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Abstract— We investigate the role of geometric context in
deep neural networks to establish better pedestrian detectors
that are more robust to occlusions. Notwithstanding their
demonstrated successes in the wild, deep object detectors under-
perform in crowded scenes with high intra-category occlusions.
One brute-force solution is to collect a large number of
labeled training samples under occlusion, but the combinatorial
increase in the labeling effort makes it an unaffordable solution.
We argue that a promising and complementary direction to
solve this problem is to bring geometric context to modulate
feature learning in a DNN. We identify that an effective way to
leverage geometric context is to induce it in two steps - through
early fusion, by guiding region proposal generation to focus
on occluded regions, and through late fusion, by penalizing
misalignments of bounding boxes in both 2D and 3D. Our
experiments on multiple state-of-the-art DNN detectors and
several detection benchmarks clearly demonstrates that our
proposed method outperforms strong baselines by an average
of 5%.

I. INTRODUCTION

Humans have an innate understanding of geometry [1].
Concepts such as occlusion, perspective and groundedness
help us to represent objects, encode their locations, and
mentally manipulate them in the physical world [2]. Early
research in object recognition was also founded on these
principles when formal geometric models were used as
informative priors to modulate statistical learning.

Of late, object detectors have been increasingly cast as
regression on deep convolutional image features. Neural
networks such as R-FCN [3] and Faster RCNN [4] are trained
on large datasets, making them robust to most perceptual
variations. Nevertheless, they often fail in crowded scenes
with large number of instances of the same category, as shown
in Figure 1. On the left, an R-FCN model performs reasonably
well in detecting pedestrians in the scene. However, if we
zoom into a crowded corner, we notice that pedestrians are
often missed completely or manifest as merged detections,
with multiple instances detected as a single blob. Delineating
these partially visible instances could increase the overall
detection accuracy and improve downstream tasks such as
people tracking and activity recognition.

One of the key reasons for sub-optimal performance in
crowded scenes is that the object detectors are trained on
the statistics of appearance features alone. Typically, these
detectors constitute a multi-stage pipeline through which
images are first parsed into salient regions and then refined
into bounding boxes, all of which is confined to the 2D
image (pixel) space. The assumption is that i.i.d. sampling
from a large training data would eventually cover all possible
variations in the viewspace, resulting in an occlusion resilient
model. These convolutional features do not account for scene

regularities such as expected object size at a certain location,
or that most objects are grounded.

Objects in the physical world are a lot more persistent than
what appears on the retina or a camera sensor. Yet, humans
are able to see a stable percept by correlating visual inputs to
the underlying scene geometry. Sizes of familiar objects are
correctly resolved based on knowledge of scene perspective.
Partial occlusion is compensated by the process of amodal
completion, i.e., by filling in information behind occluding
surfaces. Inspired by human vision, in this work we posit
that 2D image projection of neighboring objects in 3D is a
consequence of the supporting scene geometry, i.e., the object
appearance and occlusion patterns depends on the camera
viewpoint with respect to the ground plane on which the
objects rest. Following this physical view of image formation,
we develop a detection model for pedestrians that factors in
the so-called geometric context of the scene to account for
complex feature patterns during model training.

Our model consists of a proposal-based deep neural
network that is modulated by the geometric context of the
scene. The geometric context acts as a prior at two levels of
learning - (a) early fusion, through occluder-centric proposals
to model inter-person occlusion during region proposal
generation (RPN) and (b) late fusion, through geometric
loss that models object position and scale consistency during
per region loss computation. Our main contributions are:

• A principled approach to incorporate geometric
context into DNN models. We factor in geometric
context of the scene through early fusion, during region
proposal generation and through late fusion, through
loss computation, while maintaining the feedforward
topology of the underlying object detector.

• Occluder-centric proposals under variable viewpoint.
We augment dense, viewpoint-agnostic region proposals
with sparse, occluder-centric proposals during region
proposal generation, to focus on scene-specific hard
regions, while learning to detect under diverse set
occlusion patterns.

• Geometric loss for bounding box regression. We
introduce geometric loss for bounding box regression,
where we use the scene layout as a projection space to
impose relational and position consistency of proposals
on the ground plane.

To the best of our knowledge, this is the first approach that
brings these concepts together systematically for pedestrian
detection. Our experiments on state-of-the-art DNN detectors
and detection benchmarks demonstrates that our proposed
method outperforms strong baselines by an average of 5%.
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(a) (b)

Fig. 1: Standard detectors under-perform in crowded scenes. We factor in scene geometry to recover occluded instances. Right: The
occlusion pattern of nearby objects in the image depends on the camera viewpoint w.r.t. the ground plane in 3D.

II. RELATED WORK

In the last decade, several works have attempted to
incorporate geometric context to improve statistical object
detectors [5], [6], [7], [8], [9], [10]. Hoiem et al. [5] proposed
a graphical model that placed local object detection in the
overall 3D scene by modeling the interdependence of object
sizes, surface orientations and camera viewpoint. This notion
was extended in [6] to include additional pose constraints on
object configurations within a feedback. Hedau et al. [8]
proposed a cubic room representation for indoor scenes,
showing that layout estimation improves object detection.
These models improve the overall accuracy, but are usually
staged as sequential or iterative components that couple with
an independent object detector to refine object hypotheses.

At present, most accurate object detectors are predomi-
nantly single stage [11], [12] or multi-stage convolutional
neural networks [4], [3] that behave as highly parallelized
sliding window classifiers. Context inclusion as structured
prediction becomes harder to implement without breaking
the end-to-end formulation of the fixed CNN architecture.
Some preliminary work have explored workarounds. In [13],
object masks from current detection are fed as contextual
input during subsequent iterations. To induce scale context,
Foveanet [14] generates a perspective heatmap and fuses
inference from a coarse and a fine subnetwork. These methods
are limited to adapting for scale under perspective distortions.

One inventive way of inducing geometric context in deep
learning is through reprojection loss, that quantifies how
closely a 3D point estimate matches its true projection in
2D image space. It was introduced for single view depth
estimation in [15], and since then has been extensively used
for other self-supervised learning such as inferring egomotion
and depth [16], [17], optical flow [18] and localization [19].
Typically, these methods presume a given or an inferred
common reference frame. Inspired by these approaches, in this
work, we introduce reprojection loss into object detection. We
establish the ground plane as the common frame of reference
and measure position consistency in 3D.

Occlusion reasoning in humans is powered by an innate
ability to perform “amodal completion” [21], i.e., functional
completion of partially occluded object shapes. In artificial

vision, Kar et al. [22] have considered amodal box completion
to find veridical sizes of objects. Hsiao and Hebert [23]
developed an occlusion model by reasoning about objects
as probabilistic 3D blocks. Inspired by Reverse Hierarchy
Theory [24], Huang and Murphy [25] factorize an image into a
bottom-up foreground object followed by top-down generation
of the hidden parts. All these methods treat amodal completion
purely as a learning problem. In contrast, we show that amodal
completion is essentially a geometric phenomenon that relies
on the underlying scene cues.

Several works, including Hoiem et al. use pedestrian detec-
tion as a case study for analyzing effects of geometric modu-
lation on statistical detection. Pedestrian detection in crowds
remains an active field with research and has spawned learning
techniques including hard example mining [26], recurrent
non-maxima suppression [27], synthesized datasets [28], and
learning in multi-view, fully calibrated setting [29]. Our
method is complementary to these approaches. We show
that by utilizing the underlying scene geometry to modulate
feature activation, we can learn discriminative features that
improve the baseline pedestrian detector.

III. MODEL OVERVIEW

Our goal is to build a statistical pedestrian detector that
is aware of the underlying scene geometry, and is robust to
intra-category occlusions. To realize it, we utilize geometric
context of the scene, which refers to the camera pose w.r.t.
to the ground plane. We hypothesize that inducing geometric
context into feature learning will better model occluded parts
and improve recall. To achieve this, we build upon the well-
known architectures of two-stage object detection, namely
Faster RCNN [26] and Region-based Fully Convolutional
Network (R-FCN) [3], to which we induce geometric context
during feature activation and loss computation.

Our pipeline is illustrated in Figure 2. If camera pose is
unavailable, we perform a one-time, approximate camera
pose estimation as a pre-processing step. Following that, we
build upon the architecture of a typical two-stage object
detector. During anchor generation, we augment dense, pixel
based anchors with 2D projections of sparse, occluder-centric
anchors in 3D (step (a) in Figure 2). Next, the anchors are
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Fig. 2: Our object detection pipeline. We incorporate geometric cues into a standard object detector by early fusion, through - (a)
occluder-centric anchors and (b) location sensitive RoIs, and late fusion through (c) 3D projection loss.

passed through the RPN stage, where they are filtered and
labeled. In addition to foreground and background RoIs, we
also subsample a set of occluded anchors based on their
positions in 3D (step (b)). Finally, we jointly minimize the
multi-task objective function by minimizing the location errors
of RoIs on the ground plane. This is achieved by reprojecting
the RoIs and ground-truth back onto the 3D space (step c).

We describe our geometric pre-processing step in Section
IV. The design of occluder-centric anchors and proposal
sampling is described in Section V. The geometric loss
function is described in Section VI. Finally, experiments
are described in Section VII, followed by conclusions in
Section VIII.

IV. ESTIMATING GEOMETRIC CONTEXT

Our work focuses on scenarios where a static camera
captures wide-angle views of crowded scenes. In such scenar-
ios, performing a simple, one-time camera pose estimation
can provide rich spatial cues about the objects in space. In
particular, knowing the camera pose w.r.t. the ground plane
allows us to perform depth ordering of objects and transform
points between image plane and ground plane, upto scale.
Below, we briefly describe a geometric algorithm to compute
camera extrinsics from scene cues.

We parameterize the camera projection matrix P = [R, t]
based on its angle of view and the height above ground plane.
We solve these parameters using well known concepts from
single view geometry [30]. We assume a pinhole camera
model observing a Manhattan world, and known camera
intrinsics K. For the camera angle, we annotate a few line
segments to compute the vanishing point in z-direction vz .
Assuming zero roll, the horizon line is the corresponding
image row v0. The rotation vector is r̂3 = K−1vz/||K−1vz||,
which can be matched to the rotation matrix to recover the
yaw = tan−1(r̂31/r̂33) and pitch = cos−1(r̂32) angles. For
the camera height, we use the method introduced in Hoiem
et al. [5]. Specifically, let yc denote the camera height in
world coordinates. Given the image height hi, bottom position
vi, and world (physical) height yi of a known object, the
camera height yc is computed using this formulation yc =

yi(vi − v0)/hi. We average the camera height estimates over
multiple object instances in the scene to get a robust estimate.

Fig. 3: Visualization of occlusion cones of pedestrians in a scene.
Left: 2D projections in image space, Right: Bird’s eye (top) view
of the occlusion cones. Green triangle shows the camera position.

V. GEOMETRY-GUIDED PROPOSAL SAMPLING

Region proposals in two-stage object detectors mimic
sliding window search across all scales and aspect ratios. They
are drawn from fixed set of anchors that are constant across
all images. During RPN stage, anchors are classified into
foreground and background classes based on their degree of
overlap with ground-truth boxes. In addition to the foreground
and background classes, we introduce a third category of
anchors that adaptively focus attention towards occluded
instances. By doing this, we explicitly prioritize location
sensitive occluded RoIs during training.

We propose occluder-centric anchors that are identified
by their positions relative to foreground occluders and scene-
specific layout. In particular, occlusion occurs when multiple
objects appear along the line of sight (LoS) of the camera at
different depths. A cone shaped space behind the occluder
encloses the region of occlusion in 3D. An object occupying
this region manifests as partially visible in 2D [31]. Figure 3
shows examples of occlusion cones of pedestrians projected
on the ground plane. In our proposed model, occluder-centric
anchors are dense anchors that appear within occlusion cones.
The steps to identify these are detailed below.

We first start by projecting 2D bounding boxes onto the
ground plane using the known or inferred camera matrix.
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Let (xo, zo) be a box’s touch point on the ground. The
LoS is the ray connecting the camera center to this point.
Let the angle of this LoS be θlos,o. Then the occlusion
cone corresponding to this box can be parameterized as
(xo, zo, r, θ), where r denotes the radial distance from o
and θ = {θlos,o − θ∆, ..., θlos,o + θ∆} denotes the angular
separation from the LoS.

Next, at each parameterized location (xo, zo, r, θ), we
generate hypothetical RoIs corresponding to expected human
dimensions. Specifically, given (r, θ), the 3D positions of top
left and bottom right positions in 3D are (xo − w/2, h, zo)
and (xo +w/2, 0, zo), where (h,w) are expected height and
width of humans (h=5.6 feet, w=1.7 feet, approx.). These 3D
boxes are re-projected back onto image plane in form of 2D
RoIs. The anchors that overlap these RoIs are indexed by
corresponding (r, θ) values. Finally, a subset of these anchors
are uniformly sampled from the (r, θ) distribution.

After proposal annotation stage, let {bfg, bocc, bbg} be the
random subsets of foreground, occluded and background
anchors. The combined loss function at the region classifier
stage is expressed as follows.

LF = λfgLl1σ (F(b
(c)
fg ), C) + λoccLl1σ (F(b(c)occ), C)+

λbgLσ(F(bbg)), (1)

where λ is the appropriate scaling function per proposal set,
{σ, l1} denotes the combination of softmax loss for class
probability and smooth-L1 loss for bounding box regression
between a proposal and the corresponding ground-truth box,
C. Background proposals do not carry box regression penalty.

Fig. 4: Red boxes have IoU>0.7 with groundtruth. Green boxes
have IoU>0.7 and Euclidean distance<50cm. Right shows the top
view, with groundtruths as blue dots. Green boxes fit better, both in
image and on ground, while the red boxes that are equidistant from
multiple ground-truths lead to incorrect localization.

VI. 3D PROJECTION LOSS

In Equation 1, a multi-task loss Ll1σ includes a classification
loss that penalizes object category mismatch, and a regression
loss that penalizes offsets of an anchor box to a nearby ground-
truth in pixels. In addition, we design a geometric loss that
encodes the position consistency of anchors on the ground.
The particulars of our method is described below.

In Faster-RCNN, the regression target is parameterized
into four dimensions through a convolutional subnetwork
bbox_reg as tx = (xg − xa)/wa, ty = (yg − ya)/ha, tw =
log(wg/wa), th = log(hg/ha), where (.)g and (.)a indicate

ground-truth and anchor, respectively, and (x, y) are the box
mid-points and (w, h) are the corresponding width and height.
The technique in R-FCN is similar, except that a position
sensitive maps are used as intermediate representations. In
both approaches, anchor boxes are matched to ground-truth
boxes based on Intersection over Union (IoU) overlap. The
bbox_reg subnet is expected to learn a small offset that
"corrects" the anchor position and aligns them perfectly.
However, good anchor candidates might be farther from the
object than can be learnt through the corrective offsets, as
shown in Figure 4. The red boxes have significant overlap with
the selected ground-truth, but are equidistant to neighboring
ground-truths. This leads to coarse localization as multiple
ground-truth boxes compete for the same anchor set.

Given the camera pose w.r.t. the ground plane, we introduce
a projection loss function that attempts to resolve these issues
by expanding the regression criterion. To achieve this, we
add two additional dimensions to the regression target that
predict the normalized distance between anchor and object in
xw and zw, i.e., twx = (tpxg − tpxa)/gx and twz = (tpzg −
tpza)/gz , where tp(.) denotes the touch points of bounding
boxes projected in the x-z dimensions of the ground plane. In
Figure 4, the green boxes are RoIs that have IoU > 0.7, and
are also within 0.5m from the ground-truth box. As evident,
these RoIs fit the object better.

In order to establish targets for regression, we need to
project 2D box coordinates (x, y) to locations (xw, yw, zw)
on the ground plane. While exact recovery of 3D from 2D
points is ill-posed, we make the solution tractable by making
two reasonable assumptions - (a) pedestrians rest on ground
plane, i.e., yw = 0, and (b) the direction of ground plane is
parallel to an upright person, i.e., Ĝ = (0, 1, 0). Based on
these constraints, the position of an RoI on the ground plane
(denoted by G(b)yw=0) is computed algebraically as follows
- (a) find the camera center, given by the null space of the
camera matrix P = null(P ). (b) The ray emanating from the
camera center to the object is given by ~R = inv(P ) ∗Xim,
where Xim is the bottom coordinate of an image box, and
finally (c) the intersection between the projected ray ~R and
the ground unit vector Ĝ is computed algebraically to give
the corresponding touch point Xg on the ground.

Given 3D position of boxes, we can evaluate the 2D +
3D regression loss. Let the set of foreground and occluded
anchors, {bfg, bocc} as computed in Section V, and the
corresponding ground-truth boxes be C. Then the offsets
are penalized through a smooth L1 function. The predicted
feature map F are expanded to accommodate regression terms
along the two dimensions, normalized by the width and height
of the ground plane, respectively.

L2D+3D =
∑
b∈nR

Ll1(F2D(b), t
g
b,2D) + Ll1(F3D(b), t

g
b,3D), (2)

where, tg,wb,3D ={[G(bwgt)]yw=0 − [G(bwa )]yw=0}/W,
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Fig. 5: Precision-recall curves of geometric-RFCN model on ETH
Wildtrack dataset (left), and on MOT17 Detection dataset (right).

VII. EXPERIMENTS

This section is organized as follows: we first introduce
the datasets and the experiment settings; then we evaluate
our proposed algorithm vis-a-vis the baselines; and finally
we perform controlled experiments to study the impact of
individual design choices.

A. Experiment design

We evaluate our algorithm on two pedestrian datasets -
ETH WildTrack [32] and MOT 2017 Detection (MOT) [33].
WildTrack dataset consists of seven sequences of pedestrians
from overlapping viewpoints with variable camera heights.
The cameras were jointly calibrated and the corresponding
camera intrinsics and extrinsics are available. To test our
method on ambient scenes, we evaluate on the MOT dataset,
which consists of seven sequences of various indoor and
outdoor pedestrian traffic. We perform scene calibration using
single view geometry (explained in Section IV) and use
the inferred geometric parameters in our experiments. Both
datasets capture video frames of crowded, dynamic scenes
of moving pedestrians (~17 pedestrians per frame), using
static cameras mounted at a variety of vantage points (e.g.,
surveillance view, below eye-level view, etc.) and provide full
body annotations on all groundtruth instances. For evaluation,
we partition each video temporally such that the first 60%
of the frames is used for training and validation, while the
remaining 40% is sequestered for testing.

We evaluate our approach on two well-studied architectures
- Region based Fully Convolutional Network (R-FCN) [3]
and Faster-RCNN [26], and build our algorithm on top of
these pipelines.

mAP cam1 cam2 cam3 cam4 cam5 cam6 cam7 avg

rfcn [3] 78.0 73.9 77.6 60.9 82.0 74.2 72.5 75.8
g-rfcn 79.5 76.0 77.8 66.1 84.4 74.9 74.0 78.2

frcnn [26] 78.4 81.2 82.9 61.1 84.0 75.5 84.7 78.8
g-frcnn 80.4 80.6 83.4 69.7 85.2 77.9 84.7 80.1

TABLE I: mAP per camera view on Wildtrack dataset. Prefix g-
refers to our geometry primed model.

Implementation Details: All the training experiments
share the same protocol. We use Resnet-101 as the backbone.
The models are pre-trained on COCO dataset, and finetuned
by freezing all layers uptil 4th resnet block, and re-training

mAP mot2 mot4 mot5 mot9 mot10 mot11 mot13 avg

rfcn [3] 89.3 86.7 90.4 92.8 89.7 96.8 77.7 86.2
g-rfcn 90.9 91.3 91.8 94.3 91.3 96.3 83.4 93.0

frcnn [26] 89.7 89.5 92.0 94.9 88.1 96.9 78.3 90.2
g-frcnn 90.4 92.7 93.4 96.1 89.2 97.2 81.5 92.4

TABLE II: mAP per camera view on MOT dataset.

all the layers thereafter. We train using SGD with momentum
of 0.9, a weight decay of 5e-4, an initial learning rate of 5e-5
and with a batch size of 1. Each training routine is allowed to
run for 20 epochs. We do not perform hyperparameter tuning
or data augmentation. We use Intersection over Union (IoU)
of 0.7 as threshold for positive detection and mean average
precision (mAP) as evaluation metric.

We set a budget of 256 RoIs at the RPN stage. In a
baseline models, the proportion of foreground RoIs is set to
25%, and remaining 75% are background. In our proposed
model, occluded-RoIs account for 12.5% of total RoIs, making
the ratio of foreground, occluded and background RoIs
as 25:12.5:62.5. Occluded RoIs are sampled from (r, θ)
distribution using uniform sampling. The occluded anchors
are densely sampled by varying the distance to the occluder (r)
and orientation along the line of sight (θ). Depending on the
camera height, the radius ranges from 1-10 feet for overhead
camera view, and 1-50 feet for horizontal and below eye-level
views, at increments of 1 foot. The angle of deviation from
line of sight ranges between 0 to 60 degrees, at increments
of 5 degrees. In order to project the anchors back onto the
image plane, we assume an average human height of 5.5 feet
for MOT and 5.9 feet for Wildtrack (provided in the dataset).

B. Comparison with the baselines

Overall accuracy: Using our proposed model, we achieve
a higher mAP across both datasets and detection architectures.
The baseline R-FCN achieves 75.24% on Wildtrack and
86.20% on MOT (See Tables I and II, and Figure 5). We
improve these scores to 93.02% on MOT and 78.16% on
Wildtrack, an improvement of 8% and 3%, respectively.
Overall the performance of Faster RCNN is better than R-
FCN, as have been observed before [3]. We outperform the
baseline Faster RCNN model by 2% on an average. Tables I
and II show the mAPs per camera view. We consistently
outperform the baseline on all camera views. One interesting
point to note is that mAP gains are higher for overhead views
than for horizontal (eye-level) views. This is discussed in
more detail in Section C.

Comparison on occluded samples: According to our
hypothesis, occluded samples should be better detected by our
geometry primed method. The results are shown in Table III.
Indeed, we observe a 17 percentage points (pp) gain on
Wildtrack and a 9 pp gain on the MOT dataset. The gains in
the occluded segments are significant higher than the gains
across entire data. This indicates that the occluded instances
are better delineated using our method. A fine-grained analysis
of the gains as a function of geometric parameters is studied
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in Section C.

cam1 cam2 cam3 cam4 cam5 cam6 cam7

baseline [3] 35.7 26.2 47.4 10.3 34.5 19.7 49.1
ours 39.4 29.0 52.0 16.8 38.0 20.5 55.7

mot2 mot4 mot5 mot9 mot10 mot11 mot13

baseline [3] 42.6 41.9 50.4 26.9 23.8 50.3 4.7
ours 45.0 52.6 51.4 27.8 25.1 50.7 5.8

TABLE III: mAP over occluded instances. We improve by 17 pp
ans 9 pp on Wildtrack and MOT datasets, respectively.

Cross camera performance: We evaluate cross-camera
performance on the Wildtrack dataser to test if a superior
model trained on a subset of views might also perform better
on the unobserved views capturing the same underlying scene.
We train on camera views C1-C4, and tested on C5-C7. As
shown in Table IV, we improve the accuracy by 2% on
the unobserved views over baseline. We also evaluate the
accuracy on ground plane by measuring the average Euclidean
distance between predicted locations and ground-truth in cm.
We achieve a decrease of 15.3% in localization error compared
to the baseline, as shown in Table IV.

mAP C5 C6 C7

frcnn 62.9 47.5 60.8
g-frcnn 66.4 48.5 62.7
dist (cm) C5 C6 C7

frcnn 148.4 883.4 60.7
g-frcnn 139.2 874.2 56.4

TABLE IV: Cross-camera performance on Wildtrack dataset. Right
below: The prediction error on ground plane is shown as average
Euclidean distance (lower is better).

C. Controlled experiments

Effect of geometric parameters: We analyze the mAP
gains by camera elevation, inter spatial distance and radial
angles between occluded objects on ground plane (Figure 6).
In (a), we observe that camera elevation (x-axis) has a
significant influence on the mAP gain. The higher the camera,
the better our model is able to represent occluded patterns.
At eye level, a person might get completely occluded, thus
making it harder to model the relationship using geometric
constraints. For example, views MOT11, WT4 and WT6
that are captured at eye-level show lower mAP gains. This
argument also justifies why most surveillance cameras prefer
overhead views for better scene capture. On the right in
Figure 6 we plot the gain w.r.t. angle of deviation from
the line of sight, where los = 0o is directly behind the
occluder. Low-level and overhead camera views show similar
patterns - we achieve higher gains at slight angular separation
of ~15o. Intuitively, these samples are challenging to learn
without explicit attention provided by the geometric context.

In contrast, at eye-level we see gains at larger radial separation,
i.e., for side-by-side configuration.

Fig. 6: mAP gains under occlusion w.r.t. camera elevation and radial
distance.

mAP pretrained
coco

pretrained
occluded
RoIs

finetune finetune+
[34]

train+ train +
3d

MOT 82.23 84.38 86.23 90.07 91.29 93.02
WT 48.19 68.46 75.87 75.95 77.29 78.16

TABLE V: Ablation Study

Ablation study: We evaluate the impact of individual
design choices and modules in our network (Table V). In the
first experiment, we consider using occluder-centric proposals
during inference alone (columns 1 and 2). Specifically, we
run two rounds of inference with pre-trained COCO model.
In the second round, we use the top K detections from the
first round and generate occluder-centric proposals centered
at these detections for the second round. Remarkably, this
proves to be a very effective strategy. We achieve a huge 41
point gain, from 48% in first round to 68% with augmented
proposals (column 2). The gains are smaller for MOT, possibly
because pedestrians appear in a variety of poses that violate
the occlusion patterns. Next, we evaluate our model by
training with and without Online Hard Negative Mining [34]
(columns 3 and 4). OHEM retroactively selects a subset of
RoIs that have the highest loss and backpropagates based on
the selected examples. In contrast, we proactively select hard
(occluded) ROIs. Our proposed models perform better than
OHEM. Finally, we evaluate the impact of occluder-centric
proposals alone (early fusion of geometry) and the combined
effect of occluder-centric proposals along with 3D geometric
loss (early + late fusion) (columns 5 and 6). Each module
individually improves the mAP, but the best performance is
achieved by using both the modules together (column 6).

VIII. CONCLUSION

In this paper, we incorporate geometric context into DNN
based object detectors using approximate camera pose w.r.t.
ground plane. Our method’s novelty lies in a new anchor
generation technique to sample occluder-centric proposals.
We also propose to include geometric loss during bounding
box regression. Ultimately, our algorithm leads to higher
accuracy in monocular pedestrian detection. In the future,
we will build upon this technique to investigate multi-view
tracking and people re-identification.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2019 International Conference on Robotics
and Automation (ICRA). Received September 15, 2018.



REFERENCES

[1] S. Dehaene, V. Izard, P. Pica, and E. Spelke. Core knowledge of
geometry in an amazonian indigene group. Science, 2006.

[2] N. S. Newcombe and J. Huttenlocher. Making space: The development
of spatial representation and reasoning. MIT Press, 2000.

[3] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-
based fully convolutional networks. NIPS, 2016.

[4] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In NIPS,
2015.

[5] D. Hoiem, A.A. Efros, and M. Hebert. Putting objects in perspective.
80(1), October 2008.

[6] M. Sun, S.Y. Bao, and S. Savarese. Object detection using geometrical
context feedback. 100(1), October 2012.

[7] D. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout
of rooms using volumetric reasoning about objects and surfaces. In
NIPS, 2010.

[8] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of
cluttered rooms. In ICCV, 2009.

[9] J. Pan and T. Kanade. Coherent object detection with 3d geometric
context from a single image. In ICCV, 2013.

[10] A. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box in the box:
Joint 3d layout and object reasoning from single images. In ICCV,
2013.

[11] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In CVPR,
2017.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and
A. Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[13] X. Chen and A. Gupta. Spatial memory for context reasoning in object
detection. In ICCV, 2017.

[14] X. Li, Z. Jie, W. Wang, C. Liu, J. Yang, X. Shen, Z. Lin, Q. Chen,
S. Yan, and J. Feng. Foveanet: Perspective-aware urban scene parsing.
In ICCV, pages 784–792, 2017.

[15] R. Garg, G. B. Kumar, Carneiro, and I. Reid. Unsupervised cnn for
single view depth estimation: Geometry to the rescue. In ECCV, 2016.

[16] T. Zhou, M. Brown, N. Snavely, and D. Lowe. Unsupervised learning
of depth and ego-motion from video. In CVPR, 2017.

[17] R. Mahjourian, M. Wicke, and A. Angelova. Unsupervised learning
of depth and ego-motion from monocular video using 3d geometric
constraints. ArXiv e-prints, February 2018.

[18] J. Yu, A. Harley, and K. Derpanis. Back to basics: Unsupervised learn-
ing of optical flow via brightness constancy and motion smoothness.
In ECCV Workshops, 2016.

[19] A. Kendall and R. Cipolla. Geometric loss functions for camera pose
regression with deep learning. In CVPR, 2017.

[20] H. Rhodin, J. Spörri, I. Katircioglu, V. Constantin, F. Meyer, E. Müller,
M. Salzmann, and P. Fua. Learning monocular 3d human pose
estimation from multi-view images. In CVPR, 2018.

[21] G. Kanizsa. Subjective contours. In Scientific American, 1976.
[22] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Amodal completion and

size constancy in natural scenes. In ICCV, 2015.
[23] E. Hsiao and M. Hebert. Occlusion reasoning for object detection

under arbitrary viewpoint. CVPR, 2012.
[24] S. Hochstein and M. Ahissar. View from the top: hierarchies and

reverse hierarchies in the visual system. In Neuron, 2002.
[25] J. Huang and K. Murphy. Efficient inference in occlusion-aware

generative models of images. In ICLR Workshop, 2016.
[26] L.L. Zhang, L. Lin, X.D. Liang, and K.M. He. Is faster r-cnn doing

well for pedestrian detection? In ECCV, pages II: 443–457, 2016.
[27] R. Stewart, M. Andriluka, and A. Ng. End-to-end people detection in

crowded scenes. In CVPR, 2016.
[28] H. Hattori, N. Lee, V. N. Boddeti, F. Beainy, K. M. Kitani, and

T. Kanade. Synthesizing a scene-specific pedestrian detector and pose
estimator for static video surveillance. 100(1), October 2018.

[29] P. Baque, F. Fleuret, and P. Fua. Deep occlusion reasoning for multi-
camera multi-target detection. pages 271–279, 2017.

[30] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition,
2004.

[31] A. Gupta, A. Mittal, and L. Davis. Constraint integration for multiview
pose estimation of humans with self-occlusions. In IEEE PAMI, 2008.

[32] T. Chavdarova, P. Baqué, S. Bouquet, A. Maksai, C. Jose, T. Bagaut-
dinov, L. Lettry, P. Fua, L. Gool, and F. Fleuret. Wildtrack: A multi-
camera hd dataset for dense unscripted pedestrian detection. In CVPR,
2018.

[33] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. Mot16: A
benchmark for multi-object tracking. In arXiv:1603.00831, 2016.

[34] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based
object detectors with online hard example mining. In CVPR, 2016.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2019 International Conference on Robotics
and Automation (ICRA). Received September 15, 2018.


