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Abstract

This paper introduces CODA-191, a human-
annotated dataset that codes the Background,
Purpose, Method, Finding/Contribution,
and Other sections of 10,966 English ab-
stracts in the COVID-19 Open Research
Dataset. CODA-19 was created by 248
crowd workers from Amazon Mechanical
Turk within 10 days, achieving a label qual-
ity comparable to that of experts. Each ab-
stract was annotated by nine different workers,
and the final labels were obtained by majority
vote. The inter-annotator agreement (Cohen’s
kappa) between the crowd and the biomedi-
cal expert (0.741) is comparable to inter-expert
agreement (0.788). CODA-19’s labels have
an accuracy of 82.2% when compared to the
biomedical expert’s labels, while the accuracy
between experts was 85.0%. Reliable human
annotations help scientists to understand the
rapidly accelerating coronavirus literature and
also serve as the battery of AI/NLP research,
but obtaining expert annotations can be slow.
We demonstrated that a non-expert crowd can
be rapidly employed at scale to join the fight
against COVID-19.

1 Introduction

Just as COVID-19 is spreading worldwide, the
rapid acceleration in new coronavirus literature
makes it hard to keep up with. Researchers have
thus teamed up with the White House to release
the COVID-19 Open Research Dataset (CORD-
19) (Wang et al., 2020), containing 130,000+ re-
lated scholarly articles (as of August 13, 2020).
The Open Research Dataset Challenge has also
been launched on Kaggle to encourage researchers
to use cutting-edge techniques to gain new insights
from these papers (AI and collaborators, 2020). A

1COVID-19 Research Aspect Dataset (CODA-19):
http://CODA-19.org

For successful infection, viruses must recognize 

their respective host cells. A common 

mechanism of host recognition by viruses is to 

utilize a portion of the host cell as a receptor. 

Bacteriophage Sf6, which infects Shigella

flexneri, uses lipopolysaccharide as a primary 

receptor and then requires interaction with a 

secondary receptor, a role that can be fulfilled 

by either outer membrane proteins (Omp) A or 

C. Our previous work showed that specific 

residues in the loops of OmpA mediate Sf6 

infection. To better understand Sf6 interactions 

with OmpA loop variants, we determined the 

kinetics of these interactions through the use of 

biolayer interferometry, an optical biosensing

technique that yields data similar to surface 

plasmon resonance. Here, we successfully 

tethered whole Sf6 virions, determined the 

binding constant of Sf6 to OmpA to be 36 nM. 

Additionally, we showed that Sf6 bound to five 

variant OmpAs and the resulting kinetic 

parameters varied only slightly. Based on these 

data, we propose a model in which Sf6: Omp

receptor recognition is not solely based on 

kinetics, but likely also on the ability of an Omp

to induce a conformational change that results 

in productive infection. All rights reserved. No 

reuse allowed without permission.
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Figure 1: An example of the final crowd annotation for
the abstract of (Hubbs et al., 2019).

key knowledge to comprehend scientific papers is
that most papers follow a specific structure (Alley,
1996), where a set of components are presented in
a particular order: a paper typically begins with
the background information, such as the motiva-
tion and the known facts relevant to the problem,
followed by the methods that the authors used to
study the problem, and eventually presents the re-
sults and discusses the implications (Dasigi et al.,
2017). Knowing this structure is essential to com-
prehend the core arguments and contributions of a
paper effectively. Prior work, as shown in Table 1,
has proposed various schemes to analyze the struc-
tures of scientific articles. Parsing all the CORD-
19’s papers automatically and represent their struc-
tures using a semantic scheme (e.g., background,

http://CODA-19.org


Corpus Document
type

Instance
type

# of
documents

# of
sentence

Annotator
type

# of
classes Public?

This work CORD-19 abstract clause 10,966 103,978 crowd 5 yes
Liakata et al. ART† paper sentence 225 35,040 expert 18 yes
Ravenscroft et al. MCCRA† paper sentence 50 8,501 expert 18 yes

Teufel and Moens CONF paper sentence 80 12,188 expert 7 no
Kim et al. MEDLINE abstract sentence 1,000 10,379 expert 6 no
Contractor et al. PubMed paper sentence 50 8,569 expert 8 no
Morid et al. UpToDate+PubMed mixed sentence 158 5,896 expert 8 no
Banerjee et al. CONF+arXiv paper sentence 450 4,165 expert 3 no
Huang and Chen NTHU database abstract sentence 597 3,394 expert 5 no
Agarwal and Yu BioMed Central paper sentence 148 2,960 expert 5 no
Hara and Matsumoto MEDLINE abstract sentence 200 2,390 expert 5 no
Zhao et al. JOUR mixed sentence ... 2,000 expert 5 no
McKnight and Srinivasan MEDLINE abstract sentence 204 1,532 ... 4 no
Chung PubMed abstract sentence 318 829 expert 4 no
Wu et al. CiteSeer abstract sentence 106 709 expert 5 no
Dasigi et al. PubMed section clause 75 <4,497* expert 7 no
Ruch et al. PubMed abstract sentence 100 ... ... 4 no
Lin et al. PubMed abstract sentence 49 ... expert 4 no

Table 1: Comparison of datasets, excluding structured abstracts. Abbreviations CONF and JOUR mean conference
and journal papers, respectively. The dagger symbol †means that the corpus is self-curated. The “mixed” document
type means that the dataset contains instances from both full papers and abstracts. Symbol “...” means unknown.
The last “Public” column means if the dataset is publicly downloadable on the Internet. The symbol * means that
the work only provides the number of clauses (sentence fragments).

method, result, etc.) will make it easier for both
humans and machines to comprehend and process
the information in these 13,000+ papers.

Modern automated language understanding ap-
proaches often require large-scale human annota-
tions as training data to reach good performance
levels. Researchers traditionally relied on experts
to annotate the structures of scientific papers, as
shown in Table 1. However, producing such anno-
tations for thousands of papers will be a prolonged
process if we only employ experts, whose availabil-
ity is much more limited than that of non-expert
annotators. As a consequence, most of the human-
annotated corpora that labeled the structures of sci-
entific articles covered no more than one thousand
papers (Table 1). Obtaining expert annotations can
be too slow to respond to COVID-19, so we ex-
plore an alternative approach: using non-expert
crowds, such as workers on Amazon Mechanical
Turk (MTurk), to produce high-quality, useful an-
notations for thousands of scientific papers.

Researchers have used non-expert crowds to
annotate text, for example, for machine transla-
tion (Wijaya et al., 2017; Gao et al., 2015; Yan et al.,
2014; Zaidan and Callison-Burch, 2011; Post et al.,
2012), natural language inference (Bowman et al.,
2015; Khot et al., 2018), or medical report anal-
ysis (Maclean and Heer, 2013; Zhai et al., 2013;
Good et al., 2014; Li et al., 2016). While domain

experts are still valuable in creating high-quality la-
bels (Stubbs, 2013; Pustejovsky and Stubbs, 2012),
and concerns have also been raised over the uses of
MTurk (Fort et al., 2011; Cohen et al., 2016), em-
ploying non-expert crowds has been shown to be an
effective and scalable approach to create datasets.
However, annotating papers is still often viewed
as an “expert task”. Majority of the datasets only
used experts (Table 1) or the information provided
by the paper authors (Table 2) to denote the struc-
tures of scientific papers. One exception was the
SOLVENT project by Chan et al. (2018). They
recruited MTurk workers to annotate tokens in pa-
per abstracts with the research aspects (e.g., Back-
ground, Mechanism, Finding). However, while the
professional editors recruited from Upwork per-
formed well, the MTurk workers’ token-level ac-
curacy was only 59%, which was insufficient for
training good machine-learning models.

This paper introduces CODA-19, the COVID-
19 Research Aspect Dataset, presenting the first
outcome of our exploration in using non-expert
crowds for large-scale scholarly article annota-
tion. CODA-19 contains 10,966 abstracts ran-
domly selected from CORD-19. Each abstract was
segmented into sentences, which were further di-
vided into one or more shorter text fragments. All
168,286 text fragments in CODA-19 were labeled
with a “research aspect,” i.e., Background, Pur-



Corpus Document Instance # of
documents

# of
sentence

# of
classes Public?

Dernoncourt and Lee PubMed structured abstract sentence 195K 2.2M 5 yes
Jin and Szolovits PubMed structured abstract sentence 24K 319K 7 yes

Huang et al. MEDLINE structured abstract sentence 19K 526K 3 no
Boudin et al. PubMed structured abstract sentence 260K 349K 3 no
Banerjee et al. PubMed structured abstract sentence 20K 216K 3 no
Chung PubMed structured abstract sentence 13K 156K 4 no
Shimbo et al. MEDLINE structured abstract sentence 11K 114K 5 no
McKnight and Srinivasan MEDLINE structured abstract sentence 7K 90K 4 no
Chung and Coiera MEDLINE structured abstract sentence 3K 45K 5 no
Hirohata et al. MEDLINE structured abstract sentence 683K ... 4 no
Lin et al. MEDLINE structured abstract sentence 308K ... 4 no
Ruch et al. PubMed structured abstract sentence 12K ... 4 no

Table 2: Comparison of datasets, leveraging structured abstracts that do not require human-labeling effort. Some
works that involve human-labeled data are also present in Table 1.

pose, Method, Finding/Contribution, or Other.
This annotation scheme was adapted from SOL-
VENT (Chan et al., 2018), with minor changes.
Figure 1 shows an example annotated abstract.

In our project, 248 crowd workers from MTurk
were recruited and annotated the whole CODA-19
within ten days.2 Each abstract was annotated by
nine different workers. We aggregated the crowd
labels for each text segment using majority voting.

The resulting crowd labels had a label accuracy
of 82% when compared against the expert labels
on 129 abstracts. The inter-annotator agreement
(Cohen’s kappa) was 0.741 between the crowd la-
bels and the expert labels, while it was 0.788 be-
tween two experts. We also established several
classification baselines, showing the feasibility of
automating such annotation tasks.

2 Related Work

A significant body of prior work have explored
the space of revealing or parsing the structures
of scientific articles, including composing struc-
tured abstracts (Hartley, 2004), identifying argu-
mentative zones (Teufel et al., 1999; Mizuta et al.,
2006; Liakata et al., 2010), analyzing scientific dis-
course (de Waard and Maat, 2012; Dasigi et al.,
2017; Banerjee et al., 2020), supporting paper writ-
ing (Wang et al., 2019; Huang and Chen, 2017),
and representing papers to reduce information over-
load (de Waard et al., 2009). In this section, we
review the datasets that were created to study the
structures of scientific articles.

We categorize all the datasets that denoted the
structures of scientific papers into two categories:

2From April 19, 2020 to April 29, 2020, including the time
for worker training and post-task survey.

(i) the datasets that used human labors to manu-
ally annotate the sentences in scientific articles
(Table 1), and (ii) the datasets that leveraged the
structured abstracts (Table 2).

In the first category, the researchers recruited a
group of annotators— often experts, such as medi-
cal doctors, biologists, or computer scientists— to
manually label the sentences in papers with their re-
search aspects (e.g., background, method, finding).
CODA-19 belongs to the first category. Table 1 re-
views the existing datasets in this category. To the
best of our knowledge, only two other datasets can
be download from the Internet besides our work.
Nearly all of the datasets of this kind were anno-
tated by domain experts or researchers, which thus
limited their sizes significantly. In Table 1, CODA-
19 is the only dataset that contains more than one
thousand papers. Our work presents a scalable and
efficient solution that employs non-expert crowd
workers to annotate scientific papers. Furthermore,
our labels were based on clauses (also referred to as
sentence fragments or sub-sentences), which pro-
vide more detailed information than the majority of
other works that used sentence-level annotations.

In the second category, researchers used the sec-
tion titles that came with structured abstracts in
scientific databases (e.g., PubMed) to label sen-
tences. A structured abstract is an abstract with
distinct, labeled sections (e.g., Introduction, Meth-
ods, Results) (Hartley, 2004). Different journals
have different guidelines for section titles. To form
a coherent and standardized dataset, researchers
often mapped these different titles into a smaller
set of labels. The sizes of the datasets in the second
category (Table 2) were typically larger because
they did not require extra annotating effort. This



line of research is inspiring, however, assigning the
same label to all the sentences in the same section
overlooks the information granularity at the sen-
tence level. Furthermore, not every journal uses
the format of structured abstracts. The language
used for describing a research work with a coherent
paragraph might defer from the language used for
presenting the work with a set of predetermined sec-
tions. Our work creates an in-domain dataset with
high-quality labels for each sentence fragment in
the 10,000+ abstracts, regardless of their formats.

3 CODA-19 Dataset Construction

CODA-19 has 10,966 abstracts that contain a total
of 2,703,174 tokens and 103,978 sentences, which
were divided into 168,286 segments. The data is
released as a 80/10/10 train/dev/test split.

3.1 Annotation Scheme

CODA-19 uses a five-class annotation scheme
to denote research aspects in scientific arti-
cles: Background, Purpose, Method, Find-
ing/Contribution, or Other. Table 3 shows the
full annotation guidelines we developed to instruct
workers. We updated and expanded this guide-
line daily during the annotation process to address
workers’ questions and feedback. This scheme was
adapted from SOLVENT (Chan et al., 2018), with
three changes. First, we added an “Other” category.
Articles in CORD-19 are broad and diverse (Colav-
izza et al., 2020), so it is unrealistic to govern all
cases with only four categories. We are also aware
that CORD-19’s data came with occasional format-
ting or segmenting errors. These cases were also
to be put into the “Other” category. Second, we
replaced the “Mechanism” category with “Method.”
Chan et al. created SOLVENT with the aim of dis-
covering the analogies between research papers at
scale. Our goal was to better understand the contri-
bution of each paper, so we decided to use a more
general word, “Method,” to include the research
methods and procedures that cannot be character-
ized as “Mechanisms.” Also, biomedical literature
widely used the word “mechanism,” which could
also be confusing to workers. Third, we modified
the name “Finding” to “Finding/Contribution” to
allow broader contributions that are not usually
viewed as “findings.”

3.2 Data Preparation

We used Stanford CoreNLP (Manning et al., 2014)
to tokenize and segment sentences for all the ab-
stracts in CORD-19. We further used comma (,),
semicolon (;), and period (.) to split each sen-
tence into shorter fragments, where a fragment has
no fewer than six tokens (including punctuation
marks) and has no orphan parentheses.

As of April 15, 2020, 29,306 articles in CORD-
19 had a non-empty abstract. An average abstract
had 9.73 sentences (SD = 8.44), which were fur-
ther divided into 15.75 text segments (SD = 13.26).
Each abstract had 252.36 tokens (SD = 192.89)
on average. We filtered out the 538 (1.84%) ab-
stracts with only one sentence because many of
them had formatting errors. We also removed the
145 (0.49%) abstracts that had more than 1,200 to-
kens to keep the working time for each task under
five minutes (see Section 3.4). We randomly se-
lected 11,000 abstracts from the remaining data for
annotation. During the annotation process, work-
ers informed us that a few articles were not in
English. We identified these automatically using
langdetect3 and excluded them.

3.3 Interface Design

Figure 2 shows the worker interface, which we
designed to guide workers to read and label all
the text segments in an abstract. The interface
showed the instruction on the top (Figure 2a) and
presented the task in three steps: In Step 1, the
worker was instructed to spend ten seconds to take
a quick glance at the abstract. The goal was to get
a high-level sense of the topic rather than to fully
understand the abstract. In Step 2, we showed the
main annotation interface (Figure 2b), where the
worker can go through each text segment and select
the most appropriate category for each segment one
by one. In Step 3, the worker can review the labeled
text segments (Figure 2c) and go back to Step 2 to
fix any problems.

3.4 Annotation Procedure

Worker Training and Recruitment We first
created a qualification Human Intelligence Task
(HIT) to recruit workers on MTurk ($1/HIT). The
workers needed to watch a five-minute video to
learn the scheme, go through an interactive tutorial
to learn the interface, and sign a consent form to

3langdetect: https://github.com/Mimino666/langdetect



Aspect Annotation Guideline

Background

“Background” text segments answer one or more of these questions:
• Why is this problem important?
• What relevant works have been created before?
• What is still missing in the previous works?
• What are the high-level research questions?
• How might this help other research or researchers?

Purpose

“Purpose” text segments answer one or more of these questions:
• What specific things do the researchers want to do?
• What specific knowledge do the researchers want to gain?
• What specific hypothesis do the researchers want to test?

Method
“Method” text segments answer one or more of these questions:
• How did the researchers do the work or find what they sought?
• What are the procedures and steps of the research?

Finding/
Contribution

“Finding/Contribution” text segments answer one or more of these questions:
• What did the researchers find out?
• Did the proposed methods work?
• Did the thing behave as the researchers expected?

Other

• Text segments that do not fit into any of the four categories above.
• Text segments that are not part of the article.
• Text segments that are not in English.
• Text segments that contain only reference marks (e.g., “[1,2,3,4,5”) or dates (e.g., “April 20, 2008”).
• Captions for figures and tables (e.g. “Figure 1: Experimental Result of ...”)
• Formatting errors.
• Text segments the annotator does not know or is not sure about.

Table 3: CODA-19’s annotation guideline for crowd workers.

obtain the qualification. We granted custom qual-
ifications to 400 workers who accomplished the
qualification HIT. Only the workers with this quali-
fication could do our tasks.4

Posting Tasks in Smaller Batches We divided
11,000 abstracts into smaller batches, where each
batch has no more than 1,000 abstracts. Each ab-
stract forms a single HIT. We recruited nine dif-
ferent workers through nine assignments to label
each abstract. Our strategy was to post one batch
at a time. When a batch was finished, we assessed
its data quality, sent feedback to workers to guide
them, or blocked workers who constantly had low
accuracy before proceeding with the next batch.

Worker Wage and Total Cost We aimed to pay
an hourly wage of $10. The working time of an ab-
stract was estimated by the average reading speed
of English native speakers, i.e., 200-300 words
per minute (Siegenthaler et al., 2012). For an ab-
stract, we rounded up (#token/250) to an integer
as the estimated working time in minutes and paid
($0.05+Estimated Working Minutes× $0.17) for
it. As a result, 59.49% of our HITs were priced at
$0.22, 36.41% were at $0.39, 2.74% were at $0.56,

4Four built-in MTurk qualifications were also used: Locale
(US Only), HIT Approval Rate (≥98%), Number of Approved
HITs (≥3000), and the Adult Content Qualification.

0.81% were at $0.73, and 0.55% were at $0.90.
We posted nine assignments per HIT. Adding the
20% MTurk fee, coding each abstract (using nine
workers) cost $3.21 on average.

In this project, each worker received an average
of ($3.21/9)/1.2 = $0.297 for annotating one ab-
stract. We empirically learned that the CS Expert
(see Section 4) spent an average of 50.8 seconds
(SD=10.4, N=10) to annotate an abstract, yield-
ing an estimated hourly wage of $0.297 × (60 ×
60/50.8) = $21.05; and the MTurk workers in
SOLVENT took a median of 1.3 minutes to anno-
tate one abstract (Chan et al., 2018), yielding an
estimated hourly wage of $0.297 × (60/1.3) =
$13.71. We thus believe that the actual hour wage
for workers were close to or over $10.

3.5 Label Aggregation
The final labels in CODA-19 were obtained by ma-
jority voting over crowd labels, excluding the labels
from blocked workers. For each batch of HITs, we
manually examined the labels from workers who
frequently disagreed with the majority-voted labels
(Section 3.4). If a worker had abnormally low ac-
curacy or was apparently spamming, we retracted
the worker’s qualification to prevent him/her from
taking future tasks. We excluded the labels from
these removed workers when aggregating the final



Interface (b) Main Annotation Interface

(a) Worker Instruction

(c) Annotation Result Panel

Figure 2: The worker interface used to construct CODA-19.

labels. Note that there can be ties when two or
more aspects received the same highest number of
votes (e.g., 4/4/1 or 3/3/3). We resolved ties by
using the following tiebreakers, in order: Finding,
Method, Purpose, Background, Other.

4 Data Quality Assessment

We worked with a biomedical expert and a com-
puter scientist to assess label quality; both experts
are co-authors of this paper. The biomedical expert
(the “Bio” Expert in Table 4) is an MD and also
a PhD in Genetics and Genomics. She is now a
resident physician in pathology at the University
of California, San Francisco. The other expert (the
“CS” Expert in Table 4) has a PhD in Computer Sci-
ence and is currently a Project Scientist at Carnegie
Mellon University.

Both experts annotated the same 129 abstracts
randomly selected from CODA-19. The experts
used the same interface as that of the workers (Fig-
ure 2). We used scikit-learn’s implementation (Pe-
dregosa et al., 2011) to compute the inter-annotator
agreement (Cohen’s kappa). The kappa between
the two experts was 0.788. Table 4 shows the ag-
gregated crowd label’s accuracy, along with the pre-
cision, recall, and F1-score of each class. CODA-
19’s labels have an accuracy of 0.82 and a kappa
of 0.74 when compared against the two experts’
labels. It is noteworthy that when we compared la-
bels between the two experts, the accuracy (0.850)
and kappa (0.788) were only slightly higher. The

crowd workers performed best in labeling “Back-
ground” and “Finding,” and they had nearly perfect
precision for the “Other” category. Figure 3 shows
the normalized confusion matrix for the aggregated
crowd labels versus the biomedical expert’s la-
bels. Many “Purpose” segments were mislabeled as
“Background,” which might indicate more ambigu-
ous cases between these two categories. During the
annotation period, we received several emails from
workers asking about the distinctions between these
two aspects. For example, does “potential applica-
tions of the proposed work” count as “Background”
or “Purpose”?

5 Classification Baselines

We further examined machines’ capacity for an-
notating research aspects automatically. Seven
baseline models were implemented: Linear SVM,
Random Forest, Multinomial Naive Bayes (MNB),
CNN, LSTM, BERT, and SciBERT.

Data Preprocessing The tf-idf feature was used
for Linear SVM and Random Forest. We turned
all words into lowercase and removed those with
frequency lower than 5. The final tf-idf feature
contained 16,775 dimensions. Two variations of
feature were used for MNB, the n-gram counts
feature and the n-gram tf-idf feature. Using grid
search method, the n-gram counts feature combin-
ing unigram, bigram, and trigram with minimum
frequency of 3 yielded the best result. The final
n-gram feature contained 181,391 dimensions. The



Eval.
Label

Gold
Label

Background Purpose Method Finding Other acc kappa
P R F1 P R F1 P R F1 P R F1 P R F1

Crowd Bio .827 .911 .867 .427 .662 .519 .783 .710 .744 .874 .838 .856 .986 .609 .753 .822 .741
Crowd CS .846 .883 .864 .700 .611 .653 .818 .633 .714 .800 .931 .860 .986 .619 .761 .821 .745

CS Bio .915 .966 .940 .421 .746 .538 .670 .785 .723 .958 .789 .865 .867 .852 .860 .850 .788

Table 4: Crowd performance using both Bio Expert and CS Expert as the gold standard. CODA-19’s labels have
an accuracy of 0.82 and a kappa of 0.74, when compared against two experts’ labels. It is noteworthy that when
we compared labels between two experts, the accuracy (0.850) and kappa (0.788) were only slightly higher.

Background Purpose Method Finding Other
Model P R F1 P R F1 P R F1 P R F1 P R F1 Accuracy
# Sample 5062 821 2140 6890 562 15475
SVM .658 .703 .680 .621 .446 .519 .615 .495 .549 .697 .729 .712 .729 .699 .714 .672
RF .671 .632 .651 .696 .365 .479 .716 .350 .471 .630 .787 .699 .674 .742 .706 .652
MNB-count .654 .714 .683 .549 .514 .531 .570 .585 .577 .711 .691 .701 .824 .425 .561 .665
MNB-tfidf .655 .683 .669 .673 391 .495 .640 .469 .541 .661 .754 .704 .757 .383 .508 .659
CNN .649 .706 .676 .612 .512 .557 .596 .562 .579 .726 .702 .714 .743 .795 .768 .677
LSTM .655 .706 .680 .700 .464 .558 .634 .508 .564 .700 .724 .711 .682 .770 .723 .676
BERT .719 .759 .738 .585 .639 .611 .680 .612 .644 .777 .752 .764 .773 .874 .820 .733
SciBERT .733 .768 .750 .616 .636 .626 .715 .636 .673 .783 .775 .779 .794 .852 .822 .749

Table 5: Baseline performance of automatic labeling using the crowd labels of CODA-19. SciBERT achieves
highest accuracy of 0.749 and outperforms other models in every aspects.

Figure 3: The normalized confusion matrix for the
CODA-19 labels versus the biomedical expert’s labels.

n-gram tf-idf feature combining unigram, bigram,
and trigram with minimum frequency of 10 yielded
the best result where the dimensions is 41,966. For
deep-learning approaches, the vocabulary size was
16,135, where tokens with frequency lower than 5
were replaced by <UNK>. Sequences were padded
with <PAD> if containing less than 60 tokens and
were truncated if containing more than 60 tokens.

Models Machine-learning approaches were im-
plemented using Scikit-learn (Pedregosa et al.,
2011) and deep-learning approaches were imple-
mented using PyTorch (Paszke et al., 2019). The
following are the training setups.

• Linear SVM: We did a grid search for hyper-
parameters and found that C = 1, tol =
0.001, and hinge loss yielded the best results.

• Random Forest: With the grid search, 150
estimators yielded the best result.

• Multinomial Naive Bayes (MNB): Several
important early works used Naive Bayes mod-
els for text classification (Rennie et al., 2003;
McCallum et al., 1998). When using n-gram
counts as the feature, the default parameter,
alpha = 1.0, yielded the best result. For the
one using n-gram tf-idf feature, alpha = 0.5
yielded the best result.

• CNN: The classic CNN (Kim, 2014) was im-
plemented. Three kernel sizes (3, 4, 5) were
used, each with 100 filters. The word embed-
ding size was 256. A dropout rate of 0.3 and
L2 regularization with weight 1e − 6 were
used when training. We used the Adam op-
timizer, with a learning rate of 5e − 5. The
model was trained for 50 epochs and the one



with highest validation score was kept for test-
ing.

• LSTM: We used 10 LSTM layers to encode
the sequence. The encoded vector was then
passed through a dense layer for classification.
The word embedding size and the LSTM hid-
den size were both 256. The rest of the hyper-
parameter and training setting was the same
as that of the CNN model.

• BERT: Hugging Face’s implementa-
tion (Wolf et al., 2019) of the Pretrained
BERT (Devlin et al., 2018) was used for
fine-tuning. We fine-tuned the pretrained
model with a learning rate of 3e − 7 for
50 epochs. Early stopping was used when
no improvement occurred in the validation
accuracy for five consecutive epochs. The
model with the highest validation score was
kept for testing.

• SciBERT: Hugging Face’s implementa-
tion (Wolf et al., 2019) of the Pretrained SciB-
ERT (Beltagy et al., 2019) was used for fine-
tuning. The fine-tuning setting is the same as
that of the BERT model.

Result Table 5 shows the results for the six base-
line models: SciBERT preformed the best in overall
accuracy. When looking at each aspect, all the mod-
els performed better in classifying “Background,”
“Finding,” and “Other,” while identifying “Purpose”
and “Method” was more challenging.

6 Discussion

Annotating scientific papers was often viewed as
an “expert task” that is difficult or impossible for
non-expert annotators to do. Many datasets that la-
beled scientific papers were thus produced by small
groups of experts. For example, two researchers
manually created the ACL RD-TEC 2.0, a dataset
that contains 300 scientific abstracts (QasemiZadeh
and Schumann, 2016); a group of annotators “with
rich experience in biomedical content curation” cre-
ated MedMentions, a corpus containing 4,000 ab-
stracts (Mohan and Li, 2019); and many datasets
used in biomedical NLP shared tasks were man-
ually created by the organizers and/or their stu-
dents, such as the ScienceIE in SemEval’17 (Au-
genstein et al., 2017) and Relation Extraction in
SemEval’18 (Gábor et al., 2018). Our work sug-

gests that non-expert crowds can be used for these
types of data-labeling tasks.

Prior work often used crowd workers to anno-
tate pieces of lower-level information on papers or
medical documents, such as images (Heim et al.,
2018) or named entities (e.g., medical terms (Mo-
han and Li, 2019), disease (Good et al., 2014),
medicine (Abaho et al., 2019).) Our work shows
that crowd workers, to certain extent, can compre-
hend the high-level structures and discourses in
papers, and therefore could be assigned with more
complex, higher-level tasks.

7 Conclusion and Future Work

This paper introduces CODA-19, a human-
annotated dataset that codes the Background, Pur-
pose, Method, Finding/Contribution, and Other sec-
tions of 10,966 English abstracts in the COVID-19
Open Research Dataset. CODA-19 was created by
a group of MTurk workers, achieving a label qual-
ity comparable to that of experts. We demonstrated
that a non-expert crowd can be rapidly employed
at scale to join the fight against COVID-19.

One future direction is to improve classification
performance. We evaluated the automatic labels
against the biomedical expert’s labels, and the SciB-
ERT model achieved an accuracy of 0.774 and a
Cohen’s kappa of 0.667, indicating some space for
further improvement. Furthermore, one motiva-
tion for spotting research aspects automatically is
to help search and information extraction (Teufel
et al., 1999). We have teamed up with the group
who created COVIDSeer5 to explore the possible
uses of CODA-19 in such systems.
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Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haifa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 task 7:
Semantic relation extraction and classification in sci-
entific papers. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
679–688.

Mingkun Gao, Wei Xu, and Chris Callison-Burch.
2015. Cost optimization in crowdsourcing transla-
tion. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL 2015), Denver, Col-
orado.

Benjamin M Good, Max Nanis, Chunlei Wu, and An-
drew I Su. 2014. Microtask crowdsourcing for dis-
ease mention annotation in pubmed abstracts. In Pa-
cific Symposium on Biocomputing Co-Chairs, pages
282–293. World Scientific.

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1101/2020.04.20.046144
https://doi.org/10.1101/2020.04.20.046144
http://www.cis.upenn.edu/~ccb/publications/cost-optimization-for-crowdsourcing-translation.pdf
http://www.cis.upenn.edu/~ccb/publications/cost-optimization-for-crowdsourcing-translation.pdf


Kazuo Hara and Yuji Matsumoto. 2007. Extracting
clinical trial design information from medline ab-
stracts. New Generation Computing, 25(3):263–
275.

James Hartley. 2004. Current findings from research
on structured abstracts. Journal of the Medical Li-
brary Association, 92(3):368.

Eric Heim, Tobias Roß, Alexander Seitel, Keno
März, Bram Stieltjes, Matthias Eisenmann, Jo-
hannes Lebert, Jasmin Metzger, Gregor Sommer,
Alexander W Sauter, et al. 2018. Large-scale med-
ical image annotation with crowd-powered algo-
rithms. Journal of Medical Imaging, 5(3):034002.

Kenji Hirohata, Naoaki Okazaki, Sophia Ananiadou,
and Mitsuru Ishizuka. 2008. Identifying sections in
scientific abstracts using conditional random fields.
In Proceedings of the Third International Joint Con-
ference on Natural Language Processing: Volume-I.

Hen-Hsen Huang and Hsin-Hsi Chen. 2017. Disa:
A scientific writing advisor with deep information
structure analysis. In IJCAI, pages 5229–5231.

Ke-Chun Huang, I-Jen Chiang, Furen Xiao, Chun-
Chih Liao, Charles Chih-Ho Liu, and Jau-Min Wong.
2013. Pico element detection in medical text with-
out metadata: Are first sentences enough? Journal
of biomedical informatics, 46(5):940–946.

Natalia B Hubbs, Mareena M Whisby-Pitts, and
Jonathan L McMurry. 2019. Kinetic analysis of bac-
teriophage sf6 binding to outer membrane protein a
using whole virions. bioRxiv, page 509141.

Di Jin and Peter Szolovits. 2018. Pico element detec-
tion in medical text via long short-term memory neu-
ral networks. In Proceedings of the BioNLP 2018
workshop, pages 67–75.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering.

Su Nam Kim, David Martinez, Lawrence Cavedon, and
Lars Yencken. 2011. Automatic classification of
sentences to support evidence based medicine. In
BMC bioinformatics, volume 12, page S5. Springer.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.
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