to Omniglot images.

Table 7: Accuracy of different proposed strategies on Omniglot. For the sake of comparison, we
stop meta-learning after 1000 iterations. Results are reported on 1000 tasks with a 95% confidence
interval.

Sampling Strategy Hyperparameters GAN-MAML VAE-MAML GAN-Proto VAE-Proto

LASIUM-N σ2=0.5 77.16±0.65 70.41± 0.71 62.16± 0.79 61.57± 0.80
LASIUM-N σ2=1.0 71.10± 0.70 68.26± 0.71 60.95± 0.78 62.17± 0.80
LASIUM-N σ2=2.0 63.18± 0.71 65.18± 0.71 59.81± 0.78 64.88±0.78

LASIUM-RO α=0.2 77.62±0.64 75.02±0.66 62.24±0.79 62.17± 0.80
LASIUM-RO α=0.4 75.79±0.65 71.31±0.70 64.19±0.76 62.20±0.80

LASIUM-OC α=0.2 74.70± 0.68 74.98±0.67 61.79± 0.79 62.16± 0.78
LASIUM-OC α=0.4 73.40± 0.68 68.79± 0.73 64.59±0.76 63.08±0.79

Besides, we perform a hyperparameter search on CelebA attributes benchmark. Table 8 demonstrates
the results for our experiments. We see that searching for hyperparameters for CelebA is almost as
easy as doing the same thing for Omniglot. LASIUM-N with σ2 = 0.25 outperforms state-of-the-art
in this benchmark. We also see a bad performance in the case of LASIUM-OC, which we expected
as the number of classes in this benchmark’s tasks is N = 2. Thus samples generated during
meta-learning are limited to only instances on the line connecting two anchor latent vectors. It is not
the case for LASIUM-N and LASIUM-RO since we can sample latent codes in the neighborhood or
any direction from anchor points in the latent space.

2https://github.com/siavash-khodadadeh/MetaLearning-TF2.0
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Table 8: Accuracy of different proposed strategies on CelebA attributes task for GAN with 2-way,
5-shot tasks with K(val) = 5. The results are averaged over 1000 downstream tasks and ± indicates
95% confidence interval.

Sampling Strategy Hyperparameters GAN-MAML GAN-Proto

LASIUM-N σ2=0.1 71.83± 1.08 62.99± 1.14
LASIUM-N σ2=0.25 75.07± 1.08 70.49± 1.14
LASIUM-N σ2=0.5 71.41± 1.13 69.96± 1.15
LASIUM-N σ2=1.0 60.37± 1.01 69.98± 1.16
LASIUM-N σ2=2.0 50.00± 0.00 70.33± 1.14

LASIUM-RO α=0.2 62.06± 1.06 62.73± 1.18
LASIUM-RO α=0.4 67.57± 1.11 68.19± 1.12
LASIUM-RO α=0.5 71.04± 1.03 68.94± 1.12

LASIUM-OC α=0.25 59.69± 1.11 53.67± 1.02
LASIUM-OC α=0.5 60.25± 1.08 56.05± 1.08

7.1 NEURAL NETWORK ARCHITECTURES

For Omniglot, our VAE model is constructed symmetrically. The encoder is composed of four
convolutional blocks, with batch normalization and ReLU activation following each of them. A
dense layer is connected to the end such that given an input image of shape 28 × 28, the encoder
produces a latent vector of length 20. On the other side, the decoder starts from a dense layer whose
output has length 7 × 7 × 64 = 3136. It is then fed into four modules each of which consists of
a transposed convolutional layer, batch normalization and the ReLU non-linearity. We use 3 × 3
kernels, 64 channels and a stride of 2 for all the convolutional and transposed convolutional layers.
Hence, the generated image has the size of 28× 28 that is identical to the input images. This VAE
model is trained for 1000 epochs with a learning rate of 0.001.

Our GAN generator gets an input of size l which is the dimensionality of the latent space and feeds it
into a dense layer of size 7× 7× 128. After applying a Leaky ReLU with α = 0.2, we reshape the
output of dense layer to 128 channels of shape 7× 7. Then we feed it into two upsampling blocks,
where each block has a transposed convolution with 128 channels, 4× 4 kernels and 2× 2 strides.
Finally, we feed the outcome of the upsampling blocks into a convolution layer with 1 channel and a
7× 7 kernel with sigmoid activaiton. The discriminator takes a 28× 28× 1 input and feeds it into
three 3×3 convolution layers with 64, 128 and 128 channels and 2×2 strides. We apply leaky ReLU
activation after each convolution layer with α = 0.2. Finally we apply a global 2D max pooling layer
and feed it into a dense layer with 1 neuron to classify the output as real or fake. We use the same
loss function for training as MSGAN (aka Miss-GAN) described in Mao et al. (2019).

For the CelebA GAN experiments, we use the pre-trained network architecture, progressive growing
of GANs (ProGAN), described in Karras et al. (2018). For VAE, we use the same architecture as
we described for Omniglot VAE with one more convolution block and more channels to handle the
larger input size of 84× 84× 3. The exact architecture is described in the supplemental material.

7.2 IMPACT OF GAN TRAINING ON LASIUM

Do we need a generative model that generates very high-quality images from data or can a premature
trained GAN also work? We performed an ablation study to evaluate the impact of GAN training on
LASIUM. First, we trained a generative network on Omniglot dataset with adversarial training for
500 epochs and saved the corresponding weights at every epoch. Then we trained LASIUM with
various generative networks at different epochs. For the sake of comparison, we stopped LASIUM
after 1000 iterations.

Figure 5 demonstrates the impact of GAN training on LASIUM. We visualize an image generated
with the same exact latent code after different epochs. We can see that eventually, this latent code
result in generating character “R” (after epoch 400 and 500). We see that GAN stabilizes after 400
epochs while LASIUM stabilizes sooner around epoch 200. Nevertheless, the impact of training
GAN for at least 50 epochs is correlated with LASIUM performance.
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Figure 5: The impact of GAN training on LASIUM accuracy. The blue line shows test accuracy after
1000 iterations of LASIUM-N training with a 95% confidence interval on 1000 one-shot tasks with
K(val) = 15. The images generated by GAN are shown at epochs 0, 10, 30, 50, 100, 200, 300, 400,
and 500. All of the images are generated from the same latent vector. The red line shows the training
from scratch baseline.

7.3 ABLATION STUDY ON IMPACT OF ε ON LASIUM

In this section, we evaluate the accuracy of LASIUM with respect to the value of ε. For the sake of
comparison, we consider LASIUM-N with σ2 = 0.5 and stop the training after 1000 iterations on
Omniglot. The results are reported on the same 1000 one-shot tasks with K(val) = 15 in Table 9.
Furthermore, the last column shows the number of times resampling occurred since at least two of the
initial sampled latent codes were in a distance smaller than ε from each other. We found that (within
reasonable bounds) the choice of this hyperparameter has a small but not negligible impact on the
performance of the algorithm.

7.4 TRAINING LASIUM ON FUNGI

We also tried LASIUM on Fungi dataset. We report LASIUM-N-GAN-MAML accuracy over 1000
downstream tasks generated randomly from test dataset following Meta-dataset evaluation protocol
proposed by Triantafillou et al. (2020). For the choice of generative network, we used state-of-the-art
StyleGAN-v2 by Karras et al. (2020), and we trained it on Fungi images. Figure 6 shows some of
the examples generated by StyleGAN-v2. Table 10 shows the results on LASIUM and some other
relevant algorithms.
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Table 9: Accuracy of LASIUM-N with σ2 = 0.5 on Omniglot dataset with respect to different values
of ε. ± indicates 95% confidence interval.

ε Accuracy (%) # Resampling Task

0.0 77.27± 0.62 0
0.1 77.34± 0.62 0
1 77.21± 0.62 0
10.0 77.54± 0.62 0
100.0 77.08± 0.63 0
125.0 79.51± 0.61 0
187.5 78.87± 0.60 395
218.75 77.95± 0.62 6012
234.375 77.15± 0.63 27432
242.1875 77.15± 0.64 61118
250.0 78.49± 0.61 155499
253.15625 78.48± 0.62 238714
256.3125 78.05± 0.62 378742
265.625 78.56± 0.61 1472860
281.25 77.73± 0.63 25936957
312.5 − All
375 − All
500.0 − All
1000.0 − All

... ...

Train Validation

Figure 6: Meta-training tasks for Fungi constructed by LASIUM-N with σ2 = 0.25

Table 10: Accuracy of 5-way 1-shot learning on the Fungi dataset (part of the proposed Meta-dataset
by Triantafillou et al. (2020)). For each system we indicate the dataset on which the meta-training
phase was performed. The results for supervised first-order MAML are from Triantafillou et al.
(2020). LASIUM-N was run with σ2 = 0.25 and used the StyleGAN-v2 trained on the unsupervised
version of the Fungi dataset, as discussed in the text.

Method Dataset Accuracy (%)

Training from scratch - 26.10± 0.42
fo-UMTRA Unsupervised Fungi 28.27± 0.46

LASIUM-N-GAN-fo-MAML Unsupervised Fungi 29.43± 0.49
LASIUM-N-GAN-MAML Unsupervised Fungi 31.29± 0.52

fo-MAML Supervised Imagenet 32.10± 1.10
fo-MAML Supervised Meta-dataset 33.54± 1.11
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