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Abstract 

Unsupervised domain adaptive classifcation intends to improve the classifcation 
performance on unlabeled target domain. To alleviate the adverse effect of domain 
shift, many approaches align the source and target domains in the feature space. 
However, a feature is usually taken as a whole for alignment without explicitly 
making domain alignment proactively serve the classifcation task, leading to sub-
optimal solution. In this paper, we propose an effective Task-oriented Alignment 
(ToAlign) for unsupervised domain adaptation (UDA). We study what features 
should be aligned across domains and propose to make the domain alignment 
proactively serve classifcation by performing feature decomposition and alignment 
under the guidance of the prior knowledge induced from the classifcation task 
itself. Particularly, we explicitly decompose a feature in the source domain into 
a task-related/discriminative feature that should be aligned, and a task-irrelevant 
feature that should be avoided/ignored, based on the classifcation meta-knowledge. 
Extensive experimental results on various benchmarks (e.g., Offce-Home, Visda-
2017, and DomainNet) under different domain adaptation settings demonstrate the 
effectiveness of ToAlign which helps achieve the state-of-the-art performance. The 
code is publicly available at https://github.com/microsoft/UDA. 

1 Introduction 

Convolutional Neural Networks (CNNs) have made extraordinary progress in various computer vision 
tasks, with image classifcation as a most representative one. The trained models generally perform 
well on the testing data which shares similar data distribution to that of the training data. However, in 
many practical scenarios, drastic performance degradation is observed when applying such trained 
models to new domains with domain shift [57], where the data distributions between the training and 
testing domains are different. Fine-tuning on labeled target data is a direct solution but is costly due 
to the requirement of target sample annotations. In contrast, unsupervised domain adaptation (UDA) 
requires only the labeled source data and unlabeled target data to enhance the model’s performance 
on the target domain, which has attracted increasing interest in both academia [3, 2, 72, 58, 25, 31] 
and industry [63, 27]. 

There has been a large spectrum of UDA methods. Supported by the theoretical analysis [3], the 
overwhelming majority of methods tend to align the distributions of source and target domains. 
A line of works [6, 67, 43, 54, 55] explicitly align the distributions based on domain discrepancy 
measurements, e.g., Maximum Mean Discrepancy (MMD) [6]. Another line of alignment-based 
UDAs borrow ideas from Generative Adversarial Networks [19] and use domain adversarial training 
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Figure 1: Illustration of adversarial learning based (a) Baseline and (b) our proposed ToAlign. 
D and C denote domain discriminator and image classifer respectively. (a) Baseline (e.g., DANN 
[18]) directly aligns the target feature f t with the holistic source feature fs . Domain alignment and 
image classifcation tasks are optimized in parallel. (b) Our proposed ToAlign makes the domain 
alignment proactively serve the classifcation task, where target feature f t is aligned with source 
task-discriminative "positive" feature fs which is obtained under the guidance of meta-knowledge p
induced from the classifcation task. denotes Hadamard product. 

to learn domain-aligned/invariant features, which dominate in the top performance methods. In the 
seminal work Domain Adversarial Neural Network (DANN) [17, 18], a domain discriminator is 
trained to distinguish the target features from source features while a feature extractor (generator) is 
trained to generate domain-invariant features to fool this discriminator. Following DANN, a plethora 
of variants have been proposed [58, 40, 51, 11, 50, 61, 38, 41, 14, 10, 64]. 

It is noteworthy that the goal of alignment in UDA is to alleviate the adverse effect of domain shift to 
improve the classifcation performance on unlabeled target data. Even though impressive progress has 
been made, there is a common intrinsic limitation, i.e., alignment is still not deliberately designed 
to dedicatedly/proactively serve the fnal image classifcation task. In many previous UDAs, as 
shown in Figure 1 (a), the alignment task is in parallel with the ultimate classifcation task. The 
assumption is that learning domain-invariant features (via alignment) reduces the domain gap and thus 
makes the image classifer trained on source readily applicable to target [3]. However, with alignment 
treated as a parallel task, there is a lack of mechanism to make it explicitly assist classifcation, where 
the alignment may contaminate the discriminative features for classifcation [28]. Previous works 
(e.g., CDAN [40]) exploit class information (e.g., predicted class probability) as a condition to the 
discriminator. MADA [42] implements class-level domain alignment by applying one discriminator 
per class. Their purpose is to provide additional helpful information to the discriminator [40] or 
perform class-level alignment [42], but they are still short of explicitly making alignment assist 
classifcation. 

Some works move a step forward and investigate what features the networks should align for better 
adaptation. [62, 32] focus on transferable local regions, which are selected based on the uncertainty 
or entropy of the domain discriminator, for alignment. However, such self-induced feature selection 
is still not specifc to the optimization of classifcation task; instead, it is based on the alignment task 
itself. There is no guarantee that alignment positively serves the classifcation task. Hsu et al. [23] 
carry out object centerness-aware alignment by aligning the center part of the objects to exclude the 
background distraction/noise for domain adaptive object detection. However, the feature in object 
center position could be task-irrelevant and thus is not suited for alignment. Moreover, regarding such 
centerness feature as alignment objective is somewhat ad-hoc, which is still not designed directly 
from the perspective of assisting classifcation. 

We pinpoint that the selection of "right" features to achieve task-oriented alignment is important. For 
classifcation, the essence is to train the network to extract class-discriminative feature. Similarly, for 
UDA classifcation, it is also desired to assure strong discrimination of the target domain features 
without class label supervision. Thus, we intend to align target features to the task-discriminative 
source features while ignoring the task-irrelevant ones. Note that for the feature of a source sample, it 
contains both task/classifcation-discriminative and task-irrelevant information, because the network 
is in general not able to suppress non-discriminative feature responses (e.g., responses unrelated to 
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Figure 2: Conceptual comparison between (a) previous alignment and (b) our proposed task-oriented 
alignment. {f t} and {fs} denote the sets of target features and source features, respectively. (a) 
Previous methods take each source feature as a holistic one for alignment with target features. (b) We 
decompose each source feature fs into a task-discriminative positive feature fs and a task-irrelevant p 

negative feature fs and make the target features to be aligned with the positive source features {fs}n p 

while avoiding aligning with the negative source features {fs}.n 

image class or those related to other tasks such as alignment) perfectly [52, 9]. Aligning target features 
with task-irrelevant source features would prevent alignment from serving classifcation and lead to 
poor adaptation. Intuitively, for example, image style that is a non-causal factor for classifcation 
can be considered as task-irrelevant information and the bias towards such factor in alignment may 
hurt the classifcation task. We demonstrate this by conducting experiments where only the source 
task-irrelevant features are utilized to align with target i.e., the scheme Baseline+TiAlign in Figure 
3. The performance of Baseline+TiAlign (in purple) on target test set drops drastically compared to 
the source-only method which dose not incorporate any alignment technique. This corroborates that 
aligning with task-irrelevant features is even harmful to the classifcation on target domain. 

Motivated by this, in this paper, we propose an effective UDA method named Task-oriented Alignment 
(ToAlign) to make the domain alignment explicitly serve classifcation. We achieve this by performing 
feature alignment guided by the meta-knowledge induced from the classifcation task to make the 
target features align with task-discriminative source features (i.e., "positive" features), to avoid the 
interference from task-irrelevant features (i.e., "negative" features). Figure 2 conceptually illustrates 
the comparison between our proposed alignment and previous one. Particularly, as illustrated in 
Figure 1 (b), to obtain the suitable feature from a source sample for alignment with target samples, 
we leverage the classifcation task to guide the extraction/distillation of task-related/discriminative 
feature fp

s , from original feature fs . Correspondingly, for the domain alignment task, we enforce 
aligning target features with the source positive features by domain adversarial training to achieve 
task-oriented alignment. In this way, the domain alignment will better assist the classifcation task. 

We summarize our main contributions as follows: 

• We pinpoint that the selection of "right" features to achieve task-orientated alignment is important 
for adaptation. 

• We propose an effective UDA approach named ToAlign which enables the alignment to explic-
itly serve classifcation. We decompose a source feature into a task-relevant/discriminative one 
and a task-irrelevant one under the guidance of classifcation-meta knowledge for performing 
classifcation-oriented alignment, which explicitly guides the network what features should be 
aligned. 

Extensive experimental results demonstrate the effectiveness of ToAlign. ToAlign is generic and can 
be applied to different adversarial learning based UDAs to enhance their adaption capability, which 
helps achieve the state-of-the-art performance with a negligible increase in training complexity and 
no increase in inference complexity. 

2 Related Work 

Unsupervised Domain Adaptation aims to transfer the knowledge from labeled source domain(s) 
to unlabeled target domain. Ben et al. [3] theoretically reveal that learning domain-invariant 
representations helps make the image classifer trained on source domain applicable to target domain. 
Various works learn domain-invariant features by aligning the source and target distributions measured 
by some metrics [6, 67, 43, 54, 55, 45], or by domain adversarial learning [58, 40, 51, 11, 50, 61, 
38, 69, 56, 41, 14, 10, 64, 8, 29]. The latter is overwhelmingly popular in recent years owing to its 
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Figure 3: Classifcation accuracy on target 
(Rw→Cl in Offce-Home) for different meth-
ods. TiAlign denotes aligning target features 
with task-irrelevant source features. 

Figure 4: Visualization of task-discriminative and 
task-irrelvant features. The positive features gen-
erally focus on the foreground objects which pro-
vide the most discriminative information for clas-
sifcation, while the negative ones focus on non-
discriminative background regions. The images 
are sampled from Offce-Home. 

superiority in dealing with distribution problems [19]. Note that our proposed method is designed to 
enhance the capability of the widely used domain adversarial learning based approaches. 

For domain adversarial learning based approach (e.g., DANN [17, 18]), in general, a domain dis-
criminator is trained to distinguish the source domain from the target domain, meanwhile a feature 
extractor is trained to learn domain-invariant features. Many variants of DANN have been proposed 
[40, 14, 56, 10, 12, 56, 69, 35, 5]. CDAN [40] further conditions the discriminator on the image 
class information conveyed in the classifer predictions. MADA [42] implements class-wise align-
ment with multi-discriminators. GSDA [24] performs class-, group- and domain-wise alignments 
simultaneously, where the three types of alignment are enforced to be consistent in their gradients 
for more precise alignment. HDA [12] leverages domain-specifc representations as heuristics to 
obtain domain-invariant representations from a heuristic search perspective. CMSS [66] exploits 
Curriculum Learning (CL) [4] to align target samples with the dynamically selected source samples 
to exploit the different transferability of the source samples. 

However, in these methods, the domain alignment is designed as a task in parallel with the image 
classifcation task. It does not explicitly take serving classifcation as its mission, where such 
alignment may result in loss of discriminative information. Jin et al. [28] remedy the loss of 
discriminative information caused by alignment via incorporating a restoration module. Wei et 
al. [64] pinpoint that alignment and classifcation are not well coordinated in optimization where 
they may contradict with each other. They thus propose to use meta-learning to coordinate their 
optimization directions. 

In this paper, to make alignment explicitly serve classifcation, we propose a task-oriented alignment. 
Guided by the classifcation meta-knowledge, task-discriminative sub-features are selected for align-
ment. Different from [64], we investigate what features should be aligned to assist classifcation and 
intend to provide more interpretable alignment. We are the frst to perform task-oriented alignment by 
decomposing source feature into task-discriminative and task-irrelevant feature, and explicitly guides 
the network what sub-features should be aligned. Note that Huang et al. [26] propose to decouple 
features into domain-invariant and domain-specifc features, where the former ones are aligned for 
unsupervised person re-identifcation. [44, 7] exploit the VAE framework with several complex losses 
to perform the disentanglement from the perspective of domain and semantics simultaneously, and 
only use domain-invariant semantics for inference, leaving domain-specifc but task-related informa-
tion underexplored. In contrast to focusing on the domain-level, our decomposition strategy focuses 
on the task-level guided by image classifcation task, where we further enable domain alignment on 
the task-discriminative features to proactively serve image classifcation. 

3 Task-Oriented Alignment for UDA 

Unsupervised domain adaptation (UDA) for classifcation aims to train a classifcation model on 
labeled source domain image set Xs and unlabeled target domain image set Xt to obtain high 
classifcation accuracy on a target domain test set. 

Most popular adversarial learning based UDAs attempt to align the features of the source and target 
domains to alleviate the domain gap to improve the classifcation performance on target domain. As 
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mentioned before, aligning based on holistic features is sub-optimal, where such alignment does not 
explicitly serve classifcation. To address this, as illustrated in Figure 1 (b), we propose an effective 
task-oriented alignment to explicitly make the alignment serve classifcation. Particularly, we propose 
to decompose a source sample feature into a task-discriminative one that should be aligned, and a 
task-irrelevant one that should be ignored based on the classifcation meta-knowledge. Then, we 
perform alignment between the target features and the positive source features, which is consistent 
with the essence of the classifcation task, i.e., focusing on discriminative features. 

In Sec. 3.1, to be self-contained, we briefy introduce adversarial learning based UDAs. We answer the 
question of what feature should be aligned to better serve classifcation and introduce our task-oriented 
feature decomposition and alignment in Sec. 3.2. 

3.1 Recap of Domain Adversarial UDAs 

Domain adversarial learning based UDAs typically train a domain discriminator D to distinguish 
which domain (i.e., source or target) a sample belongs to, and adversarially train a feature extractor G 
to fool the discriminator D in order to learn domain-invariant feature representations. The network is 
also trained under the supervision of image classifcation on the labeled source samples. Particularly, 
D is optimized to minimize the domain classifcation loss LD (i.e., binary cross entropy loss). 
Meanwhile, G is optimized to maximize the domain classifcation loss LD and minimize the image 
classifcation loss Lcls (i.e., cross entropy loss): 

argmin LD, 
D (1)

argmin Lcls − LD, 
G 

To achieve adversarial training, usually, gradient reversal layer (GRL) [17, 18] which connects G and 
D is used via multiplying the gradient from D by a negative constant during the back-propagation to 
G. LD is typically defned as [18, 40, 14]: 

LD(Xs, Xt) = −Exs∼Xs [log(D(G(xs)))] − Ext ∼Xt [log(1 − D(G(xt)))] , (2) 

3.2 Task-oriented Feature Decomposition and Alignment 

In adversarial learning based UDAs, a feature ingested by D as a holistic feature from a source or target 
sample, in general contains both task/classifcation-discriminative information and task-irrelevant 
information. Intuitively, aligning the task-irrelevant features would not effectively reduce the domain 
gap of the task-discriminative features and thus brings no obvious beneft for the classifcation task. 
Mistakenly aligning the target features with the source task-irrelevant features would hurt the 
discrimination power of the target features. We also experimentally confrm that in Figure 3, i.e., 
aligning with task-irrelevant features (TiAlign, line in purple) drastically reduces the classifcation 
accuracy on the target domain. Therefore, we propose to decompose a holistic feature of each 
source sample into a task-discriminative feature and a task-irrelevant feature to enable the 
task-oriented alignment with the target features. 

Particularly, we softly select/re-weight (based on Grad-CAM [52]) the feature vector f s of a source 
sample to obtain task-discriminative feature fs that is discriminative for identifying the groundtruth p
class, which we refer to as positive feature. Correspondingly, the task-irrelevant feature fs can ben 
obtained simultaneously, which we refer to as negative feature. 

Task-Oriented Feature Decomposition. Grad-CAM [73, 52, 9] is a widely used technique to 
localize the most important features for classifcation in a convolutional neural network model. As 
analyzed in [73, 52, 9, 53], the gradients (w.r.t. the feature for classifcation) of the fnal predicted 
score corresponding to the ground-truth class convey the task-discriminative information, which 
identifes the relevant features to recognize the image class correctly. It is noteworthy that such 
task-discriminative information is, in general, highly related (but not limited) to the foreground object 
in the classifcation task. In this work, motivated by Grad-CAM, we propose to use the gradients of 
the predicted score corresponding to the ground-truth class as the attention weights to obtain the 
task-discriminative features. 

As illustrated in Figure 1, we obtain a feature map F ∈ RH×W ×M (i.e., a tensor of non-negative real + 
numbers, with height H , width W , and M channels) from the fnal convolutional block (with ReLU 
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layer) of the feature extractor. After spatial-wise global average pooling (GAP), we have a feature 
vector f = pool(F ) ∈ RM . The logits for all classes are predicted via the classifer C(·). Based on 
the response C(f), we can derive the gradient wcls ∈ RM of yk w.r.t. f : 

∂yk 
cls w = , (3)

∂f 

where yk is the predicted score corresponding to the ground-truth class k. As analyzed in [52, 9, 53], 
cls the gradient w conveys the channel-wise importance information of feature f for classifying 

cls tothe sample into its groudtruth class k. We draw inspiration from Grad-CAM which uses w 
modulate the feature map in channel-wise to fnd the classifcation-discriminative features. Similarly, 

cls modulated with w , we can obtain the task-discriminative (i.e., positive) feature as: 
cls cls fp = w f = sw f , (4)p 

cls where represents the Hadamard product, the attention weight vector w = swcls, where s ∈ R+p 

is an adaptive non-negative parameter to modulate the energy E(fp) = ||fp||2 of fp such that E(fp) = 2 
E(f): vuut 

s PM 

s = 
||f ||2 

2 

||wcls 

f2 
mm=1 , (5)PM = 

f ||2 
2 (wcls )2 

m fmm=1 

Motivated by the counterfactual analysis in [52], the task-irrelevant (i.e., negative) feature can be 
cls cls represented as fn = −w f , where −w delights the task-discriminative channels since the p p 

cls task-discriminative channels (with larger values in w ) correspond to ones with smaller values in p 
cls -w .p 

To better understand and validate the discriminativeness of the positive and negative features, we 
visualize the spatial maps F with channels modulated by wcls and −wcls following [52, 73]. As 
shown in Figure 4, the positive information is more related to the foreground objects that provide the 
discriminative information for the classifcation task, while the negative one is more in connection 
with the non-discriminative background regions. 

Task-oriented Domain Alignment. As discussed above, we expect the domain alignment to ex-
plicitly serve the fnal classifcation task. Given the source task-discriminative features obtained 
based on the classifcation meta-knowledge, we can guide the target features to be aligned with the 
source task-discriminative features fp through different domain adversarial learning based alignment 
methods [17, 18, 12]. The procedure is almost the same as that in UDAs discussed in Sec. 3.1, except 
that the input source feature fs to the fnal domain discriminator is replaced by the positive feature f s 

p
of this source sample. Thus, the domain classifcation loss is defned with a small modifcation on Eq. 
(2): 

LD(Xs, Xt) = −Exs∼Xs [log(D(Gp(xs)))] − Ext∼Xt [log(1 − D(G(xt)))] . (6) 

where Gp(xs) = fs denotes the positive feature of source xs.p 

Understanding from the Meta-knowledge Perspective. To enable a better understanding of 
ToAlign on why it works well, here, we analyse ToAlign from the perspective of meta-learning 
with meta-knowledge. 

In an adversarial UDA framework, the image classifcation task and domain alignment task can 
be considered to be a meta-train task T tr and a meta-test task T te , respectively. ToAlign actually 
introduces knowledge communication from T tr to T te . In the meta-training stage, we can obtain 
the prior/meta-knowledge φtr of T tr . Without effective communication between T tr and T te, the 
optimization of T te may contradict that of T tr, considering that they have different optimization goals. 
To improve the knowledge communication from T tr to T te, certain meaningful prior/meta-knowledge 
φtr is helpful for a more effective T te|φtr . A typical implementation of passing meta-knowledge 
from T tr to T te is based on gradients [39, 16, 34, 64, 33], i.e., rT tr, which provides knowledge of 
T tr . Other mechanisms e.g., leveraging the parameters regularizer in a way of weight decay, are also 
exploited [1, 71]. In our ToAlign, instead of encoding the meta-knowledge φtr into the gradients w.r.t. 
the parameters, we use T tr to learn/derive attention weights for identifying T tr-related sub-features 
in the feature space and then pass such prior/meta-knowledge φtr to T te to make meta-test task T te 

φtr 

adapt its optimization based on φtr . 

6 



Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg 

Source-Only [21] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1 

MCD(CVPR’18) [50] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1 

CDAN(NeurIPS’18) [40] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8 

ALDA(AAAI’20) [10] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6 

SymNet(NeurIPS’18) [69] 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2 

TADA(AAAI’19) [62] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6 

MDD(ICML’19) [68] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1 

BNM(CVPR’20) [13] 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4 

GSDA(CVPR’20) [24] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3 

GVB(CVPR’20) [14] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4 

E-Mix(AAAI’21) [72] 57.7 76.6 79.8 63.6 74.1 75.0 63.4 56.4 79.7 72.8 62.4 85.5 70.6 

MetaAlign(CVPR’21) [64] 59.3 76.0 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3 

DANNP [64] 54.2 70.0 77.6 62.3 72.4 73.1 61.3 52.7 80.0 72.0 56.8 83.1 67.9 

DANNP+ToAlign 56.8↑ 74.8↑ 79.9↑ 64.0↑ 73.9↑ 75.3↑ 63.8↑ 53.7↑ 81.1↑ 73.1↑ 58.2↑ 84.0↑ 69.9↑ 

HDA(NeurIPS’20) [12] 56.8 75.2 79.8 65.1 73.9 75.2 66.3 56.7 81.8 75.4 59.7 84.7 70.9 

HDA+ToAlign 57.9↑ 76.9↑ 80.8↑ 66.7↑ 75.6↑ 77.0↑ 67.8↑ 57.0↑ 82.5↑ 75.1↓ 60.0↑ 84.9↑ 72.0↑ 

Table 1: Accuracy (%) of different UDAs on Offce-Home with ResNet-50 as backbone. Best in bold. 

In this work, actually, we are motivated by the reliable human prior knowledge on what should 
be aligned across domains to better assist classifcation task for UDA (i.e., task/classifcation-
discriminative features), while excluding the interference from task-irrelevant ones. Accordingly, in 
our design, we obtain the prior/meta-knowledge for identifying task-discriminative features from 
the classifcation task (meta-train) and apply it to the domain alignment task (meta-test) to achieve 
task-oriented alignment. 

4 Experiments 

To evaluate the effectiveness of ToAlign, we conduct comprehensive experiments under three domain 
adaptation settings, i.e., single source unsupervised domain adaptation (SUDA), multi-source unsu-
pervised domain adaptation (MUDA) and semi-supervised domain adaptation (SSDA). For SSDA, 
domain adaptation is performed from labeled source domain to partially labeled target domain [15]. 

4.1 Datasets and Implementation Details 

Datasets. We use two commonly used benchmark datasets (i.e., Offce-Home [60] and VisDA-
2017 [46]) for SUDA and a large-scale dataset DomainNet [43] for MUDA and SSDA. 1) Offce-
Home [60] consists of images from four different domains: Art (Ar), Clipart (Cl), Product (Pr), 
and Real-World (Rw). Each domain contains 65 object categories in offce and home environments. 
Following the typical settings [14, 12, 64, 40], we evaluate methods on one-source to one-target 
domain adaptation, resulting in 12 adaptation cases in total. 2) VisDA-2017 [46] is a synthetic-to-real 
dataset for domain adaptation with over 280,000 images across 12 categories, where the source 
images are synthetic and the target images are real collected from MS COCO dataset [37]. 3) 
DomainNet [43] is a large-scale dataset containing about 600,000 images across 345 categories, 
which span 6 domains with large domain gap: Clipart (C), Infograph (I), Painting (P), Quickdraw 
(Q), Real (R), and Sketch (S). For MUDA, following the settings in [43, 66, 12, 33, 59], we evaluate 
methods on fve-sources to one-target domain adaptation, resulting in 6 MUDA cases in total. For 
SSDA, we take the typical protocal in [22, 48, 12], where there are 7 SSDA cases conducted on the 4 
sub-domains (i.e., C, R, P and S) with 126 sub-categories selected from DomainNet. All methods 
are evaluated under the one-shot/three-shot setting respectively, where besides unlabeled samples, 
one/three sample(s) per class in the target domain are available during training. 

Implementation Details. We apply our ToAlign on top of two different baseline schemes: 
DANNP [14, 64] and HDA [12]. DANNP is an improved variant of the classical adversarial learning 
based adaptation method DANN [17, 18], where the domain discrimination D is conditioned on 
the predicted class probabilities. HDA is a state-of-the-art adversarial training based method which 
leverages the domain-specifc representations as heuristics to obtain domain-invariant representations. 
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Methods Clipart Infograph Painting Quickdraw Real Sketch Avg. 

Source-Only [21] 47.6±0.52 13.0±0.41 38.1±0.45 13.3±0.39 51.9±0.85 33.7±0.54 32.9±0.54 

ADDA(CVPR’17) [58] 47.5±0.76 11.4±0.67 36.7±0.53 14.7±0.50 49.1±0.82 33.5±0.49 32.2±0.63 

DANN(ICML’15) [17] 45.5±0.59 13.1±0.72 37.0±0.69 13.2±0.77 48.9±0.65 31.8±0.62 32.6±0.68 

DCTN(CVPR’18) [65] 48.6±0.73 23.5±0.59 48.8±0.63 7.2±0.46 53.5±0.56 47.3±0.47 38.2±0.57 

MCD(CVPR’18) [50] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5±0.61 

M3SDA(ICCV’19) [43] 57.2±0.98 24.2±1.21 51.6±0.44 5.2±0.45 61.6±0.89 49.6±0.56 41.5±0.74 

M3SDA-β(ICCV’19) [43] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6±0.64 

MDAN(NeurIPS’18) [70] 60.3±0.41 25.0±0.43 50.3±0.36 8.2±1.92 61.5±0.46 51.3±0.58 42.8±0.69 

MLMSDA(Arxiv’20) [36] 61.4±0.79 26.2±0.41 51.9±0.20 19.1±0.31 57.0±1.04 50.3±0.67 44.3±0.57 

GVBG(CVPR’20) [14] 61.5±0.44 23.9±0.71 54.2±0.46 16.4±0.57 67.8±0.98 52.5±0.62 46.0±0.63 

CMSS(ECCV’20) [66] 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.5±0.24 

HDA(NeurIPS’20) [12] 63.6±0.35 25.9±0.16 56.1±0.38 16.6±0.54 69.1±0.42 54.3±0.26 47.6±0.40 

Baseline 66.4±0.24 24.7±0.16 57.3±0.10 11.5±0.17 69.2±0.21 55.2±0.13 47.3±0.19 

Baseline+ToAlign ↑67.0±0.22 ↑25.9±0.20 ↑57.8±0.32 ↑12.2±0.14 ↑70.7±0.25 ↑56.0±0.18 ↑48.2±0.22 

Table 2: Accuracy (%) of different MUDA methods on DomainNet with ResNet-101 as backbone. 
Best in bold. 

Method Acc. 

DANNP 67.9 

DANNP+ToAlign 

s =1 

s =8 

s =16 

s =64 

s =128 

Adaptive s 

59.7 

68.8 

69.7 

70.0 

69.8 

69.9 

Method Time/ms GPU mem./MB Acc./% 

DANNP 550 6,660 67.9 
DANNP+ 
MetaAlign[64] 1,000 10,004 69.5 

DANNP+ 
ToAlign 590 6,668 69.9 

Table 4: Training complexity comparison (on GTX 
TITAN X GPU) in terms of computational time (of 

Table 3: Ablation study on the infu- one iteration) and GPU memory for a mini-batch 
ence of s in Eq. 5. with batch size 32. 

We use the ResNet-50 [21] pre-trained on ImageNet [30] as the backbone for SUDA, while using 
ResNet-101 and ResNet-34 for MUDA and SSDA respectively. Following [64, 40, 12], the image 
classifer C is composed of one fully connected layer. The discriminator D consists of three fully 
connected layers with inserted dropout and ReLU layers. We follow [69] to take an annealing strategy 

η0to set the learning rate η, i.e., ηt = , where p indicates the progress of training that increases (1+γp)τ 

linearly from 0 to 1, γ = 10, and τ = 0.75. The initial learning rate η0 is set to 1e − 3, 3e − 4, 3e − 4, 
and 1e − 3 for SUDA on Offce-Home, SUDA on VisDA-2017, MSDA on DomainNet, and SSDA 
on DomainNet, respectively. All reported experimental results are the average of three runs with 
different seeds. 

4.2 Ablation Study 

Effectiveness of ToAlign on Different Baselines. Our proposed ToAlign is generic and applicable 
to different domain adversarial training based baselines, where we focus on what features to align 
instead of the alignment methods. The last four rows in Table 1 show the ablation comparisons 
on Offce-Home. Our ToAlign improves the accuracy of baseline DANNP and HDA by 2.0% and 
1.1% respectively. As can be seen from the results in Table 1, Table 2, Table 5 and Table 6, our 
ToAlign can consistently bring signifcant improvement over the baseline schemes under different 
domain adaptation settings, i.e., SUDA, MUDA and SSDA. ToAlign enables the domain alignment 
task to proactively serve the classifcation task, resulting in more effective feature alignment for 
image classifcation. 

Effectiveness of Different Ways to Obtain Positive Features. As mentioned in Sec. 3.2, we use 
cls cls w = sw as the attention weight (which conveys the classifcation prior/meta-knowledge) to p

derive positive feature fp, where s is a parameter to modulate the energy of fp. We study the infuence 
of s under the setting of Rw→Cl on Offce-Home for our scheme DANNP+ToAlign and illustrate 
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Methods R→C R→P P→C C→S S→P R→S P→R Avg. 
Source-Only [21] 55.6 60.6 56.8 50.8 56.0 46.3 71.8 56.9 
DANN(ICML’15) [17] 58.2 61.4 56.3 52.8 57.4 52.2 70.3 58.4 
ADR(ICLR’18) [49] 57.1 61.3 57.0 51.0 56.0 49.0 72.0 57.6 
CDAN(NeurIPS’18) [40] 65.0 64.9 63.7 53.1 63.4 54.5 73.2 62.5 
ENT(NeurIPS’05) [20] 65.2 65.9 65.4 54.6 59.7 52.1 75.0 62.6 
MME(ICCV’19) [48] 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4 
CANN(Arxiv’20) [47] 72.7 70.3 69.8 60.5 66.4 62.7 77.3 68.5 
GVBG(CVPR’20) [14] 70.8 65.9 71.1 62.4 65.1 67.1 76.8 68.4 

HDA(NeurIPS’20) [12] 72.4 71.0 71.0 63.6 68.8 64.2 79.9 70.0 
HDA+ToAlign 73.0↑ 72.0↑ 71.7↑ 63.0↓ 69.3↑ 64.6↑ 80.8↑ 70.6↑ 

Table 5: Accuracy (%) of different one-shot SSDA methods on DomainNet with ResNet-34 as 
backbone. Best in bold. 

Methods R→C R→P P→C C→S S→P R→S P→R Avg. 
Source-Only [21] 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0 
ADR(ICLR’18) [49] 60.7 61.9 60.7 54.4 59.9 51.1 74.2 60.4 
CDAN(NeurIPS’18) [40] 69.0 67.3 68.4 57.8 65.3 59.0 78.5 66.5 
ENT(NeurIPS’05) [20] 71.0 69.2 71.1 60.0 62.1 61.1 78.6 67.6 
MME(ICCV’19) [48] 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9 
MetaMME(ECCV’20) [33] 73.5 70.3 72.8 62.8 68.0 63.8 79.2 70.1 
GVBG(CVPR’20) [14] 73.3 68.7 72.9 65.3 66.6 68.5 79.2 70.6 
CANN(Arxiv’20) [47] 75.4 71.5 73.2 64.1 69.4 64.2 80.8 71.2 

HDA(NeurIPS’20) [12] 74.5 71.5 73.9 65.9 70.1 65.9 81.9 71.8 
HDA+ToAlign 75.7↑ 72.9↑ 75.6↑ 66.2↑ 71.1↑ 66.4↑ 83.0↑ 73.0↑ 

Table 6: Accuracy (%) of different three-shot SSDA methods on DomainNet with ResNet-34 as 
backbone. Best in bold. 

the results in Table 3. As discussed around Eq. (5), we can use an adaptively calculated s, which 
achieves 2% improvement over the baseline on target test data. Moreover, we can treat s as a preset 
hyper-parameter. We found that the performance drops drastically if s is too small (e.g., s = 1). 
That is because the energy of the source positive feature will get too weak when s gets too small 
(e.g., the source feature f ’s average energy E(f) is about 800; if s = 1, the source positive feature’s 
average energy E(fp) is about 2). Then, it would be ineffective to align the target with the source 
positive features. When s is larger than 16, the performance signifcantly outperforms the baseline and 
approaches the result of using adaptive s. As an optional design choice, we could transform the weight 
wcls with certain activation function σ(·) such as Sigmoid or Softmax followed by a best selected 

cls scaling factor s, i.e., w = sσ(wcls). We found the results (i.e., 69.6/69.7 for Sigmoid/Softmax) p 
are close to that without activation function. We reckon that what is more important is the relative 

cls importance among the elements in w . For simplicity, we fnally take the adaptive s (cf. Eq. 5) for 
all experiments. 

4.3 Comparison with the State-of-the-arts 

Single Source Unsupervised Domain Adaptation (SUDA). We incorporate our ToAlign into the 
recent state-of-the-art UDA method HDA [12], denoted as HDA+ToAlign. Table 1 shows the compar-
isons with the previous state-of-the-art methods on Offce-Home. HDA+ToAlign outperforms all the 
previous methods and achieves the state-of-the-art performance. It is noteworthy that HDA+ToAlign 
achieves the best adaptation results on almost all the one-source to one-target adaptation cases thanks 
to the effective feature alignment for classifcation. The results on VisDA-2017 could be found in 
Appendix, where HDA+ToAlign outperforms HDA by 0.9%. 

Multi-source Unsupervised Domain Adaptation (MUDA). Table 2 shows the results on Domain-
Net, where all the methods take ResNet-101 as the feature extractor. We build our Baseline based on 
HDA [12]. For simplicity, we replace the multi-class domain discriminator in the original HDA by a 
two-class one as in [58, 17, 66]. Note that CMSS [66] selects suitable source samples for alignment 
while our ToAlign selects task-discriminative sub-feature for each sample for task-oriented alignment. 
Compared with Baseline, ToAlign brings about 0.9% improvement and helps to achieve the best 
performance on this more challenging dataset. 
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Figure 5: Visualization of the feature response maps on target test images. First row: Art of 
Offce-Home. Second row: Painting of DomainNet. 

Semi-supervised Domain Adaptation (SSDA). Table 5 and Table 6 show the results on one-shot 
and three-shot SSDA respectively, where all the methods use ResNet-34 as backbone. To compare 
with previous methods, we apply ToAlign on top of HDA. HDA+ToAlign outperforms HDA by 
0.6%/1.2% for one-/three-shot settings, and surpasses all previous SSDA methods. 

4.4 Complexity 

In Table 4, we compare the training complexity and performance of ToAlign with baseline DANNP, 
and DANNP+MetaAlign [64] which incorporates meta-learning to coordinate the optimization 
of domain alignment and image classifcation. In contrast, inspired by the prior knowledge of 
what feature should be aligned to serve classifcation task, we distill such meta-knowledge from 
classifcation task and explicitly pass it to alignment task for classifcation-oriented alignment, 
eschewing complex optimization. Compared with baseline, ToAlign introduces negligible additional 
computational cost (only 7%) and occupies almost the same GPU memory as the baseline, which is 
much smaller than that of DANNP+MetaAlign, which almost doubles the computational cost due 
to its complex meta-optimization. Thanks to our explicit design which makes domain alignment 
effectively serve the classifcation task, our ToAlign achieves superior performance to MetaAlign. 

4.5 Feature Visualization 

We visualize the target feature response maps F (which will be pooled to be the input of the image 
classifer) of the Baseline (DANNP) and ToAlign in Figure 5. Baseline sometimes focuses on the 
background features which are useless to the image classifcation task, since it aligns the holistic 
features without considering the discriminativeness of different channels/sub-features. Thanks to 
our task-oriented alignment, in ToAlign, the features with higher responses are in general related to 
task-discriminative features, which is more consistent with human perception. More results can be 
found in the Appendix. 

5 Conclusion 

In this paper, we study what features should be aligned across domains for more effective unsuper-
vised domain adaptive image classifcation. To make the domain alignment task proactively serve 
the classifcation task, we propose an effective task-oriented alignment (ToAlign). We explicitly 
decompose a feature in the source domain into a task-related feature that should be aligned and a 
task-irrelevant one that should be ignored, under the guidance of the meta-knowledge induced from 
the classifcation task itself. Extensive experiments on various datasets demonstrate the effectiveness 
of our ToAlign. In our future work, we will extend ToAlign to tasks beyond image classifcation, e.g., 
object detection and segmentation. 
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