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Abstract

Probabilistic circuits (PCs) offer a promising av-
enue to perform embedded reasoning under un-
certainty. They support efficient and exact compu-
tation of various probabilistic inference tasks by
design. Hence, hardware-efficient computation of
PCs is highly interesting for edge computing ap-
plications. As computations in PCs are based on
arithmetic with probability values, they are typi-
cally performed in the log domain to avoid under-
flow. Unfortunately, performing the log operation
on hardware is costly. Hence, prior work has fo-
cused on computations in the linear domain, re-
sulting in high resolution and energy requirements.
This work proposes the first dedicated approximate
computing framework for PCs that allows for low-
resolution logarithm computations. We leverage
Addition As Int, resulting in linear PC computa-
tion with simple hardware elements. Further, we
provide a theoretical approximation error analy-
sis and present an error compensation mechanism.
Empirically, our method obtains up to 357× and
649× energy reduction on custom hardware for
evidence and MAP queries respectively with little
or no computational error.

1 INTRODUCTION

The development of smart sensing and Internet-of-things
applications based on embedded artificial intelligence (AI)
pushes the computation of machine learning (ML) meth-
ods directly onto edge devices. On one hand, dedicated ML
processors have increased the energy efficiency of deep feed-
forward neural networks (NNs) by 10× – 100× compared
to Graphical Processing Units [Seo et al., 2022]. On the
other, NNs that have been adopted into real-world use often
raise concerns related to their reliability, fairness, and inter-
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Figure 1: Potential hardware cost savings ( ) for infer-
ence in probabilistic circuits through approximate comput-
ing with addition-as-int (AAI).

pretability [Marcus, 2020, Heljakka et al., 2023] alongside
high inference costs [Xu et al., 2018, Strubell et al., 2019].
Moreover, NNs are generally trained on only a pre-specified
task. Thus, real-world edge AI applications require an ef-
fective hardware acceleration of ML models that are prob-
abilistic, i.e., they enable reasoning in an uncertain world
[Ghahramani, 2015], and tractable, i.e., they can reliably
answer many probabilistic queries without re-deployment.

Recent work on tractable probabilistic models, specifically
on probabilistic circuits (PCs) [Choi et al., 2020], poses a
promising avenue as these models (i) exhibit high expres-
sive efficiency (representational power), (ii) enable reliable
[Ventola et al., 2023, Peharz et al., 2019] and fair [Choi,
2022] reasoning, and (iii) allow many probabilistic queries
to be computed tractably by design. Moreover, PCs can
be understood as computational graphs composed of sim-
ple arithmetic operations, easily translated into hardware
computations. Yet, while pioneering works have explored
acceleration of PCs on hardware [Choi et al., 2022, Sommer
et al., 2018, Sommer et al., 2020, Shah et al., 2021, Shah
et al., 2022], the hardware acceleration of PCs still poses
open challenges. In particular, their irregularity (i.e., PCs
are sparse, limiting computation parallelism [Shah et al.,
2019]) and computation resolution (i.e., arithmetic opera-
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tions are performed on probabilities that can get as low as
10−88 [Sommer et al., 2020]) hinders their deployment on
edge devices, where efficiency and low resolution are key.

Tackling the computation resolution challenge, we start with
the following observation: in software, PC inference meth-
ods typically use a logarithm representation for the computa-
tion, alternating between logarithm multiplication and linear
additions ( using the "log-sum-exp" trick to transfer the
operand back to the linear domain, add them, and convert
them back to logarithm), while all hardware PC acceler-
ators prefer using a fully linear computation with higher
resolution [Sommer et al., 2020, Shah et al., 2022]. Hard-
ware limitations explain this difference. First, alternating
between logarithm and linear domains would require spe-
cific hardware blocks for encoding/decoding, which would
induce a higher cost and limit speed. Second, computing a
PC fully in the logarithm domain is inefficient due to the
prohibitive cost of logarithmic adders [Sommer et al., 2020].
Instead, a full linear computation, using floating-point or
Posit formats, is preferred [Sommer et al., 2020, Shah et al.,
2022]. In this case, as illustrated in Fig. 1, the hardware
cost steadily increases with the model complexity to handle
the increasing dynamic range of the PC. Typical PC bench-
marks require an effective range of 30-40 floating-point bits
[Sommer et al., 2020]. As a comparison, deep NNs typically
require 5-8 integer bits for inference. This cost is heavily
dominated by multiplications, i.e., a floating-point multi-
plier consumes 6× more energy than an adder in a 45 nm
process technology [Olascoaga et al., 2019].

We propose a dedicated approximate computing framework
to efficiently compute PCs on hardware. It is based on a
similar alternation between log and linear computations,
which we refer as the "exp-sum-log" trick. This computation
leverages Addition As Int (AAI) [Mogami, 2020] (will be
explained later in Section 3.2) to approximate the product
of two variables as a log addition, relying on Mitchell’s
approximation [Mitchell, 1962] (will be explained later in
Section 3.2) .

Our contributions can be summarized as follows:

• From theoretical foundations, we devise a dedicated
strategy for the safe multiplier replacement with AAI,
minimizing the accuracy loss (Section 4.3).

• We compensate AAI induced loss in accuracy through
a specific error correction (Section 4.4).

• Lastly, we derive a hardware-efficient architecture
for marginal and MAP inference (Section 4.5), and
show through hardware simulations that the proposed
approach substantially reduces computational costs.
In particular, we observe savings of up to 357× for
marginal queries and up to 649× for MAP queries, in
both cases with low approximation error (Section 5).

GitHub repository avaliable: GitHub Repository.

2 BACKGROUND

Notation: We use upper case letters to denote random
variables (RVs) (e.g., X) and lower case letters for
realizations of RVs (e.g., x). Further, we use bold font for
vectors (e.g., X,x) and matrices (e.g., M ).

Probabilistic circuits (PCs) [Choi, 2022] are a unifying
framework of existing tractable models (e.g., [Darwiche,
2003, Poon and Domingos, 2011, Rahman et al., 2014, Kisa
et al., 2014]). They provide a concise language to represent
and reason about tractable (exact and efficient) probabilistic
inference.

Given a set of d RVs X , a probabilistic circuit is a function
c : Rd → R+ (typically a density or mass function) repre-
sented by a parameterized computational graph G consisting
of sum ⊕, product ⊗, and leaf units. Each computational
unit is defined over a set of variables, called its scope [Trapp
et al., 2019], and every non-leaf unit computes an algebraic
operation over sub-circuits. The scope of each non-leaf unit
is given by the union of the scopes of its sub-circuits (in-
puts). Sum units compute a weighted sum of sub-circuits,
i.e.,

∑k
si=1 wsicsi(x) with wsi ≥ 0, product units multi-

ply sub-circuits, i.e., ci(x) · cj(x), and leaf units evaluate
a tractably integrable function, e.g., the indicator function
1[Xu = 1], on their inputs. W.l.o.g. we assume that product
units compute binary products and sum nodes are normal-
ized, i.e.,

∑k
si=1 wsi = 1. Fig. 2(a) illustrates a PC over

discrete RVs using indicators.

A particularly relevant class of PCs are smooth and decom-
posable circuits, as both properties are requirements for
many probabilistic queries to be tractable, i.e., time com-
plexity is linear in the model size. We will briefly review the
relevant properties.

Definition 2.1 (Smooth & Decomposability). A sum unit
is smooth if all of its sub-circuits have the same scope,
i.e.,

∑k
si=1 wsicsi(x). Further, a product unit is decompos-

able if its sub-circuits have pairwise disjoint scopes, i.e.,
ci(y) · cj(z) with Y ∩ Z = ∅. A PC is smooth if all sum
units are smooth and decomposable if all product units are
decomposable.

Another important sub-class of PCs are deterministic PCs, as
determinism is a sufficient condition for tractable maximum-
a-posteriori (MAP) inference and many relevant quantities,
e.g., KL-divergence, can be computed analytically.

Definition 2.2 (Determinism). A sum unit is deterministic
if for every complete evidence x at most one of its inputs
(sub-circuits) has a positive value. Consequently, a PC is
deterministic if all sum units are deterministic.

We refer the reader to [Vergari et al., 2021] for a detailed
exposé on the structural properties of PCs and their interplay
with the tractability of computations.
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(a) Probabilistic Circuit
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Figure 2: Illustration of a PC (a) over discrete RVs (X1, X2, X3) and the corresponding hardware realization of MAP
inference (b). For this, sum nodes are replaced by max operators, and an additional propagation path for information bits
(vi) is added to back-track the most probable path. Arrows indicate propagation direction.

In this work, all PCs are considered smooth and decom-
posable, and we present additional theoretical results for
deterministic PCs. Our proposal for hardware acceleration
utilizes those structural properties to perform error correc-
tion, as highlighted in Section 4.

2.1 PROBABILISTIC CIRCUITS ON HARDWARE

The deployment of PCs on hardware requires additional care
compared to software inference: 1 defining the format
and computational resolution, 2 specifying the hard-
ware generation process, and 3 implementing support
for probabilistic queries. We will briefly review common
approaches for 1 and 2 . A dedicated PC hardware for 3
is presented in Section 4.5.

1 Inferences on hardware are typically computed in the
linear domain, with formats allowing for a large dynamic
range, such as floating-point or posit [Sommer et al., 2020,
Shah et al., 2021]. The resolution (i.e., the number of expo-
nent and mantissa bits) and energy can then be optimized
depending on the PC structure [Shah et al., 2019, Sommer
et al., 2020], which requires customized arithmetic blocks.

2 To generate the hardware, a classical approach trans-
lates each computational unit (sum, product) into a separate
hardware entity and connects multiple entities accordingly
[Sommer et al., 2020, Sommer et al., 2018, Shah et al.,
2019]. This approach is followed in our work, with hard-
ware described in the hardware language Chisel. A more
advanced approach maps any PC to a generic processor
[Shah et al., 2022, Choi et al., 2022], containing several
parallel paths (or processing elements), each computing part
of the PC graph. This requires a dedicated graph compiler
[Shah et al., 2021].

3 APPROXIMATE COMPUTING FOR PCS

Computations in PCs involve alternating between additions
and multiplications. As repetitive multiplications of prob-
ability values can lead to underflow, in software, computa-
tions are typically performed in the log domain (i.e. model
variables are represented as their logarithm). As log sums
require significant computing resources, to evaluate sum
units, one needs to transfer between the log to the linear do-
main and back. This is done using the ‘log-sum-exp’ trick, to
ensure numerical stability. Such trick is costly on hardware.
It requires either a look-up table (LUT) [Xue et al., 2020]
for the linear-log conversion, resulting in high resource con-
sumption and slower computation, or a full computation in
either domain. The log domain computation being limited by
the prohibitive hardware cost of log adders [Sommer et al.,
2020], PC hardware accelerators prefer the linear domain us-
ing high resolution (thus hardware cost) to avoid underflow.
Instead, our proposed solution implements a similar ‘trick’
that we could explain as a exp-sum-log, where we perform
the costly linear multiplication in an approximated loga-
rithmic form with simple hardware, without requiring an
explicit transfer into log domain. After preliminary consid-
erations, this section details how the proposed methodology
approximates a floating point multiplication, and why this
is useful for PC inference.

3.1 PRELIMINARY CONSIDERATIONS

P1: Floating point computation The IEEE 754 standard
floating-point format (float) uses one sign bit S, and sets of
exponentE and mantissaM bits. A number x is represented
as x = (−1)Sx2Ex−b(1 +Mx), where b is the exponent
bias. For example, the number x = 1/3 represented with 16
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bits (half-precision) with b = 15, results in:

1/3 = (−1)0213−b(1 +
341

1024
) (1)

1/3 = 0 0 1 1 0 1

Exponent

23 + 22 + 1

0 1 0 1 0 1 0 1 0 1

Mantissa

1
22 + · · ·+ 1

210 = 341
1024

Given two float numbers representing probabilities x =
2Ex(1 +Mx) ≥ 0 and y = 2Ey (1 +My) ≥ 0, their exact
product x · y is given as:

x · y = 2Ex+Ey (1 +Mx)(1 +My) (2)

If Mx +My +MxMy < 1:

= 2Ex+Ey (1 +Mx +My +MxMy)

Otherwise:

= 2Ex+Ey+1(1 + 1/2(Mx +My +MxMy − 1)).

This operation comprises four steps: (1) add the exponents,
(2) multiply the mantissa, (3) normalize the mantissa to
ensure it is smaller than one, and (4) round the final result
to ensure it is encoded in the same number of bits. In par-
ticular, the term MxMy requires a higher resolution than
both original mantissa values, especially when representing
small values as in PCs. See Appendix A for more detail.

P2: Mitchell’s approximation Mitchell’s approximation
[Mitchell, 1962], initially intended to provide a log approx-
imation of integer numbers encoded in binary. Consider
a N-bit integer binary string z, which can be written as∑N−1

i=0 2izi, where zi denotes the ith bit in the string. As-
suming the leading one bit is at position k, this string can
be represented as:

z =

N−1∑
i=0

2izi = 2k(1 +

k−1∑
i=0

2i−kzi)︸ ︷︷ ︸
=2k(1+F )

(3)

In this case, every bit at positions (0, . . . , k − 1) has a neg-
ative power of two and, hence, represents a fractional part
F by definition. From the representation created by Eq. (3),
i.e., log2(z) = k+ log2(1 + F ), Mitchell’s method uses an
approximation given by log2(1 + F ) ≈ F .

We can see the error is zero when the fractional part is zero
or one and Mitchell’s approximation underestimates the
exact value due to the difference of log2(1 + F ) and F , c.f.
Fig. 3.
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F ≈ log2(1 + F )
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Figure 3: Input dependent approximation error intro-
duced through Mitchell’s method.

3.2 FROM ‘LOG-SUM-EXP’ TO ’EXP-SUM-LOG’

Based on the preliminary considerations, Addition as
Int (AAI) [Mogami, 2020] extends Mitchell’s method to
floating-point multiplication. Using Eq. (2) from Section 3.1,
the log computation of the product in float is given as:
log2(x · y) =

Ex + Ey + log2(1 +Mx) + log2(1 +My). (4)

With no approximation, computing this would require the
transfer of (1+Mx) and (1+My) from linear to log domain,
introducing a high hardware cost if done exactly. Instead,
AAI applies Mitchell’s approximation, i.e. log2(1 +M) by
log2(1 +M) ≈M (see Eq. (3) in P1). Eq. (4) becomes:

log2(x · y) ≈ Ex + Ey +Mx +My (5)

Thus, AAI implicitly interprets the multiplication as a loga-
rithm addition (’exp-sum-log’) in a hardware-efficient way,
requiring only one integer addition. This is particularly in-
teresting for PCs where multiplication clearly dominate the
hardware cost (c.f. Fig. 1).

4 HARDWARE-EFFICIENT INFERENCE

In principle, Section 3 showed that AAI can readily replace
float multipliers used in existing PC accelerators such as
[Sommer et al., 2020, Shah et al., 2019]. Yet, the AAI ap-
proximation can quickly impact the model’s accuracy, as
one AAI block can have up to 25% approximation error. It
is shown in Fig. 6 for evidence queries on various bench-
marks (see Section 5) that randomly replacing even a small
percentage of multipliers can significantly increase the error,
in turn limiting energy savings.

This section starts with the theoretical analysis of evidence
queries (Section 4.1) and MAP queries (Section 4.2). Later,
our framework mitigates the introduced error in two dedi-
cated ways: safe multiplier replacement (Section 4.3) and
error correction (Section 4.4), detailed in this section.

4.1 THEORETICAL ANALYSIS OF EVIDENCE
QUERIES

When leveraging approximate computations in probabilistic
reasoning models, it is important to understand the overall
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impact of the approximation and characterize the introduced
error. Therefore, we will assess the approximation error for
evidence (or marginal under complete evidence, MAR) and
maximum-a-posteriori (MAP) queries. We are interested
in computing the expected loss of information when using
AAI to approximate the exact multiplication. For this, we
leverage the KL-divergence between the exact PC (c) and
the circuit approximated through AAI (c̃), i.e.,

DKL (c||c̃) =
∫
x∈X

c(x)
(
log c(x)− log c̃(x)

)
dx. (6)

We note that the AAI approximated circuit does not have to
integrate to one as AAI underestimates the exact multiplica-
tion result and our error correction may be understood as an
implicit renormalization.

Deterministic Circuits If the circuit to approximate is
deterministic (c.f., Definition 2.2), the KL divergence from c̃

to c is available in closed-form [Vergari et al., 2021]. Lever-
aging this, we obtain a closed-form difference to AAI:

DKL (c||c̃) =
∫

c(x)
∑

wi∈T(x)

∆widx, (7)

where ∆wi
is the log-space approximation error of AAI for

the ith weight of the sub-tree T(x), i.e.,

log p(T(x))− log p̃(T(x))

∝
∑

wi∈T(x)

log2(1 +Mwi
)−Mwi︸ ︷︷ ︸

=∆wi

, (8)

where we assume log-base 2 in the last step. Consequently,
we obtain the approximation error of:

DKL (c||c̃) = ∆det =
∑
wi∈c

∆wi

∑
Tt∈c
wi∈Tt

p(Tt), (9)

as the integral in Eq. (8) simplifies to a finite sum. Eq. (9)
can be computed efficiently through a bottom-up path. The
full derivation is given in Appendix B.

Non-Deterministic Circuits In many application scenar-
ios, the interest is in non-deterministic circuits (e.g., [Poon
and Domingos, 2011, Gens and Pedro, 2013, Trapp et al.,
2019]). However, computing the KL divergence in this case
is not possible analytically. Therefore, we present an approx-
imation on the KL divergence that allows the estimation of
the error induced by AAI, denoted as ∆dc. For this, we use
the fact that log(x + y) ≈ log(x) + y/x and after some
algebraic manipulations, we obtain an approximation on the
KL given by: ∆dc ≈∫

c(x)

 ∑
wi∈Tσx(1)

∆wi
−

k∑
j=2

p̃(Tσx(j))

dx+ C, (10)

where ∆wi again denotes the ith log-space approximation
error of AAI for the respective sub-tree. Computing Eq. (10)
is still intractable and requires either Monte-Carlo integra-
tion or the use of Eq. (9), which bounds Eq. (10). A detailed
derivation is given in Appendix B.

4.2 MAP QUERIES

When performing MAP queries, we are interested in esti-
mating the sensitivity of MAP inference to approximate
computing. For this, we examine whether the most probable
path in the PC stays the same when AAI replaces exact
multipliers.

First, recall that in the case of MAP inference, sum units are
replaced by max operations [Choi, 2022]. Our analysis is
based on a max operation over two sub-circuits, denoted as
left (l) and right (r) branches respectively. Each branch/sub-
circuit is a binary product over inputs denoted as xl, xr and
yl, yr respectively. Let ∆E denote the difference in exponent
values for both paths, i.e., ∆E = Exl

+Eyl
− (Exr +Eyr ),

where E denotes the exponent. Further, ∆M and ∆M ′ are
the differences in mantissa values for both paths for exact
(∆M ) and AAI (∆M ′ ) computations, respectively. Note that
only the mantissa calculation is affected by AAI (as shown
by Eq. (4) and Eq. (5)).

We identify the following two failure cases: (i) the case that
∆E = 0 and ∆M∆M ′ ≤ 0, (ii) the case that ∆E ≥ 0 and
(1 + ∆M/∆E)(1 + ∆M ′/∆E) ≤ 0. We estimate that the
probability of the first failure case, denoted as f∆e=0, is
P (f∆e=0) = 0.0227. Moreover, we find that the second
failure case is a function of ∆E which increases with model
depth and, hence, the probability of failure decreases with
increasing model depth. A detailed derivation can be found
in Appendix B.

Therefore, we conclude that MAP inference in PCs is mildly
influenced by approximate computations through AAI.

4.3 SAFE MULTIPLIER REPLACEMENT

Based on Eq. (9) and Eq. (10), we devise a greedy algorithm
that gradually replaces multiplications with AAI while mini-
mizing the introduced error. To do so, we heuristically select
the subset of multipliers to be replaced according to ∆det
or ∆dc, as the error is an additive function of ∆w terms. In
particular, we compute the KL divergence for each multi-
plication and then greedily select those having the smallest
contribution to the overall divergence. Henceforth, we can
trade off approximation error and energy costs by employing
heuristically selection based on ∆det or ∆dc.
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4.4 ERROR CORRECTION

The error introduced by AAI can result in substantial ap-
proximation errors in deep models as the error accumulates
with an increasing number of multiplications. To reduce
the error caused by AAI, [Saadat et al., 2018] proposed to
correct this error by computing an expected error, assuming
uniform probability for all possible floating-point numbers.
However, in PCs this assumption will typically not hold true.
Therefore, we propose to correct for the expected error w.r.t.
the probability distribution represented by the circuit, i.e.,

log ϵ = Ex∼c[log c(x)/̃c(x)] (11)

and define log c̃(x) + log ϵ to be the corrected log probabil-
ity of the AAI approximated circuit. Even though Eq. (11)
is tractable for deterministic PCs through recursive evalu-
ation of the circuit, it is not possible to tractably estimate
the expected error for general circuits. Henceforth, we use
Monte-Carlo integration to approximate the expected error,
i.e.,

log ϵ ≈ 1/n

n∑
i=1

log c(xi)− log c̃(xi) (12)

with xi ∼ c drawn from the exact model. Next, we will
present an algorithm summarizing our approach.

Algorithm In Algorithm 1 we outline an algorithm that
computes marginal queries for PCs using approximate com-
puting with additional error correction. The algorithm it-
erates over all units in the circuit in topological order and
computes the approximate value for each unit (line 5 – 12)
and in the end, obtains the root node value D[c] (line 13).
When storing the result, we correct the computation error
using the pre-calculated error correction term (line 13), c.f.
Eq. (11). For MAP queries, the sum unit is computed by
applying a max operator, and error correction is not needed.

The AAI function is outlined in Algorithm 2.

4.5 DETAILS ON THE HARDWARE GENERATION

Computing probabilistic queries typically requires special-
ized hardware. For example, MAP inference requires re-
placing sum units with max operators and back-trace the
most probable result [Choi et al., 2022, Shah et al., 2019].
We developed a specific hardware implementation for that,
shown in Fig. 2(b). Every max operation has an additional
OR operator (∨) to record the most probable child node.
Moreover, information is concatenated by AND (∧) opera-
tors at each product unit to record the most probable path.
Hardware generation can then be performed by describing
the PC using the hardware language Chisel, from which we
can implement the PC in hardware through Verilog/VHDL.

Algorithm 1 Approximate MAR Inference in PCs
Require: Units of c in topological order G, test data D =
{xi}ni=1, error correction log ϵ

1: function APPROXIMATE MAR(c, G, D, log ϵ)
2: r = 0, D = {} ▷ Initialize variables
3: for all xi ∈ D do
4: for all n ∈ G do
5: if n is sum unit ⊕ then
6: D[n]←

∑k
si

AAI(wn,si , D[csi ])
7: else if n is product unit ⊗ then
8: D[n]← AAI(D[ci], D[cj ])
9: else ▷ leaf

10: D[n]← p(xi|θn)
11: end if
12: end for
13: r[i]← D[c]exp(log ϵ) ▷ Error correction
14: end for
15: return r
16: end function

Algorithm 2 AAI
1: function AAI(a, b)
2: bi_a← a, bi_b← b ▷ represent in floating-point
3: bi_r ← bi_a+ bi_b ▷ binary integer addition
4: r ← bi_r ▷ read binary result as floating-point
5: return r
6: end function

5 EXPERIMENTS

In this section, we aim to answer the following questions:
1 Does AAI reduce the power consumption of multipliers

on hardware? 2 How does the number of bits affect the
energy savings and approximation error for MAR and MAP
inference in probabilistic circuits? 3 Can we reduce the
energy consumption of probabilistic circuits with little or
no approximation error?

Experimental setup We evaluated our approach on four
benchmark data sets: NLTCS, Jetser, DNA, and Book, a
subset of frequently used data sets in the community (e.g.,
[Rooshenas and Lowd, 2014]). We generated PC structures
and parameters using LearnSPN [Gens and Pedro, 2013],
resulting in tree-shaped non-deterministic PCs.

Baseline comparison Our approach compares to quantiza-
tion methods (both bit reduction and AAI quantize the signal
to trade off accuracy with energy) and does not modify the
PC structure (unlike pruning methods). Hence, we compare
with two baselines: (1) an exact float computation with full
precision (referred to as ’64-bit’), standard but not always
resource-efficient, and (2) a quantized exact computation,
corresponding to minimum number of bits introducing the
smallest error with float (referred Nbe). We then compute
the energy and the power consumption as listed in Table 1.
The energy is the cumulative energy of every multiplier in
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Figure 4: MAP accuracy (ACC) and MAR error for AAI (dashed) and exact (solid) multipliers for varying numbers of
mantissa bits and four different numbers of exponent bits ( 8 bits, 9 bits, 10 bits, 11 bits ). All results are
computed relative to exact multiplication with 64-bit. AAI significantly reduces the energy costs (x-axis) while obtaining
comparable and robust results compared to exact multipliers in most cases.

the model. The power consumption of each multiplier is
simulated with 65nm CMOS technology, with a unit of uW
(see Appendix A.2). This value is normalized regarding the
baseline energy calculated for full precision floating point.

First hardware results on FPGA To illustrate the mem-
ory and speed performance, we implemented one NLTCS
MAR query in FPGA device Virtex7(xc7vx690) using AAI
and floating point under their MAR optimal bits configu-
ration. From Table 2, we can see that AAI uses less LUT
as logic and does not use DSP blocks, AAI also consumes
less memory which is realized by registers, and achieves
higher maximum frequency (50 MHz for AAI and 33 MHz
for floating point).

Detailed results on simulated hardware Hardware syn-
thesis on FPGA requires significant time and resources, and
may result in inaccurate estimates as the logic gates need to
fit into existing blocks on the FPGA (i.e., FPGAs use larger
computational blocks that do not fully reflect a customized
hardware implementation). Hence, the more detailed ex-
periments presented in Fig. 4, Fig. 8, Fig. 9 and Table 1
are created with an open-source Python model simulating
the Chisel code with the energy model presented in Fig. 5.
For each benchmark, we generated 5k samples from the
exact circuit to estimate the expected error. The calculated
expected error is then applied on the sample set and also on
the test set to estimate the performance. Additional perfor-
mance for error correction and for test set can be found in
Appendix C.

1 Does AAI reduce the power consumption? To con-
firm the results of Table 2, floating-point and AAI multipli-
ers have been designed and simulated for various resolutions

0 5 10 15 20

0
2
0

4
0

Number of mantissa bits

Po
w

er
(µ
W

)
Exact multiplier

AAI

Figure 5: Power consumption of multipliers on 65nm CMOS
using 8 exponent bits for increasing number of mantissa bits.

in a 65nm CMOS technology, and models have been fitted
to the simulation results. Fig. 5 shows the resulting model
for 8 exponent bits and varying number of mantissa bits. We
see that the hardware cost is dominated by mantissa process-
ing, and the hardware complexity grows significantly with
the number of mantissa bits. As AAI uses much simpler
addition hardware, the complexity and power grow linearly
with the number of bits.

2 How does the number of bits effect the energy savings
and approximation errors of AAI? In a first experiment,
we replaced all multipliers with AAI to assess the error
and the energy savings for MAR and MAP queries under
varying resolutions. For MAP queries, we calculated the
MAP inference accuracy (ACC) over the latent variables
(assuming complete evidence) regarding the baseline. For
MAR queries, we computed the mean log error after error
correction.

Generally, as seen in Table 1, the total energy savings from
64-bit to the optimal AAI are comprised between 549×
and 649× for MAP and between 324× and 357× for MAR.
To evaluate the energy gains more precisely, we recorded
the optimal configuration (minimum bits that keep a stable
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Table 1: Overview of optimal configuration and performances over several data sets for MAP and MAR. Nbe corresponds to
minimum exponent bits to ensure no underflow happens and Nba corresponds to the smallest error and minimum mantissa
bits of exact and AAI. E represents the exponent bits, and M represents the mantissa bits. The last column indicates the
energy savings obtained by AAI compared to exact multiplication in optimal configuration and exact multiplication in 64-bit.

Query Data set
Number of bits Energy Accuracy/Error Energy saving

Exact@Nbe AAI@Nba Exact@Nbe AAI@Nba Exact@Nbe AAI@Nba Nbe 64-bit

MAP

NLTCS E=8, M=8 E=8, M=5↓ 0.02747 0.00182↓ 1.00000 0.99677 15× 549×
Jester E=9, M=6 E=9, M=3 ↓ 0.02165 0.00168↓ 1.00000 1.00000 13× 595×
DNA E=9, M=2 E=9, M=2 0.01411 0.00154↓ 1.00000 1.00000 9× 649×
Book E=11, M=2 E=11, M=2 0.01705 0.00182↓ 1.00000 1.00000 9× 549×

MAR

NLTCS E=8, M=20 E=8, M=12↓ 0.13021 0.00280↓ 0.00000 0.06588 47× 357×
Jester E=9, M=21 E=9, M=13↓ 0.14521 0.00308↓ 0.00002 0.19729 47× 324×
DNA E=9, M=21 E=9, M=13↓ 0.14521 0.00308↓ 0.00003 7.84791 47× 324×
Book E=11, M=21 E=11, M=9↓ 0.14815 0.00280↓ 0.00007 0.81912 53× 357×
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Figure 6: MAR error for partial replacement of multipliers using different strategies ( using Eq. (10), using Eq. (9),
random). Safe selections ( , ) are superior to random selection and result in little or no error.

accuracy of the results) for both floating-point and AAI
multipliers. Fig. 4 illustrates the energy savings of AAI.
For MAP computation, AAI energy savings are comprised
between 9× and 15×, while maintaining a high accuracy. In
addition, we did not observe an increase of the required res-
olution with larger model sizes. For MAR, energy savings
are comprised between 47× and 53× with minimal error on
most datasets. Moreover, we observed that AAI requires the
same or fewer mantissa bits to get a stable accuracy. This
is explained because floating-point requires a normalization
step in Eq. (2), generating the term MxMy or 1/2(MxMy)
in the mantissa, increasing the number of mantissa bits. This
term does not appear with AAI. A detailed discussion of bit
requirements can be found in Appendix B. We varied the
number of bits with finer granularity in Appendix C (Fig. 7).

3 Can we reduce the energy consumption of prob-
abilistic circuits with little or no error? In a second
experiment, we assessed how many multipliers associated
with a weight/parameter can be safely replaced with
approximate computing without introducing any error in the
likelihood computation. For this, we used a standard 64-bit
computation, where multipliers are either randomly selected
(starting by replacing all multipliers associated with a
weight/parameter) or incrementally replaced according to
our methodology presented in Section 4.3. Note that no

Table 2: FPGA verification results on Virtex7(xc7vx690)
indicating hardware block usage (less is better ↓) and achiev-
able maximum frequency in MHz (higher is better ↑).

Hardware Block Usage in % Max Freq.
LUT ↓ DSP ↓ Reg(Memory) ↓ (MHz) ↑

AAI 4.53 0 1.25 50
Exact 8.66 10 2.67 33

error correction is applied here. The MAR error, normalized
according to the energy without any replacement, is shown
in Fig. 6. To finely assess whether Eq. (10) allows for a
safe multiplier selection, we also recorded the replacement
ratio and the minimum relative energy without error in
the Table 4 of Appendix C. Results show that we can
replace a significant portion of multipliers without any error,
achieving energy savings comprised between 45% and 65%.

6 CONCLUSION & DISCUSSION

In this work, we introduced a dedicated approximate
computing framework for energy-efficient inference in
PCs on hardware. Specifically, we investigated the energy
efficiency and approximation error of Addition-as-Int (AAI)
multipliers in PCs for different benchmarks and query types
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(evidence and MAP). We provided both a theoretical and
empirical analysis of the introduced error, and our results
show that maximum power savings of 649× and 357× can
be achieved for MAP and MAR queries, respectively, while
tolerating a small error. When no error is tolerated, we
introduced a safe replacement method, achieving 45− 65%
energy savings. Our additional error correction can reduce
the approximation error for MAR queries, while MAP
queries are more robust to AAI errors.

Limitations This work has been demonstrated for various
benchmarks and query types, proving our initial claims. A
deeper analysis would be needed when implementing such
methodology on other PCs structures, although we expect
similar results.

Broader Impact The large adoption of machine learning
requires an alignment between hardware, software, and al-
gorithms [Hooker, 2020]. Although PCs have shown great
potential for solving real-world problems in reliably, their
development is hampered by challenges in their hardware
acceleration. This work intends to pave the way for more effi-
cient acceleration of PCs, looking at the problem from a per-
spective at the interface between algorithms and hardware.
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A TECHNICAL DETAILS

A.1 DETAILS ABOUT EXACT FLOATING-POINT MULTIPLICATIONS

Multiplying two floating-point numbers x and y, with respective exponent bits Ex, Ey and mantissa bits Mx,My is done in
four steps: (1) Exponent addition Ex + Ey , (2) mantissa multiplication (1 +Mx)× (1 +My), (3) Exponent normalization
to ensure mantissa value between 0 and 1, and (4) Rounding mantissa value into limited mantissa bits. The product x · y is:

x · y = 2Ex+Ey (1 +Mx)(1 +My) (13)

=

{
2Ex+Ey (1 +Mx +My +MxMy) if Mx +My +MxMy < 1

2Ex+Ey+1(1 + 1/2(Mx +My +MxMy − 1)) otherwise
(14)

A few observations should be made. First, after normalization (step (3) above), the original mantissa value can exceed
number 1 which is the maximum mantissa value the mantissa bits can represent. This is taken care of by increasing the
exponent (i.e. multiply by two) and dividing the overall mantissa result by two (see Eq. (14)). Second, mantissa rounding
(step (4) above) can lead to small errors due to the finite precision. Third, a bias can be added to the exponent value, shifting
the range that exponent bits can represent. In the example of PCs, as exponent values are smaller than 0, a negative bias can
be added to the exponent so that the exponent is always coded with positive integers. Adding a bias term does not influence
the analysis, thus it is omitted for clarity.

A.2 DETAILS ABOUT HARDWARE GENERATION

A.2.1 Theoretical analysis of computation resolution

The theoretical analysis provides a starting point for the resolution analysis, ensuring that the PC can be represented with
minimal error on e.g. 32 or 64 bits. It primarily aims to: 1.) avoid underflow, as the PC processes small numbers, and 2.)
ensure that the representation error of any value is smaller than a pre-defined error setting. To avoid underflow, the analysis
determines the smallest positive non-zero probability at the top node, denoted as MV . MV is found by replacing all sum
nodes by min operators (i.e., Out = min(In1, In2) ) and traversing the graph bottom-up, with all leaf node indicators set
to ’1’ [Shah et al., 2019]. In terms of representation error, the analysis uses relative error tolerance as a constraint, given
by ϵ = |x̃− x|/|x|, where and x is the real value of the number and x̃ its represented value. ϵ is then compared with the
quantization error of each representation. The final resolution requirements can be determined with MV and ϵ. We explicit
the analysis with a fixed-point representation first and expand to float.

Fixed-point Analysis (FxP). Assume a N -bits fixed-point representation with I integer bits and F fraction bits. As the PC
computes probabilities, the top node value cannot exceed 1; hence I = 1 is chosen. F depends on the minimum value that

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).

mailto:<lingyun.yao@aalto.fi>?Subject=Your UAI 2024 paper


Table 3: Energy from 65nm CMOS technology.

Operators
Power@E,M(uW)

8,4 8,8 8,12 8,16

floating-point 6.121 9.889 18.27 31.45
AAI 0.55384 0.79835 1.0482 1.2996

can be encoded, 1/2F . The fixed-point quantization QEFxP can be written as:

QEFxP =
1

2

1

2F
= 2−(F+1) (15)

As explained earlier QEFxP should be in the error bound for ·̃ fixed by MV and ϵ. In the worst case, it corresponds to
QEFxP = MV (1 + ϵ) −MV (1 − ϵ) = 2MV ϵ. Thus, the minimum required number of fraction bits Fmin to be used is
given as:

Fmin = ⌈log2(
1

2MV ϵ
)⌉ (16)

Floating-point Analysis (FlP) Assume an FlP representation with E exponent bits and M mantissa bits. In essence,
exponent bits E represent the binary point of the number (i.e., the range), and mantissa bits M further quantize values
within this range. First, the smallest encoded exponent value should cover MV . The encoded exponent value 2Emin can be
determined based on the fixed point analysis, as MV is the same (see eq. 16), i.e., 2Emin ≥ Fmin. This gives:

Emin = ⌈log2(Fmin)⌉ (17)

Where ⌈⌉ represents rounding up to the next integer. Second, M is adjusted to satisfy the precision based on the error
tolerance ϵ. Specifically, M should be one order lesser than the target error tolerance ϵ. For example, if ϵ = 10−P , a
minimum of P + 1 digits of precision is needed, giving 2M > 10P+1. Only one integer bit is considered (as in the FxP
analysis), which adds an extra mantissa bit. The final mantissa bits Mreq is given by:

Mreq = ⌈log2(10P+1)⌉ (18)

A.2.2 Energy model

Floating-point and AAI multipliers have been designed and simulated for various resolutions in a 65nm CMOS technology.
Specifically, we synthesized the design using 65nm high threshold voltage (HVT) standard cells for various resolution bits
and estimated the power from the synthesized netlist.

For these measurements, we performed model-fitting of the floating-point multiplier with the function km(M +1)2 log(M +
1) + keE. Function attained in [Shah et al., 2019] is fitted with the function km(M + 1)2 log(M + 1), however, according
to Appendix A, classic floating-point multiplication also contains exponent addition which contributes limited energy
consumption that ignored by [Shah et al., 2019]. Here we add this part into consideration and it fits well with our 65nm
CMOS technology results. We fit the model of the AAI multiplier with the function ka(M +E). As the energy linear grows
with the whole bits number, it also fits well with our 65nm CMOS technology results. Energy raw data can be found in
Table 3.

The final energy model for the floating-point multiplier and AAI multiplier are 0.0328(M +1)2 log(M +1)+0.5469E and
0.0520160465095606(M +E) respectively. At 32 bits, AAI uses 1.664µW compared to 64.413µW for the exact multiplier,
saving 38x. At 64 bits, AAI uses 3.329µW compared to 371.791µW for the exact multiplier, which saves 112×.
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B DERIVATIONS

B.1 THEORETICAL ERROR ANALYSIS

Given a PC c and the same PC but using approximate multipliers c̃ we may compute the KL divergence between both, given
by

DKL (c||c̃) =
∫

c(x) (log c(x)− log c̃(x)) dx. (19)

Note that we are assuming c(⋆) = 1 without loss of generality.

In the following, we will utilize the shallow mixture representation of a PC to simplify the derivations. For this, we briefly
recall relevant concepts and refer to [Trapp et al., 2019] for detailed derivations.

Definition B.1 (Induced tree [Zhao et al., 2016]). Let an c with computational graph G, parametrized by w,θ, and scope
function ψ(·) be given.

Consider a sub-graph T of G obtained as follows: i) for each sum unit, delete all but one outgoing edge and ii) delete all
nodes and edges which are now unreachable from the root. Any such tree T is called an induced tree.

Note that a PC can always be written as the mixture of induced trees, i.e.,

c(x) =

τ∑
t=1

∏
w∈Tt

w︸ ︷︷ ︸
=p(Tt)

∏
L∈Tt

L(xL), (20)

where the sum runs over all possible induced trees in c (τ many), and L(xL) denotes the evaluation of leaf unit L on the
restriction of x to ψ(L).

In case c is deterministic, then every x is associated with a single unique induced tree, i.e., the probability of all other
induced trees is zero, by definition of determinism and we use T(x) to denote the associated induced tree.

B.1.1 Deterministic PCs

If c (and consequently also c̃) is deterministic, then we can compute the Eq. (19) exactly, i.e.,

DKL (c||c̃) =
∫

c(x) (log c(x)− log c̃(x)) dx =

∫
c(x)

∑
wi∈T(x)

∆wi
dx, (21)

=

τ∑
t=1

p(Tt)
∑
wi∈T

∆wi =

τ∑
t=1

∑
wi∈T

p(Tt)∆wi (22)

=
∑
wi∈c

∑
T∈c
wi∈T

p(T)∆wi
=
∑
wi∈c

∆wi

∑
T∈c
wi∈T

p(T)

︸ ︷︷ ︸
≤1 by assumption

= ∆dc, (23)

where
∑

T∈c
wi∈T

p(Tt) can be efficiently computed through a bottom-up path by setting all indicators below wi to one and all

other indicators to zero.
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B.1.2 Non-deterministic PCs

We will now investigate the case of non-deterministic PCs, for which it is well-known that the KL divergence can no be
evaluated analytically. First, recall the objective, i.e.,

DKL (c||c̃) =
∫

c(x) (log c(x)− log c̃(x)) dx (24)

=

∫
c(x) (log c(x)− log c̃(x)) dx︸ ︷︷ ︸

=∆dc

, (25)

where we will focus on approximating ∆dc. For this, let us rewrite ∆dc by expanding the density function of c in form of a
shallow mixture, i.e.,

∆dc =

∫
c(x)

(
log

c(x)

c̃(x)

)
dx (26)

=

∫
c(x)

(
log

[
τ∑

t=1

p(Tt)
∏
L∈Tt

p(x | θL)1/̃c(x)

])
dx (27)

=

∫
c(x)

(
log

τ∑
t=1

exp

[
log p(Tt) +

∑
L∈Tt

log p(x | θL)− log c̃(x)

])
dx, (28)

where we note that log c̃(x) simplifies under discrete data, i.e.,

log c̃(x) = log

 τ∑
t=1

p̃(Tj) p̃(x | Tt)︸ ︷︷ ︸
=1[x∈Tt]

 (assuming discrete data)

= log

 τ∑
t=1
x∈Tt

p̃(Tt)

 , (29)

as, all leaves are indicator functions, simplifying the expression for log c̃(x) as the log over the sum of all induced trees for
which all indicator leaves return one.

First note that log(x+ y) = log(x) + log(1 + y
x ) ≈ log(x) + y

x , with least error if y ≤ x. Secondly, given a permutation
σx(·) of the induced trees in the circuit such that p̃(Tσx(1)) ≥ p̃(Tσx(2)) ≥ · · · > p̃(Tσx(k)) ≥ p̃(Tσx(k+1)) = · · · =
p̃(Tσx(τ)) = 0, we can approximate Eq. (29) as follows:

log c̃(x) = log p̃(Tσx(1)) + log

(
1 +

∑k
j=2 p̃(Tσx(2))

p̃(Tσx(1))

)
(30)

≈ log p̃(Tσx(1)) +

k∑
j=2

p̃(Tσx(j)). (Taylor approx.)

Consequently, we get that

∆dc ≈
∫

c(x)

log

k∑
t=1

exp

log p(Tσx(t))− (log p̃(Tσx(1)) +

k∑
j=2

p̃(Tσx(j)))

dx (assuming discrete data)

=

∫
c(x)

 ∑
w∈Tσx(t)

∆w −
k∑
j

p̃(Tσx(j))

 dx+

∫
c(x) log

(
1 +

k∑
t=2

p(Tσx(t))

p(Tσx(1))

)
dx (31)

=

∫
c(x)

 ∑
w∈Tσx(t)

∆w −
k∑
j

p̃(Tσx(j))

 dx+ C. (32)

Unfortunately, the above approximation is still not analytically tractable, but can be approximated using Monte-Carlo
integration.
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B.2 MAP ERROR

When performing MAP queries, we are interested in estimating the sensitivity of MAP inference to approximate computing.
For this, we examine whether the most probable path in the circuit stays the same when replacing exact multipliers by AAI.

First, recall that in case of MAP inference, sum units are replaced by max operations [Choi, 2022]. Our analysis is based on
a max operation over two sub-circuits, denoted as left (l) and right (r) branches respectively. Each branch/sub-circuit is a
binary product over inputs denoted as xl, xr and yl, yr respectively. Let, Mxl

,Myl
denote the input’s mantissa values in the

left branch, and Mxr ,Myr in the right, and recall that all mantissa values are M ∈ [0, 1]. We will refer to the computation
path using exact floating-point multipliers as the exact path, and the path using AAI multipliers as the approximate path. In
the exact path, assuming the left branch is the most probable, we can write:

2Exl
+Eyl (1 +Mxl

)(1 +Myl
) > 2Exr+Eyr (1 +Mxr

)(1 +Myr
) (33)

applying the log transform we obtain

Exl
+ Eyl

+ log2(1 +Mxl
) + log2(1 +Myl

) > Exr + Eyr + log2(1 +Mxr ) + log2(1 +Myr ) (34)
Exl

+ Eyl
− (Exr + Eyr )︸ ︷︷ ︸
∆E

+ log2(1 +Mxl
) + log2(1 +Myl

)− (log2(1 +Mxr ) + log2(1 +Myr ))︸ ︷︷ ︸
∆M

> 0. (35)

In the approximate path, the same analysis gives:

Exl
+ Eyl

+Mxl
+Myl

> Exr
+ Eyr

+Mxr
+Myr

(36)
∆E +Mxl

+Myl
− (Mxr

+Myr
)︸ ︷︷ ︸

∆M′

> 0. (37)

We will now consider the condition for which the most probable path under AAI is not the same as in case of exact
computations. We start with the two following expressions: (1): (∆E + ∆M ) > 0, representing the exact path, and (2):
(∆E +∆M ′) > 0, representing the approximate path. And look at the product between the exact and approximate paths: (3):
(∆E +∆M )(∆E +∆M ′). If expressions (1) and (2) are both true or both false, then their product (3) is always positive.
Hence, both paths indicate the same most probable branch. Any discrepancy between both paths happens when either (1) or
(2) is true, and the other is false. Consequently, their product becomes negative or zero in this case, which we refer to as the
failure condition f , i.e.,

f → (∆E +∆M )(∆E +∆M ′) ≤ 0 (38)

if ∆E = 0 then:

f∆E=0 → (∆M )(∆M ′) ≤ 0 (39)

and if ∆E ≥ 1

f∆E≥1 → (1 + ∆M/∆E)(1 + ∆M ′/∆E) ≤ 0. (40)

Note that ∆E is a difference function of integers and, hence, can only take integer values. Moreover, if ∆E ≤ −1 we can
flip the inequality in Eq. (35) and Eq. (35) while still testing for consistency of both computations. Hence, the argument
above does not change.

The probability of failure P (f∆e=0) for f∆e=0 is given as:

P (f∆e=0) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f∆E=0 dMxl
dMyl

dMxr
dMyr

≈ 0.0227 (41)

which we estimated using Monte Carlo integration under the assumption that the Mantissa values are uniformly distributed.

The second failure case, Eq. (40), is a function of ∆E . Note that ∆E increases as a function of the number of multiplications,
hence, restricting the probability of failure in PCs for larger models.
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B.3 INFLUENCE OF THE NUMBER OF BITS

Let us first considering a floating-point multiplier computing the product of x and y, i.e.,

2Ex+Ey (1 +Mx)(1 +My) = 2(Ex+Ex+Ef )(1 +Mf ), (42)

where Ef ≥ 0, Ex ≤ 0, Ey ≤ 0, and 0 < Mf < 1 denote the new mantissa value Mf and an exponent carry. Let use
examine the computation of the exponent carry and the new mantissa value. If (Mx +My +MxMy) < 1 then:

Ef = 0, Mf =Mx +My +MxMy (43)

otherwise:

Ef = 1, Mf =
Mx +My +MxMy − 1

2
. (44)

Note that in floating-point representation, mantissa bits depend on the smallest value. First, assume we need N bits for Mx

and My , in the worst case we need 2N bits for MxMy and, therefore, 2N bits for Mx +My +MxMy in the worst case for
the case that (Mx +My +MxMy) < 1. In case (Mx +My +MxMy) ≥ 1, we need to right shift Mx +My +MxMy by
one one bit to ensure the mantissa value stays within the range [0, 1] and increase the exponent. This leads to one additional
bit for the mantissa value, and in the worst case, we need 2N + 1 bits for Mx+My+MxMy−1

2 .

Now let us consider an AAI multiplier computing the product of x and y, i.e.,

Ex + Ey +Mx +My = Ex + Ey + Ea +Ma, (45)

where Ea ≥ 0, Ex ≤ 0, Ey ≤ 0, and 0 < Ma < 1

Again, we can examine the computation of Ea and Ma. If (Mx +My) < 1 then:

Ea = 0, Ma =Mx +My (46)

otherwise:

Ea = 1, Ma =Mx +My − 1 (47)

Again, the number of required mantissa bits still depends on the smallest value. In case (Mx +My) < 1, there is no carry
value so the mantissa bits requirements stay the same. In the second case, i.e., (Mx +My +MxMy) ≥ 1, the carry ‘1’ goes
to the exponent bits and the mantissa bits requirements still stay the same.

Therefore, we can conclude that AAI computation requires similar number of exponent bits but fewer mantissa bits.

C EXPERIMENTAL DETAILS

C.1 INFRASTRUCTURE DETAILS

We ran all experiments with the Python model on a SLURM cluster. We parallelly computed for each configuration and
collected the data for analysis.

C.2 EXPERIMENTS RESULTS

We first calculated the expected error and applied this to the sample set by 4 exponent bits(8, 9, 10, 11) and mantissa
bits(from 2 to 21). Fig. 7 comes from the same data as Fig. 4, but Fig. 7 shows the accuracy or error by varying numbers of
exponent and mantissa bits, while Fig. 4 shows the accuracy or error by energy.

Fig. 8 shows the performance of error correction on the sample, the top dashed line is the result before error correction, and
the bottom dashed line is the result after error correction. Fig. 9 shows the performance of error correction on the test set, the
top dashed line is the result before error correction, and the bottom dashed line is the result after error correction. We can
see the performance on the test set is similar, the error correction significantly reduced the error on the test set.
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Table 4: Minimum Normalized Energy without error under Replacement.

Data set Replacement ratio Normalized Energy Error

NLTCS 0.646 0.35836 0.00000
Jester 0.643 0.36140 0.00000
DNA 0.598 0.40644 0.00000
Book 0.448 0.55298 0.00000

2 4 6 8 12 20

0.97

0.98

0.99

1

M
A

P
A

pp
ro

x.
E

rr
or

NLTCS

2 4 6 8 12 20

0.97

0.98

0.99

1

Jester

2 4 6 8 12 20

0.97

0.98

0.99

1

DNA

2 4 6 8 12 20

0.97

0.98

0.99

1

Book

2 4 6 8 12 20

0

2

4

Bits

M
A

R
A

pp
ro

x.
E

rr
or

2 4 6 8 12 20

0

5

10

15

20

Bits
2 4 6 8 12 20

0

5

10

15

20

Bits
2 4 6 8 12 20

0

5

10

15

20

Bits

Figure 7: Results for AAI (dashed lines) and exact (solid lines) multipliers using varying numbers of exponent and mantissa
bits ( 8 exponent bits, 9 exponent bits, 10 exponent bits, 11 exponent bits ).

For safe replacement, we started by replacing all multipliers associated with a weight/parameter(not all multipliers) and
ended with no replacement. In our experiments, we count how much percentage we replaced in the bottom layer(multipliers
associated with a weight/parameter) from 0 to 100 percent, with a step of 20 percent. We recorded the maximum replacement
ratio of the whole multipliers in our experiments and the corresponding normalized energy which keeps the 0 error in
Table 4.

17



10−3 10−2 10−1

0

1

2

Energy

M
A

R
E

rr
or

10−3 10−2 10−1

0

5

10

15

Energy
10−3 10−2 10−1

0

10

20

Energy
10−3 10−2 10−1

0

50

100

Energy

Figure 8: Results for AAI (dashed lines) and exact (solid lines) multipliers using varying the number of exponent and
mantissa bits on the sample set with error correction. The top dashed line is the result before error correction, and the bottom
dashed line is the result after error correction ( 8 exponent bits, 9 exponent bits, 10 exponent bits, 11 exponent
bits ).
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Figure 9: Results for AAI (dashed lines) and exact (solid lines) multipliers using varying the number of exponent and
mantissa bits on the test set with error correction. The top dashed line is the result before error correction, and the bottom
dashed line is the result after error correction. ( 8 exponent bits, 9 exponent bits, 10 exponent bits, 11 exponent
bits ).
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