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Abstract

Knowledge distillation is an efficient strategy to use data generated by large teacher1

language models to train smaller “capable” student models, but selecting the2

optimal teacher for a specific student-task combination requires expensive trial-3

and-error. We propose a lightweight score called GRACE to quantify how effective4

a teacher will be when post-training a student model to solve math problems.5

GRACE efficiently measures distributional properties of student gradients, and it6

can be computed without access to a verifier, teacher logits, teacher internals, or test7

data. From an information-theoretic perspective, GRACE measures leave-one-out8

stability in gradient-based algorithms, directly connecting it to the generaliza-9

tion performance of distilled student models. On GSM8K and MATH, GRACE10

correlates strongly (up to 86%) with the performance of the distilled Llama and11

OLMo students. In particular, training on GRACE-selected teacher provides at12

least a 6% improvement over naively using the best-performing teacher. We further13

demonstrate the utility of GRACE in providing guidance on crucial design choices14

in distillation, including (1) the best temperature to use when generating from the15

teacher, (2) the best teacher to use given a size constraint, and (3) the best teacher16

to use within a specific model family. Altogether, our findings demonstrate that17

GRACE can efficiently and effectively identify the most compatible teacher for a18

given student and provide fine-grained guidance on how to perform distillation.19

1 Introduction20

Distillation is an efficient and effective method to produce capable small models from existing,21

powerful teacher models. In this work, we focus on the specific case of training autoregressive22

language models on text generated by a teacher model. It is difficult to select the right teacher for a23

given student and task: a counterintuitive fact is that a stronger-performing model is not always a24

better teacher, which has been observed in classic classification/regression settings (Mirzadeh et al.,25

2019; Harutyunyan et al., 2023; Panigrahi et al., 2025) and more recently in the context of language26

models (Zhang et al., 2023b,a; Peng et al., 2024; Razin et al., 2025). Given the large number of27

available models as potential teachers, the current approach of guess-and-check is costly, because it28

requires collecting generations from a capable teacher and subsequently training a student on those29

generations. Additionally, the specific hyperparameters used in both phases can dramatically affect30

the final performance of the student, underscoring the need for careful, repeated testing to select the31

right teacher. As such, the current work seeks to address the following question:32

Given a pool of candidates, can we efficiently identify the best teacher for a given student and task?33

We propose a score “GRACE” (GRAdient Cross-validation Evaluation) that measures the distribu-34

tional properties of the student’s gradients on a small set of teacher-generated data to identify the35
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Figure 1: GRACE correlates most strongly with student performance after distillation on
math-related reasoning tasks. Results in this figure are for a LLaMA-1B-Base student on GSM8K
and MATH using 15 teachers of different sizes across the LLaMA, Gemma, Qwen, OLMo, and
phi families. (Left) We compare the Spearman correlations between final student performance and
four candidate scores: the student’s loss on teacher generations, the teacher’s performance on the
task, G-Vendi (Jung et al., 2025), and our score GRACE. (Right) We plot how our score GRACE
compares to the final student performance on GSM8K, measured by the average accuracy of 16
response attempts on each prompt in the test set.

most compatible teacher efficiently and effectively (Section 2.2). Motivated by prior data selection36

and distillation works, GRACE unifies data diversity and student-teacher alignment desiderata into a37

single score that is efficient to compute and does not require access to an external verifier, teacher38

logits, teacher representations, or test data. Computing GRACE requires relatively few samples39

from each teacher, because it uses a cross-validation structure. This same structure allows us to40

draw a natural connection to conditional mutual information-based generalization bounds (Steinke &41

Zakynthinou, 2020; Rammal et al., 2022), providing insight into why GRACE works (Lemma 2.1).42

We perform thorough experiments to verify that the GRACE score of a teacher correlates strongly43

with the final performance of a student trained by that teacher. We focus on the math-related datasets44

GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), because broad community interest45

in mathematical reasoning has driven the development of a large, diverse set of teachers that are46

readily available and suitable for distillation. We train LLaMA-1B-Base and OLMo-1B-Base (for47

GSM8K) as well as LLaMA-3B-Base (for MATH) using generations sampled from 15 candidate48

teachers drawn from the LLaMA (Team, 2024c), OLMo (OLMo, 2024), Qwen (Qwen et al., 2024),49

Gemma (Team, 2024b), and Phi (Abdin et al., 2024) families. Our results show that:50

• GRACE correlates strongly with the student’s distillation performance (Figure 1), outperforming51

baselines such as G-Vendi (Jung et al., 2025).52

• Selecting teachers using GRACE yields more than 6% improvement in student accuracy compared53

to using the best-performing teacher, on both GSM8K and MATH. Moreover, students trained on54

teachers selected by GRACE reach within 1% of the absolute best outcome.55

• GRACE offers actionable insights to practitioners. It helps identify 1) the optimal generation56

temperature for a given teacher model, 2) the best model up to a certain size across model families,57

and 3) the best size within a model family.58

These results indicate that GRACE reliably identifies the most suitable teacher for a given student59

and offers precise guidance for effective distillation.60

2 GRACE: Gradient Cross-Validation Evaluation61

We consider the case of using distillation to fine-tune a pre-trained student model to solve specific62

downstream tasks. For each of the N prompts x ∈ X , we autoregressively generate M responses63

y1, ..., yM from a teacher distribution πT . This distribution encodes the temperature it may be64

sampled at from the teacher as well. We then fine-tune the pre-trained student with the standard65

autoregressive cross-entropy objective L on a dataset Ddistill
T containing N ×M teacher generations.66

In contrast to logit-based distillation, this setting permits distillation across architectures and in cases67

where the teacher’s logits are not available. We measure the performance of students and teachers as68
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the average accuracy of k sampled responses for a given prompt (i.e., average-at-k). We will use πS69

to denote the pre-trained student, and refer to its parameters as ΘS ∈ RD when necessary.70

2.1 Gradient-Based Scores71

The problem of selecting a teacher for distillation is closely connected to the well-studied field of72

data selection: choosing the best teacher based on its generations can be viewed as selecting the best73

subset from the union of all teachers’ generations, with the constraint that each subset must come74

from a single teacher. For language models, many successful data selection methods rely on first-75

or second-order gradient information to identify useful data for a given task. These methods are76

designed to select individual datapoints out a dataset, but in our case, we would like to select a data77

distribution (i.e., a teacher). As such, instead of quantifying the value of individual datapoints, we78

turn our attention to gradient-based approaches to measure data quality in terms of its distributional79

features. For a teacher πT , we assume access to only a subsampled dataset Deval
T ⊂ Ddistill

T containing80

n×m prompt-generation pairs, where n,m may be much smaller than N,M . In our experiments81

(Section 3), n×m is 60× smaller compared to the N ×M .82

Gradients. We establish some useful notation to work with gradients. Let g(x,y) := ∇L(y|x; ΘS)83

be the student’s gradient on the response y conditioned on prompt x. Since all gradients are84

computed with respect to the student model’s parameters, we omit the explicit dependency on ΘS85

for notational clarity. We process the gradient with two steps. First, for computational reasons,86

we work with a random low-dimensional projection of the gradient, denoted Πg ∈ Rd with Π ∈87

{±1/
√
D}d×D (Park et al., 2023). We also rescale the gradient to account for the response length88

|y| by multiplying the projected gradient by log |y|. This is motivated by the empirical observation89

that the gradient norm on a length-T sequence roughly decreases as 1/ log T (Figure 21), which can90

cause gradient-based computations to unduly favor short sequences (Xia et al., 2024).91

The processed gradient is denoted h(x,y) := log(|y|) · Πg(x,y). For a dataset D of generations,92

we also define the matrix consisting of processed gradients (h) as G(D) ∈ Rnm×d and processed93

and normalized gradients (h̃ = h/∥h∥) as G̃(D) ∈ Rnm×d. Then, we define the normalized Gram94

matrix and the mean:95

Σ̃(D) := 1

nm
G̃(D)⊤G̃(D), µ(D) := 1

nm
G(D)⊤1. (1)

G-Vendi (Jung et al., 2025). One natural distributional measure of data quality is diversity. Along96

these lines, Jung et al. (2025) propose the G-Vendi score, which measures the directional coverage of97

D as the entropy of the eigenvalues of the gradient Gram matrix.98

G-Vendi(D) := Entropy(λ(Σ̃(D))) = −
∑

λ∈λ(Σ̃(D))

λ log λ, (2)

where λ(Σ̃(D)) denotes the eigenvalues of the normalized gradient gram matrix with |λ(Σ̃(D))| =99

min{nm, d}. A larger G-Vendi score is better. Jung et al. (2025) use G-Vendi to select an optimal100

subset of training dataD from a full dataset generated by a single teacher. However, using G-Vendi to101

select a teacher out of many candidates may yield suboptimal choices. For example, when performing102

self-distillation, where the student serves as its own teacher, we find that the G-Vendi score for GSM8K103

(5.93) is higher than all other teacher models, even though the resulting student’s performance is as104

low as 4%. This observation leads us to investigate another gradient-based distributional score.105

G-Var. Prior works have shown that reducing gradient variance can boost generalization perfor-106

mance (Wang et al., 2013; Keskar et al., 2016; Wang et al., 2021; Feng & Tu, 2021). As such, we107

also compute the gradient variance (G-Var) as108

G-Var(D) := 1

nm
Tr

(
Gµ(D)Gµ(D)⊤

)
=

1

nm

∑
(x,y)∈D

∥h(x,y)− µ(D)∥2, (3)

where Gµ(D) = G(D) − 1µ(D)⊤ denotes the centered processed gradient matrix. A smaller109

G-Var score is considered better. Though G-Var alone is also insufficient. For example, on GSM8K,110

G-Var’s value is largely determined by the model family and not reflecting the student’s performance111

(Figure 2).112
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G-Var and G-Vendi together capture complementary distributional properties and can sometimes113

trend in different directions. For instance, we find that increasing the teacher’s generation temperature114

increases G-Var, suggesting that higher temperatures induce worse data, but also increases G-Vendi,115

indicating higher diversity (Figure 6). As such, we treat G-Var and G-Vendi as baselines and propose116

GRACE to unify them into one score.117

2.2 The GRACE Score118

GRAdient Cross-validation Evaluation, or GRACE, computes the gradient variance weighted under119

the spectrum of the normalized gradient Gram matrix. GRACE is computed solely using the student’s120

gradients on the teacher’s generations and does not require a verifier or access to test samples. We will121

first define the score, and then describe its connection to leave-one-out conditional mutual information.122

GRACE. For a dataset D of teacher generations containing n×m prompt-generation pairs, and123

a choice of hyperparameter C, construct C partitions of the prompts in the dataset D, denoted124

{Di}Ci=1, each containing n/C prompts and their generations. Let D−i denote the concatenation of125

all partitions except the partition Di. Then, GRACE is defined as126

GRACE(D) = 1

nm

C∑
i=1

Tr
(
Gµ(Di)M(D−i)

−1Gµ(Di)
⊤) (4)

=
1

nm

C∑
i=1

∑
(x,y)∈Di

∥M(Di)
−1/2(h(x,y)− µ(D))∥2, (5)

where M(D−i) = Σ̃(D−i) +
ν
d I with smoothing parameter ν > 0 for numerical stability.127

A smaller GRACE score indicates a better distillation teacher. GRACE combines the spectral128

information of G-Vendi with the variance computation in G-Var. In particular, we can interpret129

GRACE as spectral-weighted gradient variance: for a random partition (D1,D2), if {λj ,uj}j∈[d]130

denote the set of eigenvalues and eigenvectors for Σ̃(D2), then GRACE computes the following for131

the given partition:132 ∑
j∈[d]

1

σj +
ν
d

 1

|D1|
∑

(x,y)∈D1

(h(x,y)⊤uj)
2

 . (6)

A small GRACE score requires the gradients to have a small variance along all eigenvectors of Σ̃, and133

it penalizes the variances in directions where the eigenvalue is small more heavily. Variance along such134

high-signal directions is more harmful, because even small amounts of noise can induce instability or135

poor generalization. We consider the spectrum of the normalized gradients, since direction of the136

gradients is more relevant than scale with the use of adaptive optimizers and normalization layers137

(Loshchilov & Hutter, 2017; Ba et al., 2016; Li et al., 2022).138

Connecting GRACE to leave-one-out CMI: GRACE connects naturally to leave-one-out con-139

ditional mutual information (CMI), a frequently used concept in studying generalization (Xu &140

Raginsky, 2017; Steinke & Zakynthinou, 2020; Rammal et al., 2022). At a high level, CMI captures141

how much gradient updates are sensitive to removal of a sample and how much of this sensitivity can142

be tracked to the dropped sample. A higher sensitivity suggests necessary memorization to reduce143

loss on the training set D, which can lead to low generalization to unseen test examples. Under this144

framework, we show that GRACE successfully unifies G-Var and G-Vendi.145

Formally, we overload g(D; Θ) = 1
|D|

∑
(x,y)∈D g(x,y; Θ) to denote the gradient update on a dataset146

D. To keep our discussion general, we consider g(D; Θ) that uses gradients and a preconditioner147

matrix M:148

g(D,Θ) = M(D; Θ)g(D; Θ) + ϵ,

where ϵ ∼ N (0, σ2I) denotes the gradient noise. Setting M as identity recovers gradient descent,149

and setting M as a function of gradient second moments recovers various adaptive algorithms in150

practice.151
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Figure 2: GRACE achieves 86% Spearman correlation to Llama-1B’s post-distillation perfor-
mance on GSM8K, much higher than G-Var (55%) and G-Vendi (44%).

Let Θ′
D denote the resulting parameters after a gradient update with D, and Θ′

D\{(x,·)} denote152

the parameters from a set where all training data connected to a uniformly sampled prompt x are153

dropped from the training set D, then CMI measures the mutual information between the parameters154

Θ′
D\{(x,·)} and the dropped prompt x. We show that CMI can be bounded as follows:155

Lemma 2.1 (Informal). Let C = n, then for any D′, take M(Θ,D′) := Σ(D′)−1/2, then CMI is156

bounded by 1
σ2n2 GRACE(D).157

Choice of M for GRACE: We defined GRACE based on a particular choice of the pre-conditioner158

matrix in the definition of CMI. This is motivated by the adaptive optimization algorithms used in159

practice (Kingma, 2014; Loshchilov & Hutter, 2017; Duchi et al., 2011). In principle, one could160

obtain sharper predictions by choosing M optimally. We leave a more thorough exploration of this161

direction to future work.162

3 Experiments163

We compare the three scores mentioned in the previous section, G-Var, G-Vendi, and GRACE, on164

two common math reasoning datasets, GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,165

2021). These datasets have a diverse set of strong teacher models readily available, due to the broad166

community interest in mathematical reasoning. For each prompt-response pair, the model receives a167

binary correctness score, and we quantify its performance by the average accuracy achieved when168

sampling k responses for each prompt, referred to as average-at-k.169

Settings. The student model is taken to be Llama-1B-base or OLMo-1B-base on GSM8K (Cobbe170

et al., 2021), and Llama-3B-base on MATH (Hendrycks et al., 2021). We compare 15 teachers:171

Llama-(3.2/3.3) 3/8/70B Instruct models, Qwen-2.5 1.5/3/7/14B Instruct models, Qwen-2.5 Math172

1.5/7B Instruct models, Gemma-2 2/9/27B Instruct models, OLMo 7/13B Instruct models, and Phi-4173

on both MATH and GSM8K (Dubey et al., 2024; Abdin et al., 2024; Yang et al., 2024; Qwen et al.,174

2025; Team, 2024a). The teacher’s generation temperature is varied from 0.3 to 1.0 at 0.1 intervals.175

To compute our scores, we use a subset of n = 512 randomly selected training prompts from the176

training set, with m = 4 generations per prompt. For GRACE, we use C = 10-way cross validation.177

The student gradients are randomly projected to dimension d = n = 512; we provide ablation results178

on these hyperparameter choices in Section 3.3.179

Each distillation training run uses learning rate1 10−5 and 4 epochs over the training set. We use180

the cosine learning rate schedule with 5% warmup, 0 weight decay, and batch size 64. We generate181

M = 16 responses per prompt from each teacher and fine-tune the student on all generations without182

filtering for correctness of the final answer.2 We compare correlations of our metric to average-at-16183

1We searched over learning rates {5× 10−5, 10−5, 5× 10−6} and found 10−5 to be consistently the best.
2Surprisingly, our ablations in Appendix D.1 show that our results are not significantly affected if we filter by

correctness.
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Figure 3: GRACE achieves 74% Spearman correlation to OLMo-1B’s post-distillation perfor-
mance on GSM8K, significantly outperforming G-Var (43%) and G-Vendi (48%).

performance for the trained student model when responses are generated at temperature 1.0. 3 We184

discuss later in Section 3.3 the results change when we look at other performance metrics. The185

computation costs for computing GRACE are provided in Appendix C.3.186

3.1 GRACE correlates well with student’s performance187

Figure 2 shows that for a Llama-1B model trained on GSM8K, GRACE achieves the best Spearman188

correlation with the student performance on (0.86) when compared against G-Var (0.55) and G-Vendi189

(0.44). Additional experiments with an OLMo-1B model trained on GSM8K (Figure 3) and with a190

Llama-3B model trained on MATH (Figure 8) verify the utility of GRACE. In addition to G-Vendi191

and G-Var, we also compare against other data selection baselines (Figure 4); a full list is provided in192

Appendix C.1. Among all scores, GRACE is the only one to achieve consistently high correlation193

(> 85%) with student performance on both GSM8K and MATH.194

In contrast, two intuitive baselines fail to reflect the student’s distillation performance. The first is195

the teacher’s own performance, measured in terms of its Average-at-16 performance, which only196

shows a weak correlation of 11% for Llama-1B on GSM8K, in agreement with findings in prior197

work (Mirzadeh et al., 2019; Harutyunyan et al., 2023; Panigrahi et al., 2025; Zhang et al., 2023b,a;198

Peng et al., 2024; Razin et al., 2025). As an example, Llama-70B Instruct has the best performance199

among all teachers, yet a student trained with Llama-70B Instruct reaches only 46% Average-at-k200

performance. This is a 6.5% gap to the best performing student which has 52.5% accuracy. Similarly,201

the student’s loss on teacher’s generations, measured on the base student, is also poorly correlated202

with the student’s post-distillation performance (44% with Llama-1B training on GSM8K).203

Teacher selection requires balancing directional coverage and variance. As a case study, we com-204

pare different teachers under a fixed generation temperature of 0.6 (Figure 5). G-Var clearly separates205

Qwen-Instruct from Llama-Instruct teachers but fails to distinguish between Qwen, Phi-Instruct, and206

Qwen-Math-Instruct, suggesting that a low gradient variance alone is insufficient to identify the best207

teacher. On the other hand, although G-Vendi provides better separation among teachers with low208

G-Var, it also assigns higher scores to sub-optimal teachers, indicating that directional coverage by209

itself is also inadequate. In contrast, GRACE achieves the strongest correlation (92%) and correctly210

identifies Qwen-3B-Instruct as the optimal teacher.211

3.2 Guiding distillation practice with GRACE212

GRACE can go beyond identifying the best teacher and inform distillation practices. Below we213

discuss how GRACE provides guidance under common scenarios.214

Selecting generation temperature. The temperature τ used to rescale the teacher’s logits when gen-215

erating responses is known to have a strong influence on student performance after distillation (Zheng216

& Yang, 2024; Peng et al., 2024). However, there hasn’t been a principled approach to choose the217

temperature. We show in Figure 6 that GRACE can identify such a good generation temperature for218

3Results for greedy decoding is included in Figure 11 in appendix.
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Figure 4: GRACE is the only score achieving more than 80% correlation with the performance
of Llama-1B on GSM8K and Llama-3B on MATH. Teacher performance and the pre-trained
student’s loss on teacher generations show only weak correlations. While G-Var correlates well with
student performance on MATH, it is significantly worse on GSM8K.

Figure 5: GRACE can effectively correlate with student performance when compared across
different teacher choices. Here, we report Llama-1B performance on GSM8K across different
teacher choices at a generation temperature 0.6. GRACE achieves 90% correlation with student
performance after training, while also predicting Qwen-3B-Instruct to be the optimal teacher. The
black triangles mark the best teacher selected by each score. Gap denotes the performance gap
between the best performing student and student trained under the best teacher selected by each score.

two Qwen teachers: it closely predicts the optimal generation temperature for Llama-1B training,219

which are 0.8 (vs. predicted 0.9) with the 3B teacher and 0.4 (vs. predicted 0.5) with the 1.5B teacher.220

In comparison, G-Var and G-Vendi tend to increase monotonically with the temperature, even though221

the student’s performance shows an inverse U-shape in temperature. In Figure 7 (left), when averaged222

across all temperatures, we find that GRACE achieves 75% correlation with the student performance,223

outperforming the 53% and 59% correlations by G-Var and G-Vendi.224

Selecting a teacher under a size budget. In practice, one common resource constraint for distillation225

is the compute required to locally host open-source teachers. Motivated by this, we test whether226

GRACE can be used to select a teacher under a given size. Specifically, we evaluate three scale227

constraints: (1) 3B and below, (2) 10B and below, and (3) 30B and below. As shown in Figure 7228

(right), GRACE is highly effective, reaching more than 75% correlations and consistently identifying229

the best teacher under all three size budgets, while the baseline scores are much less reliable. Such230

difference is also reflected by the performance gap between the student trained by the ground truth231

best teacher, and the student trained by the teacher selected by each score. The gaps for GRACE are232

under 1% across all groups, indicating that it is often close to selecting the optimal teacher, whereas233

G-Vendi and G-Var can induce performance gaps of at least 5% for teacher sizes below 10B.234

Selecting teachers within a model family Another practical limitation is the family of models that235

one can access, motivating us to test GRACE against models within each model family. We split236

the teacher models by model family and consider all generation temperatures. Since some families237
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Figure 6: GRACE can identify a good generation temperature. Results are shown for Llama-
1B trained with Qwen-2.5-1.5B-Instruct and Qwen-2.5-3B-Instruct teachers on GSM8K. GRACE
correctly identifies that (1) a lower temperature is optimal for Qwen-2.5-1.5B-Instruct, and (2) a
higher temperature is effective for Qwen-2.5-3B-Instruct. In contrast, G-Var can only identify (1)
and G-Vendi can only identify (2).

Figure 7: GRACE is effective at predicting behavior of student performance with teacher
generation temperature (left) and the best teacher up to a certain size (right)). Results are for
Llama-1B on GSM8K. (Left) When varying the generation temperature for a fixed teacher, GRACE
gets a consistent strong negative correlation (75%). In contrast, all other scores do not show consistent
trends across teachers. Violin plots show the distribution over teachers. (Right) GRACE achieves
high correlation (75% and above) to performance for teachers under various size constraints.

include only a small number of teachers, the Spearman correlations can be unreliable. We hence238

report the performance gap between learning from the true best teachers and from the teacher selected239

by a score. As shown in Figure 13, when averaged across all families, GRACE achieves a gap of just240

1%, whereas other metrics yield average gaps of at least 3% or more. Moreover, we note that it is not241

always preferred to choose teacher from the same family as the student. For example, a Llama-1B242

base student learns better from a Qwen-Instruct teacher than any of Llama-Instruct teachers.243

3.3 Ablations244

We test the effect of various hyperparameters used in the GRACE computation. We vary the number245

of prompts (n), the number of generations per prompt (m), and the dimension of the gradient random246

projection (d). For the Llama-1B student on GSM8K, we find that GRACE is generally robust to247

these hyperparameter choices, and the default values (m = d = 512, m = 4) work well (see details248

in Appendix D.3). We also vary the number of cross-validation splits used in GRACE. For both249

GSM8K and MATH, the correlation with student performance remains fairly stable once C >= 6250

(Figure 20), so we set C = 10 for our experiments.251

To test the robustness with respect to teacher selection, we evaluate correlations on random subsets of252

teachers. In addition to the case studies in Section 3.2, we repeatedly compute scores over random253

subsets of teachers. As shown in Figure 22 and Figure 23, GRACE consistently maintains high254

correlations across these subsets (see details in Appendix D.5).255

We further examine how correlations change when replacing Average-at-k with other evaluation256

metrics. For GSM8K, we find that Spearman correlation drops when switching from Average-at-k257

to either greedy or best-of-k accuracy, even though GRACE still identifies the best teacher model258
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(Figures 11 and 12). Greedy reflects performance from a single generation at temperature 0.0, and259

best-of-k measures whether the student answers correctly at least once over k responses at generation260

temperature 1.0. A deeper investigation into the discrepancy between Average-at-k and these discrete261

performance metrics is left to future work.262

4 Related work263

Knowledge distillation Knowledge distillation is a classic method used to improve the optimization264

and generalization of a small model (Hinton et al., 2015). A counterintuitive finding is that a better-265

performing model is not necessarily a better teacher, which has been observed in both classic266

classification or regression settings (Mirzadeh et al., 2019; Jafari et al., 2021; Harutyunyan et al.,267

2023) and more recently in language models (Zhang et al., 2023a,b; Xu et al., 2024; Panigrahi et al.,268

2025). For language models, one can distill from either the logits of the teacher or the generated269

texts. 4 While the former can lead to better student performance, it is more computationally costly,270

requires higher access, and is less flexible due to tokenizer choices. We hence focus on distilling from271

generated texts (Eldan & Li, 2023; Li et al., 2023; Busbridge et al., 2025). Recent work by Guha et al.272

(2025) supports our findings: they demonstrate that a weaker teacher can yield a stronger distilled273

model, that distillation benefits from increased sample size, and that filtering has little impact on the274

resulting student’s performance.275

Data selection For text-based distillation, selecting the best teacher can be considered as the276

problem of choosing the most useful subset of samples from the generations of all teachers. This277

aligns with the broad task of data selection, which aims to identify subsets of data that maximize278

certain utility (Sorscher et al., 2022; Albalak et al., 2024). Many approaches leverage gradient279

information (Mirzasoleiman et al., 2019; Killamsetty et al., 2020; Pruthi et al., 2020; Xia et al.,280

2024), including some that directly rely on notions of coverage (Ash et al., 2019; Jung et al., 2025).281

Directional coverage also ties to the notion of coverage in reinforcement learning. Specifically,282

autoregressive training on teacher generations can be viewed as a form of behavior cloning, for which283

increasing the coverage is provably beneficial (Song et al., 2024; Huang et al., 2025; Rohatgi et al.,284

2025). Despite these similarities, distillation differs from standard data selection in that it allows285

generating new data and offers a richer design space (Peng et al., 2024). An effective teacher-selection286

score should therefore be versatile and broadly applicable across scenarios, a property that GRACE287

demonstrates as shown in Section 3.2.288

5 Discussion and Conclusion289

Motivated from an optimization perspective, this work leverages gradient information to design290

a score for identifying the most suitable teacher for distillation. We identified two distributional291

properties of the student’s gradients: the directional coverage of the (normalized) gradients, and the292

gradient variance. Variants of the former has been adopted in data selection, whereas the latter is less293

explored in the context of distillation. Our proposed score, GRACE, combines both properties and294

strongly correlates with the student’s performance after distillation. Experiments on GSM8K and295

MATH establish that GRACE enables principled comparison across teachers and offers actionable296

insights into practical scenarios, highlighting GRACE’s potential as a practical and general-purpose297

tool for guiding distillation practices.298

There are several promising avenues for future work. A natural next step is to refine GRACE into299

a more fine-grained score. While it already captures two important distributional properties of the300

student’s gradients, its correlations with downstream performance are not yet perfect, suggesting that301

additional explanatory factors remain untapped. Potential candidates include incorporating richer302

properties of the teacher and distribution-specific characteristics of the data. Although GRACE’s303

design intentionally avoids requiring teacher logits, selectively incorporating logit-level information304

where available may lead to further performance gains. It will also be interesting to investigate305

GRACE’s utility in adaptive distillation strategies, where teacher choice may vary dynamically across306

training stages or subsets of data, rather than being fixed upfront.307

4We consider generations following standard next-token distributions, as opposed to antidistillation sam-
pling (Savani et al., 2025).
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A Connecting GRACE to Leave-one-out CMI467

A.1 Informal discussion468

All our discussion assumes that we don’t apply a pre-processing function h and we look into the469

original gradient space in this section.470

Suppose the parameters of the student model are denoted by ΘS ∈ RD. For theoretical presentation471

purposes, we collect 1 response per prompt from the teacher on n prompts, forming the training set472

D. Our theoretical statements can be generalized to the case, where we collect multiple responses for473

each prompt. We will use Ê as the empirical mean. Let U = U(x ∈ D) be a random variable that474

selects a prompt x̂ uniformly at random and removes all prompt–response pairs associated with it.475

The resulting dataset is476

DU := D \ {(x̂, ŷ)}.

We then perform a single gradient update with a preconditioner matrix M that can depend on the477

training set DU :478

Θft;U ← ΘS − η E(x,y)∼DU

[
M(DU ; ΘS)∇L(y|x; ΘS)

]
+ ϵ, (7)

where ϵ ∼ N (0, σ2I) denotes Gaussian noise.479

We measure the CMI between the updated parameters Θft;U and the random variable U , defined as480

I(Θft;U ;U | D). This quantifies how much information about the omitted prompt x̂ can be inferred481

from the updated parameters after training. For simplicity of notation, we define the following482

notations, following our notation on GRACE:483

µ(D \ {(x̂, ŷ)}) = ÊD\{(x̂,ŷ)}∇L(y|x; ΘS)

Σ̃(D \ {(x̂, ŷ)}) = 1

(n− 1)m
G̃⊤G̃

where G̃ contains normalized gradients from examples in the set D \ {(x̂, ŷ)}.484

Lemma A.1 (Informal). Under the one-step update rule on the parameters Θ (Equation (7)),485

I(Θft;U ;U |S) ≲
2η2

σ2n2
Ê(x̂,ŷ) ∥M(D \ {(x̂, ŷ)}; ΘS) ḡx̂,ŷ∥22

If we use gradient descent and set M as I, we get G-Var that uses mean shifted gradients. If486

instead we choose M as the inverse normalized gradient covariance matrix, i.e. MD\{(x̂,ŷ)} =487

Σ̃(D \ {(x̂, ŷ)})−1/2, we recover GRACE.488

The lemma indicates that GRACE evaluates the stability of a one-step gradient update when few489

prompts are removed from the batch. Importantly, the outcome of this update depends on the490

optimization method, since gradient descent and preconditioned updates can behave differently. In491

our setting, the preconditioner matrix is closely related to the one used in AdaGrad (Duchi et al.,492

2011). Since adaptive optimizers are the de facto choice for training language models, it is essential493

to incorporate this preconditioning effect in our analysis. In principle, one could obtain sharper494

predictions by choosing M optimally. This might require a short warm-up training phase of the495

student model and setting M as a function of the optimizer states during the warm-up training, akin496

to Xia et al. (2024). We leave a more thorough exploration of this direction to future work.497

Note on theoretical limitations: Our current analysis only establishes a connection between GRACE498

and leave-one-out conditional mutual information. Prior work by Rammal et al. (2022) shows that499

this quantity upper-bounds the generalization gap in terms of the gap between train and test loss.500

By contrast, our experiments focus on tracking the student model’s test performance using GRACE.501

Empirically, we find that GRACE serves as a reliable predictor of student performance, even though502

it fails to correlate with loss-based quantities. This gap highlights the need for a stronger theoretical503

framework to fully explain the behavior of GRACE, which we leave to future work.504
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B Proof of Lemma A.1505

We will slightly simplify notations for presentation. We will use506

M−{(x̂,ŷ)} := M (D \ {(x̂, ŷ)}; ΘS)

µ−{(x̂,ŷ)} := µ (D \ {(x̂, ŷ)}; ΘS) .

Then, a more formal version of Lemma A.1 is given as follows:507

Lemma B.1 (Bounds for Pre-conditioned Gradient Descent). Under the one-step update rule on the508

parameters Θ (Equation (7)),509

I(Θft;U ;U |S) ≲
3η2

σ2n2
Ê(x̂,ŷ)

∥∥M−{(x̂,ŷ)}ḡx̂,ŷ

∥∥2
2

+
3η2

σ2
Ê(x̂,ŷ)

∥∥∥(M−{(x̂,ŷ)} − Ê(x̄,ȳ)M−{(x̄,ȳ)}

)
µ−{(x̂,ŷ)}

∥∥∥2
2

where ḡx̂,ŷ = ∇L(ŷ | x̂; ΘS)− µ−{(x̂,ŷ)}.

Proof. For any (x̄, ȳ) pair, denote the mean parameter update on the training set D \ (x̄, ȳ) as510

δ−(x̄,ȳ) := ΘS − ηM−{(x̄,ȳ)}µ−{(x̄,ȳ)}.511

By the definition of CMI,512

I(Θft;U ;U |S) = Êu∼UDKL

(
pΘft;u|D,u||ÊūpΘft;Ū |D,ū

)
,

where pΘft;u|D,u denotes the probability distribution of Θft;u conditioned on dropping prompts from513

D according to the random variable u. Note that there is a one-to-one correspondence between the514

variable u and the random prompt x̂ that we drop. Thus, one can write515

I(Θft;U ;U |S) = Êx̂DKL

(
pΘft;−x̂|D,x̂||Êx̄pΘft;−x̄|D,x̄

)
,

where pΘft;−x̂|D,x̂ denotes the probability distribution of Θft;−x̂ conditioned on dropping prompts516

from x̂ from the training set.517

The update rule for any set D \ (x̄, ȳ) is given by518

Θft;−x̄ ← ΘS − δ−(x̄,ȳ) + ϵ := δ−(x̄,ȳ) + ϵ.

Because of the gaussian noise ϵ,519

Θft;−x̂ ∼ N
(
δ−(x̄,ȳ), σ

2I
)
.

Then, using the properties of gaussian distribution;520

I(Θft;U ;U | D) = Êx̂DKL

(
pΘft;−x̂|D,x̂

∥∥∥∥ Êx̄pΘft;−x̄|D,x̄

)
= Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
log

(
1
Z e−∥X−δ−(x̂,ŷ)∥22/2σ2

)
− log Êx̄

(
1
Z e−∥X−δ−(x̄,ȳ)∥22/2σ2

))
≤ Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
log

(
1
Z e−∥X−δ−(x̂,ŷ)∥22/2σ2

)
− Êx̄ log

(
1
Z e−∥X−δ−(x̄,ȳ)∥22/2σ2

))
=

1

2σ2
Êx̂ÊX∼N(δ−(x̂,ŷ),σ2I)

(
−
∥∥X − δ−(x̂,ŷ)

∥∥2
2
+ Êx̄

∥∥X − δ−(x̄,ȳ)

∥∥2
2

)
=

1

2σ2
Êx̂Êx̄ÊX∼N(δ−(x̂,ŷ),σ2I)

(
−
∥∥X − δ−(x̂,ŷ)

∥∥2
2
+

∥∥X − δ−(x̄,ȳ)

∥∥2
2

)
=

1

2σ2
Êx̂Êx̄

∥∥δ−(x̄,ȳ) − δ−(x̂,ŷ)

∥∥2
2

=
1

σ2
Êx̂

∥∥∥δ−(x̂,ŷ) − Êx̄δ−(x̄,ȳ)

∥∥∥2
2

In the second step, we simply use the CDF formulation of gaussian distribution, where Z = (2πe)−D.521

The third step applies a jensen’s inequality.522
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Using the definition of δ, we have523

I(Θft;U ;U | D) ≤
1

σ2
Êx̂

∥∥∥M−(x̂,ŷ)µ−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}µ−{(x̄,ȳ)}

∥∥∥2
2

Warmup: When the pre-conditioner is identity matrix Then for any (x̄, ȳ) pair, we have524

M−{(x̄,ȳ)} = I. Then, the formulation simplifies to525

I(Θft;U ;U | D) ≤
η2

σ2
Êx̂

∥∥∥µ−{(x̂,ŷ)} − Êx̄µ−{(x̄,ȳ)}

∥∥∥2
2

=
η2

σ2
Êx̂

∥∥∥∥ n

n− 1
µ(D)− 1

n− 1
∇L(ŷ | x̂; ΘS)− Êx̄

(
n

n− 1
µ(D)− 1

n− 1
∇L(ȳ | x̄; ΘS)

)∥∥∥∥2
2

=
η2

σ2(n− 1)2
Êx̂

∥∥∥∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)
∥∥∥2
2

=
η2

σ2(n− 1)2
Êx̂

(
1− 1

n

)2 ∥∥∥∇L(ŷ | x̂; ΘS)− ÊD\x̄∇L(ȳ | x̄; ΘS)
∥∥∥2
2

=
η2

σ2n2
Êx̂

∥∥∥∇L(ŷ | x̂; ΘS)− ÊD\{x̄,ȳ}∇L(ȳ | x̄; ΘS)
∥∥∥2
2

The first step follows from the fact that µ(D) = Êx̂∼DL(ŷ | x̂; ΘS).526

General pre-conditioner M: We follow similar steps as above:527

I(Θft;U ;U | D) ≤
η2

σ2
Êx̂

∥∥∥M−{(x̂,ŷ)}µ−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}µ−{(x̄,ȳ)}

∥∥∥2
2

=
η2

σ2
Êx̂

∥∥∥ n

n− 1
M−{(x̂,ŷ)}µ(D)−

1

n− 1
M−{(x̂,ŷ)}∇L(ŷ | x̂; ΘS)

− Êx̄

(
n

n− 1
M−{(x̄,ȳ)}µ(D)−

1

n− 1
M−{(x̄,ȳ)}∇L(ȳ | x̄; ΘS)

)∥∥∥2
=

η2

σ2
Êx̂

∥∥∥ n

n− 1

(
M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

− 1

n− 1

(
M−{(x̂,ŷ)}∇L(ŷ | x̂; ΘS)− Êx̄

(
M−{(x̄,ȳ)}∇L(ȳ | x̄; ΘS)

)) ∥∥∥2
=

η2

σ2
Êx̂

∥∥∥ n

n− 1

(
M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

− 1

n− 1
M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)
− 1

n− 1
Êx̄

(
M−{(x̂,ŷ)} −M−{(x̄,ȳ)}

)
∇L(ȳ | x̄; ΘS)

∥∥∥2
≤ 3η2

σ2
Êx̂

(
n

n− 1

)2

Êx̂

∥∥∥(M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥Êx̄

(
M−{(x̂,ŷ)} −M−{(x̄,ȳ)}

)
∇L(ȳ | x̄; ΘS)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)∥∥∥2
2

≤ 3η2

σ2
Êx̂

(
n

n− 1

)2

Êx̂

∥∥∥(M−{(x̂,ŷ)} − Êx̄M−{(x̄,ȳ)}

)
µ(D)

∥∥∥2
2

+
3η2

σ2

1

(n− 1)2
Êx̂

∥∥∥M−{(x̂,ŷ)}

(
∇L(ŷ | x̂; ΘS)− Êx̄∇L(ȳ | x̄; ΘS)

)∥∥∥2
2
+O

(
1/n4

)
.

Here, we assume that M is a well conditioned matrix, and so the second term is a small term of528

order 1
n4 . This can be ensured by a small smoothing term. The first term looks at the sensitivity of529
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the pre-conditioned matrix M when a sample is dropped. The second term looks at the change in530

gradient with a drop in sample.531

532

When M is set as Σ̃−1/2, we find there are two terms in the bound above: how much Σ̃−1/2 changes533

with a drop in sample and second, how much the gradients change with respect to the Σ̃−1/2 matrix,534

which is related to the GRACE term. We find that Σ̃−1/2 is extremely stable in our experiments, and535

the first term is 5− 10x smaller compared to the second term. This gives us the rough bound that the536

CMI is bounded by GRACE.537

C Additional results538

Here, we report the performance when we allow more computation for the computation of GRACE.539

We use highher d than the ones reported in Figures 2 and 3. We use d = 1024 and n = 512. The540

correlation improves for both the models on GSM8K; however it hurts on MATH.541

Figure 8: GRACE achieves 88% correlation to Llama-3B performance after training on MATH,
across all teacher, generation temperature combinations. G-Var and G-Vendi can achieve 90%
and 74% correlation respectively. Here, n = 512, d = 512 are used to compute all metrics.

C.1 More baselines542

We consider the following baselines:543

1. Student Loss on the teacher’s generations;544

2. G-Var (Equation (3));545

3. G-Vendi (Equation (2));546

4. Determinant547

5. Determinant × gradient norm, corresponding to BADGE (Ash et al., 2019), which captures548

both the diversity and magnitude of gradients;549

6. Gradient inner product, which is another way to capture gradient diversity: Given gradients550

from the training setD, we compute pairwise inner product between the normalized gradients551

of generations for the same prompt:552

ExE(x,y1),(x,y2)∼D

[
g1

∥g1∥2

]⊤
g2

∥g2∥2
,

where g1 = ∇LCE(x,y1;πS),

g2 = ∇LCE(x,y2;πS).

7. Gradient inner product with norm, which is similar to the above but additionally considering553

gradient magnitude: Here, we compute pairwise inner product between the gradients of554

generations from the same prompt.555

8. Average Probabilities (per token): this computes the average probability per token of the556

student on the teacher’s generations, averaged over all generations and all prompts.557
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9. Best average probabilities per prompt: we compute the average probability per token for558

each generation, and take the highest average probability (i.e. the most probable) across all559

generations of the same prompt. We then take an average across all prompts.560

10. Correct average probabilities: Here, we simply compute the average probabilities of tokens561

in correct generations for each prompt and take the average across all prompts.562

11. Incorrect average probabilities: Same as above, but over incorrect generations.563

12. Different average probabilities per prompt: For each prompt, we compute the average per-564

token probabilities for correct and incorrect generations respectively, and take the difference565

of the two. We then average over all prompts.566

As mentioned in Section 3, naive metrics are not useful for identifying the best teachers.567

C.2 Performance gap with GRACE selected teacher v/s the absolute best teacher568

In addition to spearman correlations that we reported in the main paper, we also report the performance569

gap of the student trained with the teacher that is judged to be the best w.r.t. a metric, and the570

performance of the absolute best student. We report this metric for the following two cases: first,571

when we look at teachers constrained to a some size, and second, when we look at teachers constrained572

to a particular model family (from our discussion in Section 3.2). We observe that in both cases,573

across different groups, GRACE returns the least performance gap. Please see Figures 13 and 14.574

Figure 9: Repeated experiment from Figure 2 but with d = 1024. GRACE achieves 90% correlation
to Llama-1B performance after training on GSM8K, across all teacher, generation temperature
combinations. G-Var and G-Vendi can only achieve 55% and 47% correlation respectively.

Figure 10: Repeated experiment from Figure 3 but with d = 1024. GRACE achieves 81% cor-
relation to Llama-1B performance after training on GSM8K, across all teacher, generation
temperature combinations. G-Var and G-Vendi can only achieve 43% and 50% correlation respec-
tively.

C.3 Computational complexity575

GRACE is computationally inexpensive to compute. As shown in Table 1, for m = d = 512 and576

m = 4, the gradients for each model takes around 10 minutes to compute and around 4.3MB to store.577
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Figure 11: Repeated experiment from Figure 2 but greedy performance of trained student model.
GRACE achieves only 70% correlation to Llama-1B performance after training on GSM8K,
across all teacher, generation temperature combinations. This is a sharp reduction from 90%
correlation to Average-at-16. However, GRACE still predicts the optimal teacher.

Figure 12: Repeated experiment from Figure 2 but best-of-16 performance of trained student model.
GRACE achieves only 64% correlation to Llama-1B performance after training on GSM8K,
across all teacher, generation temperature combinations. This is a sharp reduction from 90%
correlation to Average-at-16. However, GRACE still predicts the optimal teacher.

Figure 13: Gaps in the best performing and best predicted student model for each metric across
teacher families for Llama-1B training on GSM8K. We observe that on average, GRACE selects a
teacher that returns a student within 1% performance to the absolute best performing student from
the teachers in a model family. On the other hand, other metrics can select a teacher that can return a
student with performance gap atleast 3% w.r.t. the absolute best performing student from the teachers
in a model family.

19



Figure 14: Gaps in the best performing and best predicted student model for each metric across
teacher scale groups for Llama-1B training on GSM8K. We observe that across each group, GRACE
selects a teacher that returns a student within 1% performance to the absolute best performing student
from the teachers in the group. On the other hand, other metrics can select a teacher that can return
a student with performance gap atleast 2.5% w.r.t. the absolute best performing student from the
teachers in the group.

Gradient Features Computation Metric Computation

Computation complexity O(n ·m · P · d) O(n ·m · d2 + d3)
Running time ≈ 10 minutes < 10 seconds

Storage Complexity O(n ·m · d) -
Actual storage 4.3 MB -

Table 1: Time complexity to compute GRACE. The running time and the actual storage have been
computed on ñ = 512, m = 4, d = 512 for Llama-1B training on GSM8K, and have been reported
as a rough average across all settings. Wall-clock time has been reported on a single H100 (80 GB)
GPU. For gradient computation, we use 32 parallel CPU threads following Park et al. (2023). Here,
P denotes the number of parameters in the model.

D Ablations578

D.1 Filtering v/s No filtering579

In our experiments in the main paper, we perform no filtering of the responses from the teacher.580

Here, we compare to the case when we filter the teacher’s responses by correctness. We sample 16581

responses from each teacher and remove the incorrect responses. Then, we sample with repetition to582

get a set of 16 responses to train the model.583

First, we find that the student gets worse performance with filtering of correct responses from the584

teacher (Figure 15). However, we find that when we compare our metrics to the student performance585

after training, we find that our metrics have slightly higher spearman correlation with the student586

performance when we train with filtering on teacher responses, compared to student trained with no587

filtering on the teacher responses (Figure 16).588

D.2 Ablation on training hyperparameters589

We observe that a Llama-1B model trained on generations of Llama-70B Instruct models and Gemma-590

2-27B Instruct models perform badly. We train with learning 1e0−5 on the 16 generations per prompt591

of the teacher for 4 epochs. One primary question is whether the small model is over-optimizing on592

the teacher’s generations. To check this, we track the train and test performance of the trained model593

with varying number of generations (Figure 17) and epochs of training (Figure 18). We observe that594

the performance of the trained student model improves with increasing number of epochs and number595

of generations, implying no over-optimization in our training setting.596
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Figure 15: Comparing teachers, when we filter correct responses from the teacher v/s when we don’t
filter correct responses from the teacher. Here, we train Llama-1B on GSM8K with 15 teachers
and generation temperatures 0.4, 0.6, 0.8, 1.0. We compare students trained from teacher without
filtering (x-axis) with students trained from teacher with correct answer filtering (y-axis). We find
that students trained with no filtering outperforms models trained with filtering.

Figure 16: Comparisons between the metrics and the student performance when we filter responses
v/s we don’t filter correct responses from the teacher. Here, we train Llama-1B on GSM8K with 15
teachers and generation temperatures 0.4, 0.6, 0.8, 1.0. We find that our metrics have slightly higher
spearman correlation to the student performance when we filter correct responses from the teacher
and train only on them.

D.3 Ablations on the parameters of GRACE597

In Figure 19, we show the behavior of GRACE with changing hyperparameters. We take Llama-598

1B training on GSM8K as a case-study. We vary number of prompts (n), number of generations599

per prompt (m), and the projection dimension of gradients (d) for computing the GRACE score600

and compare correlations to the student performance. We observe that (a) GRACE improves with601

increasing gradient dimension, (b) GRACE gives a good enough estimate with m = 4 generations602

per prompt, (c) GRACE generally increases with number of prompts that we consider but might show603

a small dip as we increase further.604

We additionally vary the number of cross-validation splits used in GRACE. As shown in Figure 20,605

the correlations to the student performance do not vary much for both GSM8k and MATH for more606

than C = 6 splits. We take C = 10 as the default.607
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Figure 17: Llama-1B training on GSM8K with 16 responses per prompt of gemma-27b-instruct
and llama-70b instruct model. We vary the number of epochs and observe that both train and test
performance improves with more epochs of training. Here, the definition of pass@16 on y-axis is
identical to Average-at-16.

Figure 18: Llama-1B training on GSM8K with varying number of responses per prompt of gemma-
27b-instruct and llama-70b instruct model. We observe that both train and test performance improves
with more training samples from the teacher. Here, the definition of pass@16 on y-axis is identical to
Average-at-16.

D.4 Gradient norm’s relation to length608

Figure 21 shows that the norm of the gradient on a generation decreases as the generation length609

grows, roughly following a trend of 1/ log T for length-T generations, consistent with observations610

in Xia et al. (2024). Intuitively, this is likely because longer generations tend to contain a larger611

fraction of less important tokens that do not contribute much to the overall gradient. This observation612

motivates the log T scaling in Section 2.613

D.5 Ablation on robustness of metrics614

We check the robustness of each metric by reporting the distributions of the metric values computed615

over random subsets of teachers. Specifically, we use 100 random draws of subsets consisting of 60%616

of teachers.617

We compare GRACE against the baselines listed in Appendix C.1. Among all candidate metrics,618

GRACE is the only one showing consistently strong correlations on both datasets.619

620
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(a) When we vary gradient projec-
tion dimension d with n.

(b) When we vary number of gener-
ations m per prompt.

(c) When we vary number of
prompts

Figure 19: Varying hyperparameters for GRACE on Llama-1B training on GSM8K at generation
temperature 0.8. We use the base setup as n = 512, m = 16, and d = n. We vary one of them,
while fixing the others. Main takeaway: (a) GRACE improves with increasing gradient dimension,
(b) GRACE gives a good enough estimate with m = 4 generations per prompt, (c) GRACE generally
increases with number of prompts that we consider but might show a small dip as we increase further.

Figure 20: Varying number of cross-validation splits on GSM8K (left) and MATH (right).

Figure 21: Gradient norm decreases inversely with log T , where T is the sequence length. This
motivates the gradient scaling in Section 2.
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Figure 22: Robustness of metrics on GSM8k: we report the distribution of metric values, computed
over 100 random subsets of teachers, each consisting of 60% of the full set of teacher-temperature
combinations. The proposed metric GRACE consistently shows strong correlations.

Figure 23: Robustness of metrics on MATH: following the same setup as Figure 22, GRACE shows
the strongest correlation with smallest variations across random subsets.
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