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ABSTRACT

Neural networks exhibit severe brittleness to semantically irrelevant transforma-
tions. A mere 75ms electrocardiogram (ECG) phase shift degrades latent co-
sine similarity from 1.0 to 0.2, while sensor rotations collapse activity recogni-
tion performance with inertial measurement units (IMUs). We identify the root
cause as “laissez-faire” representation learning, where latent spaces evolve un-
constrained provided task performance is satisfied. We propose Structured Con-
trastive Learning (SCL), a framework that partitions latent space representations
into three semantic groups: invariant features that remain consistent under given
transformations (e.g., phase shifts or rotations), variant features that actively dif-
ferentiate transformations via a novel variant mechanism, and free features that
preserve task flexibility. This creates controllable push-pull dynamics where dif-
ferent latent dimensions serve distinct, interpretable purposes. The variant mech-
anism enhances contrastive learning by encouraging variant features to differen-
tiate within positive pairs, enabling simultaneous robustness and interpretability.
Our approach requires no architectural modifications and integrates seamlessly
into existing training pipelines. Experiments on ECG phase invariance and IMU
rotation robustness demonstrate superior performance: ECG similarity improves
from 0.25 to 0.91 under phase shifts, while WISDM activity recognition achieves
86.65% accuracy with 95.38% rotation consistency, consistently outperforming
traditional data augmentation. This work represents a paradigm shift from re-
active data augmentation to proactive structural learning, enabling interpretable
latent representations in neural networks.

1 INTRODUCTION

Neural networks often exhibit unexpected sensitivity to transformations that should be semantically
irrelevant. This transformation brittleness manifests across domains: image classification systems
fail under minor rotations (Gao et al., 2020), signal processing models become unreliable with tem-
poral shifts (Volpi & Murino, 2019), and activity recognition systems collapse under sensor orienta-
tion changes.

As an example, this vulnerability became stark in similar ECG signal retrival for cardiac disease
detection. Retrival based on variational autoencoders (VAEs) failed catastrophically when identi-
cal cardiac waveforms were temporally shifted (Shen et al., 2025). As shown in Figure 1, even
minor temporal shifts lead to significantly different latent representations, despite identical signal
morphology. Cosine similarity drops rapidly from 1.0 to below 0.2, indicating that the learned rep-
resentations unsuitable for clinical similarity retrival.

This brittleness stems from “laissez-faire” representation learning—where learned representations
evolve unconstrained as long as task performance is satisfied (Zhao et al., 2022). Traditional train-
ing objectives optimize solely for task performance while providing no explicit guidance on inter-
sample relationships across transformations (Higgins et al., 2018). Information-theoretic analysis
reveals that standard loss functions maximize mutual information between inputs and task-relevant
features while remaining agnostic to semantic structure preservation (Tian et al., 2020). Networks
can become excessively invariant to meaningful changes while remaining overly sensitive to irrel-
evant ones (Jacobsen et al., 2018), with fundamental impossibility results proving that invariance
alone cannot identify meaningful latent structure (Bing et al., 2023).
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Figure 1: Transformation brittleness in latent representations. Traditional VAEs exhibit severe phase
sensitivity: identical ECG waveforms at different temporal positions produce dramatically different
latent vectors, with cosine similarity degrading from 1.0 to below 0.2 across phase shifts (sampling
rate: 400 Hz).

The standard response has been data augmentation—exposing models to transformed training data.
Contrastive methods like SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) achieve success
by maximizing agreement between augmented views while minimizing agreement with other sam-
ples. However, these approaches typically apply uniform constraints across all latent dimensions
and operate through discrete sampling of transformation space, providing no explicit control over
representation structure.

Recent advances identify critical limitations: forcing invariance to all augmentations can be subop-
timal for downstream tasks (Xiao et al., 2020), with inherent trade-offs between accuracy and in-
variance that cannot be resolved through augmentation alone (Zhao et al., 2022). Data augmentation
addresses symptoms rather than causes—increasing exposure to transformations without providing
principled control over representation organization.

We propose a paradigm shift from discrete data augmentation to structured latent space learning
through explicit feature partitioning and contrastive control. Our framework transforms neural net-
works from black boxes into interpretable glass box systems with controllable semantic organiza-
tion. The core innovation lies in partitioning latent representations into functionally distinct groups:
invariant features that remain consistent across transformations, variant features that actively dif-
ferentiate between transformations, and free features that remain unconstrained for task-specific
optimization.

Central to this structured contrastive learning is a contrastive objective that simultaneously pulls
invariant features together while pushing features of different samples apart, enhanced through a
variant mechanism that encourages variant features to differentiate even within positive pairs. This
creates sophisticated learning where different latent aspects serve distinct, controllable purposes.
Our approach builds upon disentanglement frameworks (Higgins et al., 2018), invariant causal rep-
resentation learning (Mitrovic et al., 2020), and extends contrastive learning approaches like Con-
trastVAE (Wang et al., 2022) and multi-level feature learning (Xu et al., 2022), while addressing
fundamental limitations in purely invariance-based methods (Bing et al., 2023; Zhao et al., 2022).

Our framework provides key advances: fine-grained control over different representation aspects
through explicit partitioning, enhanced interpretability while maintaining task accuracy, and seam-
less integration into existing training pipelines without architectural modifications. We demonstrate
effectiveness through comprehensive experiments on ECG phase invariance (improving cosine sim-
ilarity from 0.25 to 0.91) and IMU rotation robustness (achieving 86.65% accuracy with 95.38%
rotation consistency).

Our contributions represent a paradigm shift from reactive data augmentation to proactive struc-
tural learning: (1) systematic identification of transformation brittleness as a universal neural net-
work limitation; (2) a structured latent space learning framework transforming black box networks
into interpretable glass box systems; (3) a structured contrastive learning mechanism with variant-
enhanced control providing fine-grained feature organization; and (4) a practical training method-
ology enhancing interpretability and robustness without sacrificing performance. This opens new
possibilities for deploying deep learning systems in critical applications requiring both performance
and interpretability.
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Figure 2: Structured contrastive learning in latent space. Top: Traditional data augmentation
provides no control over latent representations. Bottom: Our method partitions features into in-
variant (pulled together), variant (pushed apart via variant mechanism), and free (unconstrained)
components, transforming neural networks into interpretable systems with controllable semantic
meaning.

2 METHOD

We present our structured contrastive learning framework that creates interpretable latent represen-
tations through explicit feature partitioning and controllable contrastive objectives.

2.1 STRUCTURED LATENT SPACE PARTITIONING

Traditional neural networks learn task-specific representations through purely task-oriented objec-
tives:

Ltraditional = Ltask(f(x), y) (1)
where f(·) is the encoder function and y is the task label. This allows latent representations to
evolve freely, causing semantically similar inputs x and T (x) (where T represents transformations
like phase shifts or rotations) to produce arbitrarily different representations: ||f(x)−f(T (x))|| can
be large despite semantic equivalence.

Our key insight is to explicitly model inter-sample relationships through structured contrastive learn-
ing:

Lstructured = Ltask + λLcontrastive (2)

We partition the latent representation f(x) ∈ Rd into three semantically distinct subgroups:

f(x) = [finv(x), fvar(x), ffree(x)] (3)

where dinv + dvar + dfree = d. Each subgroup serves a distinct purpose: Invariant features (finv)
encode task-relevant information that should remain consistent across transformations; Variant fea-
tures (fvar) capture transformation-specific information that should change predictably; Free fea-
tures (ffree) learn unconstrained representations, preserving network flexibility.

2.2 VARIANT-ENHANCED STRUCTURED CONTRASTIVE LEARNING

Our central innovation lies in the variant mechanism, which creates a sophisticated push-pull dy-
namic. For positive pairs (x, T (x)) where T represents semantic-preserving transformations, our
framework enforces:

• Invariant constraint: D(finv(x), finv(T (x))) → 0

• Variant constraint: D(fvar(x), fvar(T (x))) → max

3
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where D(·, ·) = 1− cos(·, ·) measures the cosine distance. This dual objective ensures that invariant
features capture transformation-agnostic semantics while variant features encode transformation-
specific information.

Our structured contrastive loss formalizes this dual objective as:

Lcontrastive =
D(finv(x), finv(T (x)))

[1 + β · D(fvar(x), fvar(T (x)))] · D(finv(x), finv(xneg))
(4)

where β ≥ 0 controls variant feature differentiation strength. The variant mechanism creates elegant
dynamics: invariant features of positive pairs are pulled together (numerator), while variant features
are pushed apart via the beta term in the denominator. When variant features are too similar, the de-
nominator increases, making the loss larger and encouraging differentiation. The denominator also
ensures negative samples remain distant in the invariant subspace. When β = 0, we recover standard
contrastive learning; when β > 0, we actively encourage variant features to encode transformation
differences.

2.3 COMPLETE FRAMEWORK INTEGRATION

Our complete objective function seamlessly integrates task performance with structured representa-
tion learning:

Ltotal = Ltask(h(f(x)), y) + λLcontrastive(f(x), f(T (x)), f(xneg)) (5)

where h(·) is the task-specific head and λ balances task performance with structural constraints. A
key strength lies in non-invasive integration: our method requires no architectural modifications and
works with any intermediate layer representation f(x).

This framework fundamentally transforms neural networks from black boxes—where latent rep-
resentations evolve unpredictably—into interpretable systems where different feature groups have
explicit, controllable semantic meanings. By explicitly decoupling functional aspects (e.g., separat-
ing what an activity is from how it’s oriented), practitioners gain unprecedented interpretability and
control over model behavior while maintaining task performance.

3 EXPERIMENTS AND RESULTS

We validate our structured latent space learning framework through two complementary experi-
mental settings that demonstrate universal applicability across different neural architectures, data
modalities, transformation types, and task objectives. ECG phase invariance (similarity improved
from 0.25 to 0.91) demonstrates transformation from phase-sensitive to morphology-focused medi-
cal retrieval, while IMU rotation robustness (86.65% accuracy with 95.38% rotation consistency)
shows structured learning’s effectiveness in discriminative classification tasks.

3.1 ECG PHASE INVARIANCE IN MEDICAL SIGNAL RETRIEVAL

Medical signal retrieval requires robust similarity matching focusing on morphological patterns
rather than temporal alignment. Traditional VAEs exhibit severe phase sensitivity, causing iden-
tical ECG waveforms shifted by milliseconds to produce drastically different latent representations.

Experimental Setup. We employ a residual VAE architecture with four 1D convolutional blocks
(32, 64, 128, 256 channels) trained on three ECG datasets: SaMi-Trop (Cardoso et al., 2016), PTB-
XL (Wagner et al., 2020), and CODE-15% (Ribeiro et al., 2020). All signals undergo standard-
ized preprocessing to 400 Hz, 7-second duration with NeuroKit2 filtering. The VAE learns 256-
dimensional latent representations, with our structured approach treating all dimensions as invariant
features to encourage morphological consistency across phase shifts.

We compare three approaches: Baseline uses the pre-trained VAE without modification; Data
Augmentation fine-tunes the pre-trained VAE on phase-shifted versions of the original data; Our
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Method fine-tunes the pre-trained VAE with structured contrastive learning to enforce phase in-
variance in the latent space. For positive pair generation, we create multiple random phase shifts
for each ECG signal, then randomly select one as the anchor (main sample) and others as positive
samples, preventing the model from learning only specific phase shift patterns.
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Figure 3: Phase invariance transformation results.

Phase Invariance Results. Figure 3 reveals our method’s dramatic transformation effectiveness.
Critically, data augmentation performs worse than the baseline—a counterintuitive finding that
exposes a fundamental limitation: simply exposing models to augmented data without explicit struc-
tural guidance can lead to overfitting on augmentation patterns rather than learning true invariance.
Our structured approach maintains remarkably stable similarity (0.907) by learning continuous in-
variance manifolds rather than discrete transformation instances.

Clinical Retrieval Effectiveness. Figure 4 demonstrates practical clinical impact. Both baseline
and data augmentation methods are ”phase-locked”—retrieving signals matching not only morpho-
logical patterns but also specific phase alignment and cardiac timing, which is likely due to the MSE
reconstruction loss during training. Our method successfully retrieves morphologically similar sig-
nals with clear phase misalignment and different cardiac periods, achieving high similarity scores.
This phase-agnostic retrieval is essential for clinical applications where pathological patterns appear
at different temporal positions.

3.2 IMU ROTATION INVARIANCE IN ACTIVITY RECOGNITION

Human activity recognition faces the challenge that sensor orientation dramatically affects represen-
tations, causing identical activities to appear different under orientation changes. Our structured
learning achieves 86.65% accuracy with 95.38% rotation consistency, demonstrating how ex-
plicit feature decoupling creates robust classifiers that understand what activity is performed inde-
pendently of how the sensor is oriented.

Experimental Setup. We use the WISDM dataset (Kwapisz et al., 2011) with 6 activities from
smartphone accelerometers. Our 1D CNN employs three convolutional blocks (64, 128, 256 chan-
nels) projecting to 128-dimensional features. We test two partitioning strategies: invariant + free
features and invariant + variant features with the variant mechanism. Data augmentation applies
random 3D rotations, creating positive pairs from the same activity window and negative pairs from
different windows.

The variant mechanism’s structured feature decoupling demonstrates clear advantages in Ta-
ble 1: our structured method outperforms even standard contrastive learning with both highest ac-
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Figure 4: Clinical query effectiveness demonstration. Our method (rightmost) successfully re-
trieves morphologically similar signals regardless of phase alignment (0.935-0.941 similarity), while
baseline and data augmentation methods remain ”phase-locked,” achieving much lower similarities
(0.522-0.628) and missing clinically relevant patterns.

Table 1: Performance comparison: classification accuracy and rotation robustness. Rotation Consis-
tency measures the percentage of test samples where the model produces identical predictions before
and after applying 3D rotations, quantifying robustness to sensor orientation changes. Results for
32 invariant dimensions: Standard Contrastive uses invariant + free features, while Structured Con-
trastive uses invariant + variant features with variant mechanism. Our structured approach achieves
highest performance while maintaining excellent robustness.

Method Accuracy (%) Rotation Consistency (%)
Baseline 58.64 64.97
Data Augmentation 84.03 94.57
Standard Contrastive 84.90 95.11
Structured Contrastive 86.65 95.38

curacy (86.65%) and excellent rotation consistency (95.38%), validating that explicit feature parti-
tioning provides benefits beyond simple invariance learning.
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Figure 5: Feature space organization through structured learning. t-SNE visualizations show a pro-
gressive organization from baseline scatter (leftmost) to our structured clusters (rightmost) visually
demonstrates the structured transformation—converting chaotic latent spaces into interpretable, or-
ganized representations with clear activity separation.

Glass Box Transformation Visualization. Figure 5 provides compelling visual evidence of our
method’s glass box transformation. The progression shows increasingly organized representa-
tions, with our structured approach achieving the most clearly separated activity clusters. Be-
yond inter-class separation, our structured contrastive method also enhances intra-class dis-
tinction—within each activity cluster, individual samples maintain more distinct positions rather
than collapsing into tight, indistinguishable groups. This dual organizational benefit demonstrates
how structured learning transforms unpredictable latent spaces into interpretable, controllable rep-
resentations that preserve both semantic clustering and individual sample identity.
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Table 2: Ablation study: feature dimension allocation impact. The accurency was evaluated under
isolated rotations along the X, Y, and Z axes, and a combined transformation. Systematic eval-
uation reveals optimal configurations for different partitioning strategies. The variant mechanism
consistently outperforms standard contrastive learning across all configurations, with 32 invariant
dimensions achieving optimal performance.

Method Invariant Dims Axis-Specific Accuracy (%)

X-Axis Y-Axis Z-Axis Combined

Standard Contrastive

0 (AUG) 83.70 84.74 83.43 84.25
32 82.99 86.35 84.43 85.84
64 84.59 85.72 84.62 85.09
96 83.50 85.57 83.52 84.57
128 83.51 85.22 83.35 84.41

Structured Contrastive

0 85.07 87.64 84.78 87.14
32 85.74 88.19 84.97 87.69
64 84.97 87.24 85.19 86.68
96 84.07 86.30 84.95 85.70

Baseline 0 39.77 66.52 67.83 60.42

Table 2 presents a systematic analysis of how different invariant dimension allocations affect perfor-
mance. The variant mechanism demonstrates consistent superiority across all configurations, with
structured contrastive outperforming standard contrastive by 2-3% in most settings. The 32-invariant
dimension configuration emerges as optimal (87.69% combined accuracy), suggesting that moderate
feature partitioning strikes the best balance between invariance learning and discriminative capacity.

Notably, structured contrastive with 0 invariant dimensions achieves excellent performance
(87.14%), nearly matching the optimal configuration. This seemingly paradoxical result reveals that
the variant mechanism’s explicit relationship modeling creates beneficial organization even with-
out designated invariant features, indicating that structured learning benefits extend beyond simple
feature partitioning. Standard contrastive learning shows a relatively flat performance curve (84.25-
85.84% range), while structured contrastive exhibits clearer sensitivity to dimension allocation, sug-
gesting more effective exploitation of feature partitioning advantages.
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Figure 6: Stress test performance: noise, rotation, and combined challenges. Our structured ap-
proaches (bottom rows) maintain consistently high performance across all stress conditions, demon-
strating the robustness benefits of structured feature organization. The variant mechanism shows
particular resilience under extreme combined stress scenarios. Values in the heatmap indicate accu-
racy under each test condition.
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Comprehensive Stress Testing Analysis. To validate the practical robustness of our glass box
transformation, we conducted systematic stress tests across multiple perturbation types. The results
in Figure 6 reveal distinct robustness profiles across learning approaches. The baseline model ex-
hibits strong noise resistance (0.885-0.887) but catastrophic failure under rotation (0.460-0.522),
revealing that untrained networks naturally handle additive noise but remain brittle to geometric
transformations.

Data augmentation and standard contrastive methods show degraded noise performance compared
to baseline (0.842-0.856 vs. 0.884-0.887), despite improving rotation robustness. This suggests
these approaches sacrifice general robustness to achieve specific invariance, creating performance
trade-offs rather than comprehensive improvement.

Our structured contrastive approaches achieve simultaneous excellence in both domains: strong
noise resistance (0.880-0.904) while maintaining superior rotation robustness (0.844-0.867). This
validates our theoretical prediction that variant features learn comprehensive transformation repre-
sentations beyond rotation-specific patterns. The variant mechanism encourages variant features to
capture the full spectrum of transformation-related information, including noise characteristics and
geometric changes.

The 32-invariant dimension configuration consistently shows peak robustness across stress types,
with even the ”all-variant” configuration maintaining strong noise performance (0.841-0.886). This
demonstrates that the variant mechanism’s explicit relationship modeling creates beneficial or-
ganization that transcends simple invariant/variant distinctions. The comprehensive robustness
analysis provides compelling evidence that structured learning creates fundamentally more robust
neural representations through principled feature organization, where different feature groups can
specialize in handling different perturbation types simultaneously.

4 ANALYSIS AND DISCUSSION

Our experimental results reveal several key insights about structured learning’s advantages over
traditional approaches.

A striking finding is that structured contrastive learning consistently outperforms data augmenta-
tion across both domains. In ECG experiments, data augmentation actually degraded performance
compared to baseline, while our method achieved dramatic improvements. This counterintuitive
result illuminates a fundamental limitation: data augmentation operates through discrete sampling
of transformation space, potentially leading to overfitting on specific augmentation patterns rather
than learning true invariance. Our structured approach learns continuous manifolds in latent space
that capture transformation essence, enabling better generalization to unseen parameters.

The ablation studies demonstrate sophisticated benefits of explicit feature partitioning. Rather than
constraining all features uniformly—which can suppress discriminative information—our method
allows different feature groups to serve distinct semantic purposes. The variant mechanism actively
encourages this decoupling by penalizing similar variant features between positive pairs, creating
rich representational spaces that achieve simultaneous robustness and interpretability. Notably, the
variant mechanism provides benefits even when all features are designated as ”variant,” suggesting
that explicit relationship modeling helps create more organized representations regardless of parti-
tion specifics.

Success across radically different domains—medical signals and activity recognition, generative
and discriminative models, temporal and spatial transformations—demonstrates universal applica-
bility. This stems from addressing the fundamental issue of unconstrained latent space learning
rather than architecture-specific problems. Our explicit feature partitioning provides unprecedented
interpretability: practitioners can monitor feature group behavior, diagnose failures, control model
behavior, and transfer insights across domains. This represents a paradigm shift from post-hoc in-
terpretability to intrinsic interpretability designed from the ground up.
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5 CONCLUSION

We present Structured Contrastive Learning, a unified framework that creates interpretable latent
representations through explicit feature partitioning and contrastive objectives. Our approach ad-
dresses transformation brittleness—a universal problem where networks exhibit severe sensitivity to
semantically irrelevant input changes.

The key contributions of this work include: (1) Systematic identification of transformation brittle-
ness across neural architectures and applications; (2) A structured contrastive learning framework
with explicit feature partitioning into invariant, variant, and free components; (3) The variant mech-
anism that actively encourages feature decoupling while maintaining task performance; (4) Superior
performance compared to traditional data augmentation across medical signal analysis and activity
recognition.

The core technical innovation lies in providing explicit structural guidance rather than relying on
implicit learning through data exposure. Our method creates representations that are simultaneously
more robust and interpretable than traditional approaches, requiring no architectural modifications
while integrating seamlessly into existing training pipelines.

This work represents a paradigm shift toward controllable, interpretable neural networks. By provid-
ing explicit control over representation aspects, our approach enables reliable deployment in critical
applications and better model understanding. Future directions include extension to multi-modal
learning, few-shot learning applications, and hierarchical feature decoupling for complex transfor-
mations. Our framework effectively bridges the long-standing trade-off between performance and
interpretability, paving the way for deep learning systems that are both powerful and understand-
able—a crucial step for their responsible use in real-world applications.

Use of Large Language Models: We acknowledge the assistance of Claude Sonnet 4 (Anthropic) in
improving the clarity and language quality of this manuscript.
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