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Abstract

Typical high dynamic range (HDR) imaging approaches based on multiple images have difficulties in handling
moving objects and camera shakes, suffering from the ghosting effect and the loss of sharpness in the output HDR
image. While there exist a variety of solutions for resolving such limitations, most of the existing algorithms are
susceptible to complex motions, saturation, and occlusions. In this paper, we propose an HDR imaging approach
using the coded electronic shutter which can capture a scene with row-wise varying exposures in a single image.
Our approach enables a direct extension of the dynamic range of the captured image without using multiple
images, by photometrically calibrating rows with different exposures. Due to the concurrent capture of multiple
exposures, misalignments of moving objects are naturally avoided with significant reduction in the ghosting effect.
To handle the issues with under-/over-exposure, noise, and blurs, we present a coherent HDR imaging process
where the problems are resolved one by one at each step. Experimental results with real photographs, captured
using a coded electronic shutter, demonstrate that our method produces a high quality HDR images without the
ghosting and blur artifacts.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms 1.4.3 [Image Processing and Computer Vision]: Enhancement—Sharpening and

deblurring

1. Introduction

Real world scenes usually contain a wide range of bright-
ness variations. When a scene consists of both bright and
dark areas, ordinary low dynamic range (LDR) imaging de-
vices, such as standard digital cameras, cannot capture the
whole range of the scene radiance, losing expressive details
in under-/over-exposed areas. This limited dynamic range of
typical imaging devices has motivated various solutions for
high dynamic range (HDR) imaging.

The most common HDR approach is to take multiple LDR
images at different exposure levels and combine them to
create an HDR image [DM97, MN99]. Despite significant
advances, this approach assumes a constant radiance value
per pixel among multiple images, and therefore works the
best for static scenes without object motions and camera
shakes. For dynamic scenes, the assumption of constant ra-
diance value is violated, and the output HDR image would
have artifacts such as ghosting and blurring. Object mo-
tions cause misalignments among multiple images which
produces ghosting artifacts, and camera shakes under longer
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exposures induce motion blurs, reducing image sharpness.
Such object motions and camera shakes are common in prac-
tice, and therefore removing these artifacts becomes crucial
for successful HDR imaging.

The ghosting artifacts can be mitigated by either aligning
the input images before combining them [KUWS03,MG10,
ZBW11] or deghosting the output HDR image [ZC12,SL12,
SKY™*12,HGPS13]. However, aligning input images taken at
different exposures is a difficult task, and most of deghosting
methods are not robust against large object motions. For blur
artifacts, a recent work employs image deblurring techniques
in HDR imaging process [LHW™*09], but it cannot handle
object motion blurs. Special camera hardwares, such as mul-
tiple image detectors/sensor-elements, have been proposed
for HDR imaging [NBO3, TKTS11, WLA™12, MRK*13].
However, most hardware-based methods sacrifice spatial
resolution for HDR imaging.

To overcome these limitations, we present a new single-
shot HDR imaging method that utilizes a coded electronic
shutter (CES). Recently an electronic shutter [Kod03] has
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been widely adopted in digital cameras, and a CES can be
implemented on top of the electronic shutter by triggering
row-wise different signals (e.g., [MKS*05]) to obtain mul-
tiple exposures in a single image. To produce an HDR im-
age, our approach exploits the row-wise multiple exposures
obtained using a CES. As different exposures are simulta-
neously captured with the CES, ghosting effect is naturally
avoided in the final HDR image. However, blur artifacts can
still remain in the pixels of relatively longer exposure, so we
present a novel motion blur removal algorithm to generate a
sharp HDR image.

Our approach can be considered similar to a few previ-
ous methods [NB0O3, GHMN10] in the sense that spatially
varying exposures are used. The most important difference is
that our approach does not extract subimages with different
exposures, while the previous methods [NB03, GHMNI10]
are based on such subimages obtained by interpolation. Our
method directly extends the dynamic range through photo-
metric calibration and image filtering algorithms, applied to
the full-resolution image without sacrificing the spatial res-
olution. As a result, our approach does not suffer from jaggy
artifacts caused by the interpolation, and preserves more
fine-details than the previous methods. Experimental results
show that our method produces high quality HDR images
using an off-the-shelf camera equipped with a CES.

Our main contributions are summarized as follows.

e A novel approach to HDR imaging based on a Coded
Electronic Shutter

e A robust framework for CES based HDR imaging, which
avoids extraction of subimages for different exposures,
preserving fine image details without jaggy artifacts

e A motion blur removal algorithm that eliminates the blurs
and recovers image sharpness for long-exposure rows

2. Related work

Multiple image based approaches The most popular HDR
imaging approach is to combine multiple LDR images cap-
tured at different exposure levels [DM97, MN99]. The ra-
diometric response function for a camera is recovered us-
ing differently exposed images, and the image pixel value is
converted to the radiance value through the computed re-
sponse function. The state-of-the-art method in this cate-
gory employs a unified HDR reconstruction pipeline from
multi-sensor and multi-exposure images [KGBU13]. How-
ever, these methods assume constant radiance values in mul-
tiple images and therefore have limitations in handling dy-
namic scenes, especially when a target scene contains mov-
ing objects and is taken with a handheld camera.

Handling motion artifacts Object and camera motions
produce ghosting and blur artifacts in the output HDR im-
age, respectively. As ghosting artifacts are mainly caused
by misalignments among multiple images, an intuitive so-
lution is to align the input images before combining them

to produce an HDR image. Simple approaches assume a
planar and rigid scene, and solve for translational motions
among images [TMO7, Yaoll]. However, real camera mo-
tions (e.g., rotations) are more complex than translations
in many cases. More advanced solutions employ an optical
flow based image registration [BM04] to handle nonuniform
motions [KUWS03, MG10, ZBW11]. Despite the improve-
ment in the results, such registration based approaches do
not work robustly with saturations and occlusions.

Another approach for deghosting is to selectively com-
bine a subset of exposures while rejecting the others that
are misaligned by motions [ZC12,SL1 2,SKY*12,HGPS13].
However, most deghosting methods only work for the scenes
with small motions because the radiance of a pixel is as-
sumed to come from the same scene location over all expo-
sures. The state-of-the-art approaches [SKY™*12, HGPS13]
could handle large motions and saturations, but they tend
to produce blurry results as motion blurs are not explicitly
handled. Although deghosting approaches are known as pro-
ducing fewer artifacts than the registration based methods,
their computation cost is relatively high. Thorough reviews
on deghosting methods can be found in [SS12].

To address the blur artifacts, a recent work adopts image
deblurring techniques in HDR imaging [LHW*09]. How-
ever, due to the dependency on the camera blur model, this
approach can handle only global camera motion blurs, but
not object motion blurs. Moreover, the iterative solution for
image deblurring is often time consuming, and would not be
applicable for HDR imaging on camera products.

HDR imaging hardware Special camera hardware de-
vices have been proposed for HDR imaging, e.g., adaptive
exposure control [NBO3], light probe sequences [UGY07],
beam splitter [TKTS11], optical add-on [MRK*13], and
novel sensors that can capture HDR contents at a hardware
level [WLA™12]. A main benefit of these devices is that they
do not require the fusion of images with different exposures.
However, most of them are not only difficult to be fabricated
with high resolution, but also expensive as they are not com-
modity products yet.

A more cost-effective approach is to employ an expo-
sure filter mask that accepts pixelwise different amounts of
exposures [NM00, NNO2, CAC*09, KMS09]. In this case,
the misalignment problem (or ghosting artifacts) is naturally
avoided since multiple exposures are captured simultane-
ously. These methods then extract subimages for different
exposures, followed by a fusion step to generate an HDR
image. However, this approach fundamentally suffers from
a lack of spatial resolution and jaggy artifacts, which arise
from the pixel value interpolation used to produce subim-
ages. Recently another filter mask that exploits color channel
sensitivities has been proposed [HS11], but its strong regu-
larization shifts the tone of bright regions towards midtone.

The work that is closest to ours is the coded rolling shutter
photography, proposed by Gu et al. [GHMN10]. Although
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Figure 1: Conceptual timing charts for various camera shutters.

the coded reset/readout signals [MKS™*05] can provide mul-
tiple exposures within a single shot, this approach shares
the same limitations to [NMOO, NNO2] because they first
extract a subimage for each exposure using interpolation,
which would produce jaggy artifacts in the final HDR im-
age. Rolling shutters artifacts, such as skew and wobble, can
also degrade the final image quality.

3. HDR Imaging Using Coded Electronic Shutter
3.1. Coded electronic shutter (CES)

Fig. 1 shows conceptual diagrams for different camera shut-
ters. Fig. 1a illustrates the timing chart of a global shutter,
commonly used in most of recent cameras. The two curtains
determine the amount of incoming light by opening the front
curtain and closing the rear one. Fast response (e.g., 3—4ms)
is a major benefit of the global shutter, allowing all rows in
the image sensor to acquire incoming light simultaneously.

In a rolling shutter camera, reset/readout signals replace
the physical shutters (Fig. 1b). Unlike the global shutter, the
rolling shutter operates sequentially since only one row can
be signaled and activated at a time. The exposure is gen-
erally aligned with the readout because its time (e.g., 55.8-
148.8ms) is longer than the reset time (e.g., 3.7-18.6ms) as

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

Brightness of the target scene 1 | Shont
Dark Ordinary Bright 2 :J Exposure
i i 3 Long
Under-exposed Coverage of short-exposure 3 } U“EA
4 Exposure
| m 5 Short
- 6 Exposure
Coverage of long-exposure =
! g - 7 Long
| 8 Exposure
Scene radiance

(@ (b)

Figure 2: HDR imaging using a CES. (a) dynamic range extension
using differently exposed pixels in a complementing way. (b) color
filter array with row-wise varying exposures.

illustrated in Fig. 1b'. Gu et al. [GHMN10] proposed an
HDR imaging method using a coded rolling shutter (Fig.
1c) by adjusting the reset signals in the rolling shutter, simi-
lar to [MKS*05]. However, a rolling shutter and its variants
necessarily involve spatial latency between rows due to the
non-overlapping nature of signals (see Figs. 1b and 1c¢), pro-
ducing undesirable skews and wobbles so called the rolling
shutter distortion.

In this paper, we address the limitation by proposing a
novel HDR imaging method based on a CES. The CES is
based on the electronic shutter (e.g., [Kod03]), of which
only the front curtain shutter of the global shutter is replaced
by the reset signal while preserving the rear curtain shutter
(Fig. 1d). Similar to [GHMN10], a CES can easily be im-
plemented to simultaneously obtain row-wise varying expo-
sures in a single image (Fig. 1e). But, we do not need to align
exposure to the readout signals due to the fast physical rear
shutter which prevents spatial latency between rows. Com-
bining the merits of previous shutters, our approach based
on CES does not suffer from rolling shutter distortion while
allowing the concurrent capture of multiple exposures.

3.2. Basic idea and challenges

Our input image consists of two different exposures at +s
stop (or exposure value; EV) apart from a user-selected ex-
posure, usually indicated as the shutter speed in the camera
setting. The EV spacing s is a user parameter that determines
the range of dynamic range extension. The dynamic range
of an ordinary image is usually defined as 2010g(Lnax/Imin),
where Lnax and I,,,;, are pixel intensities corresponding to the
maximum and minimum radiance values, respectively. After
compensating the gap between different exposures of the in-
put (i.e., 2s EV), Lnax Will be increased by 225 pecause 1 EV
corresponds to a standard power-of-2 exposure step and the
output of a digital image sensor is linearly proportional to the
exposure [VFTB97, Kor]. Thus, our output HDR image will

T Reset and readout signals take 1-5us and 15—40us for each row in
an image, respectively, and we use an image of 5632 x 3720 pixels.
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Figure 3: Overall process of our HDR imaging using CES.

have an extended dynamic range of 20108 (Inax/Inin % 2%*)
in the ideal case if we neglect the image noise.

Considering the 2 x 2 Bayer color filter array, the input
image is modeled as

6]

JRAW _ Is on4n+1,4n4-2-th rows
| I, on4n+3,4n+4-throws ’

where Ig and Iy are the short-/long-exposure images at —s
EV and +s EV apart from the user-selected exposure, re-
spectively, and n = 0,1, --- ,@ — 1. For notational sim-
plicity, we use JRAW — {Is,1.} to imply that subimages Ig
and [, are interlaced in a full image AWV 1n our setting,
I’W s a 12-bit image of 5632 x 3720 pixels, and its mo-
saic pattern is shown in Fig. 2b.

The key idea of our approach is to exploit multiple expo-
sures in a single image acquired with a CES, and directly
extend the dynamic range of / RAW without separating Ig and
Ir. Major benefits of our CES based HDR imaging system
are that it prevents both the spatial latency (i.e., rolling shut-
ter artifacts of [GHMN10]) and the temporal latency (i.e.,
ghosting by misalignments [DM97, MN99]).

To achieve high quality HDR imaging under this setting,
a few challenging issues should be resolved:

e Calibration of different exposures: Since Ig and I, in the
input I**W have been obtained with different exposures
(Fig. 4a), they should be calibrated into a single exposure
before they are combined to extend the dynamic range.

® Restoration of under-/over-exposed pixels: With short-
/long-exposures, Is and I; may contain under-/over-
exposed pixels, which can produce color artifacts (Fig.
4b). These under-/over-exposed pixels should be restored
using the nearby long-/short-exposure pixels (Fig. 2).

o Compensation of different noise levels: Since shorter ex-
posure usually contains more noise, the noise levels of Ig
and [y are different, resulting in noticeable horizontal ar-
tifacts in the exposure-calibrated image (Fig. 4c), which
should be corrected.

e Removal of potential motion blurs: With a longer ex-
posure time, /; may contain longer motions (i.e., larger
blurs) than /g when a dynamic scene is captured. The dif-
ferent amounts of blurs among Ig and I;, would appear
as interlaced artifacts around object edges (Fig. 4d) and
should be removed.

3.3. Our solutions

The overall process of our HDR imaging algorithm is illus-
trated in Fig. 3, which consists of several components to re-
solve the challenges mentioned in the previous section.

Photometric calibration: To calibrate the different expo-
sure levels of Is and I, we compute and utilize the response
curve of the image sensor (Section 4.1). Note that since we
are accessing the camera RAW images, estimating the radio-
metric response function as in [DM97] is unnecessary in our
work. Instead, we compute the linear response of the image
sensor that allows direct and effective conversion between
raw pixel values with different exposures.

Under-/over-exposure handling: Given the single expo-
sure obtained by photometric calibration, we restore the
under-/over-exposed pixels using their well-exposed adja-
cent pixels while rejecting inaccurate ones. We present an
effective bilateral filter that considers the pixel distance and
the edge direction (Section 4.2).

Horizontal noise difference correction: To compensate the
noise level difference between Ig and I;, we analyze the
property of the difference and utilize it to select an appro-
priate denoising method (Section 4.3).

Motion blur removal: Explicitly detecting and removing
interlaced blur artifacts is difficult. We adapt a video dein-
terlacing method using the mean curvature flow [LS11], and
extend it with an effective sharpness recovery step to avoid
oversmoothing (Section 4.4).

4. Algorithm Details

This section describes each algorithmic component of Fig. 3
in detail with a real example in Fig. 4.

4.1. Photometric calibration

To compensate the different exposures in "W = {I¢,1; },
the first step exploits the linear response assumption for dig-
ital image sensors [VFTB97, Kor], which implies that the
sensor output is linearly proportional to the exposure. We
validated the assumption experimentally for our image sen-
sor. Fixing the ISO and aperture values, we took a static
white panel in a controlled-light room (i.e., 0.15 lux) with
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Figure 4: Intermediate results of our HDR imaging process. (a) input image taken with a handheld camera equipped with a CES. (b)-(d)
intermediate results of the algorithmic components. For visualization, demosaicking and tone mapping have been used for (a)-(e).

(a) ISO 200

(b) ISO 800

(¢) ISO 3200

Figure 5: Response curves of our CMOS image sensor: exposure
(x-axis) vs. averaged raw pixel value on color filter array (y-axis).
The exposure has been determined by controlling the shutter speed.

varying exposure time. We then determined the functional
relationship between exposures and raw pixel values (i.e.,
sensor response) using the reciprocity [DM97], which im-
plies that the optical density is determined by the product of
the sensor irradiance and the exposure time. We conducted
the experiments for seven ISO values from 100 to 6400 with
the aperture value of f/2 and computed the sensor response
by averaging about 3.5 million raw pixel values. As illus-
trated in Fig. 5, we observed that the response curve of our
sensor is linear regardless of color channels and camera pa-
rameters.

With the linear sensor response, we compensate for the
different exposures in IRAW a5 follows.

1. Regress each response curve as I = aE + b, solving for
constants a and b, where I and E represent the pixel and
exposure values, respectively.

2. For the short exposure pixels Ig, compute their corre-
sponding exposure values Eg using the inverse of the re-
gression curve obtained in Step 1.

3. Compute the expected long exposure Eg_,; by multiply-
ing Eg and the ratio between exposure times of Iy and Is.

4. Compute Ig_,; from Eg_,; using the regression curve.

Through the above steps, we obtain a calibrated long ex-
posure image I'C = {Is_,;,I; }, as an update of I’V The
pixel values of 1°C have a 12+ 2s bit representation, where
2s is the exposure level difference between I, and Is. Fig. 4b
shows an example of 7

(© 2015 The Author(s)
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Figure 6: Visualization of the over-exposed areas (red) and under-
exposed areas (blue). Well-exposed areas are shown in gray.

4.2. Under-/over-exposure handling

Although 17C now has a uniform long exposure, it can con-
tain under-/over-exposed pixels whose values are not reli-
able. For example, the red pixels inside the white object of
Fig. 4b result from the saturation. White balancing on the
saturated pixels in our image sensor increases the red pixel
values because its red channel is less sensitive than the green
and the blue.

Since the under-/over-exposed pixels themselves do not
have accurate values, we have to utilize their well-exposed
neighbors. Inspired by the edge dependent interpolation
(EDI) algorithm for video deinterlacing [DHB9S], we pro-
pose an effective bilateral filter that contains spatial weight
ws and edge-directional weight wy:

= Z ws-wq-v(I(y)-1(), ()

)69 x)

IUOH

where I = IC for notational simplicity, N is the sum of
weights for normalization, x and y are indices for the under-
/over-exposed pixel and its neighborhood in the same color
channel, respectively, and Q is a set of neighboring pixels
just above or below the current row and within the radius of
3 centered at x in the Bayer color filter array.

The under-/over-exposed pixels are detected on IRAW i
advance using user-specified threshold values (B; = 2’ and
By = 212 - Bp), which correspond to the lower and up-
per bounds of the well-exposed range for our 12-bit input
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image (Fig. 6). The validation function v(-) is defined as

1 ifI(y) > I(x) & I’*WY (x) > By,
v(I() = 1 fI(y) <I(x) &I’ (x) < B, 3)
0 otherwise.

For an over-exposure pixel x, we can assume its pixel value
I(x) has been truncated due to the saturation, thus only
neighboring pixels y whose values I(y) are larger than /(x)
should be used to update I(x). Note that the over-exposure
handling is meaningful only for the pixels in the long-
exposure rows Iy using the nearby pixel values in I5_,; (Fig.
2). If a short-exposure pixel in Is_,; is over-exposed, nearby
long-exposure pixels would also be over-exposed, and there
is no information we can use for recovering the over-exposed
pixels. In this case, both the short- and long-exposed pixels
remain unchanged. The symmetric argument also applies to
the under-exposure handling.

In Eq. (2), ws and w, are respectively defined as

wy = exp /o), @)
(V1) B | o) )

Wy = exp
where V1 (x) is the orthogonal direction to the image gra-
dient at x, and @ is a direction vector from x to y. For exper-
iments, we use 6; = 2 and 6,4 = 0.1, respectively. ws penal-
izes the neighborhood far from x, and w, gives more weights
to the pixels whose orientation from x is similar to VI(x).
Fig. 4c shows the result of under-/over-exposure handling.

4.3. Horizontal noise removal

After computing TUOH e apply an image demosaicking

method [Ada97] to obtain a color image IRGB, as illustrated
in Fig. 3. The next step in the process is to correct for the
different noise levels along horizontal lines in IRCB caused
by different exposure values.

In general, image noise is assumed to be additive Gaus-
sian [BCMOS]. Since the photometric calibration is just a
linear transform of pixel values, we can expect the noise
distribution of the calibrated pixels would also be Gaussian.
However, the noise level of Is_,; differs from that of /;, be-
cause short exposures generally contain more noise and the
noise in /g is amplified in Ig_,; through the photometric cal-
ibration. This amplified noise level of Is_,; gives rise to no-
ticeable horizontal noise in /RCB especially inside smooth
regions, although it may not be prominent in textured re-
gions (Fig. 4c).

To analyze the property of the noise level difference, we
measure err = Ig_,; — I for each color channel. Using the
white panel images used for the validation test in Section
4.1, we sampled about 10,000 pixels from Is_,; and I for
each color channel. Fig. 7 shows the distributions of err,
which have the Gaussian distribution shapes, as the differ-
ence between two Gaussian distributions is also Gaussian.

A

£ — ,»,'/'.*‘_ : . PN
VA SRR A N .

(a) 1/4s — 1/2s (b) 1/2s — 1/s (c) 1/4s — 1s

Figure 7: Distributions of the noise level differences. We define the
error as the difference between the calibrated pixel value and the
ground truth at long exposure.

The means of the distributions are almost zero, and the vari-
ance is most affected by the gap between exposure levels,
where a larger gap gives a higher variance.

Based on this observation, we adapt a widely used denois-
ing method, the bilateral filter [TM98], to remove the hori-
zontal noise. The spatial kernel size is set as 5 or 7 pixels
centered at the current pixel to include nearby pixels from
both Ig_,; and Ir. To prevent the different noise amounts
among Is_,; and I; from being considered as signal differ-
ences in bilateral filtering, we adjust the sigma (i.e., variance
o) for the range kernel according to the gap between expo-
sure levels. In our implementation 6, = 0.03 x 212428, Fig.
4d shows the result of our horizontal noise removal step.

4.4. Motion blur removal

Since different exposure times have been used for Ig and
I, motion blurs can appear as jaggy-like artifacts along the
edges at object boundaries (Fig. 4d). It is hard to explicitly
separate and remove such artifacts, so we adopt a mean cur-
vature flow based video deinterlacing method [LS11] and
extend it to better preserve the sharpness of the final output.

Blur artifact removal We begin with extending the image
model in Eq. (1) as

IHNR—{ Is_,;odg ondn+1,4n+ 2-th rows ©)

I o®;, on 4n+ 3,4n + 4-th rows

where I"™R jg the demosaicked intermediate result of Sec-
tion 4.3, and @ is a displacement vector field representing
a relative pixelwise motion from the original pixel position.
Although @ does not exactly represent the motion blurs, it
can handle blur artifacts resulting from expansions (or non-
uniform displacements) of edge pixels. Without the loss of
generality, we can represent Eq. (6) as [MNR — 76 @, omit-
ting the subscripts.

To search for a smooth image from {Is_, 7,1 } minimizing
the displacement ®, Lenzen and Scherzer [LS11] proposed
the following functional:

MBR

I :argmin/ [1\|d>(x)—x||2+oc|VI| dx, (1)
1 Jal2

where o is the relative weight for total variation regular-

ization | V1. (®(x) —x) = (VIT)* (IR _ ) is the motion
vector, so called the optical flow, and used for penalizing a
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(a) Lenzen and Scherzer [LS11]

Figure 8: Comparison of blur removal methods. (Left) output HDR
image. (Right) gradient image. (b) preserves corners better than (a).

large displacement. T denotes the Moore-Penrose pseudo-
inverse. The semi-group solution of Eq. (7) is

I = VI div (%) , (8)
where / satisfies Neumann boundary conditions. More de-
tails of the solution derivation can be found in [LS11]. Note
that Eq. (8) is a kind of mean curvature flow with a different
leading factor (i.e., |VI |2 instead of |VI|). As demonstrated
in Fig. 8a, applying Eq. (8) to THNR removes the blur artifacts
effectively.

Sharpness recovery Since Eq. (8) can oversmooth the im-
age, we extend the algorithm to preserve the sharpness. In
Eq. (6), we can assume that Ig_,; is not affected by the
motion blur during the capture, because it is originally ob-
tained at short exposure. Accordingly, ®g becomes reduced
to a delta function, and we only have to consider & in Eq.
(7). However, the mean curvature flow in Eq. (8) shrinks the
whole image features such as corners and edges, as shown
in Fig. 8a.

To overcome the limitation, we incorporate an effective
sharpness recovery step into our motion blur removal by ex-
ploiting the sharpness information in Ig_,; of I HNR Inspired
by the feedback-control upsampling [SLITOS8] and the back-
projection method [[P93], which enforce the constraint from
the input image during iterative image restoration, we sub-
stitute Ig_,z, for I MBR at short exposure pixels. However, this
may cause the mismatch of sharpness in adjacent rows repro-
ducing jaggy-like artifacts, so the pixel-substituted image is
passed to the next iteration. As a result, our algorithm pre-
serves the details in /g_,; as much as possible, while aligning
I o Py to I,y via iterative refinement.

Algorithm 1 summarizes our detail-preserving motion
blur removal process. In the algorithm, the parameters
#outer_iters and #evolutions need to be adjusted accord-
ing to the extent of blur, and in our implementation, we use
#outer_iters =5 and #evolutions = 15. As shown in Fig. 8b,
the proposed algorithm removes the blur artifacts effectively
while preserving more details than the original dejittering
method [LS11].

(© 2015 The Author(s)
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Algorithm 1 Detail-preserving motion blur removal
JHNR

Input:
Output: JMBR
JMBR _ fHNR > Initialization
for iter = 1 : #outer_iterations do
for t = 1 : #evolutions do > Blur artifacts removal
JMBR Compute Eq. (8) with I = JMBR
end for
for all x € Is_, of JHINR g
Substitute IMBR with x
end for
end for

> Sharpness recovery

The final output IMBR has the extended dynamic range of
12 + 2s bits. This output can be stored as a raw HDR image
in the .hdr” format. For visualization, we convert IMBR into
a smaller bit representation (e.g., standard 8-bit image) using
the local adaptation tonemapper of Adobe Photoshop CS6.
Fig. 4e shows the final output after the tone mapping.

5. Results

We implemented our method using C++. Our testing envi-
ronment is a PC running MS Windows 7 with Intel Core i7
CPU and 12GB RAM. All the input images for our method
were taken by a camera equipped with a CES. For other
methods, multiple input images were obtained using the
same camera by disabling the CES capability.

Fig. 9 shows a comparison with the most recent single-
shot HDR imaging method [GHMN10] on a synthetic exam-
ple. The synthetic raw image in Fig. 9b was obtained from
the ground truth in Fig. 9a by sampling each color channel
of the Bayer color filter array and adjusting the pixel inten-
sities for rows to have relative shutter speeds {0.5s,2s}. As
shown in Fig. 9c, the method of [GHMN10] blurs fine de-
tails due to the extraction of subimages that involves image
interpolation. Note that the interpolation was also used in
[NMOO, KMS09], thus they share the same limitation. The
result of our method is shown in Fig. 9b, which preserves
fine details and the sharpness better than [GHMN10]. We
also measured the restoration errors quantitatively for com-
paring the two methods. The PSNR value of [GHMNI10] is
26.07 dB, and that of our method is 27.73 dB.

Fig. 10 shows another comparison on a real example
that contains many sharp features. To obtain the result
of [GHMNI10], we simulated the method using extracted
subimages from our row-wise varying exposure image. As
shown in Fig. 10a, [GHMN10] does not preserve horizontal
line features. In contrast, our method better preserves hori-
zontal lines and sharp features as shown in Fig. 10b.

Fig. 11 shows a comparison of various degrees of our dy-
namic range extension. Fig. 11a was taken with single expo-
sure of {1/4s}. For Figs. 11b-e, we used the stop parameter
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(a) Ground truth (b) Synthetic raw input

(c) Guet al. [GHMNI10] (d) Our method

Figure 9: Synthetic example. (b) is a grayscale image and visualized with colors for better representation. The PSNR value for (c) and (d) are

26.07 dB and 27.73 dB, respectively.

(a) Gu et al. [GHMN10] (b) Our method

Figure 10: Comparison of recovered fine details with a real image
of ISO 12233 resolution chart. The middle and bottom rows show
the magnified views and their gradient image.

s =4{0.5,1.0,1.5,2.0,2.5} for CES, given the indicated ex-
posure of {1/4s}. With the parameters, our method produces
diverse HDR images with different dynamic ranges.

Fig. 12 compares our method with multiple image based
methods [DM97, HGPS13] for a dyanmic scene that con-
tains moving objects of complex motions. Figs. 12a-b were
produced from three images of shutter speed {1/125s, 1/60s,
1/30s}, using the implementation provided on internet by the
authors. In Fig. 12a, the traditional method [DM97] suffers
from ghosting artifacts around the moving dolls since it does
not employ image registration or deghosting. In Fig. 12b,
the state-of-the-art deghosting method [HGPS13] produces
a high quality HDR image. However, [HGPS13] takes about
30 minutes to obtain a result at 1.7M pixels because of the
repeated estimation of local homographies. In Fig. 12¢, our
method preserves fine image details and provides a compa-
rable quality to [HGPS13]. However, our method takes less
than five minutes to obtain a result at 20M pixels. Note that
the previous method could not handle an image of large size
due to the memory limit. Approximately, our method is 40

times faster than [HGPS13] under the same image resolu-
tion.

Fig. 13 shows additional results of real images from two
stop to four stop extension. As shown in the result of four
stop extension, our method can be applied to a very high dy-
namic range imaging. The supplementary material contains
more comparisons and results including input images.

6. Discussion and Future Work

Row-wise exposure coding In our HDR imaging method,
every two consecutive rows alternate between the short and
the long exposures. This exposure sampling scheme com-
plies the architecture of electronic shutter, while providing
several advantages: (1) easy implementation as the reset and
readout signals of the ordinary image sensor are activated
row-wise, and (2) conformity to the vertical movement of
the typical curtain shutter. Thus, the row-wise exposure sam-
pling is a natural choice for the coded shutter in practice.

Spatial resolution and fine-details Although we sample
row-wise varying exposures within a single image, we do not
suffer from the reduction of spatial resolution as the pixel in-
formation is processed and combined in place rather than be-
ing separated into subimages (Figs. 9 and 10). This is a main
benefit of our method, compared to the previous single im-
age based approaches [NM00, CAC*09, KMS09, GHMN10]
that extract a subimage for each exposure, resulting in the
loss of fine details.

Limitations and future work A large gap between short-
and long-exposure edges in the input image would require
more iterations in Algorithm 1 while blur artifacts may not
be completely removed. In addition, the bilateral filtering for
horizontal noise removal could decrease image sharpness.
Investigating more advanced deblurring and denoising meth-
ods would be important future work. Our algorithm with
naive implementation takes about 3—5 minutes to produce an
HDR image of 20 mega pixels. Although this is faster than

(© 2015 The Author(s)
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s

(a) Single exposure

e P P

(b) 1 stop extension  (b) 2 stop extension

W

(c) 3 stop extension  (d) 4 stop extension  (e) 5 stop extension

Figure 11: Our dynamic range extension results with real photographs. (a) Single exposure image taken with the shutter speed {1/4s}. (b)-(e)
Our results with s = {0.5,1.0,1.5,2.0,2.5}. Magnified views in the bottom.

(a) Debevec and (b) Hu et al. [HGPS13] (c¢) Our method
Malik [DM97]

Figure 12: Comparison with multiple image based methods when
the scene contains moving objects. The first row illustrates the dy-
namic scene. The second row shows HDR image results. The last
two rows show the magnified views.

previous deghosting methods, it is not enough to be embed-
ded inside a camera. Our future work includes accelerating
the proposed method, and extending it for HDR video.
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