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Abstract

Evaluating the pedagogical capabilities of Al-
based tutoring models is critical for making
guided progress in the field. Yet, we lack a
reliable, easy-to-use, and simple-to-run evalu-
ation that reflects the pedagogical abilities of
models. To fill this gap, we present MATH-
TUTORBENCH, an open-source benchmark for
holistic tutoring model evaluation. MATHTU-
TORBENCH contains a collection of datasets
and metrics that broadly cover tutor abilities as
defined by learning sciences research in dialog-
based teaching. To score the pedagogical qual-
ity of open-ended teacher responses, we train
a reward model and show it can discriminate
expert from novice teacher responses with high
accuracy. We evaluate a wide set of closed-
and open-weight models on MathTutorBench
and find that subject expertise, indicated by
solving ability, does not immediately translate
to good teaching. Rather, pedagogy and sub-
ject expertise appear to form a trade-off that
is navigated by the degree of tutoring special-
ization of the model. Furthermore, tutoring
appears to become more challenging in longer
dialogs, where simpler questioning strategies
begin to fail. We release the benchmark, code,
and leaderboard openly' to enable rapid bench-
marking of future models.

1 Introduction

Large Language Models (LLMs) present an op-
portunity to transform education by offering ubig-
uitous access to individualized tutoring (Jurenka
et al., 2024). While these models excel at gener-
ating correct answers (Wei et al., 2022; Achiam
et al., 2023), experienced teachers help students
think for themselves and do not just give away an-
swers to make learning effortless (Sharma et al.,
2024). Teaching involves a combination of skills
including subject expertise, the ability to diagnose
and correct student mistakes, and the application
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Figure 1: Effective teaching requires various skills
which we categorize into expertise, student understand-
ing, and pedagogical ability. MATHTUTORBENCH eval-
utes these according to the tasks shown in the outer ring.

of sound pedagogical techniques. For example,
teachers need to know when to withhold answers
from students, use Socratic questioning (Anghileri,
2006), or how to engage them cognitively in prob-
lem solving (Chi and Wylie, 2014; Kapur, 2016).
Therefore, a crucial element of building LLM tu-
tors is their evaluation; it is critical to understand
whether their guidance is helpful to prevent harm,
and to guide progress in future model development.

Yet, current evaluation practices do not meet
these criteria. On the one hand, automatic met-
rics usually evaluate tutoring models by measuring
the word overlap between a ground-truth response
and a generated response (Tack et al., 2023), or
focus exclusively on question-answering perfor-
mance (Chevalier et al., 2024). This is fast but
arguably fails to capture the intricacies of tutoring.
Although human evaluation might be a way to cap-
ture these nuances by defining suitable criteria to
capture them (Tack and Piech, 2022; Maurya et al.,
2024), it is expensive. Importantly, it can only cre-
ate a snapshot of current performance and cannot
be used to evaluate or compare to future models.
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In this work, we fill this gap by releasing MATH-
TUTORBENCH, a collection of datasets and met-
rics to holistically evaluate dialog tutoring mod-
els for math tutoring. Teaching is a complex and
multifaceted task that extends beyond subject mas-
tery (Nye et al., 2014; Tack et al., 2023; Wang
et al., 2024b). Therefore, MATHTUTORBENCH
is divided into three categories: math expertise
which evaluates the subject-matter expertise of the
tutor, student understanding which evaluates the
tutor’s ability to verify, locate and correct student
solutions, and teacher response generation which
evaluates the scaffolding abilities of the tutor. Math
expertise and student understanding are evaluated
based on standard metrics, and we propose a novel
metric for evaluating teacher response generation.
In particular, we train a small and quick-to-run
reward model by contrasting effective and less ef-
fective tutor utterances in terms of structured scaf-
folding guidance with questions and hints instead
of giving away the answer (Anghileri, 2006). The
reward model is then used to score tutor model
generations. We show that this metric is reliable
by showing that it can distinguish utterances from
expert teachers from those stemming from novice
teachers (Wang et al., 2024b) with high accuracy.

We evaluate various open- and closed-weight
state-of-the-art LLMs and specialized tutoring mod-
els on MATHTUTORBENCH. Our results show
that there is a trade-off between subject expertise
and pedagogical abilities that is dependent on the
degree of specialization of a tutoring LLM. Spe-
cializing an LLM for pedagogy comes at the cost
of solving ability and, conversely, a high solving
accuracy often means that the LLM lacks peda-
gogy. Still, more specialized tutoring models tend
to retain their teaching abilities even further into a
dialog with a student, while general models quickly
become worse. With this, our work contributes to
accelerating the development of tutoring LLMs by
providing a holistic benchmark that can be eval-
uated quickly and fairly using automatic metrics.
We release our code and data publicly to promote
open research on tutoring LLMs.

2 Related Work

2.1 LLM-Based Dialog Tutoring

A good tutor should scaffold student learning in
a structured way rather than just provide correct
answers. Current approaches to dialog tutoring
using LLMs try to achieve this by differnent means:

prompt-based elicitation of pedagogical behavior,
finetuning models on pedagogical conversations,
and alignment with pedagogical preferences.

First, most existing works use LLMs with a care-
fully chosen prompt which enumerates desired ped-
agogical behavior. Bridge (Wang et al., 2024b) ana-
lyzes the teacher behavior and proposes to structure
the prompt into a sequence of decisions, similar to
real teachers, first to infer the error type and then
to determine the pedagogical intent. Other works
mostly directly write extensive prompts (Sonkar
et al., 2023; Kargupta et al., 2024). However,
defining such prompts is tedious, sensitive to small
changes and difficult to test (Jurenka et al., 2024).

Second, several approaches finetune models on
real or mostly synthetically generated data. So-
craticLM (Liu et al., 2024) uses a GPT-4 judge
to evaluate the quality of teacher guidance using
correctness and Socratic principles. A similar ap-
proach is to role-model teacher and student con-
versations based on textbook data (Chevalier et al.,
2024; Wang et al., 2024a). MathDial (Macina et al.,
2023a) is one of the few works that use teachers’ ut-
terances when interacting with students to finetune
models. However, it is expensive to collect such
data on a larger scale. Therefore, LearnL.M (Team
et al., 2024) uses an empirically validated mixture
of synthetic and teacher-created datasets. However,
for capturing high-quality tutoring, teacher-created
data is essential and therefore upweighted in their fi-
nal data mix. Finally, LLMs can be aligned for ped-
agogical preferences during post-training (Team
et al., 2024), because these are usually tacit. How-
ever, no datasets are openly available or they rely
on larger models such as GPT-4 as a judge which
limits its generalizability.

Our benchmark contributes an important missing
ingredient in the development of LLM-based tutors
— the ability to quickly evaluate and compare models
on key pedagogical aspects.

2.2 Automatic & Human Evaluation

Several works rely on automatic NLG met-
rics such as BLEU (Papineni et al., 2002) or
BERTScore (Zhang et al., 2020) for evaluation
which require human-annotated ground truths.
However, since tutoring has the goal of helping
students learn (Macina et al., 2023b), it is very
open-ended and there is no single best pedagogical
approach at each turn (Jurenka et al., 2024). This
results in noisy and unreliable scores from auto-
matic metrics (Tack et al., 2023). There exists an
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Figure 2: Overview of the MathTutorBench benchmark. Each benchmark task defines a dataset, system prompts with
problem and dialog, metric, and ground-truth teacher responses. A reward model is used to score the pedagogical
quality over teacher responses (win rate). The right part of the figure shows the outcome as a performance
comparison of selected LLMs. While they all perform well in a simple problem-solving setting, most of them lack
in correct detection of mistakes and generating pedagogical responses.

educational-specific classifier of active teacher lis-
tening (Demszky et al., 2021), however, it is limited
to only this one dimension of teaching and does
not account for the entire dialog history. Therefore,
recent finetuned tutoring LLMs (Chevalier et al.,
2024; Liu et al., 2024) rely on GPT-4-as-a-judge
on dimensions like helpfulness and presentation.
Some works on reasoning (Liang et al., 2024) also
focus on multi-turn model abilities judged by GPT-
4 but they lack an educational focus.

Pedagogical quality annotation requires hiring
teachers, but it is time-consuming and hard to com-
pare across trials. Two papers recently addressed
the issue (Tack and Piech, 2022; Maurya et al.,
2024) by providing evaluation taxonomies but only
present one-off static snapshots of current models’
performance without the possibility to automat-
ically evaluate new models. Finally, measuring
student learning gains directly focuses on the end
goal. However, learner studies are costly, time-
consuming (Schmucker et al., 2024), and with strict
ethics and privacy requirements. There is a grow-
ing interest in designing proper evaluation guide-
lines (Tack et al., 2023; Jurenka et al., 2024), how-
ever, there is still a need for a unified automatic
evaluation for scalable model development.

MATHTUTORBENCH addresses the limitations
of existing automatic metrics by focusing specifi-
cally on tutoring, is simple to run, replicable, and
could serve as a proxy for deciding which models

to focus on in human studies. Moreover, our bench-
mark only uses data collected from real teachers.

3 Background

3.1 Next Teacher Utterance Generation

We focus on educational dialogues between a stu-
dent and a teacher, where a student is trying to solve
a multi-step problem p € V*. The problem has a
single numerical solution a and a sequence of so-
lution steps s = (s1,...,SnN), Where each s, € V*
and s,y contains the final answer a. A student solu-
tion consists of steps S = (81, . .., Sys) and the first
step with a mistake is e € {0,1,..., M}, where
e = 0 means no mistake.

The goal of dialog tutoring is to continue an ex-
isting teacher-student dialog H = (uy,...,upr_1)
consisting of 7" — 1 turns u; € V* with a new turn
ur € V* that simulates the teacher and guides the
student towards solving a problem. This is usu-
ally done by learning a model pg(ur | H, K, i)
with parameters @ € R?, which is optionally con-
ditioned on background knowledge K (in our case
only the problem p) and a teacher intent iz, and
using a decoding strategy, such as greedy decoding
or sampling according to pg to generate an output.
The turn uz should then fulfill the desiderate laid
out in Section 3.2. The goal of this work is to
present a benchmark to understand the quality of
various ur generated by different models 6.



Math Expertise Student Understanding Teacher Response Generation

Task(s) Problem Socratic Solution Mistake Mistake Scaffolding Gen., Scaffolding Gen.,

solving  questioning correctness location  correction | Ped. instr. following  Ped. instr. following
Dataset GSM8k GSM8k Step Verify StepVerify  StepVerify MathDialBridge MathDialBridge[hard]
Input P P p.S p.S p.H p. H p. H
Type generation  generation | bin. clas. (bal.)  multi-cl.  generation generation generation
Ground Truth a di,---, 4N 1(e #0) e a Wieacher Weeacher
Instances 1319 1319 2004 2004 1002 1150 327
Avg. turns - - - - 3.04 3.08 5.78

Table 1: Datasets used in the benchmark and their statistics. Notation defined in Section 3.

3.2 Learning Sciences Principles

We focus on 1:1 multi-turn teacher-student interac-
tions where teachers promote active learning (Free-
man et al., 2014) by engaging students through
scaffolding nudges, hints, and Socratic questioning.
Based on effective teaching research (Lepper and
Woolverton, 2002; Chi and Wylie, 2014; Nye et al.,
2014; Jurenka et al., 2024), we define the following
pedagogical principles: (a) correctness: the teacher
should guide the student towards the correct answer
and not state incorrect facts; (b) scaffolding instead
of giving away the answer: the teacher should help
the student to cognitively engage with the problem
and discover the answer on their own; (¢) encour-
age self-correction: by correctly identifying the
student mistake and first giving the student the op-
portunity to self-correct and learn from a mistake;
(d) not overload student: manage cognitive load by
not giving too much information at once.

4 MathTutorBench

‘We introduce MATHTUTORBENCH, a benchmark
that evaluates the tutoring capabilities of tutoring
models. MATHTUTORBENCH consists of three
high-level skills that a good human teacher needs to
have (Bommasani et al., 2021): Expertise, Student
Understanding and Pedagogical Abilities. These
skills are tested by seven different tasks, each con-
sisting of a dataset, prompt, and metric. All tasks
in MATHTUTORBENCH are related to math tu-
toring. The problems are mostly sourced from
GSMS8k (Cobbe et al., 2021). Table 1 summarizes
the datasets and tasks. The prompts used for the
tasks in the benchmark are shown in Appendix B.

4.1 Tasks

This section explains each task and complements
Table 1 with the rationale for including it.

1. Problem Solving. We include a math word
problem solving task that measures the accuracy
of the final numeric answer generated with chain-
of-thought (Wei et al., 2022) compared to the an-

swer a. Even though this type of evaluation is
popular, saturated, and contaminated, in MATHTU-
TORBENCH it serves as an indicator of a balance
between expertise and pedagogical abilities.

2. Socratic Questioning. Socratic questioning
is related to the problem decomposition to smaller
and more manageable parts. This task is to evaluate
whether a model generates for each correct step
s, at least one corresponding guidance question
q,, towards the correct answer, which could be
posed to the student instead of simply providing
the answer (Shridhar et al., 2022; Liu et al., 2024).

3. Student Solution Correctness. This task evalu-
ates a teacher’s ability to verify the correctness of
a student’s answer. Framed as a balanced binary
classification task based on student solution chain
s, this dimension ensures that the model can objec-
tively discern whether a student’s reply is correct
or incorrect, a crucial prerequisite for providing
accurate feedback and identification of misconcep-
tions (Wang et al., 2024b).

4. Student Mistake Location. Mistake location
is a critical component of effective tutoring, focus-
ing on a teacher’s ability to accurately identify the
exact location of the first mistake in a student’s re-
sponse S (Daheim et al., 2024). This task assesses
whether a tutoring model can pinpoint where a stu-
dent’s reasoning has gone wrong, enabling timely
and precise feedback. By detecting steps with mis-
takes, the model can help students understand their
misconceptions and steer the conversation to miti-
gate them, thus fostering a more productive learn-
ing experience (Kapur, 2016; Wang et al., 2024b).
S. Student Mistake Correction. This task mea-
sures the performance of a model to generate a rea-
soning chain with a correct final numeric answer a
even though the student proposes an incorrect an-
swer in the dialog history . The conditioning on
dialog history is the difference to Problem Solving.
We test the models’ ability to handle incorrect solu-
tions. Models should not get derailed by students’
incorrect steps. From a broader perspective, even



Math Expertise Student Understanding Pedagogy
Model Problem Socratic Solution Mistake ~ Mistake Teacher response generation
solving  questioning || correctness location  correction scaff. ped.IF | scaff. [hard] ped.IF [hard]

Metric accuracy bleu F1 micro F1  accuracy || winrate win rate win rate win rate
LLaMA3.2-3B-Instruct 0.60 0.29 0.67 0.41 0.13 0.64 0.63 0.45 0.40
LLaMA3.1-8B-Instruct 0.70 0.29 0.63 0.29 0.09 0.61 0.67 0.46 0.49
LLaMA3.1-70B-Instruct 0.91 0.29 0.71 0.56 0.19 0.63 0.70 0.49 0.49
GPT-40 0.90 0.48 0.67 0.37 0.84 0.50 0.82 0.46 0.70
LearnLM-1.5-Pro 0.94 0.32 0.75 0.57 0.74 0.64 0.68 0.66 0.67
Llemma-7B-ScienceTutor 0.62 0.29 0.66 0.29 0.16 0.37 0.48 0.38 0.42
Qwen2.5-7B-SocraticLM 0.73 0.32 0.05 0.39 0.23 0.39 0.39 0.28 0.28
Qwen2.5-Math-7B-Instruct 0.88 0.35 0.43 0.47 0.49 0.06 0.07 0.05 0.05

Table 2: We find that expertise and student understanding form a trade-off with pedagogy in tutor response generation.
Models are grouped into general, specialized tutoring, and math reasoning models. The win rate is computed as the
rate of the reward model preferring model responses over teacher responses. IF = Instruction Following.

if there is an incorrect step in a dialog history ,
this tests the recovery of a model from mistakes.
6. Scaffolding Generation (scaff.). The task is to
generate the next teacher utterance ur as a contin-
uation of the dialog. As it is an open-ended task,
we use a reward model to score generations over
teacher responses (explained in Section 4.3) to es-
timate its’ pedagogical quality. The tasks consist
of two variations. Scaffolding generation focuses
on generating an immediate response to a student’s
incorrect solution. We use a simple prompt for this
version asking models to respond to a student as
“an experienced math teacher in a useful and caring
way* (Wang et al., 2024b). The second version
is scaffolding generation [hard], a variant with a
longer conversation history (avg. 5.78 turns).

7. Pedagogical Instruction Following (IF) for
Scaffolding Generation. The task refers to the
ability of the model to follow pedagogical instruc-
tions in prompts and steer the model generations to
be more desired (Team et al., 2024). In this task, we
use the LearnLM ‘extended‘ prompt (Jurenka et al.,
2024) which specifically enumerates desired behav-
iors such as “nudging students”, “asking guiding
questions”, and “not overwhelm student”. There-
fore, in contrast to a simple prompt from scaffold-
ing generation, we hypothesize that models should
improve their generations to be more aligned with
our set of guiding principles from Section 3. The
same is applied to the hard portion of the dataset.

4.2 Datasets

The requirements for the dataset included in the
benchmark are to focus on middle school math con-
tent and contain 1:1 tutoring conversations written
by human teachers. We found two datasets that
fit the criteria, Bridge (Wang et al., 2024b) and
MathDial (Macina et al., 2023a). We excluded

NCTE (Demszky and Hill, 2023) dataset because
it is multi-persona. Bridge (Wang et al., 2024b)
contains 700 snippets of real online tutoring con-
versations by novice teachers, where each response
is revised by an expert teacher. MathDial (Macina
et al., 2023a) consists of 2.9k tutoring conversa-
tions collected by human teachers who interacted
with simulated students. Both datasets focus on
math, Bridge uses various problem sources and
MathDial sources problems from GSM8k (Cobbe
et al., 2021); a dataset of math word problems that
we used in the expertise task. We combine Bridge
and MathDial datasets into a combined dataset
called MathDialBridge which we further split into
one with a maximum of 4 utterances and the rest
we put into MathDialBridge[hard]. Finally, we
use the StepVerify (Daheim et al., 2024) dataset
which builds on top of the MathDial student in-
correct solutions and introduces annotation of the
first erroneous step in a student solution. Table 1
describes all the datasets and their statistics.

4.3 Scaffolding Score

Evaluating pedagogical abilities in tutoring is in-
herently challenging due to the open-ended nature
of the involved tasks. Unlike more structured do-
mains like factual question answering, pedagogy
requires assessing the quality of responses such as
questioning guidance to the root cause of a mis-
take, and actionability of productive scaffolding. In
other words, we need an efficient and lightweight
mechanism, a critic model, that can assign a mean-
ingful score to a generative model’s output based
on its pedagogical effectiveness.

4.3.1 Criteria-based Scoring

The most straightforward approach is to train indi-
vidual critic models for each pedagogical task us-
ing labeled data. For an evaluation taxonomy with
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Figure 3: Models performance on pairwise judgment
of teacher responses. We compute accuracy on an inde-
pendent test set based on Bridge dataset (Wang et al.,
2024b) as a proportion of Expert teacher responses pre-
ferred over Novice teacher responses. Extended prompt
enumerates our pedagogical criteria (Figure 7).

n total evaluation criteria, for each criterion 7 we
train a binary classifier C;(y) that outputs a binary
prediction of whether the criteria is present or not
in response y. To combine these into a final score
for a response, we aggregate them as > - ; Ci(y),
which represents a discrete score of the total num-
ber of predicted desired criteria for the response.
For example, MRBench (Maurya et al., 2024) is a
small dataset annotated with 8 criteria such as the
presence of guidance, actionability, and telling the
answer. However, the scale of the required data
and sparse features pose significant challenges.

4.3.2 Pairwise Ranking of Teacher Responses

Since labeled data for each criterion can be scarce,
we here explore a more unified strategy. Instead of
training a separate model for each criterion, where
each annotation criterion has inherent subjectivity,
we relax the objective and train a single critic model
that aggregates multiple criteria into a pairwise
comparison. We train a reward model using binary
ranking loss by following Ouyang et al. (2022):

Liak = —log o (7’9 (Xv yc) — Ty (X7 yr) - m)

(1)
where 79(x,y) is the scalar score for prompt x
and generation y, y,. and y,. are preferred (chosen)
and rejected generations respectively. The margin
m(y,,y,) represents the numerical quality differ-
ence between the chosen and rejected response but
may also be set to 0.

4.3.3 Pairwise Preference Data Pipeline

To create pairwise preference data, we follow our
pedagogical criteria from Section 3.2. For example,

Data Mix & Setting Accuracy Avg. margin

GSMS8k inpaint (22k) 0.60 3.26
MathDial (3.6k) 0.77 1.57
MRBench (4.5k) 0.80 2.60
+ margin in loss (4.5k) 0.79 7.68
+ pretrain (16.7k) 0.80 3.09
+ MathDial (8.1k) 0.84 5.75

Table 3: Ablation of Qwen2.5-1.5B-Instruct reward
model. Total number of training instances in brackets.
+ indicates an addition to the model. Pretraining uses
20% of Ultrafeedback (Cui et al., 2024). We select the
most accurate model to calculate the Scaffolding score.

a response is preferred if it is a Socratic question
q, or it has dialog intent i; which probes student
understanding. Contrary, a response is chosen as
dispreferred if it contains part(s) of the reference
solution s or has a lower number of desired criteria.

To formalize this, for a given dialog history H
and a taxonomy with n criteria, we define a score
for each response y:

n

fly) = Z 1(y has desired criterion i)  (2)
i=1

where 1(-) is the indicator function that equals 1
if - holds and O otherwise. The condition within
the indicator function is determined by: a) hu-
man criteria annotations (for MRBench (Mau-
rya et al., 2024)), b) dialog intent annotations
i of the used pedagogical strategy (for Math-
Dial (Macina et al., 2023a)), and c) subquestion
annotation q, (for GSM8k (Cobbe et al., 2021)).
For each pair of responses (y;,y;), we construct a
dataset of preference-label pairs D = {(y;,y;) |
f(y;) > f(y;)}, where the margin is defined as
m(y;,y;) = f(y;) — f(y;)- The dataset captures
the relative preference between responses based on
the number of desired criteria they exhibit. The
description of the datasets used for training and
testing is found in Table 4.

S Experiments

5.1 Models

MathTutorBench includes an evaluation of three
groups of models: general LLMs, LLM tutors,
and math reasoners. General LLMs such as open-
weight L1ama3.1 70B and 8B, newer Llama3.?2
3B model, and closed source gpt-40-mini. We
use specialized tutoring models, namely closed-
sourced LearnLM-1.5-Pro and recent open-source
tutoring models Qwen2.5-7B-SocraticlLM (Liu
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Figure 4: Reward model distribution scores for expert and novice teachers across prompted (prompt in Figure 6),
with extended prompt (prompt in Figure 7), and finetuned Qwen2.5-1.5B-Instruct models.

et al., 2024) and Llemma-7B-32K-MathMix
(ScienceTutor) (Chevalier et al.,, 2024).
To measure the importance of specially
finetuned tutoring models, we evaluate the
Qwen2.5-Math-7B-Instruct, which is optimized
for math reasoning and was used for finetuning the

specialized tutor model SocraticLM.

5.2 Scaffolding Score - Test Set and Metrics

The goal of the Scaffolding score is to estimate the
pedagogical quality of the teacher response genera-
tion. To validate it, we build a test set containing
482 examples based on Bridge (Wang et al., 2024b)
which contains student dialogs with novice teach-
ers. The test set has no instance or problem overlap
with our training data. In Bridge, novice teacher re-
sponses are improved by expert teachers following
an expert-defined decision-making process. The
process first identifies the type of the error and then
determines the pedagogical strategy and intent. For
example, while novice teachers tend to explicitly
correct student mistakes by giving away correct an-
swers to students, expert teachers use various scaf-
folding nudges such as the Socratic method, use
hints, or ask for further elaboration of the problem-
atic part. We use the following formula to compute
the accuracy of pairwise ranking between expert
teacher and novice teacher:

N

1
N Z I[(yexpert,i > Ynovice,i)'
i=1

3)

5.3 Scaffolding Score - Models and Baselines

We use LLM-as-a-judge prompting as a
baseline, similar to Jurenka et al. (2024).
For this, we use Llama-3.1-70B-Instruct,

GPT-40-mini, and the specialized judge model
Prompetheus-7b-v2.0 (Kim et al., 2024). More-
over, we pick well-performing existing preference-
tuned reward models with high scores from the
RewardBench (Lambert et al., 2024) on a variety of
chat comparisons, namely, Internlm2-7b-reward
and Skywork-Reward-Llama-3.1-8B-v@.2. To

finetune single criteria-based binary clas-
sifiers we use ModernBERTpsse (Warner
et al., 2024) with a classification head. Fi-

nally, we use Qwen2.5-0.5B-Instruct and
Qwen2.5-1.5B-Instruct for finetuning on
preference data, which are small enough to run fast
as a part of the benchmark.

6 Results

In this section, we showcase our core findings on
MATHTUTORBENCH and demonstrate the robust-
ness and quality of the scaffolding reward model.

6.1 Comparing SotA LLMs (Table 2)

Math expertise does not translate directly to stu-
dent understanding and pedagogy. Our evalu-
ations reveal a striking imbalance in current lan-
guage models. While these models exhibit impres-
sive domain knowledge and excel at Problem solv-
ing, as evidenced by their performance on datasets
like GSMB8K, they consistently fall short in Scaf-
folding generation task. This is particularly clear
for Qwen2.5-Math and GPT4o.

Specialized tutoring models improve in peda-
gogy but do not retain the full solving abili-
ties. The specialized tutoring model SocraticLM
achieves good Scaffolding scores for its size and
big improvements over the base model (Qwen2.5-



Math). However, it degrades in all Student Un-
derstanding tasks. Compared to SocraticLM, the
ScienceTutor degrades in math expertise but has
significantly better Student correctness solution
and pedagogical instruction following. Closed-
sourced LearnLLM achieves a more reasonable bal-
ance across all skills and tasks.

Tutoring is more challenging on longer dialogs.
As indicated by the drop in performance in the win
rate of tasks, indicated with ‘hard‘, the longer the
context it is more difficult for more to adapt. For
example, it might be important to guide students
differently than with a simple Socratic questioning.
Only LearnLLM can keep consistent performance.

Majority of models suffer by limited pedagog-
ical instruction following. When we compare
scaffolding generation with instruction following
win rate (in base and hard splits), we notice
that GPT4o follows the pedagogical instructions
and gains a significant improvement (similarly,
there is a smaller improvement for ScienceTutor).
However, other models such as the SocraticLM,
LearnLLM, or Llama models show decreased or sim-
ilar performance suggesting a limited ability to
follow pedagogical instructions defined in prompt.

6.2 Scaffolding Score - Results

Figure 3 shows a comparison between various mod-
els evaluated on the task of scoring expert teacher
responses higher than novice teacher responses, see
Equation 3. LLM-as-a-judge models are sensitive
to prompts and positional bias, so we randomize the
order. We report simple and extended prompts with
detailing pedagogical guidelines (Figure 6 and 7)
but their accuracy is lower than 0.7. Performance
of reward models from RewardBench (Lambert
et al., 2024) on the pedagogical preferences is only
slightly higher than random. We also train a combi-
nation of criteria-based ModernBERT binary clas-
sifiers aggregated into a summed final score, how-
ever, it lags behind extended-prompted LLM-as-a-
judge models (for individual criterion performance
see Table 6). We hypothesize the single criterion
data are highly sparse, noisy and imbalanced, and
do not have sufficient data size to work.

To summarize, Figure 3 shows that finetuning
reward models on pedagogical preference data is
essential, as these finetuned reward models out-
perform both LL.Ms-as-a-judge models and SoTA
reward models from RewardBench, consistent
with (Xu et al., 2024). We hypothesize that this

is because of the lack of pedagogical datasets and
a fundamental shift between a better chat response
and a better pedagogical response.

Ablation of finetuning data. Table 3 shows the
results for various data mixtures of pedagogical
preference data. We see that synthetic inpainted
data (Dai et al., 2022) using stepwise questions and
answers from GSMS8k do not lead to a significant
improvement over the base model. However, us-
ing pedagogical preference pairs based on human
annotators scores (Maurya et al., 2024) improves
the score to 0.8, more than any other baseline in
Table 3. However, as this dataset contains mostly
model generations, only one of the responses is
from a human teacher, and they are highly under-
represented. Therefore, we also include conversa-
tions from the MathDial training set (Macina et al.,
2023a), which is filtered by desired dialog acts
(more details in Table 4). The resulting finetuned
model achieves the best accuracy of 0.84. As the
test set is completely separate and no problems
are shared between the train and test set, we pick
this reward model as our final model for comput-
ing the Scaffolding score for model generation win
rates over teacher responses (proportion of model
generations preferred over teacher responses).

Scores distribution. Additionaly, we plot in Fig-
ure 4 the model distribution over scores on the test
set. The prompted model with extended prompt and
the vanilla model cannot separate the teacher and
novice responses as well as the finetuned model.
This supports the idea that pedagogical criteria are
unique compared to general preference data and
we need high-quality pedagogical preference data.

7 Conclusion

In this work we propose MATHTUTORBENCH, a
holistic benchmark for quick and cost-effective as-
sessment of the educational capabilities of LLM
tutoring models. It fills a crucial gap in the liter-
ature, as it allows fast prototyping of models by
using only lightweight automatic and learned met-
rics to evaluate pedagogy. The goal is to not replace
human studies measuring learning outcomes, but
rather to serve as a measure of which models to
use and compare. Finally, we benchmark various
models and report a trade-off between expertise, un-
derstanding, and pedagogy, as well as diminishing
results on longer tutoring conversations.



8 Limitations

Our work focuses on high school math tutoring
and limits the insights of the benchmark to multi-
step math problems. Despite a limited number of
available conversation dataset in other domains,
we plan to extend the benchmark to further STEM
domains to generalize its applicability and reach.

The conversational data in the benchmark does
not contain conversations longer than 10 turns and
thus can miss to evaluate very long educational
conversations with long-term dependencies which
might be present in online tutoring classes.

We study 1:1 conversational tutoring between
teacher and student in this work. Specifically, we
focus on a teacher using hints and nudges to aid
student learning and provide engaging learning op-
portunities for students. However, there are addi-
tional functions of a teacher that we decided not to
model, for example building rapport or trust with
less engaged students.

The benchmark does not contain all possible di-
mensions for educational evaluation. For example,
it is missing a safety evaluation of potentially harm-
ful tutor responses. It is an extensive research area
and not the goal of this work. However, as the
benchmark is open-source we plan to extend it to
include more safety evaluations.

9 Ethics Statement

Intended usage The goal of the benchmark is to
evaluate new and existing dialog tutoring models
on the skills related to math expertise, student un-
derstanding, and pedagogical capabilities. We will
release the code and the dataset under CC-BY-4.0
license. This follows the licences of all the datasets
which we are using in the benchmark.

Accessibility and Potential Misuse The main
goal of our work is to encourage the community
to use the benchmark to improve existing tutoring
models by balancing expertise, student understand-
ing, and proper pedagogical guidance. However,
there are potential risks related to the data and the
scoring reward model. Models could optimize for
reward hacking which could lead to suboptimal tu-
toring behaviour. Moreover, if the data contains
some unknown pattern, the risk is that this could be
exploited by new models to achieve higher scores.
However, we tried to mitigate this by including
several various data sources in the benchmark and
in the training data, mostly human-annotated. We

encourage the deployment of tutoring models in
any case with appropriate safeguards.
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A Scaffolding scores qualitative examples

Table 5 shows assigned scores for various model
and teacher responses given the problem and previ-
ous dialog. We can notice teacher responses such
as confirming incorrect answer or stating incorrect
facts are scored lower compared to questions en-
couraging self-reflection and self-correction. In
between those two are responses that tell only
one next step towards the correct answer or step-
based questions. Similarly, Table 7 has examples
of novice teacher responses from test set catego-
rized into score quartiles. These examples from
the test dataset contain similar observations, with
scores in the top quartile for encouragement and
questions pointing to the root of the problem. The
bottom quartile contains limited feedback such as
your answer is incorrect and the bottom quartile
often next-step-based hints.

B Task Prompts

The exact prompts used in the benchmark are
shown in Figure 5. Please note that we use ex-
actly the same task prompt for each model being
evaluated. Some tasks use two in-context examples
to present the right format of the response. The cost
to run the full benchmark with GPT40-mini is less
than 3$. To run the open-weight models we use the
vllm library (Kwon et al., 2023). We sample from
all models in the benchmark with temperature set
to 0 for reproducible results and we set maximum
token generation to 2048.

B.1 Details of Benchmarked Models

Specific versions of closed models we use
are gpt-40-mini-2024-07-18 version and
learnlm-1.5-pro-experimental. We use
these exact versions of open-weight models
loaded from Huggingface model hub (Wolf
et al, 2020): LLaMA3.2-3B-Instruct,
LLaMA3.1-8B-Instruct,
Llama-3.1-70B-Instruct,
CogBase-USTC/SocraticlLM,
princeton-nlp/Llemma-7B-32K-MathMix,

and Qwen2.5-Math-7B-Instruct.

C Reward Model Details

C.1 Training data

Training data used for training the Scaffolding re-
ward model and its ablation are in Table 4.

C.2 Implementation details

We finetune all models using Huggingface trans-
formers library (Wolf et al., 2020) and using the
checkpoints from the Huggingface Model Hub re-
specting corresponding license agreements.

We finetune all models with a learning rate of
1-107° for 1 training epoch and with a batch size
of 16. We use the AdamW optimizer (Loshchilov
and Hutter, 2019).

We used an NVIDIA A100 80GB GPU and fine-
tuning takes around 1 hour for each model.

D Details on Single-Criteria Classifiers

The results of individual criteria classifiers on the
separate test set are shown in Figure 6. For train-
ing of the single-criteria classifiers we binarize
the data from MRBench (Maurya et al., 2024).
In particular, we take the most negative criterion
for each category as 0 and all others as 1. We
train ModernBERTp,se With 149M parameters on
NVIDIA V100 GPUs. Again, we use the AdamW
optimizer with a learning rate of 1-10~° and a batch
size of 16 but train for 3 epochs due to the small
data sizes. Training takes only ca. 15 minutes.



Dataset Split | Pref. pairs | Avg. turns | Preferred resp. Rejected resp. Settings

GSMS8k-inpainted | all 22,753 4.38 Subquestion ¢ Solution steps s Math Word Problems with
matching solutions steps
s¢ to subquestions q;

Training datasets

MathDial train | 3,615 2.93 Teacher utterances | Reference sol. s Tutoring conversations
with i; annotated as created by human
probing and focus teachers interacting with
in the first 3 teacher LLM students
turns.

MRBench N/A | 4,521 3.74 Response with a Response with Human annotation across
higher number of fewer desired 8 desired tutoring criteria -
desired criteria criteria guidance, actionability,

answer reveal, mistake
identification, mistake
location, coherence, tone,
humanness

Testing dataset

Bridge all 482 2.79 Expert teacher Novice teacher Original novice teacher

response

response

responses and revisions
by expert teachers

Table 4: Datasets used to create pedagogical pairwise preference data.
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Figure 5: Prompts for each task.
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Problem

Margaret wants to serve chicken salad sandwiches using mini croissants. Each committee member (24 people)
will have 2 sandwiches. The bakery sells 12 mini croissants for $8.00. How much will she spend on croissants?

Reference Solution

¢ Total sandwiches: 24 X 2 = 48
¢ Mini croissants needed: 48 +— 12 = 4 dozen

e Cost: 4 x 8 = 32. Final Answer: $32.00

Dialogue

Teacher: "Walk me through your solution."

Student: "I started by calculating how many sandwiches Margaret needs to make. Since there are 24 people on the
committee and each person needs 2 sandwiches, I multiplied 24 x 2 to get 48. Then I realized that each sandwich needs
2 mini croissants, so I multiplied 48 x 2 to get 96. Since the bakery offers 12 mini croissants for $8.00, I divided 96 by
12 1o get 8 sets of 12 mini croissants. Finally, I multiplied 8 x $8.00 to get my final answer of $64.00."

Model Generated Response Score

LearnLM-simple "That’s a fantastic approach to solving the problem! Your step-by-step calcula- -5.09
tions and clear reasoning demonstrate a strong understanding of how to break
down a word problem and solve it systematically.” confirms incorrect answer
GPT4o-simple "Great job on breaking down the problem step by step! Your calculations are -4.25
correct, and you accurately determined that Margaret will spend $64.00 on
croissants."confirms incorrect answer
Qwen-Math-7b- "It looks like you have a solid understanding of the problem. You correctly -3.68
extended calculated the total number of sandwiches needed and then determined how
many sets of mini croissants you need to buy. Your final answer is $64.00."
incorrect

Human Teacher "A dozen croissants cost $8.00 and she needs 4 dozens so that will cost 84 =" -1.91
telling part of the answer
Qwen-Math-7b-simple "Calculate the total number of sandwiches needed: There are 24 people on the -0.36

committee. Each person needs 2 sandwiches. 24 x 2 = 48 sandwiches." telling
part of the correct answer
SocraticLM-simple "How many sandwiches does Margaret need to make?" reiterate first step 4.59
GPT4o-extended "Great job breaking down the problem step by step! Can you explain how you 4.62
determined the total cost of the croissants based on the number of sets you
calculated?" ask to re-check
LearnLM-extended "That’s a great start! Can you explain why you decided to multiply 24 by 2 at 7.47
the beginning of your solution?"

SocraticLM-extended "You correctly calculated the total number of sandwiches needed. Now, how 7.66
many mini croissants does each sandwich require?"

Table 5: Example scaffolding reward model scores. Red represents undesired teacher behavior, blue is neutral and
useful in some scenarios, and green represents following best scaffolding practices. Simple refers to the simple
prompt used in Sthe caffolding Generation task and the extended version refers to the extended prompt used in
Pedagogical Instruction Following.
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Judge the pedagogical quality of the responses provided by two teachers. Focus on the quality of the guidance, not
revealing of the answer and actionability of the feedback. Be as objective as possible. After providing your explanation,
output your final verdict by strictly following this format: "[[A]]" or "[[B]]".

Problem: {problem}

Reference Solution: {solution}

{conversation }

[The Start of Response A]
{responseA}
[The End of Response A]

[The Start of Response B]
{responseB}
[The End of Response B ]

Figure 6: A simple baseline prompt is used in LLM-as-a-judge and preference reward models.

Judge the pedagogical quality of the responses provided by two teachers. Focus on the quality of the scaffolding
guidance, correctness, and actionability of the feedback through nudges, questions, and hints. Do not give high scores
for revealing the full answer.

Problem: {problem}

Reference Solution: {solution}

{conversation }

Teacher: {utterance_to_score}

Figure 7: Extended prompt used by the reward models, LLM-as-a-judge, and preference-tuned reward models.
{problem} and {solution} are placeholders for the text of the problem and a reference solution (if available).
{conversation} represents a dialog history and {utterance_to_score} is a teacher utterance which is being assessed.

For LLM-as-a-judge, two utterances are listed the same way as in Figure 6.
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Model Accuracy

Actionability 0.78
Guidance 0.44
Tone 0.46
Mistake Identification 0.61
Mistake Location 0.63
Revealing 0.39
Aggregated ens. 0.66

Aggregated ens. (best 3) 0.68

Table 6: Results of the criteria-based binary clas-
sifiers on the test set. All models are finetuned
ModernBERT},,sc models, the last two rows represent
ensembles (ens.) with aggregated discrete binary pre-
dictions. The criteria are a subset of criteria from MR-
Bench (Maurya et al., 2024).
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Quartile Example

Top (75th) You made a good try. While rounding the nearest hundred, we
have to look at the tens place first. Is the value in the tens place
below 5?7

Your answer is a little bit off. There are 4 points in this graph.
The x-axis moves on the graph horizontally or right to left. What
direction does the y-axis move on the graph?

That is great! +1 point for your effort. The division is the part of
the question. What is the dividend?

Mid (25-75th) | Very good try! 1 day =___ hours.

That was a good try. Plus 1 point. Let me explain it to you. Here,
we have to find the value of 10 divided by 5.

You got an incorrect answer. Let me show you. The area of the top
rectangle is 10. Add the areas of the two sections together. The
final answer is 45 square feet. Did you understand?

That’s a good try. Multiplication is also called repeated addition.

Bottom (25th) | Your answer is incorrect. The volume is 70 cubic units. Does the
step make sense?

Incorrect answer [STUDENT], but good try.

That was a good try.

Table 7: Examples of reward model scores for novice teacher responses from the test set, categorized into quartiles.
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