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Abstract

Table Representation Learning (TRL) models are commonly pre-trained on large
open-domain datasets comprising millions of tables and then used to address
downstream tasks. Choosing the right TRL model to use on proprietary data can
be challenging, as the best results depend on the content domain, schema, and data
quality. Our purpose is to support end-users in testing TRL models on proprietary
data in two established SQL-centric tasks, i.e., Question Answering (QA) and
Semantic Parsing (SP). We present QATCH (Query-Aided TRL Checklist), a
toolbox to highlight TRL models’ strengths and weaknesses on relational tables
unseen at training time. For an input table, QATCH automatically generates a
testing checklist tailored to QA and SP. Checklist generation is driven by a SQL
query engine that crafts tests of different complexity. This design facilitates inherent
portability, allowing the checks to be used by alternative models. We also introduce
a set of cross-task performance metrics evaluating the TRL model’s performance
over its output. Finally, we show how QATCH automatically generates tests for
proprietary datasets to evaluate various state-of-the-art models including TAPAS,
TAPEX, and CHATGPT.

1 Introduction

Table Representation Learning (TRL) models are getting increasing attention for their ability to
support various NLP downstream tasks involving tabular data (Badaro et al.,[2023; Dong et al., 2022).
Such models are built using large open-domain datasets during pre-training and can then be fine-tuned
with labelled examples for the target task.

Motivation. In most settings, companies aim at adopting a pre-trained model to reduce costs.
However, despite the abundance of such methods, it is still challenging to select and manage a TRL
model for proprietary data. Models use different pre-training tasks and datasets, work under different
assumptions, and the top performing model for an existing benchmark is not necessarily the best one
when tested on proprietary data. Indeed, the performance of models fine-tuned on benchmark data is
not necessarily replicable on proprietary data.

In a corporate setting, there are at least three scenarios where a given TRL model needs to be evaluated
against proprietary datasets:

* Comparison: Compare TRL models fine-tuned on private examples to see which one performs best.

* Validation: As crafting examples is expensive, verify when the quality meets the requirements.

* Maintenance: Fine-tuned models need to be re-calibrated to avoid data and conceptual shifting,
continuous evaluation helps the identification of this issue.

Challenges. Supporting these scenarios with accurate evaluation is a not obvious task. For the first
scenario, consider an engineer who is selecting the TRL model for a Question Answering (QA) task
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over their enterprise tabular data. Several options are available and they start assessing the models
for a zero-shot setting, where the model is used as-is. As labelled examples are not available, the
engineer has to craft some test data to assess how the model is performing on their proprietary tables,
e.g., write pairs of questions in natural language (NL) and the expected data results.

The task above has a cost that increases with the number of tables and tests crafted by the engineer.
Moreover, the process above applies for all the target tasks that the engineer wants to support. For
example, they would have to repeat the exercise for the same model and datasets to evaluate its
suitability for Semantic Parsing (SP, aka Text2Sql), where, given a question in NL and a table schema,
the model returns a SQL query.

Creating tests is only half of the story. Test results must be evaluated, i.e., the data in the QA
model’s output D, should “match” the expected output manually crafted in the test Dp. A simple
equality test fails short, as the tuples (or values) in D, can be in different order w.r.t. those in Dr.
Different order for records and attributes does not matter in the relational model, so the test should be
independent from this difference. While existing systems are evaluated with a naive accuracy metric
that handles these issues, many problems that make this matching hard are ignored. First, they do not
test results for relational data integrity, i.e., if tuple and attribute relationships are satisfied. Second,
consider tuples in D, that are similar to the expected ones in D except null values, or that differ
in the order when the question requires that results are sorted - these issues are ignored by existing
metrics. The same observations apply for the Semantic Parsing task, as it is a common practice to
evaluate the produced SQL scripts on their results once executed (Li et al., 2023)).

Automatic Assessment. QATCH (Query-Aided TRL Checklist) addresses the challenges in eval-
uating TRL models for proprietary data over SQL-centric tasks. QATCH tests TRL models by
automatically generating and evaluating testing checklists of varying complexity for QA and SP.

Given a proprietary table, such as the one in Figure
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Figure 1: QATCH takes a table as input and At the heart of QATCH, a query generation algo-

returns metrics for TRL models M1 and M2. Tithm crafts tests covering a comprehensive range
of features enabled by the expressive power of SQL.

Our objective is to assess the capability of the models
concerning question complexity. To achieve this, we generate the corresponding NL questions
using templates designed to maintain clarity and precision. This approach ensures that we do not
inadvertently test the models’ capacity to handle complex textual content, as our primary focus is on
their performance in relation to question complexity.

QATCH also introduces cross-task performance metrics that evaluate the models’ results while
accounting for the nuances in the comparison of tabular outputs. To address the complexities
in evaluating model outputs, our metrics consider numerous factors when comparing databases,
including the cardinality of the results, presence of null values, missing or extra cell values, and
sorting when required by the NL questions. By taking these aspects into account, QATCH provides
a robust and insightful evaluation of model performance.

Our work differs from existing rigid benchmarks, such as Spider (Yu et al., 2018)), which cannot
capture how well a model performs on proprietary data. Instead, QATCH supports end-users in
corporate settings by facilitating decisions on TRL model comparison, validation and maintenance.

Our contributions are summarized as follows:

* We present QATCH, a toolbox for automatically generating and evaluating test checklists tailored
to proprietary data and SQL-centric tasks. Code, data, and results are available at https://
github.com/spapicchio/QATCH.

* We exploit a SQL query generator to craft a testing checklist for multiple TRL models and two
established tasks, i.e., Question Answering and Semantic Parsing.


https://github.com/spapicchio/QATCH
https://github.com/spapicchio/QATCH

* We introduce robust performance metrics that capture the nuances in comparing model outputs,
such as cardinality, null values, missing or extra cell values, and sorting requirements.

* By executing tests of increasing complexity over four TRL models and 8 proprietary datasets, we
report insights into the models’ capacity to handle two SQL-centric tasks on tabular data.

2 Related work

Table Representation Learning. Table Representation Learning (TRL) refers to the process of
developing and training neural models to capture the underlying structure, semantics, and relationships
in tabular data. TRL is used for tasks both in natural language processing (NLP) and data management.
Such models support data-driven systems that surpass the limitations of traditional declarative
specifications based on first-order logic and SQL.

Examples of tasks that use these models include answering questions in natural language
(Katsogiannis-Meimarakis and Koutrikal 2021} |[Herzig et al., 2020} |Liu et al., 2021), fact-
checking (Chen et al.l [2020; [Yang and Zhu, 2021} |Aly et al.l [2021)), semantic parsing (Yin et al.|
2020;[Yu et al.| 2021)), table retrieval (Pan et al.l 2021} [Kosti¢ et al., [2021; |Glass et al., [2021)), table
comprehension (Suhara et al.|[2021;|Du et al.| [2021)), and table content prediction (Deng et al., [2020;
lida et al.,|2021). These models are built with different architectures (encoder only, decoder only,
encoder+decoder), but our approach is agnostic to this aspect and evaluates any model that can satisfy
the input/output requirements of a SQL-centric task, i.e., the output may be obtained with a SQL
query. In this work, we focus on two tasks that satisfy these requirements: Question Answering (QA)
and Semantic Parsing (SP).

Question Answering. In the context of free text, QA aims to retrieve passages containing the answer
to a given question. In the tabular data setting, QA involves returning the cells that answer a given
query, with the input consisting of a question and a table (Herzig et al., [2020; [Liu et al., [2021). There
are two levels of complexity in tabular QA tasks. Simple QA focuses on lookup queries on tables,
while more complex QA tasks require aggregation operations and numerical reasoning.

Semantic Parsing. SP in the tabular data setting involves generating a declarative query in SQL over
the table’s schema, given a question and a table as input (Yin et al.}[2020; |Liu et al.| 2021} |Yu et al.,
20215 L1 et al., 2023). The purpose of SP is to retrieve the answer to the question by producing
an interpretable query rather than directly obtaining the answer. Unlike QA, where the focus is on
finding the answer cells, SP emphasizes the generation of a structured query.

Other tasks, such as Table Metadata Prediction (TMP) and Table Content Population (TCP), are
also widely covered by TRL models, but they do not follow the task requirements. TMP focuses on
predicting inter-table metadata, such as column types, headers, cell types, and table types, as well as
intra-table relationships, such as equivalence between columns and entity linking/resolution (Deng
et al.,|2020; |(Cappuzzo et al.| [2020). Meanwhile, TCP addresses the recovery of corrupted cell content
and aims to impute missing cell values in an input table (Iida et al.| 2021)). This serves to enhance
and improve the consistency of table information. However, those are traditional DB problems over
tabular data and there exist some relevant benchmark solutions relying on metadata creation (Arocena
et al.l [2016).

Previous Benchmarking Approaches. Several benchmarks have been developed for QA and SP
models for measuring model performance on fixed datasets. Examples include those closer to
QA (Pasupat and Liang}, 2015} |Chen et al.l [2020) and those for SP (Yu et al., 2018; |Gkini et al.|
2021). WikiTableQuestions is designed for evaluating table comprehension tasks, with a dataset
consisting of questions about tables from Wikipedia. TabFact focuses on fact-checking and comprises
statements about tables that can be labeled as “true” or “false”. Spider, and similar efforts, are corpora
of databases, each with a set of SQL queries to test SP. For each query, they provide the paraphrases
of the query as a NL question. These datasets have played a role in advancing TRL models across
various tasks. However, they are inherently limited due to their fixed set of crafted examples and lack
test generation for different TRL models given only the proprietary datasets.

Moreover, previous approaches have relied on simple accuracy metrics, which test if the produced
values are included in the ground truth. This “execution accuracy” is adopted also for SP as it is more
precise than just comparing SQL scripts (Li et al.;,2023; |Yu et al., 2018). However, this metric fails to
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Figure 2: Workflow of QATCH: given proprietary relational tables as input, it generates tests for
Question Answering and Semantic Parsing; tests are executed on a given TRL model; the evaluation
metrics are computed between predictions (model output) and ground-truth results.

capture nuances in comparing data instances. For example, it does not measure whether values from
the same tuple in the ground truth output appear in the same manner in the model output. As a result,
this simplistic metric overlooks aspects of TRL models’ performance and motivates our proposal.

In terms of test generation, our work took inspiration from an existing effort in measuring the quality
of traditional text language models (Ribeiro et al.,|2020). Unlike QATCH, Ribeiro et al.| (2020)
focuses on behavioral testing of NLP models across multiple tasks. Conversely, we leverage the
expressive power of SQL to evaluate the test model outcomes directly on tabular data.

3 The QATCH Toolbox

QATCH’s automatically generates and evaluates test checklists on TRL models based on the three-
step process depicted in Figure

1. QATCH-Generate. It generates a set of queries tailored to proprietary data. For each query it
formulates both the SQL declaration, its free-text version, and the expected ground truth consisting
of table instances. The SQL declaration expresses the logical complexity of the query and reflects
the presence/absence of specific features peculiar to relational data model.

2. TRL Model Prediction. It processes the tests for various TRL models and tasks. The toolbox
supports alternative TRL models for both the QA and the SP tasks.

3. QATCH-Evaluate. It evaluates the models outputs according to a set of cross-task performance
metrics. Separately for each model, it provides end-users with the results for a testing checklist to
gain insights into TRL models’ strengths and weaknesses.

We describe the tasks covered in the toolbox next. We then explain the test generation. Finally, we
discuss the performance metrics.

3.1 Question Answering and Semantic Parsing based on TRL models

Question Answering aims at retrieving the answer A to a given question Q, where both Q and A are
expressed in natural language. Here we focus on retrieving the content necessary to formulate the
answer from a proprietary relational table T encoded by a TRL model M.

We specifically address two sub-tasks tailored to Table Representation Learning Models, i.e., Question
Answering from TRLs (QA-TRL, in short) and Semantic Parsing based on TRLs (SP-TRLs).

Question Answering from TRLs. Let T be a relational table and let S and I be T’s schema and
instance, respectively. Executing a SQL declaration SQL on 7T entails retrieving a (ground truth)
result Rgqy, derived from I7:

Rsqr = QUERY(SQL, St, I) 1)

In QA-TRL we do not query the original table 7', but rather the TRL model M that encodes 1. This
allows us to pose the query in natural language and obtain the result directly from the model.

Let SQL be a SQL declaration and let Q be one of its free-text reformulations, i.e., a question
expressed in natural language that is semantically equivalent to SQL . The goal of QA-TRL is to
ask question Q on M (which encodes T') to retrieve a result RQ

Rq = QA-TRL(M, Q) 2

4



Category SQL declaration Free-Text question

Project SELECT {ci,...,c,} FROM {T} Show {c1,...,c,} in table {T}

Distinct SELECT DISTINCT {ci,...,c,} FROM {T}  Show the different {cq,...,c,} intable {T'}
Select SELECT * FROM {T} WHERE {c¢;} {op} {val} Show data of table {t} where {c;}{op}{val}

Order by SELECT * FROM {7} ORDER BY {c;} {ord} Show data for table {7} in {ord} order by {c¢; }

Table 1: Templates for queries in SQL and natural language. 7" is the target relational table. ¢; € St
(1 <17 < n)is an attribute of the 7”s schema, op (=, |=, >, <, >, <) is a logical operator, VAL; is an
arbitrary value for attribute ¢; occurring in I7. ord is the order of visualization of the tuples in the
output (i.e., ascending or descending).

s.t. RQ is equivalent (or mostly similar, in the worst case) to the expected outcome Rsqr, from 7'

Semantic Parsing using TRLs. Given a free-text question Q and a relational table T, the goal of SP is
to map Q to the corresponding SQL declaration SQLQ.

In SP-TRL we leverage the TRL model M, which encodes the table schema Sz, to perform the
Text2SQL transformation.
SQLQ = SP-TRL(Q, M) 3)

Performance Evaluation. Testing TRL models for QA-TRL and SP-TRL provides complementary
information about their ability to encode complex instance- and schema-level relations holding
in tabular data. Instead of verifying the syntactic overlap between free-text questions and SQL
declarations, we evaluate results’ consistency at the tuple level. Specifically, in QA-TRL we measure
how similar the result R returned by the query () and the expected outcome RSQ 7, are in terms of
tuple characteristics and cell values. Similarly, in SP-TRL we compare the tuples retrieved by the
execution of the output query SQLQ on T" with those contained in the expected outcome Rg QL-

QATCH Key Steps. QATCH automatically generates SQL declarations SQL, and free-text ques-
tions Q from a proprietary table 7. Based on the table schema and instances, a query generator first
returns a set S of SQL declarations of varying complexity.

S = QUERYGENERATOR(T") 4)

Then, for every query SQLQ € S, QATCH generates a template corresponding to one of its free-text

versions.
Q= GENERATETEMPLATE(SQLQ) 5)

The separation of queries and questions allows us to disentangle the characteristics of the output from
the linguistic capabilities of the models. Free-text questions and SQL declarations are used to test the
TRL models on the QA-TRL an SP-TRL tasks.

3.2 Automatic generation of testing checklists with SQL queries

Given a relational table T, QATCH relies on a SQL query generator to produce queries of varying
logical complexity for a TRL model’s assessment. Each test query consists of a triple (Q, SQLQ7 Ith )

where SQLQ is the input query formulated as a SQL declaration, Q is one of the possible free-text
reformulation of the question, and Ig is the corresponding ground truth.

Table|l|enumerates the templates used to generate SQLQ first and then Q based on proprietary data.
They encompass SQL projections on the table schema (Project), selections on the table instance
(Select), and more complex cardinality-based and sorting criteria at the tuple level (Distinct and
Order byﬂ The variable in the templates are automatically filled up by the tool according to the
values in the schema and active domain on the given 7.

The SQL generator automatically crafts multiple versions of the input tests, each one incorporating
a different feature. For example, for the Project template, QATCH explores the following three
cases: (1) SELECT ALL, which selects all the attributes in the table schema; (2) SELECT-RANDOM-COL,

'Since existing QA models work on single tables, we currently disregard Join operations.



which selects n random subsets of attributes, each subset of cardinality 1,. . ., n, where n is the number
of attributes in the table schema; (3) SELECT-ADD-COL, which starts from a fixed partition Pg € St
of the table schema and incrementally adds one random attribute at a time. The SQL generator also
mixes categories to create more complex queries, e.g., using projection and selection in the same test.

The motivation behind the proposed templates is to examine the TRL model’s capability to handle
various algebraic operations that may be directly or indirectly applied to the relational schema (based
on the targeted task). Our goal is not to stress the complexity of the linguistic expression, such as
ambiguity (Veltri et al.| |2023)), bur rather to analyze the logical complexity of the question according
to the relational data model.

3.3 Cross-task performance metrics

QATCH summarizes the outcomes of the tests with a set of cross-task performance metrics defined
on the comparison of the model output against the expected ground truth. The comparison reflects

the similarity between the corresponding instances and the ability of TRL models to handle specific

data issues. Specifically, given 16” and Icéll’g " as the sets of distinct pairs respectively occurring in

IQ and 16’ it supports the following metrics:

Cell Precision. The fraction of table cells cell; in the output instances that are relevant to the input
query. The higher is the score, the more predicted elements are in the target. However, it does not
measure how many target cells are in the prediction (measured by cell recall).

pee \{celli\cellielallﬁICan’gtH

cell

\{celli\celliEIQ H

Cell Recall. The fraction of table cells that are relevant to the input query that are successfully
retrieved. The higher is the score, the more target cells are in the prediction. It does not measure how
many prediction cells are in the target (measured by cell precision).
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Tuple constraint. The fraction of ground truth tuples in the query output. It is one if the expected
and produced outputs have both the same schema, the same cardinality and the same cell values, zero
otherwise. However this hard constraint does not capture all the cases (see example below).

|IQm16\

T-Cons=—57—~

\IQI

Tuple cardinality. The ratio of output and ground truth cardinality. It is a "softer" constraint w.r.t.
the tuple constraint since it does not consider neither the schema nor the cell values. However, it has
to be analysed with cell precision and cell recall to be meaningful.

ol
T—CARD:%
Q
Tuple Order: the Spearman rank correlation coefficient (Katsaounis, 2003 between the vector
representations of the ranked lists of returned and ground truth tuples. This non-parametric test is
computed only for queries with the Order-By clause.

Figure [3|shows examples of the performance metrics on a toy dataset. Given the ground truth result
(target) with three tuples over two attributes, we report the metric values for five predictions, coming
either from a QA or from the execution of a query in SP. Notice that:

» Tuple constraint/cardinality and cell-precision/recall range between 0 (no matches) and 1 (all
matches), while the tuple order ranges between 0 (opposite rank) and 1 (same rank).



TARGET ([apple, red], [pe'ﬂ" green], [banana, CELL  CELL TUPLE TUPLE  TUPLE
yellow]] PRECISION RECALL CONSTRAINT CARDINALITY ORDER
PRED:CTION [[apple, red], [banana, yellow]] 1.0 4/6 2/3 23 1.0
By [[apple], [pear], [bananal] 1.0 0.5 0 10 05
PREDI;:TION [[grape, blue], [pineapple, yellow]] 1/4 1/6 0 23 0.5
PREDICTION|  [[pear, green], [apple, red], [banana, 6/7 1.0 1.0 3/4 0.75
4 yellow], [peach]] : ' :
PREDICTION [[pear, red], [apple, yellow], [banana, 1.0 1.0 0 1.0 0.5
5 green]] ’ ) ] ]

Figure 3: QATCH’s metrics are computed between the model output (prediction) and expected
ground-truth results (target). The target is the answer of the NL question "Show me all the data" over
a table with three tuples and two attributes.

* The tuple constraint ignores partial tuple matches (e.g., [APPLE, RED] is different from [APPLE] in
Prediction 2), which is captured by cell recall.

* When the number of expected tuples is zero, tuple cardinality takes either value zero, if the number
of predicted tuples is greater than zero, or one, if no tuples are predicted.

To explain the rationale behind the proposed metrics, let us consider the following target values (al,
bl, cl). The first prediction, denoted by "output 1", is composed of two tuples (al, bl, cl), (al, bl,
cl). Instead, the second prediction, denoted by "output 2", has the following two tuples: (al, bl),
(c1). “Output 1” has cardinality two instead of one whereas "output 2" has an incorrect schema. In
both cases the tuple constraint returns zero even if part of the output cells match. Notice also that
even if the outputs’ cardinality is the same cell precision and recall show relevant differences in the
returned values.

Our Cell Precision is equivalent to the Execution Accuracy reported in most QA and SP papers. We
remark that while informative, this single metric does not capture cases where the output is incorrect,
such as Prediction 5 in Figure 3]

4 Experimental Evaluation

TRL models. We test six TRL models and one Large Language Model, i.e., CHATGPT (OpenAlL
2023)). For QA-TRL, we report for TAPAS (Herzig et al., 2020), TAPEX (Liu et al.| 2021)), and
OMNITAB (Jiang et al.,|2022). TAPAS leverages the transformer architecture to pre-train on large-
scale datasets and fine-tune to specific tasks using labeled examples. TAPEX exploits the idea of
learning in the pre-training a neural SQL executor over a synthetic corpus of SQL queries and their
execution outputs. OMNITAB exploits a pretraining approach that uses both natural and synthetic
data to learn reasoning over multiple table elementes. We use TAPAS and TAPEX fine-tuned on the
WTQ dataset for QA.

For SP-TRL, we report for RESDSQL (L1 et al.| 2023, GAP (Shi et al.,[2021), UNIFIEDSKG (Xie
et al.,|2022)). RESDSQL is based on a seq2seq architecture with a ranking-enhanced encoding and
skeleton-aware decoding framework. UNIFIEDSKG implements the encoder-decoder (text-to-text)
model based on TS5. We use UNIFIEDSKG and RESDSQL with the T5 large setting. GAP employs
generative models to create pre-training data, enabling the simultaneous learning of natural language
utterances and table schemas.

CHATGPT is a language model employing a decoder-only transformer setup; by leveraging a chat
interface, it allows to specify a range of tasks (including QA and SP) with the in-context adaptation
technique. This technique leverages the model’s ability to understand and consider the immediate
context of a conversation or text. Further details to reproduce the results can be found in the appendix.



Category Table Name  # rows # categorical # numerical Example

cols cols cols
Sales-transactions 500k 5 3 ProductNo, Date
ECOMMERCE Fitness-trackers 565 8 3 Brand Name, Display
FINANCE Account-fraud M 4 26 DaysSinceRequest, Velocity6h
Late-payment 2466 6 6 InvoiceDate, Disputed
Heart-attack 303 1 11 # trtbps, # oldpeak
MEDICINE Breast-cancer 686 5 6 pgr, rfstime
MISC Adult-census 32.6k 9 6 education, fnlwgt
Mushrooms 8.1k 23 0 cap-shape, ring-type

Table 2: Information for the proprietary tables used in the experiments.

Datasets. We generate tests for 8 proprietary tables that we have selected from Kaggle to maximize
variety both in terms of content (four categories) and in terms of data properties (different sizes
and arity), as detailed in Table 2] These datasets are available online, thus possibly “seen” by the
models, but are not available for question answering and semantic parsing tasks, i.e. they do not
come with natural language questions or queries. The 8 tables are used in this paper as a sample
to show the benefit of automatic test generation with QATCH, we are not suggesting to use them
as a new corpus with a fixed set of questions and tables. We also report results for the widely used
Spider benchmark, as this is the standard for QA and SP tasks evaluation, using its tables and its
questions. This comparison aims to emphasize the discrepancies between the quality results obtained
using Spider and the practical application of models on proprietary tables. More details on the data
processing phase can be found in the appendix.

As models are limited in the input, for every table we sample a subset of rows and attributes that can
be executed within the model context (e.g., about 4k tokens for CHATGPT).

Category Model Cell Cell Tuple Tuple  Tuple Avg
precision recall cardinality constraint order

PROPRIETARY DATA

TAPAS-LARGE-WTQ 0.71 0.12 0.53 0.05 0.33 0.35
ECOMMERCE TAPEX-LARGE-WTQ 0.40 0.06 0.18 0.01 040 0.21
OMNITAB 0.20 0.01 0.14 0.00 0.50 0.17
CHATGPT 3.5 0.44 0.24 0.20 0.10 042 0.28
TAPAS-LARGE-WTQ 0.72 0.12 0.48 0.05 0.38 0.35
FINANCE TAPEX-LARGE-WTQ 0.52 0.06 0.16 0.01 048 0.25
OMNITAB 0.30 0.02 0.13 0.00 0.50 0.19
CHATGPT 3.5 0.71 0.52 0.38 0.21 048 0.46
TAPAS-LARGE-WTQ 0.72 0.16 0.57 0.09 0.34 0.38
MEDICINE TAPEX-LARGE-WTQ 0.37 0.04 0.15 0.0 0.44 0.20
OMNITAB 0.29 0.01 0.12 0.0 050 0.18
CHATGPT 3.5 0.77 0.46 0.22 0.12 0.70 0.45
TAPAS-LARGE-WTQ 0.67 0.12 0.34 0.04 029 0.29
MISCELLANEQUS TAPEX-LARGE-WTQ 0.48 0.10 0.25 0.01 0.44 0.26
OMNITAB 0.12 0.02 0.13 0.01 0.50 0.17
CHATGPT 3.5 0.76 0.67 0.36 0.16 0.50 0.49

EXISTING BENCHMARK DATA
TAPAS-LARGE-WTQ 0.64 0.42 0.53 0.30 0.64 0.51
Spider TAPEX-LARGE-WTQ 0.62 0.45 0.54 0.21 0.51 0.47
OMNITAB 0.30 0.24 0.53 0.23 0.52 0.36
CHATGPT 3.5 0.74 0.77 0.86 0.66 0.75 0.76

Table 3: Results for QA-TRL models: average of all tests on multiple tables. ChatGPT version:
ChatGPT 3.5-turbo-0613



Category Model Cell Cell Tuple Tuple  Tuple Avg
precision recall cardinality constraint order

PROPRIETARY DATA

RESDSQL 091 089 0.92 0.81 .00 0.90
GAP 084 080 0.1 073 097 083
ECOMMERCE UNIFIEDSKG 071 0.71 0.69 069 100 0.76
CHATGPT 3.5 098  0.98 0.99 095  1.00 0.98
RESDSQL 090 087 0.95 077 1.00 0.90
GAP 079  0.78 0.76 074  1.00 081
FINANCE UNIFEDSKG 079 0.76 0.74 067 098 0.79
CHATGPT 3.5 096  0.96 0.99 090  1.00 0.96
RESDSQL 086 075 0.94 067 095 083
GAP 077 073 0.73 067 059 0.70
MEDICINE UNIFEDSKG 072 0.69 0.70 066 095 0.74
CHATGPT 3.5 100  1.00 0.98 099  1.00 0.99
RESDSQL 094 090 0.90 077 1.00 0.90
GAP 082 078 0.73 069  1.00 0.80
MISCELLANEQUS  \imEpSKG 074 0.69 0.68 059 098 073
CHATGPT 3.5 098  0.98 0.98 091  1.00 097

EXISTING BENCHMARK DATA
RESDSQL 093 093 0.97 084 099 093
Soider DEV GAP 095 095 0.96 091 096 0.95
P UNIFEDSKG ~ 0.81  0.82 0.82 080  1.00 085
CHATGPT 3.5 093  0.96 0.97 092 090 094
Spider TRAIN ~ CHATGPT 3.5 090  0.92 0.92 088 097 092

Table 4: Results for SP-TRL models: average of all tests on multiple tables. CHATGPT version:
CHATGPT 3.5-turbo-0613. UNIFIEDSKG and RESDSQL evaluated with the T5 large.

Results. Tables [3]and ] show the results for QA-TRL and SP-TRL, respectively. All metric results
are averaged over all tests and over tables grouped by category; we report detailed results for every
dataset and every test category in the appendix.

For the QA-TRL task, Table 3| reports the results achieved on the proprietary tables and on the Spider
benchmark to enable a comparison between the two groups. All models show promising results in
terms of Cell precision, which is the metric closest to the one used in previous papers. However,
the other metrics show lower values, with all models struggling in preserving the intra-tuple value
relations in their output (i.e., low Tuple constraints). Also, in almost all experiments the models
tend to remove duplicates, even when the Distinct clause is not present. This is evident with the
low scores for Cell recall and Tuple Cardinality. Finally, none of the models is able to return results
according to the Order by requirements (i.e., low Tuple order scores).

Results for the SP task in Table E] show that, in general, the TRL models performs much better in this
task. The most problematic aspect is the preservation of the tuple structure for the returned values
(Tuple constraint).

Tests can be generated for a specific dataset using QATCH in just a few seconds. The testing times
varies based on the data, particularly the size of the table. For instance, comparing a prediction and a
ground truth containing 1000 tuples and 20 attributes takes less than a second.

As we do not control the infrastructure of OpenAl, we do not report exact execution times for
CHATGPT. On average, it takes a few seconds to execute one test, but the distribution for this metrics
is skewed as it heavily depends on the server workload.

Discussion. The results show that the tests generated by QATCH and its metrics enable detailed
evaluation of the models. A clear message is that there is no single model that works best for every
table and every metric. In some datasets, TAPAS has the best performance in terms of cell precision
and recall, but CHATGPT is the best model in terms of tuple cardinality and tuple constraint. The



lower precision for CHATGPT in some cases is due to the hallucination problem with the decoder
architecture.

Another take-away is that questions and tables in Spider do not tell the full story about model
performance. Even a small selection of 8§ tables show that the performance for established TRL
models can drop dramatically on propriety data in the QA task.

Looking into the details of the failed tests, it is easy to spot the limitations of the models. Cell
precision is lowered by select queries with more than one column in the output. The models tend to
return only one attribute even in this setting.

In some cases, Tuple cardinality is lower than Cell recall, because the latter is over a set. For some
queries, models return DISTINCT by default. Most of the questions in Spider return one tuple
only, thus inflating the aggregate result and hiding the problem with more output attributes. For the
same reason, tuple constraint scores are low because in many cases the models do not return tuple
structures, but mostly separated cells. We again observe low results for proprietary data with the
higher ones for Spider.

We can conclude that the qualitative performance of a TRL model depends on the target task at hand,
but also on the tabular content in terms of data domain, size, schema, and data quality.

5 Conclusion and Future Work

We presented QATCH, a testing tool for TRL models. It provides end-users with a flexible and
adaptive solution for the automatic assessment of models’ performance on proprietary data. The key
goal is to avoid trusting the results achieved on the existing benchmarks across different tasks, as
they are not always replicable on proprietary data. By leveraging the expressive power of the SQL
language, we first generate queries of varying complexity on proprietary table and then convert them
in natural language. Thus, we specifically assess the model capability to address complex queries
rather than the linguistic properties of questions and answers. Results show that (1) existing questions
in benchmarks do not capture important properties of custom tables, (2) popular metrics fail short in
measuring the quality of the models’ output.

As future research agenda, we plan to investigate the following research directions: (1) The extension
of QATCH towards the automatic assessment of additional models (e.g., Bard (Google Inc., 2023)),
LLama?2 (Touvron et al.,[2023)), Falcon (Penedo et al., |2023))), tasks (e.g., fact checking (Guo et al.,
2022; [Nakov et al., [2021)), querying LLMs (Saeed et al.l 2024; [Urban et al.| 2023)), and more
complex queries (e.g., GROUP BY clauses, nested queries). (2) The adoption of Generative Language
Models (e.g., (OpenAl, [2023))) to automatically generate templates in Natural Language from the
SQL declarations. (3) The use of TRL models to test inter-relational constraints, such as joins and
referential constraints, among proprietary tables.
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A Authors’ statements

A.1 Code license and legal compliance

The source code of our project is released under the Apache-2.0 license. All the authors are aware of
the legal implications and gave their explicit consent to publish the paper and the code.

A.2 Reproducibility

The code and the related documentation is available at: https://github.com/spapicchio/
QATCH. The source code is annotated in compliance with the ML reproducibility checklist pro-
vided by NeurIPS 2023 organizers and available at https://github.com/paperswithcode/
releasing-research-code. We also adhere to the official guidelines for the specification of the
code dependencies. Notice that TRL models are referenced but not directly included in the main
repository as we exclusively rely on third-party models.

A.3 Long-term preservation

We guarantee that the repository, including the project code and annotations, will be maintained in
the long term. Any potential issues that will be raised by end-users will be taken into consideration.

A4 Privacy

In this work, we released a new testing toolbox for proprietary data. We neither released a new
publicly available datasets nor involved humans in the evaluation loop.

While using QATCH the input data, the tests, and the expected and achieved outcomes always remain
under the full end-user’s control as long as TRL models are run on premises (no external APIs). Thus,
QATCH allows a secure testing of proprietary tables by running models and tests on a local machine.

For the sake of completeness, QATCH also supports an external QA model, i.e., OpenAl ChatGPT
3.5. While using it, end-users must be aware of the fact that their own data are shared with private
subjects in compliance with OpenAl terms and policies (https://openai.com/policies).

A.5 Ethics

There are no particular ethical implications of our work. Every ethical issue related to the tested data
is under the liability of the data owner.

A.6 Bias and fairness

The QATCH test generation module randomly picks existing content and/or metadata from the input
tables. While running the tests, we recommend to also vary the seed of the random generator to
maximize the reliability of the tests’ outcomes. Mitigating the eventual presence of bias in the input
data and testing TRL model fairness are both out of scope of the present work.

A.7 Impact of the environment

Testing TRL models on proprietary data prevents the use of expensive and resource demanding
cloud services. Since QATCH allows end-users to optimize the computational efforts by choosing
the right model to use. Concerning that point, its use can be deemed as an example of green data
mining |Schneider et al.| (2023)).

B Additional details on data, models, and tests

Tables’ description. Here we describe the tables used in the experimental evaluation. We col-
lected results on eight proprietary tables and on one benchmark dataset established for TRL model
evaluation Yu et al.| (2018)).
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We considered proprietary tables of various domains (i.e., E-Commerce, Finance, Medicine, and
Miscellaneous) and characteristics (e.g., tuple cardinality from few hundreds to more than 1 million,
table dimensionality from 8 to 30) to ensure the robustness of the empirical outcomes. The detailed
statistics are given in Table[2]of the main paper.

In Table 5| we reported similar statistics for the Spider benchmark dataset. These statistics were not
included in the main paper due to the lack of space.

Proprietary data preprocessing. QATCH supports standard text pre-processing procedures for
the table content and metadata. For example, the Mushrooms table contains only alphabetical letters
thus conveying limited information. We applied a text reconciliation step, where, for instance, in the
Heart-attack table the attribute value cp is replaced by the (more meaningful) expression chest
pain.

Spider preprocessing. The primary objective of QATCH is to assess the impact of proprietary data
on model performance. To achieve this goal, QATCH tests are deliberately designed to explore model
behavior in simplified scenarios, avoiding intricacies in both the generated questions and queries.
In contrast, Spider, having a different scope, inherently contains a higher level of complexity. To
ensure a fair comparison between the proprietary data-driven QATCH tests and the Spider dataset, a
preprocessing step is applied for the Spider dataset. Specifically, we excluded queries involving the
LIMIT, INTERSECT, UNION, JOIN and EXCEPT operators, as well as those with inner queries.

Benchmark vs. proprietary data. The tables included in the Spider benchmark have quite different
characteristics compared to the proprietary ones (fewer tuples and dimensions, fewer numerical
attributes).

For example, in Table [5)) we report the comparison between the Spider tables and the selected
proprietary tables. The number of cells per table in Spider is significantly lower in 75% of the cases.
This confirms the limited representativeness of the currently used benchmark data for TRL model
evaluation and fosters the need of TRL testing tools on proprietary data.

25% 50% 75%

minimum . . . maximum
percentile percentile percentile

Spid # tuples 0 7 12 15 16049
tg‘ll)l:z # attributes 2 4 5 7 24

# cells 0 30 55 100 112343

Proprietar # tuples 303 656 5283 149k M
e Y # attributes 8 11 12 17 30
# cells 3636 7213 108k 1.4M 30M

Table 5: Comparison between the Spider and proprietary tables’ statistics. It reports the minimum and
maximum values, and the 25%, 50%, and 75% percentile over all the Spider tables and the considered
proprietary tables.

Tackling TRL model limitations. To meet the TRL models’ constraints on the maximum number
of processed cells, whenever strictly necessary QATCH reduces the input data size by sampling the
tables attributes and rows using the same random seed for all tables. To avoid introducing bias in the
data, we tested multiple dataset variants consisting of different attribute and tuple selections. More
specifically, to address Question Answering we generated all the tests by exclusively considering
the table schema, except for the Select queries where the tuple-level conditions are generated by
considering as representatives the maximum, minimum, or mean attribute values computed separately
for each table. The main goal here is to test whether the TRL model can accurately answer queries
including arbitrary selection conditions.

The inherent limitations of TRL models to handle larger tables do not influence Semantic Parsing
tests, as they directly work at the schema level. Notice that such limitations are independent of the
QATCH implementation, but can be conveniently highlighted while running the tests on proprietary
data.
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Table Selected # of rows # of rows # of rows # of rows

name columns Tapas-wtq Tapex-wtq ChatGPT Omnitab

Sales-transactions TransactionNo, ProductNo, Product, Price 60 20 40 20

Quantity, CustomerNo, Date, Country
Brand Name, Device Type, Original Price,
Fitness-trackers Selling Price, Color, Model Name, 50 25 30 20
Average Battery Life (in days), Rating (Out of 5)
Strap Material, Display
income, payment_type, has_other_cards,
Account-fraud email_is_free, employment_status, housing_status, 50 25 30 20

date_of _birth_distinct_emails_4w, device_os
credit_risk_score, session_length_in_minutes

CustomerID, PaperlessDate, InvoiceNumber,

Late-payment Invoice Date, DueDate, Invoice Amount,
H Disputed, PaperlessBill, >0 20 25 20
DaysToSettle, DaysLate
Heart-attack age, sex, cp, trtbps, chol,
fbs, restecg, caa, thall, output 45 30 30 20
Breast-cancer pid, age, meno, size, grade,
nodes, pgr, er, hormon, status 45 30 30 20
workclass, education, marital.status,
Adult -census occupation, relationship, race, 50 20 30 20
sex, hours.per.week,
native.country, income
class, cap-shape, cap-surface,
Mushrooms cap-color, bruises, odor, 50 25 30 20

gill-attachment, gill-spacing,
gill-size, gill-color

Table 6: Datasets information with maximum number of rows accepted for each model in the QA
Scenario.

In Table |§| we report the dataset, the list of table attributes, and the maximum number of tuples that
each TRL model (and the corresponding tokenizer) manages to process. It is worth noticing that,
even though Tapex is based on BART (maximum token limit: 1024) and Tapas is based on BERT
(token limit: 512), the number of tuples that Tapas is able to process is much larger. The link to each
dataset along with the pre-processing strategies are available in the github repository.

Performance metrics. Our evaluation metrics rely on the predicted cell values, making them
essential in the SP scenario. To begin with, we employ models to predict SQL queries, which are
subsequently executed on tables to retrieve the corresponding predicted cell values. This approach
allows us to derive valuable insights from the metric scores associated with the SQL predictions.
For instance, a low Tuple constraint metric indicates that the SQL prediction is likely projecting
incorrect columns. Instead, a low tuple cardinality metric suggests that the SQL prediction may be
selecting incorrect rows or utilizing a distinct operator inappropriately. Table[7]shows three instances
of unsuccessful predictions.

Table linearization. Using ChatGPT, which processes text sequentially from left to right, necessi-
tates converting tabular data into a linear format for seamless integration. This process, known as
linearization, entails transforming structured tabular data into a sequential layout that aligns with
ChatGPT’s processing method. A common technique involves concatenating cell contents within a
row, using specific delimiters for separation. However, a more promising approach is to enhance this
by appending column headers to cell content, incorporating structure-aware indicators as described
in[Badaro et al.| (2023). The approach used in this work, illustrated in Figure ] represents the table as
a list of lists, using Python-like syntax. In this representation, each inner list corresponds to a distinct
row in the table, with elements indicating values associated with respective columns marked by the
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Cell Cell Tuple Tuple Tuple
precision recall cardinality constraint order

Target SELECT DISTINCT emailisfree FROM fraud

Prediction SELECT emailisfree, income FROM fraud 0.5 1.0 0.2 0.0 B

Target SELECT emailisfree FROM fraud ORDER BY emailisfree ASC 1.0 1.0 1.0 1.0 00

Prediction SELECT emailisfree FROM fraud ORDER BY emailisfree DESC ’ ’ ’ ’ ’
*k

Target SELECT * FROM fraud 1.0 0.10 1.0 00 )

Prediction SELECT emailisfree FROM fraud
Table 7: Examples of predictions and performance metrics.

A B (3

[al, [H] A], [bl, [H] B], [c1, [H] C],
at | b1 | e ':D [a2, [H] AL, [b2, [H] B, [¢2, [H] C]

a2 b2 c2 ]

Figure 4: Example of the linearization technique used in this study to process structured data with
ChatGPT.

structure-aware indicator [H]. This format ensures the preservation of the table’s structural integrity
and facilitates seamless processing within the ChatGPT framework.

ChatGPT reproducibility. In this study we use ChatGPT 3.5-turbo-0613 with the "in-context"
task adaptation technique. In-context learning refers to the ability of models like GPT-3 to consider
the immediate context of a conversation or text when generating responses. This means the model
does not just look at the current question or prompt, but also the preceding conversation or text. For
instance, in-context learning can be seen as a form of few-shot learning where the ‘shots’ are the
previous turns in the conversation. For our study, we pass three exampleﬂ (i) the projection of all
the attributes (ii) the projection of one column (iii) one aggregate condition.

C Additional results for Question Answering

Table [8|compares the performance of the QA models on proprietary data.

By examining the achieved results, we identified the following patterns and trends in the models’
performance:

* Tapas and Tapex consistently exhibit higher cell precision but lower cell recall. This indicates
that their predictions are often correct yet incomplete.

* For the Projection queries, the models understand which columns to include but only
return a portion of the expected values.

* All the models fail to return the values in the expected tuple format. This indicates that the
models struggle to comprehend the structure of the table.

* Although ChatGPT generally achieves a high overall score, it is not always the best per-
forming model. Specifically, it struggles to cope with the Sales-transactions and
Late-payment tables. Tuple cardinality and Tuple constraint metrics were consistently
below 0.50, indicating that the returned outcomes are still far from being optimal.

Table [9] provides additional insights by showcasing the SQL patterns in which ChatGPT per-
formed poorly. It performs fairly good when the number of attributes in the output is limited (e.g.,
DISTINCT-SINGLE). Conversely, it struggles when a larger number of attributes and values need to be
considered, especially they mainly include numerical attributes. For example, Sales-transactions
has 7 out of 8 columns as numerical, while Late-payment has 7 out of 10 columns as numerical.

*More details can be found in the GitHub https://github. com/spapicchio/QATCH/
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The same trend is also evident in the improved performances of ChatGPT when dealing with tables
in the same category, such as Fitness-trackers, which has 6 categorical attributes out of 10, and
Fraud, which has 7 categorical attributes out of 10 or, even more noticeable, in the Mushrooms table
where all the 10 attributes are categorical.

Table Table Model Cell Cell Tuple Tuple  Tuple
category name precision recall cardinality constraint order
TAPAS-WTQ 0.75 0.13 0.67 0.05 0.50

Sales_transactions TAPEX-WTQ 0.40 0.07 0.21 0.02 0.28

OMNITAB 0.24 0.02 0.17 0.0 0.50

ECOMMERCE CHATGPT 0.15 0.03 0.05 0.02 0.0
TAPAS-WTQ  0.60  0.08 0.32 0.04 020

Fitness-track TAPEX-WTQ 0.45 0.06 0.16 0.0 0.50
1INeSS-LIAckerS  omniTAB 016 0.01 0.12 0.01 0.50

CHATGPT 0.67 0.46 0.29 0.27 0.44

TAPAS-WTQ 0.64 0.11 0.38 0.06 0.35

A t—fraud TAPEX-WTQ 0.51 0.07 0.14 0.01 0.50

ceount-trau OMNITAB 026  0.02 0.11 000  0.50

FINANCE CHATGPT 0.68 0.61 0.42 0.17 0.48
TAPAS-WTQ 077  0.12 0.55 0.05 040

Lat N TAPEX-WTQ 0.48 0.05 0.18 0.0 0.45

ate-paymen OMNITAB 035  0.02 0.16 0.0 0.50

CHATGPT 0.13 0.05 0.04 0.03 0.0

TAPAS-WTQ 0.60 0.13 0.45 0.08 0.23

TAPEX-WTQ 0.31 0.05 0.16 0.01 0.38

Heart-attack OMNITAB 019 001  0.11 00 050

MEDICINE CHATGPT 0.87 0.74 0.41 0.35 0.58
TAPAS-WTQ  0.83  0.18 0.67 0.10 045

B t TAPEX-WTQ 0.42 0.04 0.15 0.0 0.50

reast-cancer OMNITAB 037  0.02 0.13 0.0 0.50

CHATGPT 0.72 0.31 0.14 0.10 0.75

TAPAS-WTQ 0.59 0.12 0.34 0.06 0.25

Adult TAPEX-WTQ 0.59 0.12 0.16 0.0 0.45

ut-census OMNITAB  0.04 0.1 0.13 0.01 0.50

MISCELLANEOUS CHATGPT 0.71 0.68 0.47 0.35 0.58
TAPAS-WTQ  0.68  0.12 0.27 003 033

Mush TAPEX-WTQ 0.44 0.10 0.33 0.02 0.43

ushrooms OMNITAB  0.17  0.03 0.13 002  0.50

CHATGPT 0.77 0.75 0.49 0.37 0.56

Table 8: Results for QA-TRL for the different proprietary tables.

D Additional results for Semantic Parsing

Table [I0] compares the performance of the SP models on proprietary data. Based on the achieved
results, RESDSQL performed worst in the MEDICINE category. To delve deeper into the results, we fo-
cused on the table displaying the lower metric score, which can be found in Table[TT} Heart-attack
exhibits remarkable low values for cell recall across all where SQL categories. These inaccuracies
can be attributed to a misprojection made by the model during prediction. The presence of the output
column in the heart-attack table appears to confuse the model when it attempts to project all
columns. our hypothesis is confirmed by the presence of the same error in the SELECT-ALL category.
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Table SQL Cell Cell Tuple Tuple Tuple
category category precision recall cardinality constraint order
SELECT-ALL 0.00 0.00 0.00 0.00
SELECT-ADD-COL 043 0.03 0.03 0.03
SELECT-RANDOM-COL 0.38 0.07 0.02 0.02
ORDERBY-SINGLE 0.00 0.00 0.00 0.00 0.00
DISTINCT-MULT 0.40 0.10 0.01 0.01
Sales-transactions DISTINCT-SINGLE 1.00 0.28 0.28 0.28
WHERE-CAT-MAX-VALUES 0.10 0.03 0.20 0.00
WHERE-CAT-MIN-VALUES 0.05 0.01 0.10 0.00
WHERE-NUM-MAX-VALUES 0.00 0.00 0.00 0.00
WHERE-NUM-MEAN-VALUES 0.00 0.00 0.00 0.00
WHERE-NUM-MIN-VALUES 0.00 0.00 0.00 0.00
SELECT-ALL 0.00 0.00 0.00 0.00
SELECT-ADD-COL 0.33 0.04 0.03 0.03
SELECT-RANDOM-COL 0.30 0.12 0.04 0.03
ORDERBY-SINGLE 0.00 0.00 0.00 0.00 0.00
DISTINCT-MULT 0.33 0.18 0.18 0.18
Late-payment DISTINCT-SINGLE 0.97 0.45 0.46 0.45
WHERE-CAT-MAX-VALUES 0.08 0.02 0.01 0.00
WHERE-CAT-MIN-VALUES 0.08 0.02 0.01 0.00
WHERE-NUM-MAX-VALUES 0.00 0.00 0.00 0.00
WHERE-NUM-MEAN-VALUES 0.00 0.00 0.00 0.00
WHERE-NUM-MIN-VALUES 0.01 0.00 0.01 0.00

Table 9: Results for QA chatGPT on Sales-transactions and Late-payment.
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Table Table Model Cell Cell Tuple Tuple Tuple
category name precision recall cardinality constraint order
RESDSQL 0.91 0.90 0.90 0.83 1.00
Sales-transactions GAP 0.85 0.80 0.82 0.71 0.94
UNIFIEDSKG 0.79 0.77 0.76 0.74 1.00
ECOMMERCE CHATGPT 1.00 1.00 0.99 1.00 1.00
RESDSQL 0.90 0.88 0.94 0.79 1.00
Fitness-trackers GAP 0.84 0.80 0.80 0.74 1.00
UNIFIEDSKG 0.65 0.65 0.65 0.65 1.00
CHATGPT 1.00 1.00 1.00 0.90 1.00
RESDSQL 0.89 0.86 0.95 0.77 1.00
Account-fraud GAP 0.79 0.77 0.75 0.73 1.00
UNIFIEDSKG 0.80 0.76 0.75 0.68 1.00
FINANCE CHATGPT 0.99 0.99 0.98 0.90 1.00
RESDSQL 0.90 0.87 0.95 0.77 1.00
Late-payment GAP 0.80 0.79 0.78 0.74 1.00
UNIFIEDSKG 0.77 0.76 0.71 0.65 0.95
CHATGPT 1.00 1.00 1.00 0.90 1.00
RESDSQL 0.88 0.67 0.93 0.57 0.90
Heart-attack GAP 0.92 0.85 0.88 0.79 0.93
UNIFIEDSKG 0.72 0.66 0.71 0.61 0.90
MEDICINE CHATGPT 0.92 0.92 0.99 0.92 1.00
RESDSQL 0.84 0.83 0.95 0.77 1.00
Breast—cancer GAP 0.64 0.63 0.60 0.56 0.25
UNIFIEDSKG 0.72 0.71 0.70 0.70 1.00
CHATGPT 0.95 0.95 0.99 0.95 1.00
RESDSQL 0.92 0.88 0.90 0.76 1.00
Adult-census GAP 0.71 0.67 0.58 0.60 1.00
UNIFIEDSKG 0.69 0.64 0.63 0.58 0.95
MISCELLANEQOUS CHATGPT 0.99 0.99 0.98 0.83 1.00
RESDSQL 0.96 0.91 0.91 0.78 1.00
Mushrooms GAP 0.94 0.89 0.89 0.80 1.00
UNIFIEDSKG 0.80 0.74 0.72 0.61 1.00
CHATGPT 0.99 0.99 0.99 0.99 1.00
Table 10: Results for SP-TRL for the different proprietary tables.
SQL Cell Cell Tuple Tuple Tuple
category precision recall cardinality constraint order
SELECT-ALL 0.00 0.00 0.00 0.00
SELECT-ADD-COL 1.00 0.79 1.00 0.56
SELECT-RANDOM-COL 1.00 0.72 1.00 0.40
ORDERBY-SINGLE 1.00 0.99 0.91 0.91 1.00
DISTINCT-SINGLE 1.00 1.00 1.00 1.00
DISTINCT-MULT 1.00 0.79 0.62 0.51
WHERE-CAT-MAX-VALUES 1.00 0.28 1.00 0.20
WHERE-CAT-MIN-VALUES 1.00 0.28 1.00 0.20
WHERE-NUM-MAX-VALUES 1.00 0.86 0.98 0.83
WHERE-NUM-MEAN-VALUES 1.00 0.78 1.00 0.75
WHERE-NUM-MIN-VALUES 0.80 0.71 0.80 0.70

Table 11: RESDSQL results for the heart-attack table.
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