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ABSTRACT

Various metrics have recently been proposed to measure uncertainty calibration
of deep models for classification. However, these metrics either fail to capture
miscalibration correctly or lack interpretability. We propose to use the normalized
entropy as a measure of uncertainty and derive the Uncertainty Calibration Error
(UCE), a comprehensible calibration metric for multi-class classification. In our
experiments, we focus on uncertainty from variational Bayesian inference methods
and compare UCE to established calibration errors on the task of multi-class image
classification. UCE avoids several pathologies of other metrics, but does not
sacrifice interpretability. It can be used for regularization to improve calibration
during training without penalizing predictions with justified high confidence.

1 INTRODUCTION

Advances in deep learning have led to superior accuracy in classification tasks, making deep learning
classifiers an attractive choice for safety-critical applications like autonomous driving (Chen et al.,
2015) or computer-aided diagnosis (Esteva et al., 2017). However, the high accuracy of recent deep
learning models alone is not sufficient for such applications. In cases where serious decisions are
made upon model’s predictions, it is essential to also consider the uncertainty of these predictions.
We need to know if a prediction is likely to be incorrect or if invalid input data is presented to a deep
model, e.g. data that is far away from the training domain or obtained from a defective sensor. The
consequences of a false decision based on an uncertain prediction can be fatal.

A natural expectation is that the certainty of a prediction should be directly correlated with the quality
of the prediction. In other words, predictions with high certainty are more likely to be accurate
than uncertain predictions, which are more likely to be incorrect. A common misconception is the
assumption that the estimated softmax likelihood can be directly used as a confidence measure for
the predicted class. This expectation is dangerous in the context of critical decision-making. The
estimated likelihood of models trained by minimizing the negative log-likelihood (i.e. cross entropy)
is highly overconfident; that is, the estimated likelihood is considerably higher than the observed
frequency of accurate predictions with that likelihood (Guo et al., 2017).

2 UNCERTAINTY ESTIMATION

In this work, we focus on uncertainty from approximately Bayesian methods. We assume a gen-
eral multi-class classification task with C classes. Let input x ∈ X be a random variable with
corresponding label y ∈ Y = {1, . . . , C}. Let fw(x) be the output (logits) of a neural network
with weight matrices w, and with model likelihood p(y=c |fw(x)) for class c, which is sampled
from a probability vector p = σSM(fw(x)), obtained by passing the model output through the
softmax function σSM(·). From a frequentist perspective, the softmax likelihood is often interpreted
as confidence of prediction. Throughout this paper, we follow this definition.

The frequentist approach assumes a single best point estimate of the parameters (or weights) of a
neural network. In frequentist inference, the weights of a deep model are obtained by maximum
likelihood estimation (Bishop, 2006), and the normalized output likelihood for an unseen test input
does not consider uncertainty in the weights (Kendall & Gal, 2017). Weight uncertainty (also referred
to as model or epistemic uncertainty) is a considerable source of predictive uncertainty for models
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trained on data sets of limited size (Bishop, 2006; Kendall & Gal, 2017). Bayesian neural networks
and recent advances in their approximation provide valuable mathematical tools for quantification
of model uncertainty (Gal & Ghahramani, 2016; Kingma & Welling, 2014). Instead of assuming
the existence of a single best parameter set, we place distributions over the parameters and want to
consider all possible parameter configurations, weighted by their posterior. More specifically, given a
training data set D and an unseen test sample x with class label y, we are interested in evaluating the
predictive distribution p(y|x,D) =

∫
p(y|x,w)p(w|D) dw . This integral requires to evaluate the

posterior p(w|D), which involves the intractable marginal likelihood. A possible solution to this is to
approximate the posterior with a more simple, tractable distribution q(w) by optimization.

In this work, we incorporate the following approximately Bayesian methods which we use in our
experiments to obtain weight uncertainty: Monte Carlo (MC) dropout (Gal & Ghahramani, 2016),
Gaussian dropout (Wang & Manning, 2013; Kingma et al., 2015), Bayes by Backprop (Blundell
et al., 2015), SWA-Gaussian (Maddox et al., 2019), and (although not Bayesian) deep ensembles
(Lakshminarayanan et al., 2017). A short review of each of the methods can be found in Appendix A.2.

3 RELATED CALIBRATION METRICS

Expected Calibration Error The expected calibration error (ECE) is one of the most popular
calibration error metrics and estimates model calibration by binning the predicted confidences
p̂ = maxc p(y = c |x) into M bins from equidistant intervals and comparing them to average
accuracies per bin (Naeini et al., 2015; Guo et al., 2017):

ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣ , (1)

with number of test samples n and acc(B) and conf(B) denoting the accuracy and confidence of bin
B, respectively. Several recent works have described severe pathologies of the ECE metric (Ashukha
et al., 2020; Nixon et al., 2019; Kumar et al., 2019). Most notably, the ECE metric is minimized by a
model constantly predicting the marginal distribution of the majority class which makes it impossible
to directly optimize it (Kumar et al., 2018). Additionally, the ECE only considers the maximum class
probability and ignores the remaining entries of the probability vector p(x).

Adaptive Calibration Error Nixon et al. (2019) proposed the adaptive calibration error (ACE)
to address the issue of fixed bin widths of ECE-like metrics. For models with high accuracy or
overconfidence, most of the predictions fall into the rightmost bins, whereas only very few predictions
fall into the rest of the bins. ACE spaces the bins such that an equal number of predictions contribute
to each bin. The final ACE is computed by averaging over per-class ACE values to address the issue
raised by Kull et al. (2019). However, this makes the metric more sensitive to the manually selected
number of bins M as the number of bins effectively becomes C ·M , with number of classes C. Using
fixed bin widths, the numbers of samples in the sparsely populated bins is further reduced, which
increases the variance of each measurement per bin. Using adaptive bins, this results in the lower
confidence bins spanning a wide range of values, which increases the bias of the bin’s measurement.

Negative Log-Likelihood Deep models for classification are usually trained by minimizing the
average negative log-likelihood (NLL):

NLL =
1

N

N∑
i=1

− log p(y = yi |xi) . (2)

The NLL is also commonly used as a metric for measuring the calibration of uncertainty. However,
the NLL is minimized by increasing the confidence maxc p(y = c |x), which favors over-confident
models and models with higher accuracy (Ashukha et al., 2020). This metric is therefore unable to
compare the calibration of models with different accuracies and training a model by minimizing NLL
does not necessarily lead to good calibration.
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Brier Score The average Brier score is another popular metric for assessing the quality of predictive
uncertainty and is defined as (Brier, 1950; Lakshminarayanan et al., 2017)

BS =
1

N

N∑
i=1

C∑
c=1

(1(yi = c)− p(y = c |xi))
2
. (3)

Similarly to the NLL, the Brier score favors high probabilities for correct predictions and low
probabilities for incorrect predictions. Thus, models with higher accuracy tend to show a better Brier
score, which makes the metric unsuitable for comparing the quality of uncertainty for models with
different accuracies.

Maximum Mean Calibration Error Common recalibration methods are applied post-hoc, e.g.
temperature scaling on a separate calibration set. Kumar et al. (2018) proposed the maximum mean
calibration error (MMCE), a trainable calibration surrogate for the calibration error. It is defined as

MMCE2(D) =
∑
i,j∈D

(1(ŷi = yi)− p̂i) (1(ŷj = yj)− p̂j) k(p̂i, p̂j)
m2

(4)

over batch D ⊂ D with batch size m, matrix-valued universal kernel k and ŷ = argmaxc p(y =
c |x). Trainable calibration metrics are used in joint optimization with the negative log-likelihood

argmin
w

∑
D

NLL(D,w) + λMMCE(D,w) . (5)

Kumar et al. (2018) claim to have addressed the issue that the ECE is unsuitable for direct optimization
due to its high discontinuity in w. However, MMCE is also minimized by a model constantly
predicting the marginal distribution of the classes. This leads to subpar logit temperature when
training with MMCE and temperature scaling can further reduce miscalibration (Kumar et al., 2018).

4 UNCERTAINTY CALIBRATION ERROR

To give an insight into our general approach to measuring the calibration of uncertainty, we will first
revisit the definition of perfect calibration of confidence (Guo et al., 2017) and show how this concept
can be extended to calibration of our definition uncertainty.

Let ŷ = argmaxp be the most likely class prediction of input x with confidence p̂ = maxp and
true label y. Then, following Guo et al. (2017), perfect calibration of confidence is defined as

P [ŷ = y | p̂ = α] = α, ∀α ∈ [0, 1] . (6)

That is, the probability of a correct prediction ŷ = y given the prediction confidence p̂ should exactly
correspond to the prediction confidence. Instead of using only the probability of the predicted class,
we use the entropy of p to express prediction uncertainty:

H(p) = −
C∑

c=1

p(c) log p(c) . (7)

Let
q(k) := (P[y = 1| argmaxp(x) = k], . . . ,P[y = C| argmaxp(x) = k]) (8)

be a probability vector of true marginal class probabilities for all inputs x predicted with class k.
Consider the following example: Three i.i.d. inputs x1:3 in a binary classification task with ground
truth labels {1, 1, 2} have all been predicted with argmaxp(x1:3) = 1. Then, q(1) =

(
2
3 ,

1
3

)
. With

this, we define a model to be perfectly calibrated if

H(q(k)) = H(p | argmaxp = k) ∀ k ∈ {1, . . . , C} . (9)

From this, we derive an error metric for calibration of uncertainty:

Ep

[
|H(q)−H(p)|

]
. (10)

However, this metric and the use of the entropy as measure of uncertainty lacks interpretability, as
the entropy scales with the number of classes C. This does not allow to compare the uncertainty or
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the calibration of models trained on different data sets. Therefore, we propose to use the normalized
entropy to scale the values to a range between 0 and 1:

H̃(p) := − 1

logC

C∑
c=1

p(c) log p(c) , H̃ ∈ [0, 1] . (11)

We further increase interpretability and argue, that the normalized entropy should correlate with the
model error. From Eq. (6) and Eq. (11), we define perfect calibration of uncertainty as

P
[
ŷ 6= y | H̃(p) = α

]
= α, ∀α ∈ [0, 1] . (12)

That is, in a batch of inputs that are all predicted with uncertainty of e. g. 0.2, a top-1 error of 20% is
expected. The confidence is interpreted as the probability of belonging to a particular class, which
should naturally correlate with the model error of that class. This characteristic does not generally
apply to entropy, and thus the question arises why entropy should correspond with the model error.

Proposition 1. The normalized entropy (uncertainty) H̃(p) approaches the top-1 error in the limit
of number of classes C if the model p is well-calibrated.

Proof.
lim

C→∞
H̃(p) = (1− p̂) (13)

The top-1 error equals (1 − p̂) if the model is perfectly calibrated in the sense of Eq. (6). For a
detailed proof, see Appendix A.1.

Thus, the normalized entropy gives us an intuitive and interpretable measure of uncertainty. If a
model is perfectly calibrated, H̃ corresponds to the top-1 error. We propose the following notion to
quantify miscalibration of uncertainty:

EH̃
[ ∣∣P[ŷ 6= y | H̃(p) = α

]
− α

∣∣ ], ∀α ∈ [0, 1] . (14)

We refer to this as Expected Uncertainty Calibration Error (UCE) and approximate with

UCE :=

M∑
m=1

|Bm|
n

∣∣err(Bm)− uncert(Bm)
∣∣ , (15)

using the same binning scheme as in ECE estimation. The error per bin is defined as

err(Bm) :=
1

|Bm|
∑
i∈Bm

1(ŷi 6= y) , (16)

where 1(ŷi 6= y) = 1 and 1(ŷi = y) = 0. Uncertainty per bin is defined as

uncert(Bm) :=
1

|Bm|
∑
i∈Bm

H̃(pi) . (17)

Properties of UCE The proposed UCE metric solves several problems of other metrics. First, the
UCE is not zero for a model constantly predicting the marginal class distribution. Estimators of
metrics with this pathology (e.g. ECE, MMCE) suffer from varying bias and therefore do not allow
comparing miscalibration of different models (Ashukha et al., 2020; Vaicenavicius et al., 2019). In
contrast to ACE, UCE is not highly sensitive to the numbers of bins and provides a consistent ranking
of different models for the same classification task (see Fig. 1). Additionally, UCE can be used as
a trainable regularizer in similar manner to MMCE. During training, we compute the UCE over
mini-batches D ⊂ D and add it to the NLL training objective

argmin
w

∑
D

NLL(D,w) + λUCE(D,w) , (18)

weighted by a factor λ. UCE is zero for an optimal model and thus does not penalize high confident
predictions for models with high accuracy, which is a major disadvantage of plain entropy regular-
ization (Pereyra et al., 2017). Predictions with low uncertainty, but high top-1 error are penalized
whereas predictions with high accuracy are encouraged to have low uncertainty.
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Figure 1: (Left) Calibration error values for two ResNet models A and B on CIFAR-10 test set.
(Right) ACE and UCE values for different Bayesian methods on CIFAR-100 test set. ECE and ACE
are very sensitive to the number of bins used in the estimator, not yielding a consistent ranking of the
models. UCE is less sensitive to the bin number and ranks models consistently, allowing comparison
of different models.

5 EXPERIMENTS

We evaluate the proposed uncertainty calibration error on mutli-class image classification on CIFAR-
10 with ResNet-34 and on CIFAR-100 with ResNet-50 (He et al., 2016; Krizhevsky & Hinton,
2009). The feature extractor of ResNet is used as implemented in PyTorch 1.6 (Paszke et al., 2019)
and the last linear layer is implemented using the different Bayesian approximations from § 2. All
models were trained from random initialization. We employed early stopping at highest validation
set accuracy. More details on the training procedure and a link to our source code can be found in
Appendix A.3.

First, we compute the accuracies and all calibration error metrics from § 3 and the UCE on the
test sets of CIFAR-10/100 for all models. We investigate the effect of the number of bins in the
estimators of the metrics involving binning and analyze the ranking of different models under varying
softmax temperature τ , where p = σSM(τ−1fw(x)). Finally, we train a ResNet on CIFAR-10/100,
SVHN, and Fashion-MNIST with added calibration error regularization as in Eq. (5) and (18). We
compare UCE regularization (λ = 10) to regularization with MMCE (λ = 10) and confidence penalty
argmin

∑
D NLL(D,w)+λH(D,w) with λ = 0.1, which penalizes the entropy of the probability

vector p of each prediction (Pereyra et al., 2017). We combine the regularization experiments with
post-hoc calibration using temperature scaling (Guo et al., 2017).

Additionally, we analyze the utility of the normalized entropy as a measure of uncertainty and perform
rejection and out-of-distribution (OoD) detection experiments using H̃. We define an uncertainty
threshold Hmax and reject all predictions from the test set where H̃(p) > Hmax. A decrease in
false predictions of the remaining test set is expected. To demonstrate the OoD detection ability,
we provide images from CIFAR-100 to a deep model trained on CIFAR-10 (note that both CIFAR
data sets have no mutual classes). In this experiment, we compose a batch of 100 random samples
from the test set of the training domain and stepwise replace images with out-of-distribution data. In
practice, it is expected that models are applied to a mix of known and unknown classes. After each
step, we evaluate the mean batch uncertainty and expect, that the mean uncertainty monotonically
increases as a function of the fraction of OoD data.

5.1 RESULTS

In this section, the results of the above mentioned experimental setups are presented and discussed.

Comparison of Calibration Error Metrics Table 2 shows test set accuracy and all calibration error
results for all model/data set configurations. Without any post-hoc calibration, such as temperature
scaling, all metrics provide the same ranking of the models. The deep ensemble and SWAG perform
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Figure 2: (Left) Rejection results on CIFAR-10 for decreasing uncertainty threshold comparing H̃(p)
and maxp as uncertainty metric. In both cases, the top-1 error decreases strictly monotonically
with decreasing threshold. (Right) Out-of-distribution detection for CIFAR-10→CIFAR-100. The
normalized entropy H̃(p) as measure of uncertainty can be used to robustly detect OoD data.

best in terms of test set accuracy and calibration of uncertainty. Brier score and NLL are both highly
sensitive to the model accuracy, which is especially apparent on CIFAR-10. For the first three models
with similar accuracy, the Brier scores differ only marginally. Thus, both the Brier score and the NLL
are unsuitable for comparing the calibration of different models. Ashukha et al. (2020) propose to use
the calibrated NLL at optimal temperature for model comparison. However, Fig. 5–6 plot the metrics
over varying softmax temperature and show, that the models with highest accuracy have lowest Brier
and NLL, regardless of the temperature. From this we deduce that both Brier and NLL should not be
used for comparison of multi-class calibration, even at optimal temperature. The remaining metrics
show consistent ranking before and after the point of optimal temperature. The metrics ECE, UCE
and MMCE have a narrow region in which the optimal temperature for all models can be found.
This allows comparison of calibration of models if they are all over- or underconfident. However, all
metrics fail at comparing underconfident models to overconfident models (see model ranking left and
right of optimal temperature in Fig. 6).

Fig. 1 shows the effect of the number of bins M in the estimators of ECE, ACE and UCE. Both ECE
and ACE are more sensitive to the number of bins and do not provide a consistent ranking of models
under varying bin count. This is due to the fact that fewer bins are populated using H̃ as uncertainty
(cf. Fig. 10 in the appendix). This can be interpreted as possible downside of the UCE metric as the
adaptive binning scheme of ACE explicitly addresses that. However, we argue that consistent ranking
due to robustness against bin count results in a metric that is more useful in practice.

Uncertainty Regularization Tab. 1 shows results of ResNet-50 with SWAG trained on CIFAR-100.
All regularization methods considerably reduce miscalibration compared to unregularized models.
Plain entropy regularization is surprisingly effective on CIFAR-100; however, on CIFAR-10 (see
Tab. 1), it increased miscalibration and is generally outperformed by MMCE and UCE regularization
at optimal temperature. Therefore, when performing post-hoc temperature scaling, MMCE and
UCE regularization is preferable to entropy regularization. UCE regularization can be interpreted
as entropy penalization for predictions with low accuracy. As UCE is zero for an optimal model, it
encourages a model to reach high accuracy.

Rejection & OoD Detection Fig. 2 (left) shows the top-1 error as a function of decreasing uncer-
tainty thresholdHmax and (right) shows the mean batch uncertainty at increasing OoD data. Robust
rejection of uncertain predictions and detection of OoD data based on the normalized entropy H̃(p)
is possible and is generally more sensitive to OoD data than the confidence maxp.
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6 CONCLUSION

We have proposed to measure uncertainty based on the normalized entropy. From this, we derived the
uncertainty calibration error; a new metric that avoids several pathologies of existing calibration errors.
In our experimental evaluation, we focused on uncertainty from approximate Bayesian methods
and deep ensembles. The UCE does not only consider the class with the highest probability and
is not minimized by a constant model predicting the marginal class distribution. In contrast to the
Brier score and NLL, it allows comparison of models with different accuracy. It is not sensitive
to a varying number of bins and provides a consistent ranking of models. However, we follow the
suggestion of Ashukha et al. (2020) and state that comparison of calibration for different models
should only be done at optimal softmax temperature. Regularization with UCE during training reduces
miscalibration and does not penalize high accuracy and predictions with justified high confidence.
UCE regularization with temperature scaling often performed best in our experiments in terms of
calibration. The normalized entropy itself is a useful measure of uncertainty and allows for robust
rejection of uncertain predictions and detection of OoD data.

We hope to have provided a new useful metric for reliable evaluation of uncertainty estimation. UCE
is easy to implement and interpretable as it expresses the discrepancy of the uncertainty from the
model error, which increases the chance of being accepted by deep learning practitioners.

7 REBUTTAL

In this section, new or updated results during the rebuttal phase are presented. We identified the main
question of the reviewers as to why/where our calibration metric (UCE) is beneficial compared to
previous metrics (ECE, MMCE, ACE) and how normalized entropy is beneficial over vanilla entropy.
We project the following main changes for the final manuscript:

• illustrate the advantage of normalized entropy over vanilla entropy
• add toy experiments to show that UCE is able to capture miscalibration where ECE, ACE

and MMCE fail (see results below)
• add results from experiments on additional data sets (SVHN, Fashion-MNIST)

To make room for the following content, we propose the removal/reduction (approx. -1 page) of

• the review of Bayesian methods and refer to previous work instead,
• experiments regarding temperature (remove Table 1 and Figure 1)

Additionally, we will include all minor comments of the reviewers in the final manuscript.

7.1 UNCERTAINTY FROM NORMALIZED ENTROPY VS. ENTROPY

The advantages of normalized entropy over vanilla entropy in our definition of UCE are twofold:
First, the domain of the metric does not scale with the number of classes C, which helps comparing
the calibration of models trained on different data sets. Second, the value of the metric is more
interpretable: Rejecting test samples where H̃ < 0.2 will result in a classification error < 0.2 for
the remaining samples if the model is well-calibrated (see Fig. 2). We argue that using normalized
entropy as uncertainty measure is as interpretable as maxp, but avoids the pathologies of maxp
when used in a calibration metric.

7.2 UCE VS. OTHER CALIBRATION METRICS

UCE is more reliable than ECE and MMCE because it is based on normalized entropy and incorporates
the predictions of all classes. It is more robust than ACE, as it is significantly less sensitive to binning.

Reliable Uncertainty Detection ECE and MMCE can be minimized by models with an uninforma-
tive, constant output (Ovadia et al., 2019). Given a data set of two classes, with 60 % class 1 and 40 %
class 2, and a degenerated model that consistently predicts the marginal probabilities p = (0.6, 0.4).
This leads to 60 % correctly classified samples for class 1 leading to perfect calibration scores for
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Figure 3: Calibration diagrams for a toy experiment with a degenerated model constantly predicting
the marginal probabilities p = (0.6, 0.4) in a binary classification task. ECE and MMCE only
consider maxp and fail at capturing the miscalibration of class 2 with p(c = 2) = 0.4, but
acc(c = 2) = 0. The red bars show the measured miscalibration. Uncertainty is given as normalized
entropy. The left diagram is computed using ECE as MMCE does not involve binning.
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Figure 4: Toy experiment with two random models A and B in a binary classification task. UCE is
less sensitive to number of bins used in the estimator and provides a consistent ranking of the models.
For results from multi-class experiments, see Fig. 1.

ECE and MMCE. Class 2, however, is misclassified in 100% of the cases—and not 60 % as expected.
The miscalibration of class 2 is not reflected in ECE or MMCE. ACE is computed class wise and is
able to capture this miscalibration. UCE is based on the normalized entropy to determine uncertainty
and therefore incorporates the predictions of all classes. Fig. 3 visualizes these results.

Robustness to Varying Number of Bins From a reliable calibration metric, we would expect
a constant ranking of two models in comparison, independent of varying calibration parameters.
However, ACE is highly sensitive to the number of bins and produces arbitrary rankings of models.
Fig. 4 highlights this by comparing two differently calibrated random models.

7.3 UCE REGULARIZATION

At optimal temperature (as suggested by Ashukha et al. (2020)), UCE and MMCE regularization
considerably reduce miscalibration for all employed calibration metric outperforming entropy regu-
larization, with UCE achieving highest accuracy on CIFAR-100, SVHN and Fashion-MNIST. (see
Tab. 1). We want to stress out that UCE, in contrast to MMCE, was not specifically designed for the
use as a calibration regularizer (Kumar et al., 2018).

Why UCE Regularization Works UCE regularization works best when computed classwise (in
similar manner to ACE): UCE = 1

C

∑C
c=1 UCE(c), where UCE(c) is computed for predictions of

class c. Consider the following binary classification example: A batch with mainly samples from class
1 and few samples from class 2 are all predicted as class 1 with high confidence. NLL further pushes
the confidence of the predictions to 1.0, favoring overconfidence, whereas UCE is only reduced if the
confidence of the overconfidently false predictions is reduced.
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Table 1: Revision of Table 1: Results from SWAG trained with entropy, MMCE and UCE regulariza-
tion at optimal temperature (+T). We used the weighted MMCE (Kumar et al., 2018).

Regularization Dataset Acc. ECE ACE UCE MMCE Brier NLL

unregularized CIFAR-10 94.3 % 3.8 % 3.8 % 3.6 % 3.3 % 0.10 0.28
Entropy+T CIFAR-10 94.1 % 2.1 % 4.2 % 2.3 % 1.1 % 0.10 0.25
MMCE+T CIFAR-10 92.0 % 0.4 % 1.6 % 0.8 % 0.1 % 0.12 0.24

UCE+T (ours) CIFAR-10 92.6 % 0.5 % 1.6 % 0.7 % 0.2 % 0.10 0.21

unregularized CIFAR-100 68.3 % 21.8 % 22.0 % 25.7 % 18.3 % 0.52 2.26
Entropy+T CIFAR-100 68.1 % 2.9 % 12.3 % 3.7 % 2.1 % 0.44 1.41
MMCE+T CIFAR-100 67.7 % 1.3 % 11.0 % 2.1 % 0.5 % 0.43 1.20

UCE+T (ours) CIFAR-100 70.9 % 2.4 % 10.4 % 1.1 % 1.2 % 0.40 1.10

unregularized SVHN 96.8 % 2.10 % 2.16 % 1.89 % 1.82 % 0.05 0.19
Entropy+T SVHN 96.9 % 1.15 % 2.31 % 0.86 % 0.74 % 0.05 0.15
MMCE+T SVHN 97.1 % 0.27 % 0.85 % 0.35 % 0.17 % 0.05 0.12

UCE+T (ours) SVHN 97.1 % 0.38 % 0.92 % 0.38 % 0.14 % 0.05 0.12

unregularized F-MNIST 94.7 % 3.97 % 3.96 % 3.85 % 3.60 % 0.09 0.29
Entropy+T F-MNIST 94.7 % 1.86 % 4.28 % 2.13 % 0.96 % 0.09 0.24
MMCE+T F-MNIST 94.7 % 0.54 % 1.40 % 0.64 % 0.17 % 0.08 0.15

UCE+T (ours) F-MNIST 94.8 % 0.52 % 1.75 % 0.63 % 0.11 % 0.08 0.16
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A APPENDIX

A.1 PROOFS

Proposition 1. The normalized entropy (uncertainty) H̃(p) approaches the top-1 error in the limit
of number of classes C if the model p is well-calibrated.

Proof. With Lemma 1 and p̂ = maxp we rewrite the normalized entropy as

H̃(p) = − p̂ log p̂
logC

−
(1− p̂) log 1−p̂

C−1
logC

. (19)

Now, in the limit of number of classes C

lim
C→∞

H̃(p) = lim
C→∞

−
(1− p̂) log 1−p̂

C−1
logC

(20)

= lim
C→∞

−(1− p̂)
(
log(1− p̂)

logC
− log(C − 1)

logC

)
(21)

= (1− p̂) (22)

The top-1 error equals (1− p̂) if the model is perfectly calibrated in the sense of Eq. (6).

Lemma 1. Given a softmax output p with C entries and the most likely prediction ŷ = argmaxp
with likelihood p̂ = maxp. Then, the remaining entries pi,i6=ŷ are approximately uniformly dis-
tributed with probability 1−p̂

C−1 .

Proof. This assumption is approximately correct (1) if p̂→ 1 or (2) if C →∞. Let p̃j = pi ∀i 6= ŷ

and q̃j =
(1−p̂)
C−1 . Note that p̃ and q̃ are not proper probability distributions as

∑
p̃j =

∑
q̃j = (1− p̂).

(1) Consider KL[p̃‖q̃] as p̂ approaches 1:

lim
p̂→1

KL [p̃ ‖ q̃] = lim
p̂→1

C−1∑
j=1

p̃j log
p̃j
q̃j

(23)

= lim
p̂→1

C−1∑
j=1

p̃j log p̃j −
C−1∑
j=1

p̃j log q̃j (24)

= lim
p̂→1

C−1∑
j=1

p̃j log p̃j − (1− p̂) log (1− p̂)
C − 1

(25)

= 0 (26)

(2) Let zi be the logits of a model trained with L2 regularization. The magnitude of the logits
|zi| cannot become arbitrary large and due to the normalizing nature of softmax

lim
C→∞

exp zi∑C
j=1 exp zj

= lim
C→∞

1

C
. (27)

Alternatively, let z ∈ AC and z′ ∈ BK be two logit vectors with C < K. If both models
have been trained with L2 regularization, the magnitude of the logits |zi|, |z′i| cannot become
arbitrary large. More specifically, A = B ⊂ R. Due to the normalizing nature of softmax, z′
corresponds to a lower softmax temperature and as the temperature decreases with increasing
number of classes, softmax approaches a uniform distribution (Jang et al., 2017).
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A.2 BAYESIAN DEEP LEARNING METHODS

In the following, we briefly describe common approximately Bayesian methods which we use in our
experiments to obtain weight uncertainty.

Monte Carlo Dropout One practical approximation of the posterior is variational inference with
Monte Carlo (MC) dropout (Gal & Ghahramani, 2016). To determine model uncertainty, dropout
variational inference is performed by training the model fw with dropout (Srivastava et al., 2014)
and using dropout at test time to sample from the approximate posterior distribution by performing
N stochastic forward passes per test sample (Gal & Ghahramani, 2016; Kendall & Gal, 2017). This
is also referred to as MC dropout. In MC dropout, the final probability vector of the predictive
distribution is computed by MC integration:

p(x) =
1

N

N∑
i=1

σSM (fwi(x)) . (28)

Gaussian Dropout Gaussian dropout was first proposed by Wang & Manning (2013) and linked to
variational inference by Kingma et al. (2015). Dropout introduces Bernoulli noise during optimization
and reduces overfitting of the training data. The resulting output y of a layer with dropout is a weighted
sum of Bernoulli random variables. Then, the central limit theorem states, that y is approximately
normally distributed. Instead of sampling from the weights and computing the resulting output, we
can directly sample from the implicit Gaussian distribution of dropout

y ∼ N (µy, σ
2
y) (29)

with

µy = E[yk] =
∑
j

wj,kxj , (30)

σ2
y = Var[yk] = p/(1− p)

∑
j

w2
j,kx

2
j , (31)

using the reparameterization trick (Kingma et al., 2015)

yj = µj + σjεj with εj ∼ N (0, 1) . (32)

Gaussian dropout is a continuous approximation to Bernoulli dropout, and in comparison it will better
approximate the true posterior distribution and is expected to provide improved uncertainty estimates
(Louizos & Welling, 2017). To obtain the final probability vector p(x), we again use MC integration
with N stochastic forward passes.

The dropout rate p is now a learnable parameter and does not need to be chosen carefully by hand. In
fact, p could be optimized w.r.t. uncertainty calibration, scaling the variance of the implicit Gaussian
of dropout. A similar approach was presented by Gal et al. (2017) using the Concrete distribution
(Maddison et al., 2016; Jang et al., 2017). However, we focus on metrics for measuring calibration
and therefore fix p in our subsequent experiments.

Bayes by Backprop Blundell et al. (2015) assume a Gaussian distribution with diagonal covariance
matrix as variational posterior q(w|θ), parameterized by mean µ and standard deviation σ, where
θ = {µ,σ}. A sample of the weights can be obtained by sampling a multivariate unit Gaussian and
shift it by µ and scale it by σ. Then, the network is trained by minimizing

L(θ) = KL[q(w|θ)‖p(w)]− Eq[log p(D|w)] . (33)

In case of a zero mean Gaussian prior, the first term can be implemented by weight decay. In contrast
to Gaussian dropout, which operates on the implicit distribution of the activations, Bayes by Backprop
(BBB) directly operates on the weights. This doubles the number of trainable parameters in practice.
MC integration is used to obtain the final probability vector p(x).

12
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SWA-Gaussian Stochastic weight averaging (SWA) uses stochastic gradient descent steps around
a local loss optimum of a trained network and averages the weights wSWA = 1

T

∑T
i=1wi of the

model from each step i (Izmailov et al., 2018). This explores the loss landscape and averaging helps
to find a better weight estimate than converging to a single local optimum. SWA-Gaussian (SWAG) is
closely related to Bayes by Backprop (Maddox et al., 2019). It assumes a Gaussian distribution with
diagonal covariance matrix as approximate variational posterior. Instead of using backpropagation to
directly optimize µ and σ, it fits a Gaussian by using µ = wSWA and

Σdiag = diag(w2 −w2
SWA), w2 =

1

T

T∑
i=1

w2
i . (34)

This doubles the number of parameters at test time. The approximate Gaussian posterior results to
N (wSWA,Σdiag) and MC integration with samples wi ∼ N (wSWA,Σdiag) is used to compute the
final probability vector p(x).

Deep Ensembles Training multiple randomly initialized copies of a deep network by performing
maximum posterior estimation and ensembling them to get multiple predictions for a single input
is not a variational inference method. However, they have been reported to produce surprisingly
useful uncertainty estimates in practice that are better calibrated (Lakshminarayanan et al., 2017).
Deep ensembles considerably increase the number of parameters at train and test time. We use deep
ensembles as non Bayesian baseline for uncertainty estimation.

A.3 TRAINING SETTING

The base model implementations from PyTorch 1.6 (Paszke et al., 2019) are used and trained with
following settings:

• Adam optimizer with initial learn rate of 3e-4 and β1 = 0.9, β2 = 0.999 and mini-batch
size of 256 (Kingma & Ba, 2015)

• weight decay of 1e-6
• negative-log likelihood (cross entropy) loss
• reduce-on-plateau learn rate scheduler (patience of 20 epochs) with factor of 0.1
• additional validation set is randomly extracted from the training set (5, 000 samples)
• ResNet-34 for CIFAR-10 and ResNet-50 for CIFAR-100 experiments
• only the last linear layer is implemented in a Bayesian manner for MC dropout, Gaussian

dropout, BayesByBackprop and SWAG
• the deep ensemble comprises 3 fully individually trained networks
• N = 25 forward passes were used Monte Carlo integration
• in MC dropout and Gaussian dropout, a dropout rate of p = 0.2 was used
• in SWAG, a learn rate of 3e-6 was used during weight averaging

Our code is available at: https://github.com/link-withheld.
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A.4 ADDITIONAL RESULTS

Bayes Dataset Accuracy ECE ACE UCE MMCE Brier NLL

MC Drop CIFAR-10 93.6 % 4.3 % 4.3 % 4.0 % 3.8 % 0.11 0.31
Gauss Drop CIFAR-10 93.2 % 4.4 % 4.4 % 4.1 % 3.8 % 0.11 0.31

BBB CIFAR-10 93.3 % 4.6 % 4.6 % 4.4 % 4.1 % 0.11 0.34
SWAG CIFAR-10 94.4 % 3.7 % 3.7 % 3.5 % 3.5 % 0.09 0.28

Ensemble CIFAR-10 95.0 % 3.2 % 3.2 % 3.0 % 2.8 % 0.08 0.22
MC Drop CIFAR-100 66.9 % 24.4 % 24.5 % 27.9 % 20.6 % 0.55 2.55

Gauss Drop CIFAR-100 66.5 % 24.5 % 24.7 % 28.2 % 20.7 % 0.56 2.64
BBB CIFAR-100 65.1 % 24.9 % 25.1 % 28.9 % 20.9 % 0.57 2.51

SWAG CIFAR-100 68.3 % 21.8 % 22.1 % 25.7 % 18.3 % 0.52 2.26
Ensemble CIFAR-100 72.5 % 19.2 % 19.4 % 22.5 % 16.1 % 0.45 1.82

Table 2: Classification accuracy and calibration error results for different models on CIFAR-10/100.
We used M = 15 bins where necessary. Here, all metrics provide the same ranking of models.

A.5 ADDITIONAL FIGURES
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Figure 5: Calibration error vs. softmax temperature on CIFAR-10. All metrics provide inconsistent
ranking of models over τ . The metrics ECE, UCE and MMCE have a narrow region in which the
optimal temperature for all models can be found. They show more a consistent ranking before and
after the point of optimal temperature. This allows comparison of calibration of models if they
are all over- or under-confident. However, all metrics fail at comparing underconfident models to
overconfident models. Even at optimal temperature, Brier score and NLL fail at comparing calibration
of models with different accuracy, as the metrics are always lower for models with better accuracy.
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Figure 6: Calibration error vs. softmax temperature on CIFAR-100.
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Figure 7: Calibration error vs. softmax temperature from SWAG trained with different regularization
on CIFAR-10. Both MMCE and UCE regularization lead to less overconfident models and reduce
miscalibration (optimal temperature is closer to τ = 1). Entropy regularization leads to underconfident
models and is not as effective as MMCE and UCE regularization on CIFAR-10. MMCE and UCE
regularization at optimal temperature outperform entropy regularization at optimal temperature for
all metrics except Brier score.
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Figure 8: Calibration error vs. softmax temperature from SWAG trained with different regularization
on CIFAR-100. In this experiment, entropy regularization without temperature scaling (τ = 1)
was surprisingly effective and outperforms MMCE and UCE regularization. However, at optimal
temperature both MMCE and UCE regularization outperform entropy regularization for all metrics.
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Figure 10: Binning estimator sample distribution for ResNet-34 on CIFAR-10 (left) and for ResNet-
50 on CIFAR-100 (right) with M = 15 bins. ECE and UCE use fixed bin widths and ACE uses an
adaptive binning scheme. The number of samples per bin for ECE and UCE are similar on CIFAR-10.
On CIFAR-100, UCE favors fewer bins, which makes UCE more insensitive to the total number of
bins. Due to the adaptive binning, ACE is highly sensitive to the bin count.
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