Under review as a conference paper at ICLR 2026

HUMAN-AI COLLABORATIVE UNCERTAINTY QUANTIFICA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Al predictive systems are becoming integral to decision-making pipelines, shaping high-stakes
choices once made solely by humans. Yet robust decisions under uncertainty still depend on ca-
pabilities that current Al lacks: domain knowledge not captured by data, long-horizon context,
and the ability to reason and act in the physical world. This contrast has sparked growing efforts
to design collaborative frameworks that combine the complementary strengths of both agents.
This work advances this vision by identifying the fundamental principles of Human-AI col-
laboration in the context of uncertainty quantification—an essential component of any reliable
decision-making pipeline. We introduce Human-AlI Collaborative Uncertainty Quantification, a
framework that formalizes how an Al model can refine a human expert’s proposed prediction
set with two goals in mind: avoiding counterfactual harm, ensuring the Al does not degrade the
human’s correct judgments, and complementarity, enabling the Al to recover correct outcomes
the human missed. At the population level, we show that the optimal collaborative prediction
set takes the form of an intuitive two-threshold structure over a single score function, extending
a classical result in conformal prediction. Building on this insight, we develop practical offline
and online calibration algorithms with provable distribution free finite-sample guarantees. The
online algorithm adapts to any distribution shifts, including the interesting case of human behav-
ior evolving through interaction with Al, a phenomenon we call “Human-to-Al Adaptation.” We
validate the framework across three modalities—image classification, regression, and text-based
medical decision-making—using models from convolutional networks to LLMs. Results show
that collaborative prediction sets consistently outperform either agent alone, achieving higher
coverage and smaller set sizes across various conditions, including shifts in human behavior.

1 INTRODUCTION

Artificial intelligence has demonstrated extraordinary predictive power, enabling data-driven decision-making in
high-stakes domains such as healthcare, law, and autonomous systems. These systems excel at extracting patterns
from vast amounts of data, offering statistical accuracy and consistency at a scale unattainable by human reasoning
alone. Yet, robust decision-making in such settings requires more than predictive accuracy. Human experts con-
tribute domain knowledge beyond data (Hansen & Quinon, [2023)), persistent memory for long-term planning and
context (Bengio et al.l [1994)), and the ability to reason and act within the physical world in ways still inaccessible
to current Al systems (Agrawal, |2010). These complementary strengths point to the importance of human-Al
collaboration, where computational precision and human judgment can jointly guide decisions under uncertainty.

A central challenge in realizing this vision lies in uncertainty quantification (UQ). Precise characterization of un-
certainty is fundamental to robust decision-making, as it allows decision-makers to weigh risks, assess reliability,
and allocate trust between human and machine. While UQ has been extensively studied in the machine learning
community, these efforts largely focus on Al systems in isolation. In collaborative settings, however, it is not
clear what principles of UQ should be when humans and Al are jointly in the loop. Identifying these principles is
essential for designing frameworks that achieve the best of both worlds: combining AI’s predictive accuracy with
human judgment to enable decisions more robust and effective than either could do alone. To this end, we ask:

What should characterize a successful collaboration between a human expert and an Al system?

Two principles naturally emerge. First, the expert must trust the collaboration to even be willing to engage: the
AT’s contribution should not degrade the quality of the human’s input. In other words, collaborating with Al should
not make the outcome worse in the worst case—a notion we refer to as counterfactual harm. Second, collaboration
must offer clear benefits beyond what the expert could achieve alone. The Al should complement the human by
addressing blind spots, identifying correct outcomes that may have been overlooked, and thereby strengthening
the overall decision process. Together, these two principles, trust through non-degradation and benefit through
complementarity, capture the essential properties of a meaningful human—Al collaborative framework.
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In this work, motivated by recent advances in conformal prediction (Vovk et al., 2005} |Lei et al.l [2017; [Romano
et al.} 2019;2020; |Angelopoulos et al., [2022)), we develop a framework that instantiates these two principles in the
context of collaborative prediction sets. This allows us to design distribution-free sets that respect both principles
without assumptions on the behavior of the AI model or the human, making the approach particularly practical
for modern applications. Additionally, recent work shows that conformal prediction sets are essential for risk-
sensitive decision making, where decisions must account for predictive uncertainty in a principled way (Kiyani
et al.| 2025)). This makes prediction sets an especially compelling subject of study for human—AlI collaboration in
high-stakes domains such as healthcare.

Proposed Framework. We propose a framework for human—AlI collaborative uncertainty quantification, where
the two agents jointly construct a prediction set. Formally, let (X,Y) ~ P, where X € X denotes the observed
features and Y € Y the corresponding label. The goal is to construct, for each input , a set C'(z) C ) that
contains the true label Y with high probability while remaining as small as possible.

In our collaborative setting, a human expert first proposes an initial set of plausible outcomes H(x) C ), based on
their expertise. The Al system then refines this proposal by outputting a prediction set C'(z, H(z)) C ), designed
to complement the human input. For notational convenience, we drop the explicit dependence on H (x) in what
follows, and have C(z) := C(z, H(z)). y

This modification is guided by two principles. The first is
( H(z) \

low counterfactual harm: the Al should not degrade the
quality of the human proposal. Concretely, whenever the Cx)
true label lies within the human’s proposed set, the AI’s re-
finement must preserve high coverage,

PY¢C(X)|YeHX)) <e.
The second is complementarity: the Al should add value / \
precisely when the human misses the correct outcome. That Complementarity: Counterfactual harm:

is, with high probability, the AI’s refinement recovers the P(Y € C(X)|Y & H(X)) P(Y & C(X)| Y € H(X))
true label whenever it is excluded from the human proposal, \ )

P(Y € O(X)|Y ¢ H(X)) >1-0.

Figure 1: Schematic of the two guiding principles

These two principles are illustrated schematically in Figure[I] Together, they formalize a collaborative prediction
strategy: the Al preserves the human’s expertise while compensating for potential blind spots. They come together
in the following optimization problem, which serves as the collaboration framework we study in this work:

Human-AI Collaboration Optimization (HACO)

Let (X,Y) ~ P and H(z) C ) be a human-proposed set. Let the prediction set returned by the Al be
denoted as C'(z, H(z)) := C(x) C Y. The Human-AI Collaboration Optimization (HACO) problem is

min _ E|C(X)]
C:xX—2Y

st. P(Y ¢ C(X)|Y € H(
P(Y € C(X) | Y ¢ H(

)) <e, (HACO)

ol

where ¢ and ¢ are two user-defined thresholds.

J

At a high level, the goal of prediction sets is to include the correct label with high probability while keeping the
sets small — set size serving as the measure of efficiency in uncertainty quantification. Within our framework,
the Al contributes in two complementary ways: pruning and augmentation. On the one hand, the Al prunes labels
from the human proposal whenever possible, since smaller sets are more informative, but does so without violating
the counterfactual harm constraint. On the other hand, the Al augments the set by adding likely labels that the
human may have overlooked, thereby ensuring complementarity. The human contribution, in turn, is to provide
the Al with a stronger starting point. When the initial human-proposed sets are of high quality, the AI’s final sets
achieve the same coverage level with significantly smaller size than what either could have produced in isolation.

Preview of Results.

* We characterize the optimal solution to HACO in Sectiond] As we will show, the optimal solution takes
the intuitive form of “two thresholds over one score function”, one threshold for pruning labels in the
human set, and the other guides the labels that we will add to the human set. We will then build upon this
result to design conformity scores that will be used by our finite sample algorithm. In particular, for the
case of regression, our score is a novel extension of conformalized quantile regression (Romano et al.|
2019).
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* In Section 4] we derive practical finite sample algorithms with provable distribution-free guarantees, in
two settings of offline, where the calibration and test data are separated and exchangeable, and online,
where the data is streamed one by one. Notably, in the online setting, our algorithm also captures the
novel concept of “Human-to-Al Adaptation”, which might be of its own interest and a promising subject
for further studies.

* In Section[5] we evaluate our finite sample offline and online algorithms on three data modalities: image
classification, text based medical diagnosis, and real-valued regression. Across all settings, we show that
the parameters € and J can be tuned such that the collaborative prediction set outperforms both human
and Al-only baselines, achieving higher coverage, smaller size, or both. We vary human and Al strength
to study each component’s role and test robustness under various distribution shifts.

1.1 RELATED WORKS

We briefly discuss closely related works here and defer a full discussion to Appendix [A] In the context of the hu-
man—Al collaboration, a growing line of work studies prediction sets as advice to experts (Straitouri & Rodriguez|
2024 |Straitouri et al., 2023} |Cresswell et al., 2024; Zhang et al., |2024; [Paat & Shen, 2025). For instance, Strai-
touri et al.|(2023) propose improving expert predictions with conformal prediction sets,|[Babbar et al.|(2022) show
empirically that set-valued advice can boost human accuracy, and |Straitouri et al.| (2024) analyze such systems
through the lens of counterfactual harm. These works differ from ours in that they study how humans use Al-
provided sets and evaluate downstream human accuracy, but do not construct a final collaborative prediction set
that algorithmically integrates human feedback with Al. A complementary literature on learning to defer allocates
instances between models and experts (Madras et al.,|2018;|Mozannar & Sontag}, 2021; Okati et al., 2021; Verma
& Nalisnick) 2022). This also differs from our goal in that we do not optimize who decides on each instance;
instead, we collaboratively quantify uncertainty by combining the human’s initial set with Al to return a single,
joint prediction set with explicit safeguards (e.g., counterfactual harm and complementarity constraints).

2 OPTIMAL PREDICTION SETS OVER POPULATION

We begin by characterizing the optimal solution to the optimization problem [HACO] the problem introduced
in Section (1} in the infinite-sample regime, where the data distribution P is fully known. This characterization
uncovers the statistical framework that we will later use to design finite-sample algorithms, enabling us to tune the
dynamics of Human-AlI collaboration with fine control over counterfactual harm and the complementarity rate of
the collaboration procedure.

Theorem 2.1. The optimal solution to is of the form
C*(z)={y: 1-ply|z) < a1y ¢ Hx)} +b*1{y € H(z)}}, as. foranyz € X,
for some thresholds a*,b* € R.

The theorem shows that the optimal collaborative prediction set can be described by two thresholds: One, b*,
which is responsible for pruning, i.e., for the labels y € H (z), b* determines which ones we keep and which ones
we exclude; And the other, a*, which is responsible for augmenting new labels, i.e., for the labels y ¢ H(z), a*
determines which ones to add to the final set. In other words, we include all labels whose p(y | ) exceeds a
threshold, and that threshold depends on whether the label was originally proposed by the human. If y € H(z),
then the AT uses a threshold b*, and if y ¢ H (x), the Al instead applies a different threshold a*.

This theorem generalizes prior results on minimum set size conformal prediction (Sadinle et al.| 2019; Kiyani et al.}
2024). When the human set always includes all the labels or is always empty—essentially the two cases in which
the human set carries no information about the true label—the optimal set reduces to a one-scalar characterization
of the form { y: 1l—pylz) < q* } which corresponds to minimum set size conformal prediction.

In what follows, we take advantage of the result of this theorem to design an algorithmic framework for Human-AlI
collaboration. In particular, in the characterization given by Theorem [2.1} there are three components that need to
be approximated or estimated in a finite-sample setting: p(y | ), a*, and b*. As we will see, the Al’s role will be
to provide an approximation of p(y | x). In the next section, we will discuss this in the two different settings of
classification and regression. We will then discuss debiasing strategies to estimate ¢* and b* from data.

3 CONFORMAL SCORING RULES

Building on the results of Theorem [2.1] our goal is to construct prediction sets of the form
C*(z)={y: s(z,y) < a" Yy ¢ H(x)} +0"1{y € H(x)} },

where s(x, y) is a non-conformity score that measures how unusual a label y is for a given input . In the infinite-
sample regime, Theorem [2.1|shows that the optimal non-conformity score is s(z,y) = 1 —p(y | ) where p(y | z)
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is the true conditional distribution. However, since p(y | =) is unknown in practice, we design a non-conformity
score to approximate the behavior of the optimal score. Below, we describe how such scores can be constructed
for both classification and regression settings.

Classification In classification tasks, predictive models typically output a probability distribution over labels,
often obtained via a softmax layer. Formally, let f : X — Ay map each input © € X to a |)|-dimensional
vector of probabilities p(y | x), which approximates the true conditional probabilities p(y | ). A widely used
non-conformity score in classification (Sadinle et al.,2019) that we adopt in our framework is defined as

§(.’L’,y) =1 _f)(y | 517)7

Regression In regression, the continuous label space makes it difficult to estimate the full conditional distribu-
tion p(y | x), so directly approximating the optimal score 1 — p(y | ) is not straightforward. To circumvent
this, we build upon Conformalized Quantile Regression (CQR) (Romano et al., 2019). The idea of CQR is to
estimate lower and upper conditional quantiles of Y given X = x and then use them to construct a conformal
score. Suppose we obtain an estimate g,/ of the o/2 quantile of the distribution of Y | X = =, and an estimate
q1—ay2 forthe 1 — o /2 quantile. We can then define the score

S(@,y) = max{dasa(®) — 9, ¥ d1-ap2(@)

and use this to make prediction sets. One can verify that the resulting prediction sets are a calibrated version of
[cja /2> Qo /2} (either expanded or shrunk symmetrically). The intuition is that the CQR score remains small
within the learned central quantile band and increases linearly into the tails. For common unimodal distributions,
this ordering is approximately monotone with 1 — p(y | x), so thresholding the CQR score closely emulates the
optimal rule. Prediction sets of this form have shown strong performance in terms of average set size in practice.
We generalize the idea behind CQR to design a score function tailored to our two-threshold setting. The idea
is to learn two distinct sets of quantile functions: one for counterfactual harm when Y € H(x) and one for
complementarity when Y ¢ H(z). To achieve this, we learn two pairs of quantile functions, (q. /2, ¢1—/2) for
the counterfactual-harm constraint and (gs /2,16 /2) for the complementarity constraint. From these quantile
estimates, we define the nonconformity score as

Sry) = max{qc/2(z) =y, y — Gi—c2(v)}, y € H(z),
’ max{qs/2(v) =y, ¥y — Gi—ss2(x)}, y ¢ H(x).
This score treats labels inside H (z) differently from those outside it, applying a distinct CQR-style score to each

in an intuitive manner: for y € H (z), the score is derived from the counterfactual-harm rate ; for y ¢ H(x), it is
derived from the complementarity rate 1 — §.

4  FINITE SAMPLE ALGORITHMS

So far, we have shown that optimal collaborative prediction sets are of the form C*(x) = {y cos(z,y) <
a*1{y ¢ H(z)} +b*1{y € H(x)} }, where we have also discussed strategies for designing the score s in
both regression and classification. In this section, we fix the conformity score and focus on how to estimate
the thresholds a and b from data. We introduce Collaborative Uncertainty Prediction-(CUP), our algorithmic
framework for constructing collaborative prediction sets in finite samples. We consider two scenarios: (i) the
offline setting, where calibration and test data are assumed exchangeable, and the task is to estimate thresholds
on a held-out calibration set before evaluating on future points.; and (ii) the online setting, where data arrives
sequentially and the underlying distribution may drift in arbitrary and unknown ways.

4.1 CUP - OFFLINE

In the offline setting, we assume access to a held-out calibration dataset Dy = {(X;,Y;, H(X;))}, that is
exchangeable with the test data Diesw = {(X;, Y}, H(X;)))}72,. The goal is to estimate the thresholds (a,b)
that implement the two-threshold structure of Theorem For each calibration point (z;,y;), we compute a

non-conformity score s; = s(x;, y;), and separate the scores into two groups according to whether the true label
lies in the human set or not. The thresholds are then obtained by taking empirical quantiles of these two groups:

b= Quantilel_6<{ s;:Y; € H(X;)}U {oo}>7 = Quantilel_é({ s;:Y; ¢ H(X;)}U {oo}).

Given a new test input g, the collaborative prediction set is formed as

C(xtest) = {y : S(Itesuy) <a- l{y ¢ H(xtest)} + b 1{y € H(xtest)}}-
The following Proposition shows these sets satisfy finite-sample guarantees.
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Proposition 4.1 (Finite-Sample Offline Guarantees). Let (X1, Ynt1, H(Xn41)) be a new test point, exchange-
able with the calibration data. Let ny be the number of calibration points where Y; € H(X;) and no the number

where Y; ¢ H(X;). The thresholds & and b satisfy:
]P)(Yn+1 S C(X7,+1) | Yn—i—l S H(Xn+1)) Z 1—¢ and P(Yn+1 S C(Xn_'_l) | Yn+1 ¢ H(Xn+1)) Z 175

Additionally, if the conformity scores have continuous distribution, then:

]P)(Y,H_l S C(Xn+1) | Yn+1 S H(Xn+1)) <1l—e+

’

ni+1

]P(YTL-H € C<X7l+1) | Ynt1 ¢ H(Xn-‘rl)) <1l-0d+ :
U») =+ ].

The assumption of exchangeability for lower bound and continuity for upper bounds are both common in the
conformal prediction literature (e.g., Vovk et al.[(2005)).

In practice the assumption of exchangeability is fragile and real-world deployments may inevitably face distribu-
tion shifts that undermine the validity of offline guarantees. Such shifts may stem from many sources, but in the
context of long-term human-Al collaboration, a particularly salient one is what we call Human-to-Al Adaptation.
As collaboration unfolds, humans may gradually adjust how they construct their proposed sets H (z) in response to
the AT’s behavior. For instance, the human might learn over time which types of instances—such as which patients
in a medical setting—the Al tends to be more knowledgeable about, and tune their proposals accordingly to be
maximally helpful to the final set. In some cases, this may mean proposing larger sets to improve coverage, while
in others it may mean offering smaller, more decisive sets to sharpen outcomes. Such feedback loops alter the
distribution of test-time data in ways that violate exchangeability between calibration and test sets. This motivates
the need for robustness to evolving distributions in collaborative settings. To address this challenge, we now turn
to the online setting, which relaxes exchangeability and explicitly allows the data distribution to evolve over time.

4.2 CUP - ONLINE

In this Section, we move to the online setting where data arrives sequentially, one sample at a time. At each round
t, the test input z; and the human’s proposed set H (x;) are provided to the AL, which must then output the final
prediction set Cy(x;). Only after the final prediction set is announced is the true label y, revealed. Here, we
make no assumptions about the distribution of the data stream, an assumption particularly natural for human-Al
collaboration, where distribution shift is not merely accidental but may arise directly from the interaction itself.

We design an online algorithm, CUP—Online, that makes prediction sets of the form,
Ci(ze) ={y eV | s(xt,y) <a: 1{y ¢ H(x)} +b 1{y € H(xs)} },

where s(.,.) is a fixed non-conformity score (look at Section 3), and (a¢, b;) are the two thresholds that we will
update in an online fashion. Let us also define

erri“ = Wy & Ce(xy), ye € H(xy)}, err?ut =My & Cole), ye & H(ze)}

Then, fixing a learning rate 7 > 0, CUP-Online updates only one threshold at a time, depending on whether the
human included the true label in their proposed set.

if ye€ H(wg): by = by +n(U{s(ze,yt) > b} —€), a1 =as
’Lf Yt ¢ H(S(Jt) DG =agt+1m (1{8($t,yt) > at} — (5)7 bt+1 = b

Intuitively, if errors occur more often than expected, the threshold is relaxed to include more labels, if errors are
too rare, the threshold is tightened. Over time this feedback process drives the empirical error rates toward their
target values € and §. The choice of 7 gives a tradeoff between adaptability and stability, while larger values will
make the method more adaptive to observed distribution shifts (this will also show up in our guarantees) they also
induce greater volatility in thresholds values, which may be undesirable in practice as it will allow the method to
fluctuate between smaller sets to larger sets. Hence, in practice, a careful hyperparameter tuning for 7 can enhance
the performance of CUP-Online. We now outline the theoretical guarantees of our online algorithm.

Proposition 4.2 (Finite-Sample Guarantees). Assume the conformity is bounded, i.e, s(x,y) € [0,1] and let
N (T) = Zthl 1{y; € H(x¢)} and No(T) = Zthl {y, ¢ H(xy)}. Forany T > 1:

T
S1Jr771nax(5,175)7 1 Zerr?”t—(s Sl+nmax(6,175).
nN1(T) No(T) nN2(T)

1 T
err’™ — ¢
|N1(T) ; !
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In particular, if N1(T), No(T) — oo, then almost surely

. 1 out __
T%oo N1 Z err Thl};o NQ(T) Zerrt =0

Remark. The boundedness assumption on the conformity score holds automatically in classification when s is
derived from a probability output (e.g., a softmax score, which lies in [0, 1]). In regression, where scores may be
unbounded, this condition can be enforced by rescaling and clipping the score.

These types of update rules and guarantees are common in the online conformal prediction literature for controlling
marginal coverage (Gibbs & Candes| 2021;|Angelopoulos et al.| 2023). We extend these ideas to simultaneously
control counterfactual harm and complementarity rates. Our results show that over long intervals, CUP-online
achieves the desired rates without any assumption on the data-generating distribution. In particular, the algorithm
addresses human—to-Al adaptation, among other shifts, by decoupling validity from assumptions about human
behavior. By tracking how human proposals interact with prediction set errors and adjusting its thresholds ac-
cordingly, CUP-online ensures that the target error rates are maintained, even as human strategies evolve over
time.

5 EXPERIMENTS

First, we outline our experimental setup, and then evaluate our framework across three distinct data modalities: (i)
image classification, (ii) real-valued regression, and (iii) text based medical decision-making with large language
models. For each modality, we study both the offline and online algorithms introduced in Section [4]

Baselines. We compare against the following natural baselines: (i) Human alone. which uses the human-proposed
set H(x) directly, without any Al refinement. We treat the human policy as a black box and make no assumptions
about how the sets are generated. Coverage depends entirely on the provided sets and may vary with human
expert quality These human sets are constructed using crowd-sourced annotations, rule-based diagnostic systems
or synthetic noise, depending on the task. Full details are provided in each experiment subsection. (ii) Al alone,
which uses the Al system without incorporating human input, reducing to standard conformal prediction based
solely on the model scores. This provides a benchmark for how well the Al performs independently. Additionally,
in the online setting we consider a fixed baseline that serves as a reference point for detecting and evaluating
distribution shifts. This method uses a static set of thresholds computed from an initial subset of data (i.e early
examples or a dedicated split), and then applies these thresholds over the online data stream without any further
updates. This baseline provides a useful comparison to understand the value of adaptivity in the online setting.

Evaluation metrics. Across all experiments, we evaluate methods based on two key quantities: marginal cov-
erage, the probability that the true label lies in the prediction set, and average set size, measured as cardinality
in classification and interval length in regression. In the online setting, we use running versions of these metrics,
defined at each time step ¢ as cov; = + St 1{y; € O(x;)} for marginal coverage and size; = 1 Z;Zl |C ()]
for average set size. These metrics capture the central tradeoff in uncertainty quantification: higher coverage is
desirable, but must be balanced against set informativeness. Our algorithm does not explicitly enforce a fixed
marginal coverage. Instead, the counterfactual harm parameter £ and the complementarity parameter § shape the
resulting coverage and set size. By adjusting these parameters, we can navigate tradeoffs between the two metrics.

A successful human—AlI collaboration should improve upon the human baseline in at least one dimension, coverage
or set size, without significantly worsening the other. For example, it may increase coverage while avoiding large
increases in set size, or shrink the set without losing coverage. In the best case, both metrics improve together. The
better the AI model, the more effectively it should recover missed outcomes without unnecessarily inflating sets.
Similarly, the stronger the human baseline, the better the collaborative procedure can perform, since it starts from
a higher-quality initial proposal. Thus our framework reflects the complementary contributions of both human and
Al, and we will explore this dependence on human and Al quality across our experimental tasks.

5.1 CLASSIFICATION: IMAGETNET-16H

Our first set of experiments use the ImageNet-16H dataset (Steyvers et al.| [2022)), which captures human predic-
tion behavior under varying perceptual noise. It consists of 32,431 human predictions on 1,200 natural images,
each annotated by multiple participants and perturbed with one of four noise levels w € {80,95,110, 125} that
progressively increase task difficulty. The label space is restricted to a fixed set of 16 classes. For the Al compo-
nent, we use a pre-trained VGG19 classifier (Simonyan & Zisserman, [2015)) fine-tuned for 10 epochs. We evaluate
our framework an offline setting and subsequently in an online setting, where we introduce various distribution
shifts.

Offline Setting. We compare three approaches: Human Alone, AI Alone, and CUP-offline. Results are averaged
over 10 random calibration/test splits. Table [I|reports coverage and set size under two representative noise levels,
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w = 95 and w = 125. For the human baseline, we aggregate multiple annotations into empirical label frequencies
and form top-k sets by selecting the & most frequently chosen labels. From the algorithm’s perspective, only the
sets—not raw annotations or confidences—are observed. The Al baseline applies standard conformal prediction
without human input. Since conformal methods allow direct control over target coverage, we evaluate Al Alone at
the same realized coverage achieved by CUP-offline. This ensures a fair comparison, where the only meaningful
dimension for improvement is set size (i.e., if CUP achieves the same coverage with smaller sets, it shows that
human input is being used effectively to tighten predictions). CUP-offline incorporates both sources, with coverage
and size determined by (e, §) parameters that encode counterfactual harm and complementarity.

w=125
Human Alone | CcupP | Al Alone
Strategy Coverage Size ‘ Coverage Size € d ‘ Coverage Size

Top-2 0.8008 £ 0.0090 2.00 £0.00 | 0.9022+0.0083 1.49+0.04 0.05 0.70 | 0.9072£0.0138 1.65+0.07
Top-1 0.7245+0.0103 1.00£0.00 | 0.8823 +£0.0134 1.36+0.07 0.05 0.70 | 0.8828 £0.0140 1.484+0.05

w =95
Human Alone | CUP | Al Alone

Coverage Size € § Coverage Size

Strategy Coverage Size

Top-2 0.9613 £0.0061  2.00 £0.00 | 0.9825+0.0066 1.77+0.44 0.01 0.80 | 0.9830 £0.0061 2.10£0.15
Top-1 0.9257 £ 0.0060 1.00£0.00 | 0.9763 £0.0076 1.43+0.07 0.01 0.80 | 0.9755+0.0053 2.27£0.21

Table 1: ImageNet-16H — Offline Results: Comparison of Human, Al, and CUP under two noise levels. Reports
marginal coverage and average set size (mean + std over 10 splits). CUP uses calibration parameters (e, J).

We include two noise levels to evaluate performance under varying task difficulty for the human experts. As shown
in Table [T] across both levels, our CUP-offline consistently improves on the human baseline. When the human
sets are relatively large(e.g top -2), CUP-offline yields strict improvements in both dimensions, reducing set size
while improving coverage. Atw = 125, for example, human top-2 sets cover 80% of labels with size 2.0, whereas
CUP-offline improves coverage to 90% while reducing size to 1.49. When human sets are very small (e.g., top-
1), coverage improvements typically requires adding labels, slightly increasing set size. Even then, CUP-offline
offers more efficient sets than Al Alone, leveraging human input to achieve better tradeoffs. At w = 95, for
example, CUP-offline achieves 97.6% coverage with an average size of 1.43, whereas Al Alone requires size 2.27
for similar coverage. Overall, CUP-offline improves on raw human sets and produces tighter predictions than Al
Alone, adapting to the strengths and limits of each source to provide a clear advantage over both baselines.

Online Setting. We now turn to the online setting, where the data arrives sequentially and distributional shifts
may occur during deployment. We consider two types of shifts: a noise shift, where inputs are ordered from high
to low noise levels (w = 125 — 95), and a human strategy shift, where human prediction sets evolve from top-2
to top-3 strategies. The latter serves as a concrete instance of what we term Human-to-Al Adaptation which is this
case is how humans might adapt their behavior in response to increasing task difficulty or Al feedback.
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Figure 2: ImageNet-16H- Online Results: Performance under human strategy shift (left) and noise shift (right).
Top: running coverage for CUP-online vs fixed baseline. Bottom: CUP-online vs human-only and Al-only base-
lines on running set size and marginal coverage.
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We first compare CUP-online to the fixed baseline tuned on a separate segment of the data stream. For in-
stance, in the noise shift setting, we tune (a,b) on w = 80, and for the human shift, on top-1 human pre-
diction sets. To evaluate, we track constraint-specific coverage over time. At each time step ¢, we compute
covy =1—1/t 22:1 1 — err}, where err] is either a counterfactual harm error or a complementarity error de-
fined in Section4.2] Intuitively, this metric tracks how well the algorithm maintains the target coverage level over
time. When the algorithm is effective, this running estimate converges to the nominal targets 1 — ¢ and 1 — .

Figure [2] (top row) shows the results for both forms of distribution shift: human strategy shift (left) and noise
shift (right). In both cases, the online algorithm remains close to the target coverage levels throughout the stream,
while the fixed baseline drifts away and fails to recover from the changes in the underlying distribution. In the
bottom row of Figure [2] we compare CUP-online with human-only and Al-only baselines, using the running
marginal coverage and set size metrics defined earlier. For a fair comparison, we run the Al-only baseline at a
target coverage level matched to the realized coverage achieved by CUP-online across the full stream. The results
show that CUP-online consistently improves over the human baseline by achieving higher coverage while keeping
the prediction sets small. Compared to Al alone, where coverage is matched by design, CUP-online produces
more compact sets. These trends mirror those seen in the offline setting, showing that our online collaborative
procedure maintains the advantages of the framework under distribution shift.

5.2 LLMS FOR MEDICAL DIAGNOSIS DECISION MAKING

Our second set of experiments evaluates the framework in the text modality of data, focusing on a medical
decision-making task using the DDXPlus dataset (Fansi Tchango et al., [2022). This dataset contains synthetic
patient records generated from a medical knowledge base and rule-based diagnostic system. Each record includes
demographics, symptoms, and antecedents linked to an underlying condition, along with a differential diagno-
sis list. From this list we form human prediction sets using a top-k strategy, where the human provides the %
most likely diagnoses. For the Al component, we use two language models with contrasting accuracy: GPT-5,
which performs strongly, and GPT-40, which is weaker and often falls below the human baseline. This contrast
highlights how the quality of the Al model shapes the trade-offs of collaboration.

Offline Setting. Tables [2| summarize the results for GPT-40 and GPT-5, respectively, under two different human
strategies. Across all settings, CUP-offline improves on the human baseline by raising coverage, as the procedure
explicitly augments human sets when the true label is missing. Naturally, this may increase set size, but when the
Al is sufficiently strong, as with GPT-5, the algorithm is able to both prune away incorrect human labels and add
the correct label when necessary more efficiently. This yields prediction sets that improve across both dimensions:
achieving higher coverage and smaller size, outperforming both baselines.

Human | GPT-40 \ GPT-5
Strategy ~ C/S | CUPCIS  (e,9) AIC/S | CUPCS  (e,0) AL C/S
Top-1 ~ 0.71/1.00 |0.90/2.84 (0.02,0.70) 0.88/4.64|0.91/1.59 (0.02,0.70) 0.91/1.76
Top-2  0.87/1.95 |093/3.14 (0.01,045) 0.90/9.12|0.93/1.65 (0.02,0.45) 0.93/1.95

Table 2: LLMs-Offline Results Entries report coverage/size (C/S). Calibration parameters (£, §) shown for CUP.

With a weaker model such as GPT-40, coverage gains may come at the cost of slightly larger sets, reflecting that
the model is less capable of efficient pruning or complementarity. This does not undermine the approach but
rather illustrates the role of the Al component in determining the ultimate efficiency of the collaborative sets. Still,
CUP-offline produces smaller sets than Al alone at comparable coverage levels, showing that human knowledge
is being used productively. Taken together, these results demonstrate that CUP-offline yields consistent benefits
over both the human and Al baselines, while the degree to which coverage and set size can be simultaneously
optimized depends on the strength of the Al model.

Online Setting. We next evaluate the CUP-online algorithm in the medical setting, using GPT-5 as the AI model.
Human prediction sets follow a top-k = 2 strategy, and distribution shift is induced by ordering test patients by
age, from younger to older groups. We also include a non-adaptive baseline with fixed thresholds tuned on the
earliest segment (ages 1-30) to isolate the effect of adaptivity in the face of demographic change, however due to
space constraints direct comparison with this baseline is deferred to the Appendix [C.2]

As in the ImageNet experiments, we benchmark CUP-online against human-only and Al-only baselines. Figure 3|
shows results under demographic shift. The pattern is consistent with the offline setting: CUP improves over the
human baseline in both coverage and set size, and against Al Alone it achieves smaller sets at matched coverage.
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5.3 REGRESSION: COMMUNITIES & CRIME

Our final set of experiments evaluates the framework in a regression setting using the UCI Communities & Crime
dataset (Redmond, 2002)), where the goal is to predict the violent crime rate per community. To simulate human
input, we generate intervals centered around noisy point estimates of the ground truth. Specifically, we perturb
each true label with Gaussian noise to form ¢(x), then construct the interval H(z) = [g§(z) — w(z)/2, §(z) +
w(x)/2], where w(x) is a base width also subject to noise. By varying the noise levels, we simulate human
experts of differing quality. As in earlier experiments, the algorithm only observes the final set H (x), not how it
was generated. The AT model builds on the setting explained in Section [3]We train two MLPs using the pinball
loss to estimate conditional quantiles: one for predicting (ge /2, G1—c/2), and one for (§s /2, G1—s/2). Each model
shares a backbone with two output heads. The resulting four quantiles define the CQR-style score in Section[3] to
which we apply the CUP-offline procedure to obtain the two thresholds used at test time.

We compare Human Alone, which uses the raw intervals H (x); AI Alone, which applies standard conformalized
quantile regression without access to the human sets; and CUP-offline, which combines both sources via the
proposed collaborative algorithm. Results are reported in Table[3|for two human experts of different quality. First,

Human A | Human B
HumanA C/S CUPC/S (s,1-06)  AIC/S |HumanBC/S CUPC/S (s,1-06)  ALC/S

0.760/0.581 0.862/0.380 (0.10,0.70) 0.862/0.394 | 0.872/0.618  0.948/0.528 (0.05,0.90) 0.948/0.608
0.760/0.581 0.825/0.326 (0.15,0.70) 0.825/0.337 | 0.872/0.618 0.953/0.558 (0.05,0.95) 0.953/0.588

Table 3: Regression—Offline Results: Coverage/size (C/S) under two human expert settings.

we note that CUP improves upon the human baseline in terms of both coverage and interval width. Second, the
results highlight the complementary role of human, with greater gains observed over Al Alone when initial human
input is of higher quality. This complements the medical diagnosis results, where we varied the Al instead of
the human. Together, the two experiments show that the collaboration efficiency depends on the quality of both
parties.

Online Setting. We evaluate CUP-online under a controlled distribution shift based on community demographics.
Test examples are ordered by the proportion of residents identified by a randomly selected race-coded variable.
Figure [3| reports the running marginal coverage and average set size for Al, Human, and CUP-online. Consistent
with the previous experiments, we again observe that CUP-online improves upon both baselines: compared to
Human Alone, it increases coverage without inflating intervals; compared to Al Alone, it reduces interval width
while preserving coverage. The non-adaptive baseline with fixed thresholds is tuned on the earliest portion of
the stream (i.e., communities with the lowest demographic proportion). Results for this baseline are deferred to
Appendix [/] All together, the results underscore the robustness of the collaborative approach across modalities
and under shifting data distributions.

6 CONCLUSION

We introduced a framework for constructing prediction sets collaboratively between humans and Al, grounded in
two core principles: avoiding counterfactual harm and enabling complementarity. We showed that the optimal
sets take a simple two-threshold form, and developed finite-sample algorithms for both offline and online settings.
Across diverse domains and agents (human or Al) strengths, our methods consistently leverage the collaboration
capabilities of human and Al to produce sets that outperform either alone. This framework offers a principled and
practical approach to structured collaboration under uncertainty.
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A LITERATURE REVIEW

Conformal Prediction The idea of constructing prediction regions can be traced back to classical work on toler-
ance intervals in statistics (Wilks| [1941; Scheffé & Tukeyl [1945). Modern conformal prediction (CP), introduced
by Vovk et al.|(1999); Saunders et al.|(1999)); Vovk et al.|(2005)), builds on this foundation to provide distribution-
free, finite-sample validity: given a desired confidence level, CP guarantees that the constructed prediction set
contains the true outcome with the prescribed marginal probability.

Over the past two decades, CP has become a standard tool in machine learning for both classification and re-
gression tasks (Papadopoulos et al., 2002; [Lei et al., [2017; Romano et al., 2019;2020), with a large literature on
improving efficiency (shrinking set size while preserving coverage) (Fisch et al., [2024; (Gupta et al.| 2022} [Kiyani
et al.| [2024; |Stutz et al.| 2022} Noorani et al., [2025). A growing body of work extends CP beyond marginal cover-
age to control more general notions of risk |Angelopoulos et al.| (2025) introduced conformal risk control, showing
how prediction sets can be calibrated to satisfy monotone risk measures rather than coverage alone. |[Lindemann
et al.| (2023) apply these principles to safe planning in dynamic environments, demonstrating how conformal meth-
ods can enforce operational safety constraints. [Lekeufack et al.| (2024) developed a conformal decision-theoretic
framework where decisions are parameterized by a single scalar and calibrated to control risk. |Cortes-Gomez
et al.| (2025) expand on this view by developing utility-directed conformal prediction, which constructs sets that
both retain standard coverage guarantees and minimize downstream decision costs specified by a user-defined
utility function.More broadly, Kiyani et al.|(2025) show that prediction sets can be viewed as a natural primitive
for risk-sensitive decision making: they communicate calibrated uncertainty in a form well-suited for risk-averse
decision makers operating in high-stakes domains. This perspective makes conformal prediction sets particularly
relevant for human—AlI collaboration, where reliable uncertainty estimates are essential for enabling trust and
complementarity between human expertise and machine predictions.

Human-AI collaboration Human—AI decision-making has attracted growing interest across the machine learn-
ing community and social sciences. Yet, realizing true complementarity where the joint system outperforms either
the human or the Al-alone, or both, remains challenging. Interestingly, a recent meta analysis by [Vaccaro et al.
(2024) found out that, on average, human—AlI teams underperform the stronger individual agent. These findings
underscore persistent difficulties around coordination, trust, and communication between machine and human,
motivating the need for algorithmic frameworks that can systematically structure collaboration.

Learning to Defer. One approach is the learning to defer (L2D) paradigm, where the Al model learns when
to predict on its own and when to defer to a human expert. Earlier work [Madras et al.| (2018) framed this as a
mixture-of-experts problem, jointly training a classifier with a deferral mechanism. Wilder et al.[(2021]) extended
this with a decision-theoretic formulation, training models to complement human strengths rather than maximize
accuracy alone.

Subsequent work studied the design of surrogate losses for deferral, for example Mozannar & Sontag| (2021))
showed that standard training objectives can fail to produce optimal deferral policies and proposed a consistent
surrogate loss that guarantees Bayes-optimal deferral. Extensions address various settings: [Verma & Nalisnick
(2022) and |Charusaie et al.| (2022) studied deferral with multiple experts, while Wei et al. |Wei et al.| (2024)
emphasized that humans and models are not independent and introduced dependent Bayes optimality to exploit
correlations between them. (Okati et al.| (2021) formulated differentiable learning under triage, providing exact
optimality guarantees for multi-expert deferral. Most recently Bary et al.| (2025) proposed a training-free deferral
framework that leverages conformal prediction to allocate decisions among multiple experts. And most recently,
along these ideas|Arnaiz-Rodriguez et al.|(2025) introduced a collaborative matching system that selectively defers
to humans to maximize overall performance.

Overall, the L2D literature focuses on who decides on each instance: the model or the human. These methods
improve team performance by abstention or delegation, which is inherently different than our approach. We start
from the human’s proposed set and ask how to refine it with Al. The goal is to always produce a combined
prediction set, particularly one that is simultaneously more reliable and more informative than either agent alone.
In this sense, our approach complements deferral-based methods but addresses a different question: not who
decides, but how to decide together.

Agrement protocols While more distant from our framework, another line of work views collaboration as an
interactive process through agreement protocols, where humans and models iteratively exchange feedback until
consensus is reached (Aumann, |1976;|Collina et al.,[2025).

Prediction Sets for Human-AI decision support A more related and recent strand of work has explored predic-
tion sets as a structured interface for collaboration and human decision making support. [Straitouri et al.| (2023)
formalized the problem of improving expert predictions with conformal prediction in multiclass classification. In
their setting, the Al provides a subset of candidate labels for each instance, from which the human selects, ensuring
that the advice is structured but does not override the expert’s agency. In parallel,|Babbar et al.|(2022) empirically
evaluated prediction sets in human—AlI teams, and showed that set-valued advice can improve human accuracy
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compared to single-label predictions. However, they also found that large prediction sets may confuse or slow
down human decision-making. To mitigate this, they introduced Deferral-CP (D-CP), where the Al is allowed to
abstain entirely on instances for which no sufficiently small set can be produced, deferring the decision back to the
human. Other works have studied how to design prediction sets specifically tailored for human use, for example
De Toni et al.| (2024)) proposed a greedy algorithm for constructing prediction sets and showed empirically that it
can improve average human accuracy compared to standard conformal sets.

Counterfactual harm and complementarity In recent years, there has been growing concern about the un-
intended consequences of decision support systems using machine learning algorithms in high stakes domains.
(Richens et al.|(2022); |Li et al.| (2023)); Beckers et al.| (2022))To this end, [Straitouri et al.|(2024) analyze decision-
support systems based on prediction sets through the lens of counterfactual harm (Feinberg, |1986).Their concern
is that requiring humans to always select from a machine-provided set may, in some cases, harm performance: a
human who would have been correct unaided might be misled by the system. Using structural causal models, they
formally defined and quantified this notion of harm, and under natural monotonicity assumptions, provided meth-
ods to estimate or bound how frequently harm may occur without deploying the system. While closely related to
our framework, their setting differs from ours in that they study systems where the Al supplies sets from scratch,
and their definition of counterfactual harm focuses on the subsequent prediction accuracy of human, whereas we
start from sets already provided by the human and ask how to refine them collaboratively, and our definition of
counterfactual harm is a direct measure of the quality of the refining procedure.

On the other hand, in the broader human-Al collaboration literature, complementarity is typically defined as
whether the combined system achieves higher average accuracy than either the human or the model alone (Yin
et al.,|2019; [Suresh et al.|[2020; |Lai et al., |2021), and it is currently still unclear how to guarantee this. Our formu-
lation of complementarity is different: it is set-based rather than accuracy-based. Instead of asking whether joint
predictions improve overall accuracy, we require that the collaborative prediction set recovers outcomes the human
initially missed, while simultaneously avoiding counterfactual harm. This shifts the focus from point-prediction
accuracy to the tradeoff between set-based coverage and set size. Crucially, by defining complementarity in this
way, our framework provides a principled way to formalize and guarantee it, with clear tradeoffs between the two
central metrics of uncertainty quantification.

B PROOFS

B.1 PROOF OF THEOREM[2.T]( OPTIMAL PREDICTION SETS )

Proof. The primary optimization problem is given by:

C:I)?ElZy E |C(X)|
st. P(Y €C(X)|Y € H(X)) > 1—-¢, (P)
P(Y € C(X) | Y ¢ H(X)) > 0.

Part 1 (LP Relaxation). The original problem involves optimizing over a space of discrete sets, which is a com-
binatorial and generally NP-hard problem. To make it more tractable, we can formulate an equivalent problem
using a continuous relaxation. Let C(x,y) € [0, 1] be a variable indicating the degree to which y is included in
the set for instance x. With this relaxation, the objective function, which is the expected size of the set, can be re-

written as E fy C(X,y)dy|. Next, we can use the definition of conditional probability, i.e P(A|B) = E][El[‘i‘;f]
to rewrite the constraints in terms of expectations, which leads to the following:
i E C(X,y)d
o B[ ]
(Prel)

s.1. E[C(X, Y)]-YEH(X)] > (1 — g)E[]-YeH(X)] s
E[C(X,Y)ly¢nx)] = 0E[1ygnx)) -

Note that Ex y [1ycr(x)] = P[Y € H(X)]. This problem is a linear program, where both the objective functions
and the constraints are linear with respect to the decision variable C. Since the objective is linear ( and thus
convex ) and the feasible region is a convex set, this is a convex optimization problem. Therefore strong duality
holds (see Theorem I Section 8.3 of|Luenberger (1969)).
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Part 2 (Minimax Formulation). We formulate the Lagrangian for the relaxed problem by introducing Lagrange
multipliers A1, Ao > 0 for the two constraints:

9(A1,A2,C) =Ex [/y C(X, y)dy} — M (Exy[C(X,Y)lyen] — (1 —)Exy[lyenx))

— X (Exy[C(X,Y)1lygnx)) — 0Exy[lygn(x)])
The minimax problem is:

min max ¢g(A1, Ao, C
i Al,Azzog( s A2, C)

By strong duality, we can swap the order of the maximization and minimization:

max ming(Aq, Ao, C
AL A2>0 C 91 22, C)

To perform the inner minimization over C, lets first rewrite the Lagrangian in integral form over the joint proba-
bility distribution p(z,y).

g= / / C(z,y) [p(@) = Mlyen@p(@,y) — Aolygm ) p(x,y)] dedy + constant.
xJYy

To minimize this integral, we can minimize the integrand for each point (x,vy) independently, and thus the inner
minimization over C(z,y) € [0, 1)is pointwise. By using the relationship p(x,y) = p(z)p(y|x) and factoring out
p(x), the term multiplying C(x,y) becomes:

p(a) [1 = M1yep@pyle) — Aalygpp(ylz)]

Since p(x) > 0, the choice of C(z,y) € [0, 1] that minimizes the expression depends on the sign of the term in
brackets. The minimum is attained at the boundaries by setting C(x,y) = 1 if the term is negative and C(x,y) = 0
if it’s positive. This results in an optimal solution C*(x,y) that is naturally binary-valued

C*(z,y) = 1{1 = M lyey@)p(ylz) — Xelygmp(ylz) <0}

and thus the continuous relaxation is tight, as the optimal solution to the relaxed problem is guarantees to be a
valid solution for the original problem over the discrete set where C(z,y) € {0,1}.

Part 3 (Deriving the Final Form). The condition for including y in the set C*(x) can be rewritten as:
L < M 1yen@pyle) + Aalygm)p(ylr)

This inequality can be simplified by considering the two mutually exclusive cases for any outcome y € Y:

» Ify € H(x), the condition is 1 < \ip(ylx) <= p(y|z) > 1/A1.
o Ify ¢ H(x), the conditionis 1 < Aop(ylz) <= p(y|x) > 1/Xa.
Combining these two conditions, we can express the optimal set C*(x) as a single thresholding rule on the condi-

tional probability p(y|x). Let \¥ and N5 be the optimal Lagrange multipliers. We define the optimal thresholds as
b* =1—1/A and a* = 1 — 1/X;. The condition for including y in the optimal set becomes:

1—p(ylz) <a” Yy ¢ H(x)} + 0" - {y € H(z)}
The optimal set can then be written compactly as a single thresholding rule on the score:
C*(z)={yeY|slylr) <a” Uy ¢ H(x)} +b"- 1y € H(z)} }
Since the optimal solution to the relaxed problem is binary and takes this form, it is also the optimal solution to

the original problem.

This completes the proof. O

B.2 PROOF OF PROPOSITION [4.1] ( OFFLINE ALGORITHM - COVERAGE VALIDITY )

Proof. Given the calibration set Doy = {(X;,Y;)}1q, let H : X — 2Y be the human set mapands: Xx)Y — R
a non-conformity score function. Assume without loss of generality that the (conditional) distribution of the scores
is continuous without ties, however in practice this condition is not important as we can always add a vanishing
amount of noise to the scores.

For each point define s; := S(X;,Y;) and h; = 1{Y; € H(X;)}. Split the indices of the calibration set into two
disjoint groups D1 = {i < n : h; = 1} with size ny and Dy = {j < n : h; = 0} with size ny. Given a calibration
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set Dot = {(X;,Yy)} et H: X — 2% denote the human set map, and s : X x ) — R a nonconformity score
function. For each example, define the conformity score s; := s(X;,Y;) and let h; := 1{Y; € H(X;)} indicate
whether the true label was covered by the human set.

A new test point (Xyest, Yiest) is assumed to be exchangeable with the full calibration set. This overall exchange-
ability of the full set of points implied that, conditioned on the event h;.,; = 1, the test point is exchangeable with
the set of points in D;. Similarly, conditioned on the event h;.s; = 0, the test point is exchangeable with the set
of points in Ds. The prediction set is then defined as

C(Xiest) = {y 0 $(Xtest,y) < a1{y & H(Xest)} + Bl{y € H(Xiest)} }7
where {d = Quantile;_({s; : i € D1} U {oo}),

b := Quantile ;_4({s; : i € Do} U {o0}).

We now derive a chain of equalities and inequalities for the case of Yies; € H(Xiest):

Pr[YIest S C(Xtest) | Piest = 1] (é) Pr[stesl <a | Pest = 1] =Pr |:3test < Quantﬂe1_g({5i RS Din} U {OO}) ’ Piest = 1:|

| !
TL1+1

(c)
Z 1{51- < Quantilel_e({sj :j €D}V {Slest}>} hest =1 > 1 —e¢.
€D U{test}

and analogously the case if YViesr ¢ H(Xiest):

Pr[Yiest € C(Xeest) | Mtest = 0] @ Pr [s[est <b ‘ Rest = 0} =Pr [slest < Quantilek(;({si :i1€D}U {oo}) ‘ hiest = 0}

1
Qg

(c)
1 Z 1{si < Quantilelftg({sj :jeD}U {slest})} hest = 0 é 1—6.

€D U{test}
where

(a) By definition of C(+) and the thresholds G and b when: hest = 1 (resp. 0), inclusion is the event s < @
(resp. Seest < b).

(b) By exchangeability within the corresponding group: conditional on hyg, the set of scores {s; : i €
D1 }U{sest} (or D7) is exchangeable, so we average the indicator over the ngroup + 1 equally likely ranks.

(c) By the definition of the empirical quantile: at least a 1 — ¢ (resp. ¢) fraction of the ngpp + 1 values are
< that quantile.

Therefor thus far we have established that
Pr[Kest S C(Xtest) ‘ Kest S H(Xtest)] 2 ]- — &, PrD/test S C(Xtest) | thest ¢ H(Xtest)] Z 1 - 5
And now for the upper bounds: for the case Yies; € H(Xiest):

1—¢)(ny+1)] (o) 1
Pr[}/test S C(Xtest) | Yiest € H(Xtest] (:) |7( n1)(+11 )-‘ <l—-e+ 1+ B
Similarly, for the case Yiest ¢ H(Xtest), we have:
1—-06)(ne+1 1
PrlYis € C(Xie) | Viess ¢ H (X = =202 D] gy L

where

(d) Given that the groupwise score distributions are continuous, the rank of s,y among the scores in the
corresponding group (D1 U{Se }) is uniformly distributed. This makes the probability equal to the exact
proportion of scores less than or equal to the quantile.

(e) By the property of the ceiling function [2] < 2 + 1
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B.3 PROOF OF PROPOSITION [£.2]( ONLINE ALGORITHM - GAURANTEES )

First we present the following lemma that states that the thresholds a; and b; remain bounded at all time steps:

Lemma B.1 (Parameter Boundedness). Let s(x,y) € [0,1] be the non conformity scores. For any learning rate
1 > 0, the sequences {a.} and {b;} are bounded. Specifically, for all t > 1:

be € [-me, 1+n(l—¢)l,  ap € [-nd, 1+n(1-7)).

Proof. We prove the result for b;; the proof for a; is symmetric.
Let I, = [-ne,1 + n(1 — &)]. We show by induction that once b; enters I, it never leaves.
First, since b; € [0, 1], the first update ensures by € Ij. Now, assume b; € I, for some ¢ > 1.

Upper Bound: b, ; is maximized if the update is positive, which requires 1{s; > b;} = 1. This implies s; > by,
so by must be less than s; < 1. The update is bs1 = b; + 1(1 — ). Since this increase only happens when b; < 1,
we have b1 < 1+ n(1 — ). If the update is negative, b;1 < by, so it is also below the upper bound. Thus,
bt+1 <1+ 77(]. — 6).

Lower Bound: b, is minimized if the update is negative, which requires 1{s; > b;} = 0. This implies s; < by,
so by must be greater than s; > 0. The update is b;11 = b; — ne. Since this decrease only happens when b; > 0,

we have b1 > 0 — ne = —ne. If the update is positive, b;1 > by, so it is also above the lower bound. Thus,
biy1 > —ne.
We have shown by induction that the parameters remain in their respective intervals for all ¢ > 1. O

Now first, lets restate the proposition

Proposition B.2 (Finite-Sample Guarantees). Let N1(T') = Zle 1{Y; € H(X:)} and No(T) = Zthl 1{Y; ¢

H(Xy)}. Forany T > 1:

1+ nmax(d,1 — )
nN2(T) .

T
1+ nmax(e,1 —¢) 1 ¢

< , E erry" — §)| <

nN.(T) No(T) &=

We prove the first bound, and the second statement is symmetric. Let I;(T) = {t < T | Y; € H(X;)} be

the set of indices where the true label lies within the human proposed set. The number of such examples is

N1 (T) = |I;(T)|. As per algorithm, we only update the threshold b; for such points, and the update is given by:
bip1 — by = plerr™ — ¢)

where errop = 1{Y; ¢ C(X:) | Y € H(X;)} Note that this update only occurs to times ¢t € I;,,(T'). If you

sum over all relevant time steps where the update occurs we form a telescoping sum:

bry1 —bo = Z nlerri® —g) =17 Z erri® — Z €

tel(T) tel (T) tel, (T)

Since err} = 0 forall t ¢ I(T), we can expand the sum over all time steps and rearrange to get:
T

b —b ;
b 2 Zerr}n —eNy(T)
" t=1
and rearranging again and taking the absolute value we obtain:

bry1 — b1
NN (T)

1 T
erri® — gl =
W 2

Using Lemma we can bound the numerator. The maximum value of b, is 1 + (1 — €) and the minimum
is —ne, which gives the bound |br41 — b1| < 1 4+ npmax(1l — ¢,¢). Substituting this directly we obtain our
finite-sample inequality

< 1+ nmax(l —¢,¢)
B nN1(T)

1 T
err)! — e
ERUP

C ADDITIONAL EXPERIMENTAL RESULTS

This section presents supplementary results for each of the data modalities studied in the main paper. These results
were omitted due to space constraints but are fully consistent with the findings we discussed earlier. All additional
experiments are complementary and serve to reinforce the core claims of the paper.
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C.1 CLASSIFICATION: IMAGENET-16H

Beyond the noise and human strategy shifts discussed in the main text, we also study a class label shift on
ImageNet-16H. In this setting, calibration is performed on a restricted subset of classes, while evaluation takes
place on a disjoint set of unseen classes. For instance, calibration may use only dog and cat images, while the test
stream consists of bird images. This creates a particularly challenging shift, since the labels encountered at test
time are entirely absent from calibration. We report the same metrics as in the main experiments. Figure 4 com-
pares our adaptive online algorithm with the fixed baseline in terms of running coverage. As before, the adaptive
method tracks the target levels closely, while the fixed baseline drifts and does not recover. Figure[5]then compares
CUP against the Human-only and Al-only baselines. The pattern is consistent with other shifts: Relative to the
human baseline, CUP raises coverage while also pruning incorrect labels from overly conservative sets, resulting
in sharper and more informative predictions. Relative to Al alone, CUP achieves the same level of coverage with
smaller sets, showing human input is being efficiently incorporated in the resulting prediction sets.

Class-label shift -

Online Fixed — === Target
given YEH given Y&H
0.50 F
0.95_ --: ulmt..A -------------- su
0.45 |
0.94 -
& & 0.40
5 0.93 5
2 ) 3 0351
[¥] [¥]
0.92 - 0.30.
0.91_ 0_25_
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
t t

Figure 4: Fixed vs. online CUP on ImageNet-16H under class label shift. The online algorithm remains close
to target coverage, while the fixed baseline drifts and fails to recover.
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Figure 5: Comparison against baselines on ImageNet-16H under class label shift. CUP outperforms both
Human-only and Al-only baselines, achieving higher coverage with smaller prediction sets.
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C.2 LLMS FOR MEDICAL DIAGNOSIS DECISION MAKING

We begin with additional offline results on the DDXPIlus dataset, exploring a wider range of calibration parameters
(e,9). Table reports coverage and set size for Human-only, Al-only, and CUP (ours) across both GPT-40 and
GPT-5. These extra configurations make it possible to see how tuning the targets affects performance.

Across all reported settings, CUP improves upon the human baseline in at least one dimension, coverage or set
size, with the magnitude of the gain depending on the specific (&, d) configuration. With the stronger model (GPT-
5), CUP is often able to achieve simultaneous improvements in both dimensions: pruning away incorrect human
labels while adding the correct one when needed, leading to higher coverage and smaller sets. With the weaker
model (GPT-40), coverage improvements are still observed, but they often come with larger set sizes, reflecting the
model’s more limited ability to prune. In all cases, however, CUP achieves smaller sets than Al alone at matched
coverage levels, confirming that human input is effectively incorporated.

Human | GPT-40 \ GPT-5-mini
Strategy ~ C/S | CUPCIS  (e,0) AIC/S | CUPCIS  (e,6) AIC/S

Top-1 0.71/1.00 |0.89/2.56 (0.01,0.65) 0.88/4.58 |0.87/1.27 (0.02,0.55) 0.88/1.54
Top-1 0.71/1.00 |0.88/2.51 (0.02,0.65) 0.88/4.40 |0.88/1.36 (0.01,0.55) 0.89/1.59
Top-1 0.71/1.00 |0.85/1.77 (0.01,0.50) 0.85/3.69 |0.85/1.19 (0.02,0.50) 0.86/1.42
Top-1 0.71/1.00 |0.90/2.84 (0.02,0.70) 0.88/4.64 |0.91/1.59 (0.02,0.70) 0.91/1.76

Top-2 0.87/1.95 0.90/2.47 (0.01,0.30) 0.88/4.57 | 0.95/231 (0.01,0.70) 0.95/2.79
Top-2 0.87/1.95 0.93/3.14 (0.01,0.45) 0.90/9.12 | 0.94/1.73 (0.02,0.55) 0.94/2.10
Top-2 0.87/1.95 0.94/3.69 (0.01,0.55) 0.93/22.41|091/1.51 (0.02,0.40) 0.91/1.83
Top-2 0.87/1.95 0.93/3.41 (0.01,0.50) 0.91/13.55|0.93/1.65 (0.02,0.45) 0.93/1.95

Table 4: Additional configurations for offline setting: results on DDXPlus. Human sets (shared across models)
use a top-k strategy. We compare the Human alone against CUP (ours) and Al Alone for two models side-by-side.
Entries report Coverage/Size (C/S) with calibration parameters (e, §) shown for CUP.

We also report online results for DDXPlus under the same age-based distribution shift described in the main paper.
Calibration is performed on younger patients, while testing proceeds on streams of older patients. These results
were omitted earlier due to space but are included here for completeness.

Figure [6] shows the running coverage of CUP (online) compared to a fixed, non-adaptive variant. As in other
modalities, the adaptive updates keep CUP close to the target levels throughout the stream, while the fixed baseline
drifts and fails to recover.
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Figure 6: Fixed vs. online CUP on DDXPlus under an age-based shift. Same setting as in the main paper,
included here for completeness. The online algorithm remains close to target coverage, while the fixed baseline
drifts and fails to recover.
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C.3 REGRESSION: COMMUNITIES & CRIME

As in the main paper for ImageNet, and in the appendix for LLMs, we evaluate CUP-online we against a fixed,
non-adaptive variant in the regression setting with the UCI Communities & Crime dataset 2002) in

Figure

Demographic shift
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0.8
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) &
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> >
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t t

Figure 7: Fixed vs online CUP on Crime & Communitites dataset
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