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Abstract001

Evaluating the pedagogical capabilities of AI-002
based tutoring models is critical for making003
guided progress in the field. Yet, we lack a004
reliable, easy-to-use, and simple-to-run evalu-005
ation that reflects the pedagogical abilities of006
models. To fill this gap, we present MATH-007
TUTORBENCH, an open-source benchmark for008
holistic tutoring model evaluation. MATHTU-009
TORBENCH contains a collection of datasets010
and metrics that broadly cover tutor abilities as011
defined by learning sciences research in dialog-012
based teaching. To score the pedagogical qual-013
ity of open-ended teacher responses, we train014
a reward model and show it can discriminate015
expert from novice teacher responses with high016
accuracy. We evaluate a wide set of closed-017
and open-weight models on MathTutorBench018
and find that subject expertise, indicated by019
solving ability, does not immediately translate020
to good teaching. Rather, pedagogy and sub-021
ject expertise appear to form a trade-off that022
is navigated by the degree of tutoring special-023
ization of the model. Furthermore, tutoring024
appears to become more challenging in longer025
dialogs, where simpler questioning strategies026
begin to fail. We release the benchmark, code,027
and leaderboard openly1 to enable rapid bench-028
marking of future models.029

1 Introduction030

Large Language Models (LLMs) present an op-031

portunity to transform education by offering ubiq-032

uitous access to individualized tutoring (Jurenka033

et al., 2024). While these models excel at gener-034

ating correct answers (Wei et al., 2022; Achiam035

et al., 2023), experienced teachers help students036

think for themselves and do not just give away an-037

swers to make learning effortless (Sharma et al.,038

2024). Teaching involves a combination of skills039

including subject expertise, the ability to diagnose040

and correct student mistakes, and the application041

1anonymous.4open.science/r/mathtutorbench-846F

Figure 1: Effective teaching requires various skills
which we categorize into expertise, student understand-
ing, and pedagogical ability. MATHTUTORBENCH eval-
utes these according to the tasks shown in the outer ring.

of sound pedagogical techniques. For example, 042

teachers need to know when to withhold answers 043

from students, use Socratic questioning (Anghileri, 044

2006), or how to engage them cognitively in prob- 045

lem solving (Chi and Wylie, 2014; Kapur, 2016). 046

Therefore, a crucial element of building LLM tu- 047

tors is their evaluation; it is critical to understand 048

whether their guidance is helpful to prevent harm, 049

and to guide progress in future model development. 050

Yet, current evaluation practices do not meet 051

these criteria. On the one hand, automatic met- 052

rics usually evaluate tutoring models by measuring 053

the word overlap between a ground-truth response 054

and a generated response (Tack et al., 2023), or 055

focus exclusively on question-answering perfor- 056

mance (Chevalier et al., 2024). This is fast but 057

arguably fails to capture the intricacies of tutoring. 058

Although human evaluation might be a way to cap- 059

ture these nuances by defining suitable criteria to 060

capture them (Tack and Piech, 2022; Maurya et al., 061

2024), it is expensive. Importantly, it can only cre- 062

ate a snapshot of current performance and cannot 063

be used to evaluate or compare to future models. 064
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In this work, we fill this gap by releasing MATH-065

TUTORBENCH, a collection of datasets and met-066

rics to holistically evaluate dialog tutoring mod-067

els for math tutoring. Teaching is a complex and068

multifaceted task that extends beyond subject mas-069

tery (Nye et al., 2014; Tack et al., 2023; Wang070

et al., 2024b). Therefore, MATHTUTORBENCH071

is divided into three categories: math expertise072

which evaluates the subject-matter expertise of the073

tutor, student understanding which evaluates the074

tutor’s ability to verify, locate and correct student075

solutions, and teacher response generation which076

evaluates the scaffolding abilities of the tutor. Math077

expertise and student understanding are evaluated078

based on standard metrics, and we propose a novel079

metric for evaluating teacher response generation.080

In particular, we train a small and quick-to-run081

reward model by contrasting effective and less ef-082

fective tutor utterances in terms of structured scaf-083

folding guidance with questions and hints instead084

of giving away the answer (Anghileri, 2006). The085

reward model is then used to score tutor model086

generations. We show that this metric is reliable087

by showing that it can distinguish utterances from088

expert teachers from those stemming from novice089

teachers (Wang et al., 2024b) with high accuracy.090

We evaluate various open- and closed-weight091

state-of-the-art LLMs and specialized tutoring mod-092

els on MATHTUTORBENCH. Our results show093

that there is a trade-off between subject expertise094

and pedagogical abilities that is dependent on the095

degree of specialization of a tutoring LLM. Spe-096

cializing an LLM for pedagogy comes at the cost097

of solving ability and, conversely, a high solving098

accuracy often means that the LLM lacks peda-099

gogy. Still, more specialized tutoring models tend100

to retain their teaching abilities even further into a101

dialog with a student, while general models quickly102

become worse. With this, our work contributes to103

accelerating the development of tutoring LLMs by104

providing a holistic benchmark that can be eval-105

uated quickly and fairly using automatic metrics.106

We release our code and data publicly to promote107

open research on tutoring LLMs.108

2 Related Work109

2.1 LLM-Based Dialog Tutoring110

A good tutor should scaffold student learning in111

a structured way rather than just provide correct112

answers. Current approaches to dialog tutoring113

using LLMs try to achieve this by differnent means:114

prompt-based elicitation of pedagogical behavior, 115

finetuning models on pedagogical conversations, 116

and alignment with pedagogical preferences. 117

First, most existing works use LLMs with a care- 118

fully chosen prompt which enumerates desired ped- 119

agogical behavior. Bridge (Wang et al., 2024b) ana- 120

lyzes the teacher behavior and proposes to structure 121

the prompt into a sequence of decisions, similar to 122

real teachers, first to infer the error type and then 123

to determine the pedagogical intent. Other works 124

mostly directly write extensive prompts (Sonkar 125

et al., 2023; Kargupta et al., 2024). However, 126

defining such prompts is tedious, sensitive to small 127

changes and difficult to test (Jurenka et al., 2024). 128

Second, several approaches finetune models on 129

real or mostly synthetically generated data. So- 130

craticLM (Liu et al., 2024) uses a GPT-4 judge 131

to evaluate the quality of teacher guidance using 132

correctness and Socratic principles. A similar ap- 133

proach is to role-model teacher and student con- 134

versations based on textbook data (Chevalier et al., 135

2024; Wang et al., 2024a). MathDial (Macina et al., 136

2023a) is one of the few works that use teachers’ ut- 137

terances when interacting with students to finetune 138

models. However, it is expensive to collect such 139

data on a larger scale. Therefore, LearnLM (Team 140

et al., 2024) uses an empirically validated mixture 141

of synthetic and teacher-created datasets. However, 142

for capturing high-quality tutoring, teacher-created 143

data is essential and therefore upweighted in their fi- 144

nal data mix. Finally, LLMs can be aligned for ped- 145

agogical preferences during post-training (Team 146

et al., 2024), because these are usually tacit. How- 147

ever, no datasets are openly available or they rely 148

on larger models such as GPT-4 as a judge which 149

limits its generalizability. 150

Our benchmark contributes an important missing 151

ingredient in the development of LLM-based tutors 152

– the ability to quickly evaluate and compare models 153

on key pedagogical aspects. 154

2.2 Automatic & Human Evaluation 155

Several works rely on automatic NLG met- 156

rics such as BLEU (Papineni et al., 2002) or 157

BERTScore (Zhang et al., 2020) for evaluation 158

which require human-annotated ground truths. 159

However, since tutoring has the goal of helping 160

students learn (Macina et al., 2023b), it is very 161

open-ended and there is no single best pedagogical 162

approach at each turn (Jurenka et al., 2024). This 163

results in noisy and unreliable scores from auto- 164

matic metrics (Tack et al., 2023). There exists an 165
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Figure 2: Overview of the MathTutorBench benchmark. Each benchmark task defines a dataset, system prompts with
problem and dialog, metric, and ground-truth teacher responses. A reward model is used to score the pedagogical
quality over teacher responses (win rate). The right part of the figure shows the outcome as a performance
comparison of selected LLMs. While they all perform well in a simple problem-solving setting, most of them lack
in correct detection of mistakes and generating pedagogical responses.

educational-specific classifier of active teacher lis-166

tening (Demszky et al., 2021), however, it is limited167

to only this one dimension of teaching and does168

not account for the entire dialog history. Therefore,169

recent finetuned tutoring LLMs (Chevalier et al.,170

2024; Liu et al., 2024) rely on GPT-4-as-a-judge171

on dimensions like helpfulness and presentation.172

Some works on reasoning (Liang et al., 2024) also173

focus on multi-turn model abilities judged by GPT-174

4 but they lack an educational focus.175

Pedagogical quality annotation requires hiring176

teachers, but it is time-consuming and hard to com-177

pare across trials. Two papers recently addressed178

the issue (Tack and Piech, 2022; Maurya et al.,179

2024) by providing evaluation taxonomies but only180

present one-off static snapshots of current models’181

performance without the possibility to automat-182

ically evaluate new models. Finally, measuring183

student learning gains directly focuses on the end184

goal. However, learner studies are costly, time-185

consuming (Schmucker et al., 2024), and with strict186

ethics and privacy requirements. There is a grow-187

ing interest in designing proper evaluation guide-188

lines (Tack et al., 2023; Jurenka et al., 2024), how-189

ever, there is still a need for a unified automatic190

evaluation for scalable model development.191

MATHTUTORBENCH addresses the limitations192

of existing automatic metrics by focusing specifi-193

cally on tutoring, is simple to run, replicable, and194

could serve as a proxy for deciding which models195

to focus on in human studies. Moreover, our bench- 196

mark only uses data collected from real teachers. 197

3 Background 198

3.1 Next Teacher Utterance Generation 199

We focus on educational dialogues between a stu- 200

dent and a teacher, where a student is trying to solve 201

a multi-step problem p ∈ V∗. The problem has a 202

single numerical solution a and a sequence of so- 203

lution steps s = (s1, . . . , sN ), where each sn ∈ V∗ 204

and sN contains the final answer a. A student solu- 205

tion consists of steps ŝ = (ŝ1, . . . , ŝM ) and the first 206

step with a mistake is e ∈ {0, 1, . . . ,M}, where 207

e = 0 means no mistake. 208

The goal of dialog tutoring is to continue an ex- 209

isting teacher-student dialog H := (u1, . . . ,uT−1) 210

consisting of T − 1 turns ut ∈ V∗ with a new turn 211

uT ∈ V∗ that simulates the teacher and guides the 212

student towards solving a problem. This is usu- 213

ally done by learning a model pθ(uT | H,K, it) 214

with parameters θ ∈ Rd, which is optionally con- 215

ditioned on background knowledge K (in our case 216

only the problem p) and a teacher intent iT , and 217

using a decoding strategy, such as greedy decoding 218

or sampling according to pθ to generate an output. 219

The turn uT should then fulfill the desiderate laid 220

out in Section 3.2. The goal of this work is to 221

present a benchmark to understand the quality of 222

various uT generated by different models θ. 223
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Math Expertise Student Understanding Teacher Response Generation
Task(s) Problem Socratic Solution Mistake Mistake Scaffolding Gen., Scaffolding Gen.,

solving questioning correctness location correction Ped. instr. following Ped. instr. following
Dataset GSM8k GSM8k StepVerify StepVerify StepVerify MathDialBridge MathDialBridge[hard]
Input p p p, ŝ p, ŝ p, H p, H p, H
Type generation generation bin. clas. (bal.) multi-cl. generation generation generation
Ground Truth a q1, . . . ,qN 1(e ̸= 0) e a uteacher uteacher

Instances 1319 1319 2004 2004 1002 1150 327
Avg. turns - - - - 3.04 3.08 5.78

Table 1: Datasets used in the benchmark and their statistics. Notation defined in Section 3.

3.2 Learning Sciences Principles224

We focus on 1:1 multi-turn teacher-student interac-225

tions where teachers promote active learning (Free-226

man et al., 2014) by engaging students through227

scaffolding nudges, hints, and Socratic questioning.228

Based on effective teaching research (Lepper and229

Woolverton, 2002; Chi and Wylie, 2014; Nye et al.,230

2014; Jurenka et al., 2024), we define the following231

pedagogical principles: (a) correctness: the teacher232

should guide the student towards the correct answer233

and not state incorrect facts; (b) scaffolding instead234

of giving away the answer: the teacher should help235

the student to cognitively engage with the problem236

and discover the answer on their own; (c) encour-237

age self-correction: by correctly identifying the238

student mistake and first giving the student the op-239

portunity to self-correct and learn from a mistake;240

(d) not overload student: manage cognitive load by241

not giving too much information at once.242

4 MathTutorBench243

We introduce MATHTUTORBENCH, a benchmark244

that evaluates the tutoring capabilities of tutoring245

models. MATHTUTORBENCH consists of three246

high-level skills that a good human teacher needs to247

have (Bommasani et al., 2021): Expertise, Student248

Understanding and Pedagogical Abilities. These249

skills are tested by seven different tasks, each con-250

sisting of a dataset, prompt, and metric. All tasks251

in MATHTUTORBENCH are related to math tu-252

toring. The problems are mostly sourced from253

GSM8k (Cobbe et al., 2021). Table 1 summarizes254

the datasets and tasks. The prompts used for the255

tasks in the benchmark are shown in Appendix B.256

4.1 Tasks257

This section explains each task and complements258

Table 1 with the rationale for including it.259

1. Problem Solving. We include a math word260

problem solving task that measures the accuracy261

of the final numeric answer generated with chain-262

of-thought (Wei et al., 2022) compared to the an-263

swer a. Even though this type of evaluation is 264

popular, saturated, and contaminated, in MATHTU- 265

TORBENCH it serves as an indicator of a balance 266

between expertise and pedagogical abilities. 267

2. Socratic Questioning. Socratic questioning 268

is related to the problem decomposition to smaller 269

and more manageable parts. This task is to evaluate 270

whether a model generates for each correct step 271

sn at least one corresponding guidance question 272

qn towards the correct answer, which could be 273

posed to the student instead of simply providing 274

the answer (Shridhar et al., 2022; Liu et al., 2024). 275

3. Student Solution Correctness. This task evalu- 276

ates a teacher’s ability to verify the correctness of 277

a student’s answer. Framed as a balanced binary 278

classification task based on student solution chain 279

ŝ, this dimension ensures that the model can objec- 280

tively discern whether a student’s reply is correct 281

or incorrect, a crucial prerequisite for providing 282

accurate feedback and identification of misconcep- 283

tions (Wang et al., 2024b). 284

4. Student Mistake Location. Mistake location 285

is a critical component of effective tutoring, focus- 286

ing on a teacher’s ability to accurately identify the 287

exact location of the first mistake in a student’s re- 288

sponse ŝ (Daheim et al., 2024). This task assesses 289

whether a tutoring model can pinpoint where a stu- 290

dent’s reasoning has gone wrong, enabling timely 291

and precise feedback. By detecting steps with mis- 292

takes, the model can help students understand their 293

misconceptions and steer the conversation to miti- 294

gate them, thus fostering a more productive learn- 295

ing experience (Kapur, 2016; Wang et al., 2024b). 296

5. Student Mistake Correction. This task mea- 297

sures the performance of a model to generate a rea- 298

soning chain with a correct final numeric answer a 299

even though the student proposes an incorrect an- 300

swer in the dialog history H. The conditioning on 301

dialog history is the difference to Problem Solving. 302

We test the models’ ability to handle incorrect solu- 303

tions. Models should not get derailed by students’ 304

incorrect steps. From a broader perspective, even 305
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Math Expertise Student Understanding Pedagogy
Model Problem Socratic Solution Mistake Mistake Teacher response generation

solving questioning correctness location correction scaff. ped.IF scaff. [hard] ped.IF [hard]
Metric accuracy bleu F1 micro F1 accuracy win rate win rate win rate win rate
LLaMA3.2-3B-Instruct 0.60 0.29 0.67 0.41 0.13 0.64 0.63 0.45 0.40
LLaMA3.1-8B-Instruct 0.70 0.29 0.63 0.29 0.09 0.61 0.67 0.46 0.49
LLaMA3.1-70B-Instruct 0.91 0.29 0.71 0.56 0.19 0.63 0.70 0.49 0.49
GPT-4o 0.90 0.48 0.67 0.37 0.84 0.50 0.82 0.46 0.70
LearnLM-1.5-Pro 0.94 0.32 0.75 0.57 0.74 0.64 0.68 0.66 0.67
Llemma-7B-ScienceTutor 0.62 0.29 0.66 0.29 0.16 0.37 0.48 0.38 0.42
Qwen2.5-7B-SocraticLM 0.73 0.32 0.05 0.39 0.23 0.39 0.39 0.28 0.28
Qwen2.5-Math-7B-Instruct 0.88 0.35 0.43 0.47 0.49 0.06 0.07 0.05 0.05

Table 2: We find that expertise and student understanding form a trade-off with pedagogy in tutor response generation.
Models are grouped into general, specialized tutoring, and math reasoning models. The win rate is computed as the
rate of the reward model preferring model responses over teacher responses. IF = Instruction Following.

if there is an incorrect step in a dialog history H,306

this tests the recovery of a model from mistakes.307

6. Scaffolding Generation (scaff.). The task is to308

generate the next teacher utterance uT as a contin-309

uation of the dialog. As it is an open-ended task,310

we use a reward model to score generations over311

teacher responses (explained in Section 4.3) to es-312

timate its’ pedagogical quality. The tasks consist313

of two variations. Scaffolding generation focuses314

on generating an immediate response to a student’s315

incorrect solution. We use a simple prompt for this316

version asking models to respond to a student as317

“an experienced math teacher in a useful and caring318

way“ (Wang et al., 2024b). The second version319

is scaffolding generation [hard], a variant with a320

longer conversation history (avg. 5.78 turns).321

7. Pedagogical Instruction Following (IF) for322

Scaffolding Generation. The task refers to the323

ability of the model to follow pedagogical instruc-324

tions in prompts and steer the model generations to325

be more desired (Team et al., 2024). In this task, we326

use the LearnLM ‘extended‘ prompt (Jurenka et al.,327

2024) which specifically enumerates desired behav-328

iors such as “nudging students”, “asking guiding329

questions”, and “not overwhelm student”. There-330

fore, in contrast to a simple prompt from scaffold-331

ing generation, we hypothesize that models should332

improve their generations to be more aligned with333

our set of guiding principles from Section 3. The334

same is applied to the hard portion of the dataset.335

4.2 Datasets336

The requirements for the dataset included in the337

benchmark are to focus on middle school math con-338

tent and contain 1:1 tutoring conversations written339

by human teachers. We found two datasets that340

fit the criteria, Bridge (Wang et al., 2024b) and341

MathDial (Macina et al., 2023a). We excluded342

NCTE (Demszky and Hill, 2023) dataset because 343

it is multi-persona. Bridge (Wang et al., 2024b) 344

contains 700 snippets of real online tutoring con- 345

versations by novice teachers, where each response 346

is revised by an expert teacher. MathDial (Macina 347

et al., 2023a) consists of 2.9k tutoring conversa- 348

tions collected by human teachers who interacted 349

with simulated students. Both datasets focus on 350

math, Bridge uses various problem sources and 351

MathDial sources problems from GSM8k (Cobbe 352

et al., 2021); a dataset of math word problems that 353

we used in the expertise task. We combine Bridge 354

and MathDial datasets into a combined dataset 355

called MathDialBridge which we further split into 356

one with a maximum of 4 utterances and the rest 357

we put into MathDialBridge[hard]. Finally, we 358

use the StepVerify (Daheim et al., 2024) dataset 359

which builds on top of the MathDial student in- 360

correct solutions and introduces annotation of the 361

first erroneous step in a student solution. Table 1 362

describes all the datasets and their statistics. 363

4.3 Scaffolding Score 364

Evaluating pedagogical abilities in tutoring is in- 365

herently challenging due to the open-ended nature 366

of the involved tasks. Unlike more structured do- 367

mains like factual question answering, pedagogy 368

requires assessing the quality of responses such as 369

questioning guidance to the root cause of a mis- 370

take, and actionability of productive scaffolding. In 371

other words, we need an efficient and lightweight 372

mechanism, a critic model, that can assign a mean- 373

ingful score to a generative model’s output based 374

on its pedagogical effectiveness. 375

4.3.1 Criteria-based Scoring 376

The most straightforward approach is to train indi- 377

vidual critic models for each pedagogical task us- 378

ing labeled data. For an evaluation taxonomy with 379
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Figure 3: Models performance on pairwise judgment
of teacher responses. We compute accuracy on an inde-
pendent test set based on Bridge dataset (Wang et al.,
2024b) as a proportion of Expert teacher responses pre-
ferred over Novice teacher responses. Extended prompt
enumerates our pedagogical criteria (Figure 7).

n total evaluation criteria, for each criterion i we380

train a binary classifier Ci(y) that outputs a binary381

prediction of whether the criteria is present or not382

in response y. To combine these into a final score383

for a response, we aggregate them as
∑n

i=1Ci(y),384

which represents a discrete score of the total num-385

ber of predicted desired criteria for the response.386

For example, MRBench (Maurya et al., 2024) is a387

small dataset annotated with 8 criteria such as the388

presence of guidance, actionability, and telling the389

answer. However, the scale of the required data390

and sparse features pose significant challenges.391

4.3.2 Pairwise Ranking of Teacher Responses392

Since labeled data for each criterion can be scarce,393

we here explore a more unified strategy. Instead of394

training a separate model for each criterion, where395

each annotation criterion has inherent subjectivity,396

we relax the objective and train a single critic model397

that aggregates multiple criteria into a pairwise398

comparison. We train a reward model using binary399

ranking loss by following Ouyang et al. (2022):400

Lrank = − log σ (rθ(x,yc)− rθ(x,yr)−m)
(1)401

where rθ(x,y) is the scalar score for prompt x402

and generation y, yc and yr are preferred (chosen)403

and rejected generations respectively. The margin404

m(yc,yr) represents the numerical quality differ-405

ence between the chosen and rejected response but406

may also be set to 0.407

4.3.3 Pairwise Preference Data Pipeline408

To create pairwise preference data, we follow our409

pedagogical criteria from Section 3.2. For example,410

Data Mix & Setting Accuracy Avg. margin
GSM8k inpaint (22k) 0.60 3.26
MathDial (3.6k) 0.77 1.57
MRBench (4.5k) 0.80 2.60

+ margin in loss (4.5k) 0.79 7.68
+ pretrain (16.7k) 0.80 3.09
+ MathDial (8.1k) 0.84 5.75

Table 3: Ablation of Qwen2.5-1.5B-Instruct reward
model. Total number of training instances in brackets.
+ indicates an addition to the model. Pretraining uses
20% of Ultrafeedback (Cui et al., 2024). We select the
most accurate model to calculate the Scaffolding score.

a response is preferred if it is a Socratic question 411

qt or it has dialog intent it which probes student 412

understanding. Contrary, a response is chosen as 413

dispreferred if it contains part(s) of the reference 414

solution s or has a lower number of desired criteria. 415

To formalize this, for a given dialog history H 416

and a taxonomy with n criteria, we define a score 417

for each response y: 418

f(y) =

n∑
i=1

1(y has desired criterion i) (2) 419

where 1(·) is the indicator function that equals 1 420

if · holds and 0 otherwise. The condition within 421

the indicator function is determined by: a) hu- 422

man criteria annotations (for MRBench (Mau- 423

rya et al., 2024)), b) dialog intent annotations 424

it of the used pedagogical strategy (for Math- 425

Dial (Macina et al., 2023a)), and c) subquestion 426

annotation qt (for GSM8k (Cobbe et al., 2021)). 427

For each pair of responses (yi,yj), we construct a 428

dataset of preference-label pairs D = {(yi,yj) | 429

f(yi) > f(yj)}, where the margin is defined as 430

m(yi,yj) = f(yi)− f(yj). The dataset captures 431

the relative preference between responses based on 432

the number of desired criteria they exhibit. The 433

description of the datasets used for training and 434

testing is found in Table 4. 435

5 Experiments 436

5.1 Models 437

MathTutorBench includes an evaluation of three 438

groups of models: general LLMs, LLM tutors, 439

and math reasoners. General LLMs such as open- 440

weight Llama3.1 70B and 8B, newer Llama3.2 441

3B model, and closed source gpt-4o-mini. We 442

use specialized tutoring models, namely closed- 443

sourced LearnLM-1.5-Pro and recent open-source 444

tutoring models Qwen2.5-7B-SocraticLM (Liu 445
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Figure 4: Reward model distribution scores for expert and novice teachers across prompted (prompt in Figure 6),
with extended prompt (prompt in Figure 7), and finetuned Qwen2.5-1.5B-Instruct models.

et al., 2024) and Llemma-7B-32K-MathMix446

(ScienceTutor) (Chevalier et al., 2024).447

To measure the importance of specially448

finetuned tutoring models, we evaluate the449

Qwen2.5-Math-7B-Instruct, which is optimized450

for math reasoning and was used for finetuning the451

specialized tutor model SocraticLM.452

5.2 Scaffolding Score - Test Set and Metrics453

The goal of the Scaffolding score is to estimate the454

pedagogical quality of the teacher response genera-455

tion. To validate it, we build a test set containing456

482 examples based on Bridge (Wang et al., 2024b)457

which contains student dialogs with novice teach-458

ers. The test set has no instance or problem overlap459

with our training data. In Bridge, novice teacher re-460

sponses are improved by expert teachers following461

an expert-defined decision-making process. The462

process first identifies the type of the error and then463

determines the pedagogical strategy and intent. For464

example, while novice teachers tend to explicitly465

correct student mistakes by giving away correct an-466

swers to students, expert teachers use various scaf-467

folding nudges such as the Socratic method, use468

hints, or ask for further elaboration of the problem-469

atic part. We use the following formula to compute470

the accuracy of pairwise ranking between expert471

teacher and novice teacher:472

1

N

N∑
i=1

1(yexpert,i > ynovice,i). (3)473

5.3 Scaffolding Score - Models and Baselines474

We use LLM-as-a-judge prompting as a475

baseline, similar to Jurenka et al. (2024).476

For this, we use Llama-3.1-70B-Instruct,477

GPT-4o-mini, and the specialized judge model 478

Prompetheus-7b-v2.0 (Kim et al., 2024). More- 479

over, we pick well-performing existing preference- 480

tuned reward models with high scores from the 481

RewardBench (Lambert et al., 2024) on a variety of 482

chat comparisons, namely, Internlm2-7b-reward 483

and Skywork-Reward-Llama-3.1-8B-v0.2. To 484

finetune single criteria-based binary clas- 485

sifiers we use ModernBERTbase (Warner 486

et al., 2024) with a classification head. Fi- 487

nally, we use Qwen2.5-0.5B-Instruct and 488

Qwen2.5-1.5B-Instruct for finetuning on 489

preference data, which are small enough to run fast 490

as a part of the benchmark. 491

6 Results 492

In this section, we showcase our core findings on 493

MATHTUTORBENCH and demonstrate the robust- 494

ness and quality of the scaffolding reward model. 495

6.1 Comparing SotA LLMs (Table 2) 496

Math expertise does not translate directly to stu- 497

dent understanding and pedagogy. Our evalu- 498

ations reveal a striking imbalance in current lan- 499

guage models. While these models exhibit impres- 500

sive domain knowledge and excel at Problem solv- 501

ing, as evidenced by their performance on datasets 502

like GSM8K, they consistently fall short in Scaf- 503

folding generation task. This is particularly clear 504

for Qwen2.5-Math and GPT4o. 505

Specialized tutoring models improve in peda- 506

gogy but do not retain the full solving abili- 507

ties. The specialized tutoring model SocraticLM 508

achieves good Scaffolding scores for its size and 509

big improvements over the base model (Qwen2.5- 510
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Math). However, it degrades in all Student Un-511

derstanding tasks. Compared to SocraticLM, the512

ScienceTutor degrades in math expertise but has513

significantly better Student correctness solution514

and pedagogical instruction following. Closed-515

sourced LearnLM achieves a more reasonable bal-516

ance across all skills and tasks.517

Tutoring is more challenging on longer dialogs.518

As indicated by the drop in performance in the win519

rate of tasks, indicated with ‘hard‘, the longer the520

context it is more difficult for more to adapt. For521

example, it might be important to guide students522

differently than with a simple Socratic questioning.523

Only LearnLM can keep consistent performance.524

Majority of models suffer by limited pedagog-525

ical instruction following. When we compare526

scaffolding generation with instruction following527

win rate (in base and hard splits), we notice528

that GPT4o follows the pedagogical instructions529

and gains a significant improvement (similarly,530

there is a smaller improvement for ScienceTutor).531

However, other models such as the SocraticLM,532

LearnLM, or Llama models show decreased or sim-533

ilar performance suggesting a limited ability to534

follow pedagogical instructions defined in prompt.535

6.2 Scaffolding Score - Results536

Figure 3 shows a comparison between various mod-537

els evaluated on the task of scoring expert teacher538

responses higher than novice teacher responses, see539

Equation 3. LLM-as-a-judge models are sensitive540

to prompts and positional bias, so we randomize the541

order. We report simple and extended prompts with542

detailing pedagogical guidelines (Figure 6 and 7)543

but their accuracy is lower than 0.7. Performance544

of reward models from RewardBench (Lambert545

et al., 2024) on the pedagogical preferences is only546

slightly higher than random. We also train a combi-547

nation of criteria-based ModernBERT binary clas-548

sifiers aggregated into a summed final score, how-549

ever, it lags behind extended-prompted LLM-as-a-550

judge models (for individual criterion performance551

see Table 6). We hypothesize the single criterion552

data are highly sparse, noisy and imbalanced, and553

do not have sufficient data size to work.554

To summarize, Figure 3 shows that finetuning555

reward models on pedagogical preference data is556

essential, as these finetuned reward models out-557

perform both LLMs-as-a-judge models and SoTA558

reward models from RewardBench, consistent559

with (Xu et al., 2024). We hypothesize that this560

is because of the lack of pedagogical datasets and 561

a fundamental shift between a better chat response 562

and a better pedagogical response. 563

Ablation of finetuning data. Table 3 shows the 564

results for various data mixtures of pedagogical 565

preference data. We see that synthetic inpainted 566

data (Dai et al., 2022) using stepwise questions and 567

answers from GSM8k do not lead to a significant 568

improvement over the base model. However, us- 569

ing pedagogical preference pairs based on human 570

annotators scores (Maurya et al., 2024) improves 571

the score to 0.8, more than any other baseline in 572

Table 3. However, as this dataset contains mostly 573

model generations, only one of the responses is 574

from a human teacher, and they are highly under- 575

represented. Therefore, we also include conversa- 576

tions from the MathDial training set (Macina et al., 577

2023a), which is filtered by desired dialog acts 578

(more details in Table 4). The resulting finetuned 579

model achieves the best accuracy of 0.84. As the 580

test set is completely separate and no problems 581

are shared between the train and test set, we pick 582

this reward model as our final model for comput- 583

ing the Scaffolding score for model generation win 584

rates over teacher responses (proportion of model 585

generations preferred over teacher responses). 586

Scores distribution. Additionaly, we plot in Fig- 587

ure 4 the model distribution over scores on the test 588

set. The prompted model with extended prompt and 589

the vanilla model cannot separate the teacher and 590

novice responses as well as the finetuned model. 591

This supports the idea that pedagogical criteria are 592

unique compared to general preference data and 593

we need high-quality pedagogical preference data. 594

7 Conclusion 595

In this work we propose MATHTUTORBENCH, a 596

holistic benchmark for quick and cost-effective as- 597

sessment of the educational capabilities of LLM 598

tutoring models. It fills a crucial gap in the liter- 599

ature, as it allows fast prototyping of models by 600

using only lightweight automatic and learned met- 601

rics to evaluate pedagogy. The goal is to not replace 602

human studies measuring learning outcomes, but 603

rather to serve as a measure of which models to 604

use and compare. Finally, we benchmark various 605

models and report a trade-off between expertise, un- 606

derstanding, and pedagogy, as well as diminishing 607

results on longer tutoring conversations. 608
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8 Limitations609

Our work focuses on high school math tutoring610

and limits the insights of the benchmark to multi-611

step math problems. Despite a limited number of612

available conversation dataset in other domains,613

we plan to extend the benchmark to further STEM614

domains to generalize its applicability and reach.615

The conversational data in the benchmark does616

not contain conversations longer than 10 turns and617

thus can miss to evaluate very long educational618

conversations with long-term dependencies which619

might be present in online tutoring classes.620

We study 1:1 conversational tutoring between621

teacher and student in this work. Specifically, we622

focus on a teacher using hints and nudges to aid623

student learning and provide engaging learning op-624

portunities for students. However, there are addi-625

tional functions of a teacher that we decided not to626

model, for example building rapport or trust with627

less engaged students.628

The benchmark does not contain all possible di-629

mensions for educational evaluation. For example,630

it is missing a safety evaluation of potentially harm-631

ful tutor responses. It is an extensive research area632

and not the goal of this work. However, as the633

benchmark is open-source we plan to extend it to634

include more safety evaluations.635

9 Ethics Statement636

Intended usage The goal of the benchmark is to637

evaluate new and existing dialog tutoring models638

on the skills related to math expertise, student un-639

derstanding, and pedagogical capabilities. We will640

release the code and the dataset under CC-BY-4.0641

license. This follows the licences of all the datasets642

which we are using in the benchmark.643

Accessibility and Potential Misuse The main644

goal of our work is to encourage the community645

to use the benchmark to improve existing tutoring646

models by balancing expertise, student understand-647

ing, and proper pedagogical guidance. However,648

there are potential risks related to the data and the649

scoring reward model. Models could optimize for650

reward hacking which could lead to suboptimal tu-651

toring behaviour. Moreover, if the data contains652

some unknown pattern, the risk is that this could be653

exploited by new models to achieve higher scores.654

However, we tried to mitigate this by including655

several various data sources in the benchmark and656

in the training data, mostly human-annotated. We657

encourage the deployment of tutoring models in 658

any case with appropriate safeguards. 659
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A Scaffolding scores qualitative examples927

Table 5 shows assigned scores for various model928

and teacher responses given the problem and previ-929

ous dialog. We can notice teacher responses such930

as confirming incorrect answer or stating incorrect931

facts are scored lower compared to questions en-932

couraging self-reflection and self-correction. In933

between those two are responses that tell only934

one next step towards the correct answer or step-935

based questions. Similarly, Table 7 has examples936

of novice teacher responses from test set catego-937

rized into score quartiles. These examples from938

the test dataset contain similar observations, with939

scores in the top quartile for encouragement and940

questions pointing to the root of the problem. The941

bottom quartile contains limited feedback such as942

your answer is incorrect and the bottom quartile943

often next-step-based hints.944

B Task Prompts945

The exact prompts used in the benchmark are946

shown in Figure 5. Please note that we use ex-947

actly the same task prompt for each model being948

evaluated. Some tasks use two in-context examples949

to present the right format of the response. The cost950

to run the full benchmark with GPT4o-mini is less951

than 3$. To run the open-weight models we use the952

vllm library (Kwon et al., 2023). We sample from953

all models in the benchmark with temperature set954

to 0 for reproducible results and we set maximum955

token generation to 2048.956

B.1 Details of Benchmarked Models957

Specific versions of closed models we use958

are gpt-4o-mini-2024-07-18 version and959

learnlm-1.5-pro-experimental. We use960

these exact versions of open-weight models961

loaded from Huggingface model hub (Wolf962

et al., 2020): LLaMA3.2-3B-Instruct,963

LLaMA3.1-8B-Instruct,964

Llama-3.1-70B-Instruct,965

CogBase-USTC/SocraticLM,966

princeton-nlp/Llemma-7B-32K-MathMix,967

and Qwen2.5-Math-7B-Instruct.968

C Reward Model Details969

C.1 Training data970

Training data used for training the Scaffolding re-971

ward model and its ablation are in Table 4.972

C.2 Implementation details 973

We finetune all models using Huggingface trans- 974

formers library (Wolf et al., 2020) and using the 975

checkpoints from the Huggingface Model Hub re- 976

specting corresponding license agreements. 977

We finetune all models with a learning rate of 978

1 · 10−5 for 1 training epoch and with a batch size 979

of 16. We use the AdamW optimizer (Loshchilov 980

and Hutter, 2019). 981

We used an NVIDIA A100 80GB GPU and fine- 982

tuning takes around 1 hour for each model. 983

D Details on Single-Criteria Classifiers 984

The results of individual criteria classifiers on the 985

separate test set are shown in Figure 6. For train- 986

ing of the single-criteria classifiers we binarize 987

the data from MRBench (Maurya et al., 2024). 988

In particular, we take the most negative criterion 989

for each category as 0 and all others as 1. We 990

train ModernBERTbase with 149M parameters on 991

NVIDIA V100 GPUs. Again, we use the AdamW 992

optimizer with a learning rate of 1·10−5 and a batch 993

size of 16 but train for 3 epochs due to the small 994

data sizes. Training takes only ca. 15 minutes. 995
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Dataset Split Pref. pairs Avg. turns Preferred resp. Rejected resp. Settings
GSM8k-inpainted all 22,753 4.38 Subquestion qt Solution steps st: Math Word Problems with

matching solutions steps
st to subquestions qt

Training datasets
MathDial train 3,615 2.93 Teacher utterances

with it annotated as
probing and focus
in the first 3 teacher
turns.

Reference sol. s Tutoring conversations
created by human
teachers interacting with
LLM students

MRBench N/A 4,521 3.74 Response with a
higher number of
desired criteria

Response with
fewer desired
criteria

Human annotation across
8 desired tutoring criteria -
guidance, actionability,
answer reveal, mistake
identification, mistake
location, coherence, tone,
humanness

Testing dataset
Bridge all 482 2.79 Expert teacher

response
Novice teacher
response

Original novice teacher
responses and revisions
by expert teachers

Table 4: Datasets used to create pedagogical pairwise preference data.
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Expertise 

1 Problem-Solving 2 Socratic Questioning 

You are a helpful math tutor. Solve the question step-by-step. 
Provide your final answer after 'Final answer'. 
{{ shots }} 
Question: {{question}} 
Answer: 

You are a helpful math tutor generating step-by-step questions. 
Generate only a list of questions. 
{{ shots }} 
Problem: {{question}} 
Questions: 

Student Understanding 

3 Student Solution Correctness 4 Mistake Location 

You are an experienced math teacher. Your goal is to identify 
the correctness of the Student's Solution to a Problem. 
{{ shots }} 
Problem: {{question}} 
Conversation: 
{{dialog_history}} 
Student: {{student_chat_solution}} 
Q: Is the Student Solution incorrect? Write 'Yes' if it is 
incorrect, or 'No' if it is correct. 
A: 

You are an experienced math teacher. Your goal is to identify the 
step of the first mistake in the Student's Solution to a Problem. 
{{ shots }} 
Problem: {{question}} 
Student Solution: {{student_solution}} 
Q: Is the Student Solution incorrect? Write only the step number 
with the first error or 0 if no error is found. 
A: 
 

5 Mistake Correction 

You are a helpful math tutor assisting a student. Given the following conversation and problem, provide a complete correct 
solution. Make sure to show your work and state the final answer clearly after 'Final Answer:'. 
Problem: {{question}} 
Conversation: 
{{dialog_history}} 
Student: {{student_chat_solution}} 
Teacher: 

3 Pedagogy 
Scaffolding Generation & Scaffolding Generation Hard                                                                            (simple prompt) 

You are an experienced math teacher and you are going to respond to a student in a useful and caring way. The student is trying to 
solve the following problem. 
Problem: {{question}} 
Conversation: 
{{dialog_history}} 
Teacher (maximum two sentences): 

Pedagogical Instruction Following & Pedagogical Instruction Following Hard                                    (extended prompt) 

Be a friendly, supportive tutor. Guide the student to meet their goals, gently nudging them on task if they stray. Ask guiding 
questions to help your students take incremental steps toward understanding big concepts, and ask probing questions to help them 
dig deep into those ideas. Pose just one question per conversation turn so you don't overwhelm the student. Wrap up this 
conversation once the student has shown evidence of understanding. 
Problem: {{question}} 
Conversation: 
{{dialog_history}} 
Teacher (maximum two sentences): 

 

Figure 5: Prompts for each task.
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Problem

Margaret wants to serve chicken salad sandwiches using mini croissants. Each committee member (24 people)
will have 2 sandwiches. The bakery sells 12 mini croissants for $8.00. How much will she spend on croissants?

Reference Solution

• Total sandwiches: 24× 2 = 48

• Mini croissants needed: 48÷ 12 = 4 dozen

• Cost: 4× 8 = 32. Final Answer: $32.00

Dialogue

Teacher: "Walk me through your solution."
Student: "I started by calculating how many sandwiches Margaret needs to make. Since there are 24 people on the
committee and each person needs 2 sandwiches, I multiplied 24 × 2 to get 48. Then I realized that each sandwich needs
2 mini croissants, so I multiplied 48 × 2 to get 96. Since the bakery offers 12 mini croissants for $8.00, I divided 96 by
12 to get 8 sets of 12 mini croissants. Finally, I multiplied 8 × $8.00 to get my final answer of $64.00."

Model Generated Response Score

LearnLM-simple "That’s a fantastic approach to solving the problem! Your step-by-step calcula-
tions and clear reasoning demonstrate a strong understanding of how to break
down a word problem and solve it systematically." confirms incorrect answer

-5.09

GPT4o-simple "Great job on breaking down the problem step by step! Your calculations are
correct, and you accurately determined that Margaret will spend $64.00 on
croissants."confirms incorrect answer

-4.25

Qwen-Math-7b-
extended

"It looks like you have a solid understanding of the problem. You correctly
calculated the total number of sandwiches needed and then determined how
many sets of mini croissants you need to buy. Your final answer is $64.00."
incorrect

-3.68

Human Teacher "A dozen croissants cost $8.00 and she needs 4 dozens so that will cost 8*4 ="
telling part of the answer

-1.91

Qwen-Math-7b-simple "Calculate the total number of sandwiches needed: There are 24 people on the
committee. Each person needs 2 sandwiches. 24× 2 = 48 sandwiches." telling
part of the correct answer

-0.36

SocraticLM-simple "How many sandwiches does Margaret need to make?" reiterate first step 4.59
GPT4o-extended "Great job breaking down the problem step by step! Can you explain how you

determined the total cost of the croissants based on the number of sets you
calculated?" ask to re-check

4.62

LearnLM-extended "That’s a great start! Can you explain why you decided to multiply 24 by 2 at
the beginning of your solution?" encourages to reflect and self-correct on the
exact error step

7.47

SocraticLM-extended "You correctly calculated the total number of sandwiches needed. Now, how
many mini croissants does each sandwich require?" encourages to reflect and
self-correct on the exact error step

7.66

Table 5: Example scaffolding reward model scores. Red represents undesired teacher behavior, blue is neutral and
useful in some scenarios, and green represents following best scaffolding practices. Simple refers to the simple
prompt used in Sthe caffolding Generation task and the extended version refers to the extended prompt used in
Pedagogical Instruction Following.
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Judge the pedagogical quality of the responses provided by two teachers. Focus on the quality of the guidance, not
revealing of the answer and actionability of the feedback. Be as objective as possible. After providing your explanation,
output your final verdict by strictly following this format: "[[A]]" or "[[B]]".
Problem: {problem}
Reference Solution: {solution}
{conversation}

[The Start of Response A]
{responseA}
[The End of Response A]

[The Start of Response B]
{responseB}
[The End of Response B ]

Figure 6: A simple baseline prompt is used in LLM-as-a-judge and preference reward models.

Judge the pedagogical quality of the responses provided by two teachers. Focus on the quality of the scaffolding
guidance, correctness, and actionability of the feedback through nudges, questions, and hints. Do not give high scores
for revealing the full answer.
Problem: {problem}
Reference Solution: {solution}
{conversation}
Teacher: {utterance_to_score}

Figure 7: Extended prompt used by the reward models, LLM-as-a-judge, and preference-tuned reward models.
{problem} and {solution} are placeholders for the text of the problem and a reference solution (if available).
{conversation} represents a dialog history and {utterance_to_score} is a teacher utterance which is being assessed.
For LLM-as-a-judge, two utterances are listed the same way as in Figure 6.
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Model Accuracy
Actionability 0.78
Guidance 0.44
Tone 0.46
Mistake Identification 0.61
Mistake Location 0.63
Revealing 0.39
Aggregated ens. 0.66
Aggregated ens. (best 3) 0.68

Table 6: Results of the criteria-based binary clas-
sifiers on the test set. All models are finetuned
ModernBERTbase models, the last two rows represent
ensembles (ens.) with aggregated discrete binary pre-
dictions. The criteria are a subset of criteria from MR-
Bench (Maurya et al., 2024).
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Quartile Example

Top (75th) You made a good try. While rounding the nearest hundred, we
have to look at the tens place first. Is the value in the tens place
below 5?

Your answer is a little bit off. There are 4 points in this graph.
The x-axis moves on the graph horizontally or right to left. What
direction does the y-axis move on the graph?

That is great! +1 point for your effort. The division is the part of
the question. What is the dividend?

Mid (25-75th) Very good try! 1 day = ___ hours.

That was a good try. Plus 1 point. Let me explain it to you. Here,
we have to find the value of 10 divided by 5.

You got an incorrect answer. Let me show you. The area of the top
rectangle is 10. Add the areas of the two sections together. The
final answer is 45 square feet. Did you understand?

That’s a good try. Multiplication is also called repeated addition.

Bottom (25th) Your answer is incorrect. The volume is 70 cubic units. Does the
step make sense?

Incorrect answer [STUDENT], but good try.

That was a good try.

Table 7: Examples of reward model scores for novice teacher responses from the test set, categorized into quartiles.
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