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Abstract. We present a Bayesian hierarchical approach to magnetic
resonance imaging (MRI) reconstruction using learned structured uncer-
tainty distributions. Our method allows for reconstruction of complex-
valued MRI images in a probabilistic manner that goes beyond stan-
dard pixelwise uncertainty. We use a variational autoencoder architecture
(VAE) prior with an expressive correlated Gaussian decoding distribu-
tion obtained via a sparse parameterisation of the precision matrix, and
model the posterior uncertainty in the latent and image space using a
similarly correlated variational approximation. The resulting posterior
is fully marginalisable over the VAE latent, and provides interpretable
insights into the spatial structure of the reconstruction distribution that
are not seen in existing methods. Diagnostic posterior pixelwise correla-
tions and residual structure show a principled decay of prior correlation
influence with increasing data, and we demonstrate that these modelled
posterior statistics are representative of the true reconstruction error.
This allows us to answer questions like "how much data is required to
resolve a local region to a specific spatial accuracy". We also provide
numerical experiments demonstrating that our method maintains excel-
lent pixelwise reconstruction performance and well-calibrated posterior
coverage even in extremely sparse data scenarios.

Keywords: Bayesian uncertainty quantification · Generative regulari-
sation · MRI.

1 Introduction

Magnetic resonance imaging (MRI) is a widely used technique that allows the re-
construction of images given Fourier space (k-space) measurements. Compressed
sensing (CS) MRI exploits the fact that once transformed into the Fourier do-
main, images can typically be well approximated by sparse representations. In
practice, this allows for significantly shorter scan times with limited effect on the
image quality. Image reconstruction in the CS MRI setting can be formulated as
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an inverse problem where we seek to recover an image close to the original that
best explains the sparse k-space measurements. Traditionally, this is posed as an
optimisation problem, solving for an image that optimally balances data fidelity
with appropriate regularisation (the so-called variational regularisation frame-
work [14, 11]). Deep learning-based methods have been developed that yield effi-
cient inference and improved image fidelity [7, 1], as well as approaches to learn
regularisation [13, 15, 5] that improve reconstruction quality whilst maintaining
the robustness and interpretability of the variational framework.

In this work, we propose a Bayesian generalisation to learned regularisation
in MRI reconstruction by producing a variational approximation to the posterior
distribution over reconstructions using learned image priors. Our results demon-
strate competitive reconstruction accuracy, whilst our variational Bayesian con-
struction allows us to extract visually interpretable insights directly from the
resulting approximations that surpass the typical variational formulation. For
both prior and posterior distributions, we can identify factors such as where our
reconstruction is uncertain, how the uncertainty in certain pixels affects our con-
fidence of nearby pixels and the implications of this on localised spatial accuracy,
and what alternate instances of these uncertain regions might look like.

1.1 Problem Specification

Mathematically, the CS MRI reconstruction problem can be stated as follows;
assume given k-space measurements y, a known forward operator A, and the
statistical relation

y = Ax+ ϵ, (1)

we seek to identify an estimate of x such that the probability of the observed
y is high in some sense. We assume that ϵ is a zero-mean Gaussian vector with
diagonal covariance Λ = diag(σ2

1 , σ
2
2 , . . . , σ

2
N ), thus (1) equivalently implies the

likelihood p(y|x,Λ) = N (y|Ax,Λ). A direct maximum-likelihood approach could
be applied, which would be equivalent to a weighted least-squares reconstruc-
tion; however, such approaches are known to perform poorly when data is sparse
and so some sort of regularisation is desirable [2]. In the Bayesian setting, regu-
larisation is enforced by defining a prior distribution p(x) over the unknown x.
Additionally, in this work we consider the amplitude of ϵ to be uncertain and
define a prior p(Λ) (independently of p(x)) over this, which circumvents the need
for manual tuning of the strength of the prior regularisation. From here we can
write down the posterior distribution

p(x,Λ|y) = p(y|x,Λ)p(x)p(Λ)
p(y)

. (2)

If Λ is predetermined, then the maximisation of this posterior distribution over
x (a MAP estimate) is equivalent to the widely used variational framework [19],
and can yield significantly better reconstructions with carefully chosen priors.
The problem of approximating the distribution (2), rather than a point esti-
mate, proves decidedly more difficult, largely due to computational challenges
in representing distributions over image space.
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1.2 Existing Approaches

In addition to deterministic methods based on deep learning and the variational
framework, some work has explored deep learning-based uncertainty quantifica-
tion in inverse problems. At present these approaches to representing uncertainty
are overwhelmingly sample-based, typically using denoising-based approaches to
construct a prior implicitly through an approximation of the gradient of the
logged data distribution (the so-called score function). For example [9] applies
this approximate score to unadjusted Langevin sampling to approximate the
posterior distribution, and more recently ‘score-based’ [18] or ‘denoising’ [8] dif-
fusion models have been applied to inverse problems [17, 3]. These techniques
excel at generating high fidelity samples due their denoising-based mechanism,
and it is this denoising-based approach that facilitates the often-praised feature
of out-of-distribution generalisation. It is worth noting, however, that the true
data distribution that these models target is not supported on out-of-distribution
data by definition, thus their ability to generalise to these settings implies signif-
icant room for hallucination in cases where data is uncertain compared to priors
with more concentrated support over the underlying data.

VAE-based approaches were developed in [20], though the standard pixelwise
i.i.d decoder limits prior expressivity and sample-based inference restricts inter-
pretability. Conversely, more expressive correlated decoders have been applied
using ‘structured uncertainty prediction networks’ (SUPN) [4, 5] and used to reg-
ularise CS MRI, giving some prior interpretability but no posterior uncertainty
modelling. This work extends upon that approach through the development of
the multichannel SUPN prior models, the extension to a hierarchical Bayesian
setting for automatic regularisation strength, and by introducing suitable tech-
niques for interpretable and probabilistic posterior inference.

1.3 Contributions

A summary of our contributions is outlined below:

– We extend the SUPN model for multichannel data and apply this to recon-
struct real and complex components in MRI images

– We formulate a Bayesian hierarchical model, and propose a variational in-
ference approach to MRI reconstruction which avoids the need for pre-
specification of the measurement error standard deviation

– We demonstrate visually interpretable prior and posterior insights beyond
pixel-wise variance estimates. Such as:
• A principled and representative decay of the correlation structure in the

posterior residual as data increases
• A reduction in the spatial distance that posterior correlations occur be-

tween pixels as data increases, implying increasing spatial accuracy
– We demonstrate that even with extremely sparse data, this approach pro-

duces posterior distributions with high accuracy and well-calibrated poste-
rior coverage.
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2 Methodology

2.1 Structured Uncertainty Priors

For our prior distribution p(x) over reconstructed images, we implement a struc-
tured uncertainty prediction network (SUPN), for a detailed description of this
model we refer the reader to [4] and additional details in the supplemental mate-
rial. Here we provide a brief summary in order to motivate its application here.
The basis of the SUPN approach is a variational autoencoder (VAE) [10] with
a spatially correlated decoding distribution. As such the distribution over x is
modelled as

p(x) =

∫
p(x|z)dp(z). (3)

Here z is a latent variable with a standard Gaussian prior p(z) = N (x|, 0, I), and
p(x|z) = N (x|µθ(z), Σθ(z)) is a decoding distribution. In a SUPN model, the
decoder outputs a dense covariance matrix Σθ through a sparse (O(Npixels)) pa-
rameterisation of its precision matrix Σ−1

θ . It is known from Gaussian Markov
random field (GMRF) theory [16] that precision matrices encode conditional
dependence between connected components, so this parameterisation amounts
to modelling the image distribution as a GMRF where each pixel is connected
to all other pixels within a surrounding connectivity window, then learning the
precision terms associated with these connections. The corresponding covariance
captures longer range correlations through the Markovian structure of the in-
terconnected pixels as can be seen in Fig. 1. This focus on the finer correlation
structures makes this a particularly useful prior for CS MRI since it supplements
the higher frequency details that are often lost during subsampling.

Since our data is complex valued, we model real and complex components to-
gether as two channels with pixelwise connectivity to allow the real and complex
channels to directly depend on one another. When conditioned on an appropri-
ate latent z, the resulting models, like standard VAEs, produces over-smoothed
images as their mean output, but unlike a regular VAE, returns a covariance
matrix capturing information about the distribution of associated finer scale de-
tails. The effect of this can be seen in Fig. 1, which shows the smooth overall
shape is captured by the mean, but the bone texture is encoded in the correlation
structure. Using this as our prior encourages reconstructions that exhibit realis-
tic fine structures. This prior does not support out-of-distribution data, thus the
knee model in Fig. 1 could not be used reconstruct a brain scan without an over-
whelming amount of data. Conversely, this prior does produce very reasonable
knee reconstructions with as low as 400 k-space measurements (2.5% of the full
sample), as shown in Fig. 2. Moreover, since this prior uses a Gaussian decoding
distribution we obtain the interpretability of Gaussians, allowing us to do things
like read off pixel-wise standard deviation, or as shown in Fig. 1 examine how
pixels within the image are correlated with one-another.

Note that the summation of columns two and three in Fig. 1 gives a sample
from the prior, and generally produces a detailed and plausible knee reconstruc-
tion (an example of this can be seen in the top row of Fig. 2); however, we would
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Fig. 1. Visualisation of the structure in our learned prior distribution for both real
(top) and complex (bottom) channels. From left to right we show an example image;
the prior means; a prior residual sample; and the pixelwise correlation (overlaid on the
prior mean), which shows how each pixel is correlated (red positive, blue negative) to
the pixel indicated by a white star in the real channel.

not expect the finer details to be representative of the underlying image at this
stage, since this is a prior sample before conditioning on data. We see here that
there are positive correlations along the contours of the bone’s edge and negative
correlation for pixels located orthogonally into the bone as you would expect.
Moreover this pattern is reversed for the complex channel since this channel is
generally negatively correlated with the real channel.

2.2 Posterior Reconstruction

We seek to approximate the posterior (2) such that we retain the interpretability
of our prior distribution. Our representation of p(x) by (3) means that we do not
have explicit access to its density, and so we model the joint posterior distribution

p(x, z, Λ|y) = p(y|x,Λ)p(x|z)p(z)p(Λ)
p(y)

, (4)

then recover the reconstruction posterior through the marginalisation p(x|y) =∫
p(x, z, Λ|y) dz dΛ. We take a variational Bayes approach to estimating the pos-

terior over x and z, and an expectation maximisation approach to estimate Λ.
More explicitly, we introduce a variational posterior approximation qλ(x, z) and
perform inference by maximising the evidence lower bound

L(λ,Λ) = Eqλ(x,z)[log p(x, z, Λ|y)− log qλ(x, z)]. (5)

In practice (5) is maximised by stochastic gradient ascent; that is each itera-
tion we approximate the expectation in (5) with a Monte Carlo approximation
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obtained by sampling (x̂i, ẑi ∼ qλ)i=1:N and computing the estimator

1

N

N∑
i=1

log p(y|x̂i, Λ) + log p(x̂i|ẑi) + log p(ẑi) + log p(Λ)− log qλ(x̂i, ẑi). (6)

Based on this estimate, the parameters (λ,Λ) are updated by gradient ascent.
The end result is a distribution qλ(x, z) representing our approximate posterior
over (x, z) and a point estimate of the measurement noise Λ. In our implementa-
tion we choose qλ(x, z) = qλx(x) qλz (z), where qλz (z) is modelled by a multivari-
ate Gaussian with mean and covariance defined by λz, and qλx(x) is a Gaussian
distribution parameterised by λx using the same sparse GMRF structure used
in the SUPN prior, which allows the interpretability observed in the prior. A
discussion on the impact of our chosen structure is included in the supplement.
We also define truncated Gaussian priors p(Λ) over the components of Λ.

3 Numerical Experiments

We demonstrate our approach on the single coil fastMRI knee dataset [12, 22] at
128 × 128 resolution, which provides complex k-space data. We reconstruct 16
fully-sampled slices from the central region of 484 scans, giving 7,744 complex-
valued training images. We choose a connectivity window for the underlying
GMRF that extends 4 pixels in each direction, and train a SUPN prior over the
training data. We then estimate the posterior by maximising the evidence lower
bound (5) with centre-masked k-space data at several mask sizes. Our code is
available at https://github.com/teojd/supn_variational_mri.

The most notable, and unique, benefit of our approach is the interpretability
it provides over the posterior spatial structure. For example Fig. 2 displays the
residuals and pixelwise correlations for posterior estimates attained at different
masking ratios, as well as the prior. This shows, visually, the substantial prior
influence on the spatial structure of the reconstruction posterior for small masks,
and the decay of this influence as the likelihood dominates with increasing data.
This is evidenced in the degrading structure of residual samples and the reduc-
ing range of the pixelwise correlations. Such information could be helpful, for
example, in determining how much data is required to reconstruct a particular
region to a prescribed accuracy. This effect is also shown by the posterior sam-
ples themselves, which invariably achieve good agreement with the k-space data,
but exhibit greater variability with lower quantities of data, as shown in Fig. 3.

Figure 3 also compares reconstructed samples from our method to the ‘diffu-
sion posterior sampler’ (DPS) [3], which is the current state-of-the-art in genera-
tive modelling-based approaches to inverse problems. Samples from our method
and DPS are also available as supplementary videos. DPS excels at generating
high fidelity reconstructions in this comparison, however, when data are sparse
this fidelity comes at the cost of spurious details being added into the recon-
struction. In contrast, our model’s more structured prior distribution results in
samples that have better agreement with the ground truth as shown by our
superior PSNR scores in Fig. 3 in all cases.
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Fig. 2. Visualisation of reconstructions of a test-set image and the associated posterior
correlations. The first 4 columns show various aspects of our model. In the top row
left to right we show a prior residual sample; the prior pixelwise correlation (which
illustrates the row of the covariance matrices corresponding to the pixel highlighted
with a red star); the prior mean; and a prior sample respectively. Rows 2-6 show the
corresponding visualisations for the posteriors after conditioning with 2.5%, 5%, 10%,
20%, 40% mask sizes respectively. These explicitly demonstrate the effect of Bayesian
conditioning, as increasing data results in a decay of the prior spatial structure in a
way that is consistent with the true residual (as shown in the supplemental material).
The final column shows the ground truth in the top row, and the reconstructions
resulting from a naive reconstruction (zero-filled inverse Fourier transform) below. Due
to space constraints we only show results for the real part, the complex part shows
analogous behaviour. Note the colour-maps in columns 1 and 2 have been scaled for
interpretability to ensure spatial structure remains visible (actual amplitude decays
with increasing data).
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Fig. 3. Posterior samples and their PSNR values from our method (left) and DPS
(right) using 2.5% mask size (rows 1 and 2), and 40% mask size (rows 3 and 4). Our
method scores higher and shows more consistent and realistic samples, particularly at
at lower data quantities where DPS produces spurious artifacts, such as bone tissue
merging or appearing in areas not present in the ground truth.

Posterior statistics such as credible regions can also be analytically extracted
from our model, and we demonstrate that these are well calibrated in Table 1 by
reporting the actual vs expected posterior coverage at the 1, 2, and 3 standard
deviation levels [6]. Conversely, diffusion-based methods require many expensive
samples to even estimate credible regions; and attaining analogous correlation
statistics to Fig. 2 from these samples would additionally require estimating the
empirical covariance, at a further O(NsamplesN

2
pixels) cost that is computationally

implausible to estimate for required sample sizes, e.g. Nsamples ∼ O(Npixels) [21].

2.5% 5% 10% 20% 40%
1 Std.Dev. (32%) 36.6% 35.1% 33.9% 33.7% 33.2%
2 Std.Dev. (5%) 8.8% 7.6% 7.2% 7.5% 7.2%
3 Std.Dev. (0.3%) 2.3% 1.8% 1.6% 1.6% 1.4%

Table 1. Proportion of pixels lying outside the posterior credible interval for different
mask sizes. Row labels indicate expected proportions for a perfectly calibrated model.
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4 Conclusion

This work presents a novel alternative direction to uncertainty quantification in
MRI using generative models that does not rely solely on sampling. Our method
results in posteriors that are given explicitly as probability distributions, which
allows us to provide uniquely insightful visualisations describing the structure
and accuracy of the reconstruction, whilst retaining the ability to sample plau-
sible reconstructions from this posterior distribution as with other generative
modelling approaches. We present examples of such visualisations, and demon-
strate that our posteriors are well calibrated, thus validating our approach.
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