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Abstract

When solving inverse problems, one increasingly popular approach is to use pre-trained dif-
fusion models as plug-and-play priors. This framework can accommodate different forward
models without re-training while preserving the generative capability of diffusion models.
Despite their success in many imaging inverse problems, most existing methods rely on priv-
ileged information such as derivative, pseudo-inverse, or full knowledge about the forward
model. This reliance poses a substantial limitation that restricts their use in a wide range
of problems where such information is unavailable, such as in many scientific applications.
We propose Ensemble Kalman Diffusion Guidance (EnKG), a derivative-free approach that
can solve inverse problems by only accessing forward model evaluations and a pre-trained
diffusion model prior. We study the empirical effectiveness of EnKG across various inverse
problems, including scientific settings such as inferring fluid flows and astronomical objects,
which are highly non-linear inverse problems that often only permit black-box access to the
forward model. We open-source our code at https://github.com/devzhk/enkg-pytorch.

1 Introduction

The idea of using pre-trained diffusion models (Song et al., 2020; Ho et al., 2020) as plug-and-play priors
for solving inverse problems has been increasingly popular and successful across various applications includ-
ing medical imaging (Song et al., 2021; Sun et al., 2023), image restoration (Chung et al., 2022b; Wang
et al., 2022), and image and music generation (Rout et al., 2024b; Huang et al., 2024). A key advantage
of this approach is its flexibility to accommodate different problems without re-training while maintaining
the expressive power of diffusion models to capture complex and high-dimensional prior data distributions.
However, most existing algorithms rely on privileged information of the forward model, such as its deriva-
tive (Chung et al., 2022a; Song et al., 2023b), pseudo-inverse (Song et al., 2023a), or knowledge of its
parameterization (Chung et al., 2023a). This reliance poses a substantial limitation that prevents their
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use in problems where such information is generally unavailable. For instance, in many scientific applica-
tions (Oliver et al., 2008; Evensen & Van Leeuwen, 1996; Iglesias, 2015), the forward model consists of a
system of partial differential equations whose derivative or pseudo-inverse is generally unavailable or even
undefined.

The goal of this work is to develop an effective method that only requires black-box access to the forward
model and pre-trained diffusion model for solving general inverse problems. Such an approach could signifi-
cantly extend the range of diffusion-based inverse problems studied in the current literature, unlocking a new
class of applications – especially many scientific applications. The major challenge here arises from the dif-
ficulty of approximating the gradient of a general forward model with only black-box access. The standard
zero-order gradient estimation methods are known to scale poorly with the problem dimension (Berahas
et al., 2022).

To develop our approach, we first propose a generic prediction-correction (PC) framework using an opti-
mization perspective that includes existing diffusion guidance-based methods (Chung et al., 2022a; Song
et al., 2023b;a; Peng et al., 2024; Tang et al., 2024) as special cases. The key idea of this PC framework is
to decompose diffusion guidance into two explicitly separate steps, unconditional generation (i.e., sampling
from the diffusion model prior), and guidance imposed by the observations and forward model. This modular
viewpoint allows us to both develop new insights of the existing methods, as well as to introduce new tools to
develop a fully derivative-free guidance method. Our approach, called Ensemble Kalman Diffusion Guidance
(EnKG), uses an ensemble of particles to estimate the guidance term while only using black-box queries
to the forward model (i.e., no derivatives are needed), using a technique known as statistical linearization
(Evensen, 2003; Schillings & Stuart, 2017) that we introduce to diffusion guidance via our PC framework.

Contributions

• We present a generic prediction-correction (PC) framework that provides an alternative interpreta-
tion of guided diffusion, as well as additional insights of the existing methods.

• Building upon the PC framework, we propose Ensemble Kalman Diffusion Guidance (EnKG), a fully
derivative-free approach that leverages pre-trained model in a plug-and-play manner for solving
general inverse problems. EnKG only requires black-box access to the forward model and can
accommodate different forward models without any re-training.

• We evaluate on various inverse problems including the standard imaging tasks and scientific problems
like the Navier-Stokes equation and black-hole imaging. On more challenging tasks, such as nonlinear
phase retrieval in standard imaging and the scientific inverse tasks, our proposed EnKG outperforms
baseline methods by a large margin. For problems with very expensive forward models (e.g., Navier-
Stokes equation), EnKG also stands out as being much more computationally efficient than other
derivative-free methods.

2 Background & Problem Setting

Problem setting Let G : Rn → Rm denote the forward model that maps the true unobserved source x
to observations y. We consider the following setting:

y = G(x) + ξ, x ∈ Rn,y, ξ ∈ Rm (1)

where we only have black-box access to G (generally assumed to be non-linear). ξ represents the observation
noise which is often modeled as Gaussian, i.e., ξ ∼ N (0,Γ), and y represents the observation. Solving the
inverse problem amounts to inverting Eq. (1), i.e., finding the most likely x (MAP inference) or its posterior
distribution P (x|y) (posterior inference) given y. This inverse task is often expressed via Bayes’s rule as
p(x|y) ∝ p(y|x) · p(x). Here p(x) is the prior distribution over source signals (which we instantiate using a
pre-trained diffusion model), and p(y|x) is defined as (1). Because we only have black-box access to G, we
can only sample from p(y|x), and do not know its functional form. For simplicity, we focus on finding the
MAP estimate: arg maxx p(y|x) · p(x).

2



Published in Transactions on Machine Learning Research (05/2025)

Diffusion models Diffusion models (Song et al., 2020; Karras et al., 2022) capture the prior p(x) implicitly
using a diffusion process, which includes a forward process and backward process. The forward process
transforms a data distribution x0 ∼ pdata into a Gaussian distribution xT ∼ N (0, σ2(T )I) defined by
a pre-determined stochastic process. The Gaussian distribution is often referred to as noise, and so the
forward process (t going from 0 to T ) is typically used to create training data (iteratively noisier versions of
x0 ∼ pdata) for the diffusion model. The backward process (t going from T to 0), which is typically learned
in a diffusion model, is the standard generative model and operates by sequentially denoising the noisy data
into clean data, which can be done by either a probability flow ODE or a reverse-time stochastic process.
Without loss of generality, we consider the following probability flow ODE since every other probability flow
ODE is equivalent to it up to a simple reparameterization as shown by Karras et al. (2022):

dxt = −σ̇(t)σ(t)∇xt
log pt(xt)dt. (2)

Training a diffusion model amounts to training the so-called score function ∇xt log pt(xt), which we assume
is already completed (and not the focus of this paper). Given a trained diffusion model, we can sample p(x)
by integrating (2) starting from random noise.

Diffusion guidance for inverse problems As surveyed in Daras et al. (2024), arguably the most popular
approach to solving inverse problems with a pre-trained diffusion model is guidance-based (Chung et al.,
2022a; Wang et al., 2022; Kawar et al., 2022; Song et al., 2023a; Zhu et al., 2023; Rout et al., 2023; Chung
et al., 2023b; Tang et al., 2024). Guidance-based methods are originally interpreted as the conditional reverse
diffusion process targeting the posterior distribution. For ease of notation and clear presentation, we use the
probability flow ODE to represent the reverse process and rewrite it with Bayes Theorem.

dxt = −σ̇(t)σ(t)∇xt
log pt(xt|y)dt,

= −σ̇(t)σ(t)∇xt
log pt(xt)dt− σ̇(t)σ(t)∇xt

log pt(y|xt)dt, (3)

where ∇xt log pt(xt) is the unconditional score and the ∇xt log pt(y|xt) is the guidance from likelihood. In
practice, the unconditional score is approximated by a pre-trained diffusion model sθ(xt, t). The likelihood
term, pt(y|xt) =

∫
x0
p(xt|x0)p(y|x0)dx0, is computationally intractable as it requires integration over all

possible x0. Various tractable approximations have been proposed in the literature, which we denote as
p̂t(y|xt). The corresponding approximated reverse process is:

dxt = −σ̇(t)σ(t)sθ(xt, t)dt− wt∇xt log p̂t(y|xt)dt, (4)

where wt is the adaptive time-dependent weight. The design of wt in Eq. (4) varies across different methods
but it is typically not related to σ̇(t)σ(t) that Eq. (3) suggests, which makes it hard to interpret from a
posterior sampling perspective. In this paper, we will take an optimization perspective develop a useful
interpretation for designing our proposed algorithm.

One key issue with Eq. (4) is that many algorithms for sampling along Eq. (4) assume access to the gradient
∇xt log p̂t(y|xt). When this gradient is unavailable (e.g., only black-box access to p̂t(y)), then one must
develop a derivative-free approach, which is our core technical contribution.

Two existing derivative-free diffusion guidance methods are stochastic control guidance (SCG) (Huang et al.,
2024), and diffusion policy gradient (DPG) (Tang et al., 2024). Both SCG and DPG are developed from the
stochastic control viewpoint, and guides the diffusion process via estimating a value function, which can be
challenging to estimate well (as seen in our experiments).

3 Related work

Ensemble Kalman methods Ensemble Kalman methodology was first introduced by Evensen (1994) in
the context of data assimilation and later revisited by Iglesias et al. (2013) for inverse problems from an
optimization perspective, resulting in the derivative-free algorithm known as Ensemble Kalman Inversion
(EKI). Subsequent advancements include momentum-based EKI for training neural networks (Kovachki &
Stuart, 2019) and various regularization techniques to improve stability and efficiency (Iglesias, 2016; Chada
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et al., 2020). While the original derivations of these methods (Evensen, 1994; Iglesias et al., 2013) may not
explicitly highlight it, the overarching idea behind the ensemble Kalman methodology can be interpreted
as linearization of the forward model G as elucidated in Schillings & Stuart (2017); Law et al. (2016). In
essence, we approximate the potentially complex forward model G(x) with the best-fitting linear surrogate
model y = Ax+ b. In other words, we seek the minimizers of the following optimization problem:

min
A,b

Ex∥G(x)−Ax− b∥2
2,

which has closed-form solutions given by

A = Ex[(G(x)− ExG(x))x⊤]C−1
xx , b = Ex[G(x)]− Ex[Ax],

where C−1
xx is the pseudoinverse of the covariance matrix. Our approach builds upon this linear surrogate

model to approximate the forward model in our likelihood step defined in Eq. (14), enabling a fully derivative-
free algorithm. Furthermore, prior works (Bergou et al., 2019; Chada & Tong, 2022) establish the convergence
results for certain EKI variants in the non-linear setting. However, these proofs do not directly apply to our
algorithm. Instead, we develop tailored convergence results for our analysis.

Derivative-free optimization Traditional derivative-free optimization (DFO) algorithms include direct
search, which includes the coordinate search, stochastic finite-difference approximations of the gradient,
Nelder-Mead simplex methods, and model-based methods; see Berahas et al. (2022) for an overview. Among
modern DFO techniques, Gaussian smoothing methods (Nesterov & Spokoiny, 2017) have demonstrated
robust empirical performance (Salimans et al., 2017). These gradient estimates can be plugged into gradient-
based algorithms directly, which we use to establish strong baselines in this paper.

Predictor-Corrector method for diffusion models The term "predictor-corrector" has been used in
several prior works on diffusion model sampling, but their objectives and mechanisms differ from our PC
framework. Song et al. (2020) introduces a Predictor-Corrector sampler for the sampling of diffusion models,
where both the predictor and corrector aim to sample from the same target distribution by simulating
different stochastic processes (reverse-time SDE and annealed Langevin dynamics, respectively). Lezama
et al. (2022) then extends this framework to discrete space. More recently, Bradley & Nakkiran (2024)
applies a similar perspective to classifier-free guidance, using PF-ODE solver (DDIM) as the predictor and
Langevin dynamics as corrector, in order to sample from the gamma-powered data distribution. Other works,
such as Zhao et al. (2023) and Zhao et al. (2024), draw inspiration from predictor-corrector methods in the
literature of classical numerical ODE solvers, focusing on solving the probability flow ODE (PF-ODE) with
higher-order accuracy and adaptive step sizes. These existing PC methods aim to sample from the diffusion
model, which is related to the prediction step (sampling from diffusion prior) in our framework but irrelevant
to our correction step that interacts with the forward model G.

4 Method

To develop our Ensemble Kalman Diffusion Guidance (EnKG) method, we first provide an interpretation
of diffusion guidance through the lens of the prediction-correction framework. EnKG can be viewed as an
instantiation which enables derivative-free approximation of the guidance term.

4.1 Prediction-correction interpretation of guidance-based methods

Inspired by the idea of the Predictor-Corrector continuation method in numerical analysis (Allgower &
Georg, 2012), we show how to express the guidance-based methods within the following prediction-correction
framework. Suppose the time discretization scheme is T = t0 > t1 · · · > tN = 0. Let wi = wti for light
notation. As illustrated in Algorithm 1, guidance-based methods for inverse problems can be summarized
into the following steps.
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Algorithm 1 Generic Guidance-based Method (ODE version)
Require: G, y, sθ, {ti}N

i=1, {wi}N
i=1

1: sample x0 ∼ N (0, σ2(t0)I)
2: for i ∈ {0, . . . , N − 1} do
3: x′

i ← xi − σ̇(ti)σ(ti)sθ (xi, ti) (ti+1 − ti) ▷ Prior prediction step
4: log p̂(y|xt) ≈ log p(y|xt) ▷ Log-likelihood estimation

5: xi+1 ← arg minxi+1
∥xi+1−x′

i∥2
2

2wi
− log p̂(y|xi+1) ▷ Guidance correction step

6: end for
7: return xN

Figure 1: Illustration of the prediction-correction
interpretation for guidance-based methods on a 1D
Gaussian mixture example. From left to right,
the probability flow ODE transforms pt(xt) from
a Gaussian into a mixture of two Gaussians. The
grey lines represent the trajectories of the probabil-
ity flow. The prediction step corresponds to a nu-
merical integration step along this flow. The correc-
tion step adjusts the particle towards the MAP es-
timator while keeping them close to the initial pre-
diction point. In contrast to prior methods with in-
dependent particles, the proposed EnKG introduces
interactions between particles to eliminate the need
for gradient access.

Prior prediction step This step is simply a numerical integration step of the unconditional probability
flow ODE, i.e., by moving one step along the unconditional ODE trajectory:

x′
i = xi − σ̇(ti)σ(ti)sθ (xi, ti) (ti+1 − ti). (5)

Log-likelihood estimation step This step estimates the log-likelihood log p(y|xt):

log p̂(y|xi) ≈ log p(y|xi).

Guidance correction step This step solves the following optimization problem that formulates a com-
promise between maximizing the log-likelihood and being near x′i:

xi+1 = arg min
xi+1

∥xi+1 − x′
i∥2

2
2wi

− log p̂(y|xi+1), (6)

where the larger guidance scale wi gives the solution point near the MAP estimator and smaller value leads
to small movement towards the MAP estimator. Eq. (6) is essentially a proximal operator (Parikh et al.,
2014) if wi is lower bounded by a positive number. This optimization problem is often non-convex in most
practical scenarios. As a result, the optimization algorithm may converge to a local maximum rather than
a global one.

To solve Eq. (6) efficiently, one can use a first-order Taylor approximation of log p̂(y|xi+1) at x′
i:

log p̂(y|xi+1) = log p̂(y|x′
i) +∇⊤

x log p̂(y|x′
i) (xi+1 − x′

i) +O
(
|xi+1 − xi|2

)
. (7)
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Algorithm 2 Our method: Ensemble Kalman Diffusion Guidance (EnKG).
Require: G, y, sθ, solver ϕ, {ti}N

i=1, {wi}N
i=1, J

1: sample x
(j)
0 ∼ N (0, σ2(t0)I), j = 1, . . . , J ▷ Initialize particles

2: for i ∈ {0, . . . , N − 1} do

3: x
′(j)
i ← x

(j)
i − σ̇(ti)σ(ti)sθ

(
x

(j)
i , ti

)
(ti+1 − ti) ▷ Prior prediction step

4: x̂
(j)
N ← ϕ

(
x

(j)
i , ti

)
, j = 1, . . . , J

5: g
(j)
i ← 1

J

∑J

k=1

〈
G(x̂(k)

N )− Ḡ, y −G(x̂(j)
N )
〉

Γ

(
x

(k)
i − x̄i

)
6: x

(j)
i+1 ← x

′(j)
i + wig

(j)
i , j = 1, . . . , J ▷ Guidance correction step

7: end for
8: return {x(j)

N }
J
j=1

Substituting the approximation Eq. (7) into the correction step (6) gives:

xi+1 ≈ arg min
xi+1

∥xi+1 − x′
i∥2

2
2wi

− log p̂(y|x′
i)−∇⊤

x log p̂(y|x′
i) (xi+1 − x′

i) (8)

= x′
i + wi∇x log p̂(y|x′

i), (9)

which can recover the gradient step structure of most existing guidance-based methods (Chung et al., 2022a;
Song et al., 2023b;a; Mardani et al., 2023).

Putting it together. Figure 1 depicts the Prediction-Correction interpretation in a 1D Gaussian mixture
example, where guidance-based methods iteratively step towards the MAP estimator while staying close to
the initial unconditional generation trajectory defined by the prediction step. Importantly, the PC framework
allows more degrees of freedom in method design.

4.2 Our approach: Ensemble Kalman Diffusion Guidance

We now demonstrate how the correction step can be performed in a derivative-free manner using the idea
of statistical linearization. Our overall approach is described in Algorithm 2.

Likelihood estimation. The likelihood term can be factorized as follows:

p(y|xi) =
∫
p(y|xN )p(xN |xi)dxN = ExN ∼p(xN |xi)p(y|xN ), (10)

which is intractable in general. We use the following Monte Carlo approximation:

p(y|xi) = ExN ∼p(xN |xi)p(y|xN ) ≈ p(y|x̂N ), (11)

where x̂N is obtained by running the PF ODE solver ϕ starting at xi. One attractive property of this
estimate compared to popular ones based on E[xN |xi] and isotropic Gaussian approximations in previous
works Chung et al. (2022a); Song et al. (2023a;b) is that our approximation stays on data manifold but the
Gaussian approximations include additive noise that do not live on data manifold. This aspect is particularly
important for scientific inverse problems based on partial differential equations (PDEs), where staying on
the data manifold is important for reliably solving the forward model p(y|x). For instance, we observe that
Gaussian approximations frequently violate the stability conditions of numerical PDE solvers, leading to
meaningless estimates.
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Derivative-free correction step. Consider an ensemble of particles {x(j)
i }Jj=1. Let x̄i denote their

empirical mean and C
(i)
xx denote their empirical covariance matrix, at the i-th iteration:

x̄i = 1
J

J∑
j=1

x
(j)
i , C(i)

xx = 1
J

J∑
j=1

(
x

(j)
i − x̄i

)(
x

(j)
i − x̄i

)⊤
.

Instead of the commonly used scalar weight wi, we use a weighting matrix wiC(i)
xx in Eq. (8):

x
(j)
i+1 ≈ arg min

xi+1

1
2

(
xi+1 − x

′(j)
i

)⊤ (
wiC

(i)
xx

)−1 (
xi+1 − x

′(j)
i

)
(12)

−∇⊤
x log p̂

(
y|x′(j)

i

)(
xi+1 − x

′(j)
i

)
(13)

= x
′(j)
i +wiC(i)

xx∇x log p̂
(

y|x′(j)
i

)
. (14)

Note that in practice, C(i)
xx can be singular when the number of particles is smaller than the particle dimension.

In such cases, the matrix inverse in Eq. (12) is generalized to the sense of the Moore-Penrose inverse as C(i)
xx

is always positive semi-definite. Eq. (14) effectively becomes a gradient projected onto the subspace spanned
by the particles. At its current form, Eq. (14) still requires the gradient information. Next, we show how to
approximate this gradient step without explicit derivative by Leveraging the idea of statistical linearization
in the ensemble Kalman methods (Bergemann & Reich, 2010; Schillings & Stuart, 2017).
Assumption 1. G ◦ ϕ has bounded first and second order derivatives. Let ψ denote G ◦ ϕ. There exist
constants M1,M2 such that for all u,u′,v,v′ ∈ Rd,

∥ψ(u)− ψ(u′)∥ ≤M1∥u− u′∥,v⊤Hψ(v′)v ≤M2∥v∥2.

where Hψ denotes the Hessian matrix of ψ.
Assumption 2. The distance between ensemble particles is bounded. There exists a constant M3 such that
∥x(j)

i − x̄i∥ < M3, j = 1, . . . , J .
Assumption 3. The observation empirical covariance matrix does not degenerate to zero unless the covari-
ance matrix collapses to zero. In other words, tr

(
C

(i)
yy

)
= 0 if and only if C(i)

xx = 0, and

C(i)
xx ̸= 0→ tr

(
C(i)
yy

)
> M4,M4 > 0,

where

C(i)
yy = 1

J

J∑
j=1

(
ψ(x(j)

i )− ψ̄i
)(

ψ(x(j)
i )− ψ̄i

)⊤
, ψ̄i = 1

J

J∑
j=1

ψ(x(j)
i ). (15)

Remark To verify that Assumption 3 holds in most cases of interest, we plot the traces tr (Cxx) and
tr (Cyy) across three experiments of different inverse problems. As shown in Figure 5, while larger tr (Cxx)
does not always indicate larger tr (Cyy) due to the ill-posedness, tr(Cyy) approaches zero only when tr(Cxx)
also approaches zero, aligning with our assumption.
Proposition 1. Under Assumption 1, 2 and 3, suppose the correction step is implemented as follows with
wi = 1/

(
tr
(
C

(i)
yy

))
,

x
(j)
i+1 = x

′(j)
i + wiC

(i)
xy

(
y − ψ

(
x

′(j)
i

))
(16)

= x
′(j)
i + wi

1
J

J∑
k=1

〈
ψ
(

x
′(k)
i

)
− Ḡ,y − ψ

(
x

′(j)
i

)〉
Γ

(
x

′(k)
i − x̄i

)
, (17)

where

C(i)
xy = 1

J

J∑
j=1

(
x

′(j)
i − x̄i

)(
ψ
(

x
′(j)
i

)
− ψ̄i

)⊤
.
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After sufficient iterations, we have the following approximation:

C(i)
xy

(
y − ψ

(
x

′(j)
i

))
= 1
J

J∑
k=1

〈
ψ
(

x
′(k)
i

)
− Ḡ,y − ψ

(
x

′(j)
i

)〉
Γ

(
x

′(k)
i − x̄i

)
(18)

≈ C(i)
xx∇x log p̂

(
y|x′(j)

i

)
, (19)

where

Ḡ = 1
J

J∑
j=1

G
(

x̂
(j)
N

)
= 1
J

J∑
j=1

ψ(x′(j)
i ).

The detailed derivation can be found in Appendix A.2. Proposition 1 shows that the ensemble update step
defined in Eq. (17) effectively approximates the preconditioned gradient step defined in Eq. (12) without
explicit derivative:

x
(j)
i+1 = x

′(j)
i + wiC

(i)
xy

(
y − ψ

(
x

′(j)
i

))
≈ x

′(j)
i + wiC

(i)
xx∇x log p̂

(
y|x′(j)

i

)
. (20)

Algorithm 2 puts it all together and provides a complete description of the proposed method. Implementation
details are provided in Appendix A.4.

5 Experiments

We empirically study our EnKG method on the classic image restoration problems and two scientific inverse
problems. We view the scientific inverse problems as the more interesting domains for evaluating our method,
particularly the Navier-Stokes equation where it is impractical to accurately compute the gradient of the
forward model.

Baselines We focus on comparing against methods that only use black-box access to the forward model.
The first two baselines, Forward-GSG and Central-GSG (Algorithm 3), use numerical estimation methods
instead of automatic differentiation to approximate the gradient of the log-likelihood, and plug it into a
standard gradient-based method, Diffusion Posterior Sampling (DPS) (Chung et al., 2023b). Specifically,
Forward-CSG uses a forward Gaussian smoothed gradient (Eq. 37), and Central-CSG uses a central Gaussian
smoothed gradient (Eq. 38). More details are in Appendix A.3. The last two baselines are Stochastic Control
Guidance (SCG) (Huang et al., 2024) and Diffusion Policy Gradient (DPG) (Tang et al., 2024), discussed in
Sec. 2. For Navier-Stokes, we also add the conventional Ensemble Kalman Inversion (EKI) (Iglesias et al.,
2013).

5.1 Image inverse problems

Tackling image inverse problems (e.g., deblurring) is common in the literature and serves as a reasonable
reference domain for evaluation. We note that we consider a harder version of the problem where we do not
use the gradient of the forward model. Moreover, most imaging problems use a linear forward model (except
for phase retrieval), which is significantly simpler than the non-linear forward models more often used in
scientific domains.

Problem setting We evaluate our algorithm on the standard image inpainting, superresolution, deblurring
(Gaussian), and phase retrieval problems. For inpainting, the forward model is a box mask with random-
ized location. For superresolution, we employ bicubic downsampling (either ×2 or ×4) and for Gaussian
deblurring, a blurring kernel of size 61 × 61 with standard deviation 3.0. Finally, phase retrieval takes the
magnitude of the Fourier transform of the image as the observation. We use measurement noise σ = 0.05
in all experiments except for superresolution on 64 × 64 images, where we set σ = 0.01. The pre-trained
diffusion model for FFHQ 64 × 64 is taken unmodified from Karras et al. (2022). The model for FFHQ
256 × 256 is taken from Chung et al. (2022a) and converted to the EDM framework (Karras et al., 2022)
using their Variance-Preserving (VP) preconditioning.
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Table 1: Quantitative evaluation on FFHQ 256x256 dataset. We report average metrics for image quality
and consistency on four tasks. Measurement noise is σ = 0.05 unless otherwise stated.

Inpaint (box) SR (×4) Deblur (Gauss) Phase retrieval

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Forward-GSG 17.82 0.562 0.302 18.08 0.469 0.384 24.43 0.704 0.206 7.88 0.070 0.838
Central-GSG 18.76 0.720 0.229 26.55 0.740 0.169 25.39 0.775 0.180 10.10 0.353 0.691
DPG 20.89 0.752 0.184 28.12 0.831 0.126 26.42 0.798 0.143 15.47 0.486 0.495
SCG 4.71 0.302 0.763 4.71 0.302 0.760 4.69 0.300 0.759 4.623 0.294 0.764
EnKG(Ours) 21.70 0.727 0.286 27.17 0.773 0.237 26.13 0.723 0.224 20.06 0.584 0.393

Evaluation metrics We evaluate the sample quality of all methods using peak signal signal-to-noise-
ratio (PSNR), structural similarity (SSIM) index (Wang et al., 2004), and learned perceptual image patch
similarity (LPIPS) score (Zhang et al., 2018).

Results We show the quantitative results in Table 1(Appendix), and qualitative results in Figure 7 (Ap-
pendix). On the easier linear inverse problems (inpainting, superresolution, and deblur), EnKG comes in
second to DPG. On the harder non-linear phase retrieval problem, EnKG is comfortably the best approach.
This trend is consistent with our results in the scientific inverse problems, which are all non-linear.

5.2 Navier-Stokes equation

The Navier-Stokes problem is representative of the key class of scientific inverse problems (Iglesias et al.,
2013) that our approach aims to tackle. The gradient of the forward model is impractical to reliably compute
via auto-differentiation, as it requires differentiating through a PDE solver. Having effective derivative-free
methods would be highly desirable here.

Problem setting We consider the 2-d Navier-Stokes equation for a viscous, incompressible fluid in vorticity
form on a torus, where u ∈ C

(
[0, T ];Hr

per((0, 2π)2;R2)
)

for any r > 0 is the velocity field, w = ∇ × u

is the vorticity, w0 ∈ L2
per
(
(0, 2π)2;R

)
is the initial vorticity, ν ∈ R+ is the viscosity coefficient, and

f ∈ L2
per
(
(0, 2π)2;R

)
is the forcing function. The solution operator G is defined as the operator mapping

the vorticity from the initial vorticity to the vorticity at time T . G : w0 → wT . Our experiments implement
it as a pseudo-spectral solver (He & Sun, 2007).

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 2π)2, t ∈ (0, T ]
∇ · u(x, t) = 0, x ∈ (0, 2π)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 2π)2

(21)

The goal is to recover the initial vorticity field from a noisy sparse observation of the vorticity field at time
T = 1. Eq. (21) does not admit a closed form solution and thus there is no closed form derivative available
for the solution operator. Moreover, obtaining an accurate numerical derivative via automatic differentiation
through the numerical solver is challenging due to the extensive computation graph that can span thousands
of discrete time steps. We first solve the equation up to time T = 5 using initial conditions from a Gaussian
random field, which is highly complicated due to the non-linearity of Navier-Stokes equation. We sample
20,000 vorticity fields to train our diffusion model. Then, we independently sample 10 random vorticity
fields as the test set.

Evaluation metrics We report the relative L2 error to evaluate the accuracy of the algorithm, which is
given by ∥ŵ0−w∗

0 ∥
L2

∥w∗
0∥L2

where ŵ0 is the predicted vorticity and w∗
0 is the ground truth. To comprehensively

analyze the computational requirements of inverse problem solvers, we use the following metrics: the total
number of forward model evaluations (Total # Fwd); the number of sequential forward model evaluations
(Seq. # Fwd), where each evaluation depends on the previous one.; the total number of diffusion model
evaluations (Total # DM); the number of sequential diffusion model evaluations (Seq. # DM), which is
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Table 2: Comparison on the Navier-Stokes inverse problem. Numbers in parentheses represent the sample
standard deviation. Metrics to evaluate computation costs are defined in Sec. 5.2. ∗: one or two test cases
are excluded from the results due to numerical instability. Runtime is reported on a single A100 GPU.

σnoise = 0 σnoise = 1.0 σnoise = 2.0 Computation cost

Relative L2 Relative L2 Relative L2 Total # Fwd Total # DM Seq # Fwd Seq # DM Runtime

EKI 0.577 (0.138) 0.609 (0.119) 0.673 (0.107) 1024k 0 0.50k 0 121 mins

Forward-GSG 1.687 (0.156) 1.612 (0.173) 1.454 (0.154) 2049k 1k 1k 1k 105 mins
Central-GSG 2.203* (0.314) 2.117 (0.295) 1.746 (0.191) 2048k 1k 1k 1k 105 mins
DPG 0.325 (0.188) 0.408* (0.173) 0.466 (0.171) 4000k 1k 1k 1k 228 mins
SCG 0.908 (0.600) 0.928 (0.557) 0.966 (0.546) 384k 384k 0.75k 1k 119 mins
EnKG(Ours) 0.120 (0.085) 0.191 (0.057) 0.294 (0.061) 295k 3342k 0.14k 1.3k 124 mins

Figure 2: Visualization of results on Navier-Stokes inverse problem with different levels of observation noise.
Each observation is subsampled by a factor of 2, representing a sparse measurement. Note that the results
of Central-GSG are here for demonstration purpose because neither Central-GSG nor Forward-GSG is able
to produce reasonable results.

analogous to Seq. # Fwd but focuses on diffusion model evaluation; the total number of diffusion model
gradient evaluations (Total # DM grad); the number of sequential diffusion model gradient evaluations (Seq.
# DM grad). These metrics are designed to reflect the primary computational demands: forward model
queries and diffusion model queries. Sequential metrics are particularly important because they determine the
minimum runtime achievable, independent of the available computational resources. By isolating sequential
evaluations, we can better assess the parallelization potential of the algorithm, akin to the “critical path”
concept in algorithm analysis from the computer science literature (Kohler, 1975).

Results In Table 2, we show the average relative L2 error of the recovered ground truth at different noise
levels of the observations. Our EnKG approach dramatically outperforms all other methods. Qualitatively,
we see in Figure 2 that EnKG give solutions which qualitatively preserve important features of the flow,
while some methods completely fail (i.e., overly noisy outputs).

On the computational aspect, the Navier-Stokes forward model (which requires a PDE solve) is extremely
expensive, as shown in Figure 3(a). As such, the number of calls to the forward model dominates the
computational cost. We see in Table 2 that our EnKG approach actually makes the fewest calls to the forward
model (since it uses statistical linearization rather than trying to numerically approximate the gradient or
value function), and thus EnKG is also the most computationally efficient approach, as seen in Figure 3(b).
The traditional Ensemble Kalman Inversion (EKI) approach also employs statistical linearization, and so we
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Figure 3: (a): runtime of single evaluation of the forward model, diffusion model, and diffusion model
gradient (tested on a single A100). (b): comparison of computational characteristics of different algorithms
on Navier-Stokes problem. Metrics are defined in the "Evaluation metrics" paragraph of Sec. 4.2. Each axis
is normalized by dividing by the maximum over the algorithms. (c): compare EnKG with EKI on compute
cost versus error.

do a detailed comparison in Figure 3(c), where we see that EnKG dominates EKI in the computational cost
versus error trade-off curve.

Ablation study For practical insights into selecting hyperparameters for EnKG, we perform ablation
studies on the ensemble size, guidance scale, and the number of diffusion model queries. The results are
shown in Figure 6 and Figure 8. We observe a clear trend: increasing the ensemble size consistently leads to
improved performance, as measured by the relative L2 error. However, the gains become marginal beyond
2048 particles. Our experiments also reveal that a guidance scale of 2.0 yields the best average performance
across our experiments. Increasing the guidance scale beyond this point introduces instability, resulting in
higher relative L2 errors. This instability is likely due to the fact that large guidance scale might lead to
divergence as Lemma 1 only guarantees the convergence with small guidance scale. Furthermore, we vary
the number of diffusion model queries using different number of ODE steps in the likelihood estimation
(x̂(j)
N ). We also examine the effect of varying the number of diffusion model queries by changing the number

of ODE steps used in estimating x̂
(j)
N . Performance improves with more diffusion model queries but exhibits

diminishing returns beyond 500 steps.

5.3 Black-hole imaging inverse problem

The black-hole imaging problem is interesting due to its highly non-linear and ill-posed forward model (i.e.,
the sparse observations captured by telescopes on Earth). For evaluation purposes, we assume only black-box
access to the forward model.

Problem setting The black hole interferometric imaging system aims to reconstruct image of black holes
using a set of telescopes distributed on the Earth. Each pair of telescopes produces a measurement V ta,b
called visibility, where (a, b) is a pair of telescopes and t is the measuring time. To mitigate the effect of
measurement noise caused by atmosphere turbulence and thermal noise, multiple visibilities can be grouped
together to cancel out noise (Chael et al., 2018), producing noise-invariant measurements, termed closure
phases ycph

t,(a,b,c) and log closure amplitudes ycamp
t,(a,b,c,d). We specify the likelihood of these measurements similar

to Sun & Bouman (2021):

ℓ(y|x) =
∑
t

∥Acph
t (x)− ycph

t ∥2
2

2β2
cph

+
∑
t

∥Acamp
t (x)− ycamp

t ∥2
2

2β2
camp

+ ρ
∥
∑

xi − yflux∥2
2

2 , (22)
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Figure 4: Visualization of generated samples on the black-hole imaging inverse problem. The first row
shows the results on the original resolution, while the second row shows the blurred images in the intrinsic
resolution of the imaging system.

Table 3: Quantitative evaluation of the reconstructed black-hole images.

PSNR ↑ Blurred PSNR ↑ χ2
cph ↓ χ2

camp ↓

Central-GSG 24.700 30.011 4.616 79.669
SCG 20.201 20.976 1.103 1.134
DPG 13.222 14.281 5.116 15.679
EnKG (Ours) 29.093 32.803 1.426 1.270

where Acph
t and Acamp

t measures the closure phase and log closure amplitude of black hole images x. βcph and
βcamp are known parameters from the telescope system. The first two terms are the sum of chi-square values
for closure phases and log closure amplitudes, and the last term constrains the total flux of the black-hole
image. We trained a diffusion model on the GRMHD dataset (Wong et al., 2022) with resolution 64× 64 to
generate black hole images from telescope measurements.

Evaluation metrics We report the chi-square errors of closure phases χ2
cph and closure amplitudes χ2

camp
to measure how the generated samples fit the given measurement. We calculate the peak signal-to-noise
ratio (PSNR) between reconstructed images and the ground truth. Moreover, since the black-hole imaging
system provides only information for low spatial frequencies, following conventional evaluation methodology
(EHTC, 2019), we blur images with a circular Gaussian filter and compute their PSNR on the intrinsic
resolution of the imaging system.

Results Figure 4 shows the reconstructed images of the black-hole using our EnKG method and the
baseline methods with black box access. EnKG is able to generate black hole images with visual features
consistent with the ground truth. Table 3 shows the quantitative comparison. EnKG achieves relatively low
measurement error (i.e., consistency with observations) and the best (blurred) PSNR compared with baseline
methods (i.e., realistic images). SCG achieves slightly better data fitting metrics, but produces much noisier
images than those by EnKG (Figure 4).

6 Conclusion and discussion

In this work, we propose EnKG, a fully derivative-free approach to solve general inverse problems that only
permit black-box access. EnKG can accommodate different forward models without any re-training while
maintaining the expressive ability of diffusion models to capture complex distribution. The experiments on
various inverse problems arising from imaging and partial differential equations demonstrate the robustness
and effectiveness of our methodology.

Despite its strengths, EnKG has certain limitations. First, as an optimization-based approach, it does not
aim to recover the full posterior distribution and therefore cannot provide reliable uncertainty quantifica-
tion—an important feature in some applications. Second, while EnKG reduces per-sample computational
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cost compared to standard gradient-based methods, its total runtime is higher due to maintaining and up-
dating an ensemble of interacting particles. Future work could explore adaptive strategies to dynamically
adjust the number of particles based on the optimization landscape to improve efficiency. Additionally, in-
tegrating fast diffusion model sampling techniques (Zheng et al., 2023; Song et al., 2023c; Yin et al., 2024)
may further reduce computational overhead.
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Table 4: Table of notations.

Notation Description
G the forward model of the inverse problem
ϕ Probability ODE solver
ψ Composition of G and ϕ
Df Jacobian matrix of function f

Lrper Lebesgue space of periodic r-integrable functions

Hr
per Sobolev space of r-times weakly differentiable periodic functions

Γ Covariance matrix of the Gaussian noise model
⟨·, ·⟩Γ Weighted Euclidean inner product, ⟨·, ·⟩Γ =

〈
·,Γ−1·

〉
∇̂f approximate gradient of f
µ Gaussian smoothing factor
Q number of gradient estimation queries
wi log-likelihood gradient scale at step i

N number of sampling steps
Eµ,Q(f(x)) gradient estimator of f(x) using smoothing factor µ and Q queries

A Appendix / supplemental material

A.1 Notation

A.2 Proofs

Lemma 1. Under Assumption 1, 2 and 3, suppose the correction step is implemented with wi =
1/
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Then tr
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)
monotonically decreases to zero in the limit as i goes to infinity.

Proof. We first start from the ensemble update of the correction step given in Eq. (23) at iteration i as
follows

x
(j)
i+1 = x

(j)
i + wiC

(i)
xy

(
y − ψ

(
x

(j)
i

))
, (24)

where j ∈ {1, . . . , J}. The covariance matrix at the next iteration is given by

C(i+1)
xx = 1

J

J∑
j=1

(x(j)
i+1 − x̄i+1)(x(j)

i+1 − x̄i+1)⊤. (25)
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Plugging the update rule in Eq. (23) into Eq. (25), we have

C(i+1)
xx = 1

J

J∑
j=1

[
(x(j)
i − x̄i) + wiC

(i)
xy

(
ψ̄i − ψ(x(j)

i )
)] [

(x(j)
i − x̄i) + wiC

(i)
xy (ψ̄i − ψ(x(j)

i ))
]⊤

= 1
J

J∑
j=1

[
(x(j)
i − x̄i)(x(j)

i − x̄i)⊤ + w2
iC

(i)
xy

(
ψ̄i − ψ(x(j)

i )
)(

ψ̄i − ψ(x(j)
i )
)⊤

C(i)⊤
xy

]

+ 1
J

J∑
j=1

[
wiC

(i)
xy

(
ψ̄i − ψ(x(j)

i )
)

(x(j)
i − x̄i)⊤ + wi(x(j)

i − x̄i)(ψ̄i − ψ(x(j)
i ))⊤C(i)⊤

xy

]
. (26)

We notice that

1
J

J∑
j=1

wiC
(i)
xy

(
ψ̄i − ψ(x(j)

i )
)(

x
(j)
i − x̄i

)⊤
= −wiC(i)

xyC
(i)⊤
xy

1
J

J∑
j=1

wi

(
x

(j)
i − x̄i

)(
ψ̄i − ψ(x(j)

i )
)⊤

C(i)⊤
xy = −wiC(i)

xyC
(i)⊤
xy .

Therefore, we can rewrite Eq. (26) as follows:

C(i+1)
xx = C(i)

xx − 2wiC(i)
xyC

(i)⊤
xy + w2

iC
(i)
xyC

(i)
yyC

(i)⊤
xy .

Further, by linearity of trace, we have

tr
(
C(i+1)
xx

)
= tr

(
C(i)
xx

)
− 2witr

(
C(i)
xyC

(i)⊤
xy

)
+ w2

i tr
(
C(i)
xyC

(i)
yyC

(i)⊤
xy

)
.

By cyclic and submultiplicative properties, we have

w2
i tr
(
C(i)
xyC

(i)
yyC

(i)⊤
xy

)
= w2

i tr
(
C(i)
yyC

(i)⊤
xy C(i)
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)
≤ w2

i tr
(
C(i)
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)
tr
(
C(i)⊤
xy C(i)
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)
.

Since wi = 1/
(
tr
(
C

(i)
yy

))
, we have

tr
(
C(i+1)
xx

)
≤ tr

(
C(i)
xx

)
− 2
tr
(
C

(i)
yy

) tr (C(i)
xyC

(i)⊤
xy

)
+ 1
tr
(
C

(i)
yy

) tr (C(i)⊤
xy C(i)
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)
= tr

(
C(i)
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)
− 1
tr
(
C

(i)
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) tr (C(i)
xyC

(i)⊤
xy

)
. (27)

By Assumption 1 and 2, we know that both tr
(
C

(i)
xx

)
and tr

(
C

(i)
yy

)
are upper bounded. By Assumption 3,

tr
(
C

(i)
xyC

(i)⊤
xy

)
is lower bounded unless all the ensemble members collapse to a single point. Thus, there

exists a α > 0 such that tr
(
C

(i)
xyC

(i)⊤
xy

)
≥ α · tr

(
C

(i)
xx

)
tr
(
C

(i)
yy

)
. Therefore,

tr
(
C(i+1)
xx

)
≤ tr

(
C(i)
xx

)
− 1
tr
(
C

(i)
yy

) tr (C(i)
xyC

(i)⊤
xy

)
≤ (1− α) tr

(
C(i)
xx

)
.

Note that from Eq. (27), we have α ≤ 1. Therefore, tr
(
C

(i)
xx

)
monotonically decreases to zero. Additionally,

we empirically check how quickly the average distance decays as we iterate in our experiments as shown in
Figure 5.
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Figure 5: Empirical verification of Lemma 1 and Assumption 3. Top: the distance of ensemble members
quickly decays over update steps. Bottom: while larger tr(Cxx) does not always indicate larger tr(Cyy),
tr(Cyy) is close zero only when tr(Cxx) is close to zero.

Proposition 1. Under Assumption 1, 2 and 3, suppose the correction step is implemented as follows with
wi = 1/

(
tr
(
C

(i)
yy

))
,

x
(j)
i+1 = x

′(j)
i + wiC

(i)
xy

(
y − ψ

(
x

′(j)
i

))
(28)

= x
′(j)
i + wi

1
J
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k=1

〈
ψ
(

x
′(k)
i

)
− Ḡ,y − ψ

(
x

′(j)
i

)〉
Γ

(
x

′(j)
i − x̄i

)
, (29)

where

C(i)
xy = 1

J

J∑
j=1

(
x

′(j)
i − x̄i

)(
ψ
(

x
′(j)
i

)
− ψ̄i

)⊤
.

After sufficient iterations, we have the following approximation:

C(i)
xy

(
y − ψ

(
x

′(j)
i

))
= 1
J

J∑
k=1

〈
ψ
(

x
′(k)
i

)
− Ḡ,y − ψ

(
x

′(j)
i

)〉
Γ

(
x

′(j)
i − x̄i

)
(30)

≈ C(i)
xx∇x log p̂

(
y|x′(j)

i

)
. (31)

Proof. Note that we can always normalize the problem so that Γ is identity. Therefore, without loss of
generality and for the ease of notation, we assume Γ = I throughout the whole proof. Given the inverse
problem setting in Eq. 1 where the observation noise is Gaussian, we can rewrite the preconditioned gradient
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w.r.t x
′(j)
i as
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By definition, we have
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(
C(i)
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)
= tr
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2,

which represents the average distance between ensemble members. By Lemma 1, we know that tr
(
C

(i)
xx

)
monotonically decreases to zero in the limit. Therefore, the ensemble members will get sufficiently close as
we iterate. Therefore, we can apply first-order Taylor approximation to ψ at x

′(j)
i under Assumption 1 and

obtain
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where k ∈ {1, . . . , J}. Therefore for any k, l ∈ {1, . . . , J}, by applying the approximation above at both x
′(k)
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and x
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i , we have
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We then plug it into Eq. 36
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Algorithm 3 Central/Forward-GSG baseline with σ(t) = t and s(t) = 1

Require: G,y, Dθ, {ti}Ni=1, {wi}Ni=1, Eµ,Q

1: sample x0 ∼ N (0, t20I)
2: for i ∈ {0, . . . , N − 1} do
3: x̂0 ← Dθ (xi, ti)
4: x′

i ← xi + xi−x̂0
ti

(ti+1 − ti) ▷ Prior prediction step

5: ∇̂xi
log p(y|xi)← ∇xi

(x̂⊤
0 Eµ,Q(log p(y | x̂0))) ▷ Gradient estimation

6: xi+1 ← x′
i + wi∇̂xt log p(y|xi) ▷ Guidance correction step

7: end for
8: return xN

concluding the proof.

A.3 Zero-order gradient estimation baseline

We use the forward Gaussian smoothing and central Gaussian smoothing gradient estimation methods to
establish a baseline to compare against. These methods approximate the gradient of a function using only
function evaluations and can be expressed in the following (Forward-GSG) form :

∇̂f(x) =
Q∑
i

f(x + µui)− f(x)
µ

ũi (37)

And Central-GSG:

∇̂f(x) =
Q∑
i

f(x + µui)− f(x− µui)
2µ ũi (38)

For Gaussian smoothing, ui follows the standard normal distribution and ũi = 1
Qui. The smoothing factor

µ and number of queries Q are both tunable hyperparameters.

Posterior sampling requires computation of the scores ∇xt log p(xt) and ∇xt log p(y | xt); the former is
learned by the pre-trained diffusion model, and the latter can be estimated by various approximation meth-
ods. In our baseline derivative-free inverse problem solver, we substitute the explicit automatic differentiation
used in algorithms such as DPS with (37) and (38). We estimate this gradient by leveraging the fact that a
probability flow ODE deterministically maps every xt to x0; ∇̂x̂0 log p(y | x̂0) is approximated with Gaussian
smoothing, and a vector-Jacobian product (VJP) is used to then calculate ∇̂xt log p(y | xt). Our gradient
estimate is defined as follows:

∇̂xt log p(y | xt) = ∇̂xt log p(y | x̂0) = D⊤
xt

x̂0∇̂x̂0 log p(y | x̂0) (39)

D⊤
xt

is the transpose of the Jacobian matrix; (39) can be efficiently computed using automatic differentiation.
Note that although automatic differentiation is used, differentiation through the forward model does not
occur. Thus, this method is still applicable to non-differentiable inverse problems. Furthermore, we choose
to perturb x̂0 and use a VJP rather than directly perturb xt so that we can avoid repeated forward passes
through the pre-trained network, which is very expensive. Pseudocode for these algorithms is provided in
Algorithm 3.
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Figure 6: Ablation studies on the impact of ensemble size, guidance scale, and the number of diffusion model
queries, conducted on the Navier-Stokes problem. Left: Relative L2 error versus ensemble size; the shaded
region indicates the range between the best and worst particle. Middle: Relative L2 error versus the guidance
scale. Right: Relative L2 error versus the number of diffusion model queries per particle; error bars indicate
one standard deviation.

Table 5: Qualitative evaluation on FFHQ 64x64 dataset. We report average metrics for image quality and
samples consistency on four tasks. Measurement noise level σ = 0.05 is used if not otherwise stated.

Inpaint (box) SR (×2, σ = 0.01) Deblur (Gauss) Phase retrieval

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Forward-GSG 19.62 0.612 0.189 25.25 0.836 0.093 20.27 0.606 0.170 10.307 0.170 0.493
Central-GSG 21.37 0.764 0.095 27.41 0.916 0.030 20.88 0.729 0.123 11.36 0.283 0.619
DPG 21.92 0.799 0.088 26.86 0.917 0.027 20.00 0.734 0.114 15.56 0.438 0.446
SCG 20.27 0.734 0.098 27.02 0.910 0.036 20.73 0.754 0.100 10.59 0.233 0.617
EnKG(Ours) 23.53 0.822 0.067 29.52 0.930 0.036 22.02 0.698 0.136 26.14 0.840 0.122

A.4 EnKG Implementation Details

There are mainly two design choices in our algorithm 2 to be made. The first is the step size wi which
controls the extent to which the correction step moves towards the MAP estimator. In the ensemble Kalman
literature (Kovachki & Stuart, 2019), the following adaptive step size is widely used, and we adopt it for our
experiments as well.

w−1
i = 1

J2

√√√√ J∑
k=1

∥∥∥G(x̂′(k)
N )− Ḡ

∥∥∥2 ∥∥∥y −G(x̂(j)
N )
∥∥∥2

(40)

Secondly, we find it useful to perform two correction steps in Eq. (6) when solving highly nonlinear and high-
dimensional problems such as Navier Stokes. Therefore, we perform two correction steps at each iteration
when running experiments on Navier Stokes.

A.5 Baseline Details

A.6 Additional results

We include more qualitative results for inverse problems on FFHQ 256x256 dataset in Figure 7.
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Figure 7: Qualitative results on FFHQ 256.

Table 6: Hyperparameter choices for Forward-GSG and Central-GSG (64× 64).

Inpaint (box) SR (×2, σ = 0.01) Deblur (Gauss) Phase retrieval

Forward GSG
µ 0.001 0.001 0.001 0.001
Q 10000 10000 10000 10000
wi 1.0 1.0 1.0 1.0
N 1000 1000 1000 1000

Central GSG
µ 0.001 0.001 0.001 0.001
Q 10000 10000 10000 10000
wi 1.0 1.0 1.0 1.0
N 1000 1000 1000 1000

A.7 Details of black hole imaging

The measurement of black hole imaging is defined as (Sun & Bouman, 2021)

ycph
t,(a,b,c) = ∠(V ta,bV tb,cV ta,c) := Acph

t,(a,b,c)(x) (41)

ycamp
t,(a,b,c,d) = log

(
|V ta,b||V tc,d|
|V ta,c||V tb,d|

)
:= Acamp

t,(a,b,c,d)(x) (42)

where Va,b is the visibility defined by

V ta,b(x) = gtag
t
b exp(−i(ϕta − ϕtb)) · Ĩta,b(x) + ηa,b. (43)

ga, gb are telescope-based gain errors, ϕta, ϕtb are phase errors, and ηa,b is baseline-based Gaussian noise. The
measurements consist of (M − 1)(M − 2)/2 closure phases ycph and M(M − 3)/2 log closure amplitudes
ycamp for an array of M telescopes. Our experiments use M = 9 telescopes from Event Horizon Telescope.
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Table 7: Hyperparameter choices for baselines Forward-GSG and Central-GSG (256× 256).

Inpaint (box) SR (×4, σ = 0.05) Deblur (Gauss) Phase retrieval

Forward-GSG
µ 0.01 0.01 0.01 0.01
Q 10000 10000 10000 10000
wi 1.0 1.0 3.0 0.7
N 1000 1000 1000 1000

Central-GSG
µ 0.01 0.01 0.01 0.01
Q 10000 10000 10000 10000
wi 1.0 1.0 3.0 0.7
N 1000 1000 1000 1000

Figure 8: Vorticity field predicted by EnKG with different number of particles. From left to right, the result
gets better as we increase the number of particles.

A.8 Additional comparison

To provide a more comprehensive evaluation, we provide comparisons against several gradient-based methods
across different tasks.

Image restoration on FFHQ256 Table 8 presents comparisons with DPS (Chung et al., 2023b) and
DiffPIR (Zhu et al., 2023) on four image restoration tasks: inpainting, super-resolution (x4), deblurring,
and phase retrieval. We observe that EnKG achieves performance comparable to gradient-based methods,
with no single approach emerging as a clear winner across all tasks. This demonstrates that EnKG offers
competitive performance while maintaining its derivative-free property.

Navier-Stokes equation Table 9 reports comparison with DPS and PnP-DM (Wu et al., 2024) on the
Navier-Stokes equation problem. We observe that EnKG clearly outperforms the gradient-based methods,
while PnP-DM encounters numerical instability, resulting in either a crash or timeout. Since DPS and PnP-
DM do not have such experiments in their paper, we perform a grid search for its guidance scale over range
[10−3, 102] to find the best choice. For PnP-DM, we explore all hyperparameter combinations mentioned
in their paper; however, all result in a numerical crash within the PDE solver. Although reducing the
Langevin Monte Carlo learning rate improved stability, it led to infeasible runtimes (e.g., exceeding 100
hours). Consequently, we mark PnP-DM as “crashed/timeout” in Table 9. Additionally, in this problem,
autograd encounters out-of-memory issues when the pseudospectral solver unrolls beyond approximately 6k
steps on an A100-40GB GPU. This limitation suggests that gradient-based methods may not be applicable
to more complex problems that require a large number of PDE solver iterations.

Black hole imaging As shown in Table 10 shows additional comparisons for the black hole imaging
problem, including DPS and PnP-DM. Once again, EnKG delivers performance comparable to gradient-based
methods. For DPS, we performed a grid search to optimize hyperparameters, while for PnP-DM, we used

24



Published in Transactions on Machine Learning Research (05/2025)

the settings provided in their paper. These results further demonstrate the robustness and competitiveness
of EnKG across diverse scientific inverse problems.

Discussion As shown in the experiments above, gradient-based methods do not always perform better
than derivative-free methods. We believe this is due to two reasons. First, gradient-based methods are more
prone to getting stuck in local optima, especially in noisy, non-smooth settings. In contrast, many derivative-
free methods, including EnKG, incorporate implicit smoothing, which can improve robustness in such cases.
Second, gradient-based methods often rely on Gaussian approximations via Tweedie’s formula, as taking
gradients through the full unrolled reverse process is computationally infeasible. In contrast, EnKG gets a
better likelihood approximation by simulating the reverse process without the need of backpropagation. More
recent gradient-based works, such as Rout et al. (2024a); Chung et al. (2024), focus on solving linear inverse
problems with text-to-image latent diffusion models. In contrast, EnKG does not rely on text-to-image
latent diffusion model, which is generally unavailable in many inverse problem applications.

Table 8: Additional comparison with a few gradient-based methods on FFHQ 256x256 dataset. We report
average metrics for image quality and consistency on four tasks. Measurement noise is σ = 0.05 unless
otherwise stated.

Inpaint (box) SR (×4) Deblur (Gauss) Phase retrieval

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Gradient-based
DPS 21.77 0.767 0.213 24.90 0.710 0.265 25.46 0.708 0.212 14.14 0.401 0.486
DiffPIR 22.87 0.653 0.268 26.48 0.744 0.220 24.87 0.690 0.251 22.20 0.733 0.270

Black-box access
EnKG(Ours) 21.70 0.727 0.286 27.17 0.773 0.237 26.13 0.723 0.224 20.06 0.584 0.393

Table 9: Additional comparison of relative L2 error on the Navier-Stokes inverse problem. Numbers in
parentheses represent the sample standard deviation.

σnoise = 0 σnoise = 1.0 σnoise = 2.0

Gradient-based
DPS 0.308 (0.214) 0.349 (0.246) 0.382 (0.228)
PnP-DM Crashed or timeout Crashed or timeout Crashed or timeout

Black-box access
EnKG(Ours) 0.120 (0.085) 0.191 (0.057) 0.294 (0.061)

Table 10: Additional comparison with a few gradient-based methods on the black-hole imaging problem.

PSNR ↑ Blurred PSNR ↑ χ2
cph ↓ χ2

camp ↓

DPS 23.984 26.220 1.212 1.079
PnP-DM 28.211 32.499 1.120 1.224
EnKG (Ours) 29.093 32.803 1.426 1.270

A.9 Robustness to the pretrained prior quality

In this section, we conduct a controlled experiment on Navier-Stokes equation problem to investigate the
performance dependence on the quality of pre-trained diffusion models. Specifically, we trained a diffusion
model prior using only 1/10 of the original training set and limited the training to 15k steps to simulate a
lower-quality model. We evaluate the top two algorithms, EnKG and DPG, with the same hyperparameters
used in the main experiments.

Robust performance As shown in Table 11, we observe that while both algorithms experienced a per-
formance drop due to the reduced quality of the diffusion model, the decline was relatively small compared
to the significant reduction in training data. Notably, our EnKG demonstrated greater robustness, with a
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smaller performance drop than the best baseline method, DPG. These results indicate that while EnKG
benefits from high-quality diffusion models, it is not overly sensitive to their quality. It maintains strong
performance even with reduced model capabilities.

Table 11: Relative L2 error of DPG and EnKG (ours) with different diffusion model quality.

Original model trained with full data New model trained with 1/10 data

DPG 0.325 (0.188) 0.394 (0.178)
EnKG (Ours) 0.120 (0.085) 0.169 (0.117)

Table 12: Per-particle computational resource usage of EnKG across three inverse problems. We use 1024
particles for FFHQ and black hole imaging, and 2048 particles for Navier-Stokes. NFE-DM: number of
diffusion model evaluations. NFE-Fwd: number of forward model evaluations. Runtime is averaged per
particle.

NFE-DM NFE-Forward Runtime (s) Peak GPU memory (GB)

FFHQ 256×256 1632 144 11.6 23.9
Navier-Stokes equation 1632 144 3.6 7.1
Black hole imaging 771 60 1.1 1.4
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