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Abstract

Advanced artificial intelligence (AI) systems with
access to millions of research papers could inspire
new research ideas that may not be conceived by
humans alone. However, how interesting are these
AI-generated ideas, and how can we improve their
quality? Here, we introduce SCIMUSE, a system
that uses an evolving knowledge graph built from
more than 58 million scientific papers to gener-
ate personalized research ideas via an interface
to GPT-4. We conducted a large-scale human
evaluation with over 100 research group leaders
from the Max Planck Society, who ranked more
than 4,000 personalized research ideas based on
their level of interest. This evaluation allows us
to understand the relationships between scientific
interest and the core properties of the knowledge
graph. We find that data-efficient machine learn-
ing can predict research interest with high preci-
sion, allowing us to optimize the interest-level of
generated research ideas. This work represents
a step towards an artificial scientific muse that
could catalyze unforeseen collaborations and sug-
gest interesting avenues for scientists.

1. Introduction
A compelling idea is often at the heart of successful research
projects, crucial for their success and impact. However, with
the enormous growth in the number of scientific papers pub-
lished each year (Fortunato et al., 2018; Wang & Barabási,
2021; Bornmann et al., 2021), it becomes increasingly diffi-
cult for researchers to uncover novel and interesting ideas.
This difficulty is even more pronounced for those looking
for interdisciplinary research avenues or collaborations, as
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they face an overwhelming sea of literature.

Automated systems capable of extracting insights from the
millions of scientific papers might offer a solution (Evans
& Foster, 2011; Wang & Barabási, 2021). One promising
approach involves the use of knowledge graphs, which map
the relationships between different research concepts and do-
mains. In a pioneering work, the authors of (Rzhetsky et al.,
2015) demonstrate potentially more efficient research strate-
gies in the field of biochemistry by compressing the con-
tent of millions of scientific papers into knowledge graphs.
These graphs not only help in mapping existing knowledge
but also enable the discovery of surprising and impactful
ideas by linking previously unconnected concepts. For in-
stance, researchers have utilized knowledge graphs to fore-
cast future research directions in quantum physics (Krenn &
Zeilinger, 2020), biomedicine (Sybrandt et al., 2020; Nad-
karni et al., 2021), and artificial intelligence (Krenn et al.,
2023). Beyond trend prediction and uncovering new links,
these approaches have demonstrated that surprising combi-
nations of research concepts are strongly associated with
high-impact discoveries (Shi & Evans, 2023). Addition-
ally, human-aware AI systems can generate scientifically
promising ‘alien’ hypotheses that might otherwise be over-
looked (Sourati & Evans, 2023), and knowledge graphs have
been used to predict the impact of new research connections
before a paper is written (Gu & Krenn, 2024).

Some recent efforts demonstrate how to generate research
ideas in the form of text. One such example is PaperRobot,
which starts with a knowledge graph and incrementally
translates the idea into a draft of a paper (Wang et al., 2019).
With the growing prominence of large language models
(LLMs), various systems now leverage these models to gen-
erate research ideas. SciMON, for instance, generates novel
scientific ideas by comparing them to prior work and contin-
uously enhancing their novelty (Wang et al., 2024). Another
system uses LLMs to mine large-scale scientific literature
and generate hypotheses by finding unanticipated connec-
tions between research topics (Yang et al., 2023). Addition-
ally, there are systems for scientific discovery that leverage
user-specific goals to generate candidate hypotheses (Zhong
et al., 2023) or employ either a single-LLM system or multi-
agent collaboration for research hypothesis proposals (Qi
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et al., 2023). Similarly, ResearchAgent develops new re-
search ideas by analyzing scientific literature and refining
them progressively to ensure both novelty and relevance
(Baek et al., 2024).

While novelty and relevance of the generated ideas are cru-
cial, a critical question arises: Are these AI-generated re-
search ideas interesting for human scientists? The afore-
mentioned works conducted small-scale human evaluations
involving one biomedical domain expert (Wang et al., 2019),
six natural language processing (NLP) PhD students (Wang
et al., 2024), three social science PhD students (Yang
et al., 2023) and ten PhD students in computer science and
biomedicine (Baek et al., 2024).

However, it is often experienced researchers who define
and evaluate research projects by writing and assessing re-
search grant applications, as well as leading and shaping
the research agenda of their groups. It would be particularly
insightful to see how these experienced scientists evaluate
AI-generated project ideas. With more evaluators and a
greater number of evaluations, we could develop tools to
predict which research ideas will be interesting in the future.
This is precisely the goal of our paper, aiming to suggest in-
teresting research projects and collaborations for scientists.

Here, we introduce SCIMUSE, a system designed to suggest
new personalized research ideas for individual scientists
or collaborations between researchers. To achieve this, we
first generate a knowledge graph from more than 58 mil-
lion papers, incorporating semantic and impact information.
We then identify sub-graphs relevant to the research inter-
ests of individual scientists and use these sub-graphs to
select research topics. Using GPT-4 (Achiam et al., 2023),
we formulate these research topics into comprehensive re-
search suggestions. To evaluate our approach, we conducted
a large-scale survey with over 100 research group lead-
ers from the Max Planck Society in natural sciences and
technology (such as the Institutes for Biogeochemistry, As-
trophysics, Quantum Optics, and Intelligent Systems) and
social sciences and humanities (such as the Institutes for
Geoanthropology, Demographic Research, and Human De-
velopment). These experienced researchers assessed the
interest level of more than 4,000 personalized AI-generated
project suggestions. We analyzed the evaluations and found
clear correlations between the properties of the knowledge
graph and the interest level of the research suggestions.
Using these correlations together, we would then train a
machine learning model to predict research interest based
solely on the knowledge graph data. The model achieves
high precision for the top-N predicted interesting sugges-
tions, with precision exceeding 50% for N≤15. Our findings
demonstrate the potential of SCIMUSE for suggesting highly
interesting research ideas and collaborations, highlighting
the role of artificial intelligence as a source of inspiration in

science (Krenn et al., 2022; Hope et al., 2023; Wang et al.,
2023; AI4Science & Quantum, 2023).

2. Results
2.1. Creating the knowledge graph

While we could directly use publicly available large lan-
guage models such as GPT-4 (Achiam et al., 2023) or Gem-
ini (Reid et al., 2024) or Claude (Anthropic, 2024) to suggest
new research ideas and collaborations, our control over the
generated ideas would be limited to the structure of the
prompt. Therefore, we decided to build a large knowledge
graph from the scientific literature to identify the personal-
ized research interests of scientists.

The knowledge graph, depicted in Fig.1(a), consists of ver-
tices, representing scientific concepts, and edges are drawn
when two concepts jointly appear in a title or abstract of a
scientific paper. The concept list is generated from the ti-
tles and abstracts of around 2.44 million papers from arXiv,
bioRxiv, ChemRxiv, and medRxiv, with a data cutoff in
February 2023. Rapid Automatic Key-word Extraction
(RAKE) algorithm based on statistical text analysis is used
to extract candidate concepts (Rose et al., 2010). Those
candidates are further refined using GPT, Wikipedia, and
human annotators, resulting in 123,128 concepts in the nat-
ural and social sciences. We then use more than 58 million
scientific papers from the open-source database OpenAlex
(Priem et al., 2022) to create edges. These edges contain
information about the co-occurrence of concepts in scien-
tific papers (in titles and abstracts) and their subsequent
citation rates. This new knowledge graph representation
was recently introduced in (Gu & Krenn, 2024) to predict
the impact of future research topics. As a result, we have
an evolving knowledge graph that captures part of the evo-
lution of science from 1665 (a text by Robert Hooke on
the observation of a great spot on Jupiter (Hooke, 1665)) to
April 2023. Details of the knowledge graph generation are
depicted in Fig.1(a) and the Appendix.

2.2. Personalized research suggestions

We focus on generating personalized research proposals for
collaborations between two scientists, both group leaders
from the Max Planck Society. One of these researchers will
later evaluate the proposal.

To generate suggestions for pairs of researchers, as depicted
in Fig.1(b), we begin by identifying the research interests
of both Researcher A and Researcher B. This is done by
analyzing all their published papers from the past two years.
Specifically, we extract their concepts from the titles and
abstracts of these papers using the full concept list shown
in Fig.1(a). The personalized concept lists are further re-
fined by GPT-4. Consequently, we are able to construct a
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Figure 1. SCIMUSE suggests research ideas or collaborations using knowledge graph and GPT-4. (a), Generation of a knowledge
graph. Nodes represent scientific concepts extracted from about 2.44 million paper titles and abstracts from four academic preprint
servers. Using natural language processing (NLP) tools such as RAKE (Rose et al., 2010) to create a concept list, we then refined it with
customized NLP techniques, manual review, and GPT, removing non-conceptual phrases like verbs, ordinal numbers, conjunctions, and
adverbials. Wikipedia was used to restore any mistakenly removed concepts. In the end, we obtained a final list of 123,128 concepts. Edges
are created when two concepts co-occur in the title or abstract of more than 58 million scientific papers in the OpenAlex database (Priem
et al., 2022). These edges are augmented with citation information, which can serve as a proxy for impact. A mini-knowledge graph as an
example is shown for two randomly selected papers (Wakonig et al., 2019; Johnson et al., 2023) in OpenAlex. (b), AI-generated research
collaborations. We first process the publications of Researcher A and Researcher B through our refined concept list from (a), generating
individual concept lists for each researcher. We then use GPT-4 to enhance these lists to create high-quality concept representations.
These refined lists identify distinct subnetworks within our knowledge graph that correspond to each researcher’s interests. To propose
research collaborations or ideas, we identify and combine relevant concept pairs between the two researchers along with their research
information. This combined input is then fed into GPT-4, which generates personalized research ideas or collaboration projects.

subgraph in the knowledge graph for each researcher based
on theirs personalized concepts.

With the researchers’ subgraphs, we generate a prompt for
GPT-4 to create a research project (details in the Appendix).
In the prompt, we provide the titles of up to seven papers
from each researcher and ask GPT-4 to create a research
project based on two selected scientific concepts. We choose
these concepts in three different ways. In one-third of the
cases, we use a randomly sampled concept pair, with one
concept from each researcher. In another third, we select the
concept pair with the highest predicted future impact, using

an adaptation of (Gu & Krenn, 2024). In the final third, we
do not specify concept pairs, instead asking GPT-4 to create
the project using only the paper titles. Although we cannot
directly relate these pure GPT-4 suggestions to knowledge
graph features and interest levels from human evaluation,
they serve as an important sanity check for our method (see
Appendix). The prompt itself employs self-reflection, as
described in (Madaan et al., 2024), to improve the response.
Specifically, we ask GPT-4 to generate three ideas, reflect
upon them, and improve them twice. In the end, GPT-4
selects the most suitable project idea as the final result.
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Figure 2. Large-scale human evaluation within the Max Planck Society. (a)-(b), A total of 4,451 AI-generated personalized research
suggestions were evaluated by 110 research group leaders. Each suggestion proposes a collaboration between the evaluating researcher
(Researcher A) and another researcher (Researcher B) from the Max Planck Society. These proposed collaborations are visualized as edges
on a graph, where an edge is bi-colored from orange (representing Researcher A) to green (representing Researcher B). If Researchers A
and B are from the same institute, this is indicated by a purple circle around that institute. The transparency of the edge is proportional to
the number of evaluated suggestions. Additionally, the research fields of the researchers are categorized into natural science (denoted by a
blue dot, labeled as nat) and social science (denoted by a red dot, labeled as soc). The map of Germany is based on GISCO statistical unit
dataset from Eurostat (Commission, 2024). (c), For each research suggestion, participants were asked to rate their interest on a scale
from 1 (‘not interesting’) to 5 (‘very interesting’). The summary figure displays the distribution of these ratings. In total, 394 research
suggestions were rated as very interesting, and 713 ideas received a rating of 4. The figure includes separate sections for responses where
both researchers are from the same institute, as well as for those from different institutes, further categorized by their affiliation with either
the natural science or social science faculties. For example, ‘nat to other nat’ means researchers A and B are from different natural science
institute, ‘nat to soc’ means that researcher A is from natural science institute and research B is from social science institute.

2.3. Human Evaluation

To assess how interesting these AI-generated ideas are, we
asked research group leaders at scientific institutes, who reg-
ularly deal with and act upon research ideas, to participate
in the evaluation. Specifically, 110 research group lead-
ers from 54 Max Planck Institutes within the Max Planck
Society (one of the largest research societies worldwide)
participated (see Fig.2(a) and (b)). They were tasked with

evaluating up to 48 personalized research projects for their
interest level, ranging from 1 (‘not interesting’) to 5 (‘very
interesting’). Of the 110 researchers, 104 are from natural
science institutes, and 6 are from social science institutes.
In total, we received 4,451 responses. The full statistics
are shown in Fig.2(c). Notably, 1,107 projects received an
interest level of 4 or 5 (nearly 25% of the projects), with
394 of these being ranked as very interesting.
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Figure 3. Analysis of interest levels versus knowledge graph features. We analyzed how eight individual features of a knowledge
graph relate to researchers’ interest levels. After normalizing these features using z-scores, we arranged them from lowest to highest
and segmented the data into 50 equal groups. For each group, we plotted the average normalized feature value (x-axis) alongside the
corresponding average interest value (y-axis), including the standard deviation for each point, to identify trends in how different graph
features influence researchers’ preferences. Features (a) and (b) relate to node features, (c) to (e) to node citation metrics, (f) is an edge
feature, (g) is an edge citation metric, and (h) represents the semantic distance of the two researchers’ sub-networks (larger values mean
that the researcher’s scientific fields are further apart). The plot includes data points in blue representing all 2,996 responses, green for the
top 50% of research questions by predicted impact, and red for the top 25%.

2.4. Interest versus knowledge graph features

We find that, on average, there is no significant difference
in the interest value between projects generated by the three
different methods: random concept pairs, high-impact con-
cept pairs, and without concept pairs. The fact that the
sanity test (a project generated without a concept pair in
the prompt) and the cases where we provide concept pairs
yield very similar results allows us to further analyze which
knowledge graph features strongly influence the interest. If
we can determine which features affect the interestingness
of a research project, we can use this insight in the future to
suggest research projects with higher research interest.

We first compute 144 knowledge graph features for each
concept pair used in a research project. The first 141 fea-
tures are the same features as those used to predict the future
impact of concept pairs, as described in (Gu & Krenn, 2024).
The features include node characteristics of the first and sec-
ond concepts, such as node degree and PageRank (Page
et al., 1999), as well as edge features, such as the Simp-
son similarity, and the Sørensen–Dice coefficient (Barabási,
2016). Additionally, several features are based on impact

information, such as citations within the last year. The final
three features are the predicted impact and two different
distance metrics of the researchers’ subgraphs (see 1(b)).
The first distance metric considers only the subgraphs, using
the concepts from Researcher A’s and Researcher B’s con-
cept lists to determine the distance between these subgraphs.
The second metric accounts for the entire neighborhood of
the subgraphs, defined as semantic distances. For this, we
collect the neighbors of all concepts in both researchers’
concept lists and determine the distance between these ex-
panded subgraphs built from neighboring concepts.

We then split the 2,996 suggested research projects, cre-
ated using concept pairs from the knowledge graph, into
50 equally sized bins. For each bin, we compute the mean
interest and its standard deviation.

In Fig.3, we display these correlations and identify several
notable properties. For instance, the degree and PageRank
of the first concept, selected from the evaluating researcher’s
concept list, is strongly negatively correlated with human-
evaluated interest-level. This means that the more widely
connected a concept is within the knowledge graph, the less
appealing the research projects are. A similar effect is ob-
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Figure 4. Learning Scientific Interest. (a), We use the evaluations from research group leaders to train a neural network. This model
predicts whether research suggestions are assigned an interest level of 4 or 5 (on a 5-point scale) or below 4, thereby setting up a binary
classification task. The input to the neural network consists of 25 features from the knowledge graph of a concept pair, and its output is
a single number indicating whether the concept pair is highly interesting (i.e., interest level is ≥4) or not. Given the small size of our
training dataset, which comprises a total of 2,996 evaluated research suggestions generated through our knowledge graph, we employ
Monte Carlo cross-validation to determine the accuracy of our learning process. (b), The ROC curve indicates that we can correctly
predict a randomly chosen highly interesting concept pair over a randomly chosen not-highly interesting concept pair in nearly 65%
of cases. (c), The precision of our model for the top-N highest-interest research suggestions is significantly higher than for a random
selection of suggestions. Especially for the Top-1 suggestion, the precision is larger than 70%, and Top-5, the precision is still above
60%. (d), The probability of having at least one high-interest suggestion among N research suggestions is significantly higher than with a
random selection. This indicates that our machine learning model, which has access to the knowledge graph in conjunction with GPT-4, is
able to produce more high-interest research suggestions than GPT-4 itself.

served for the citation rate: the more frequently a concept
has been cited in the past (in the last year, and sum over all
years), the less interesting the research projects are evalu-
ated. Some features, such as the rank of concept B’s citation
growth rate or the minimum count of the total number of
papers containing concept A or B from the paper’s publica-
tion time up to 2020 (i.e., two years before the current year
‘y’; ‘y=2022’ means 2022-12-31), show peculiar behaviour
for very large or small values. This behaviour could be
exploited to predict the interest level. On the other hand,
we find a strong positive correlation between the Simpson
similarity coefficient of the two concepts and the evaluated
interest-level. Additionally, using semantic distance feature,
we find a negative correlation in Fig.3(h), indicating that
research proposals from researchers in similar fields are con-
sidered more interesting than those from distant fields. This
finding is consistent with Fig.2(c), where research propos-
als from the same institutes are generally considered more
interesting than those from other institutes (with different
research focus).

We show the correlations for all 2,996 answers containing
concepts from the knowledge graph (blue), as well as for
the top 50% and top 25% of concept pairs with the highest
predicted impact (green and red, respectively) in Fig.3, in-
dicating that some correlations are stronger for suggestions
using high-impact concept pairs.

2.5. Predicting interest

Given that the features of the knowledge graph significantly
influence the interest in suggested research projects, we
can take this analysis a step further by training a machine
learning model to predict the level of interest based solely
on these properties. If successful, this approach would allow
us to suggest research projects that are more likely to be
considered highly interesting in the future for scientists.

We start with a concept pair, compute the relevant features
in the knowledge graph, and use these features to predict
whether a research proposal will receive an interest rating
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of 4 or 5 (on a scale from 1 to 5: not interesting to very
interesting) or below 4, as illustrated in Fig.4(a). Due to the
scarcity of training data – each data point representing the
evaluation of a proposed research project’s interestingness
by a research group leader – we employ a low-data machine
learning technique. Specifically, we use a small neural
network configured with 25 individually high-performing
features, 50 neurons in a single hidden layer, and one output
neuron, incorporating dropout to train the neural network
(Srivastava et al., 2014). To ensure robust evaluation and
maximize the utility of our limited data, we utilize Monte
Carlo cross-validation, also known as repeated random sub-
sampling validation (see Appendix).

For our binary classification task, we achieve an average
Area Under the Curve (AUC) of the receiver operating char-
acteristic (ROC) curve (Fawcett, 2004) of nearly 2/3, as
shown in Fig.4(b). More relevant for our task is achiev-
ing high precision, as we want SCIMUSE to suggest highly
interesting projects within a very small number of overall
suggestions. For this, we compute the precision of the top-
N highest predicted concept pairs. For small N, we find a
precision higher than 65%. This indicates that within the
highest predicted suggested concept pairs, roughly 65% are
evaluated with high interest level, as illustrated in Fig.4(c).
This precision is significantly higher than random selection,
which achieves only 23%. Additionally, we can ask what is
the probability of obtaining at least one highly interesting
suggestion within the first N suggestions. Fig.4(d) shows
that our machine learning method provides a significantly
higher probability of finding interesting suggestions within
the first few suggestions compared to random sampling.

3. Discussion
Our results show that one could predict which project sug-
gestions experienced researchers will find interesting by
analyzing the knowledge-graph properties of the concept
pairs used for the prompts to GPT-4, without considering
the detailed text produced by GPT-4. This finding allows us
to enhance SCIMUSE such that it can select novel, and high-
interest research topics from knowledge graphs and translate
them into full-fledged proposals using modern large lan-
guage models. As publicly available large language models
like GPT-4 (Achiam et al., 2023), Gemini 1.5 (Reid et al.,
2024), LLaMa3 (AI, 2024), and Claude (Anthropic, 2024)
become increasingly powerful, with improvements occur-
ring nearly monthly (Chiang et al., 2024), we anticipate that
the generated personalized research ideas will become more
targeted and reasonable.

The methodologies demonstrated in our work, employed by
SCIMUSE, have the potential to inspire novel, unexpected
cross-disciplinary research on a large scale. By providing a
big-picture view through the analysis of millions of scien-

tific papers, SCIMUSE allows the discovery of interesting
research projects between scientists in different domains,
which might otherwise be very challenging to find. Research
projects in distant fields are known to have great potential for
impactful, award-winning results (Uzzi et al., 2013; Rzhet-
sky et al., 2015; Fortunato et al., 2018; Wang & Barabási,
2021). Therefore, large scientific societies, national fund-
ing agencies, and other stakeholders might be motivated to
implement methodologies in the line of SCIMUSE, which
could foster new highly interdisciplinary and interesting col-
laborations and ideas that might otherwise remain untapped.
This, hopefully, could advance the progress and impact of
science at a large scale.
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A. Datasets for creating knowledge graph
We compiled a list of scientific concepts using metadata from arXiv, bioRxiv, medRxiv, and chemRxiv. The arXiv data is
available on Kaggle, while bioRxiv, medRxiv, and chemRxiv metadata can be accessed through their APIs. Our dataset
includes ∼2.44 million papers, with a data cutoff in February 2023.

For edge generation, we used the OpenAlex database snapshot, available for download in OpenAlex bucket, with a data
cutoff in April 2023. For more details, refer to the OpenAlex website (Priem et al., 2022). The complete dataset is around
330 GB, expanding to 1.6 TB when decompressed. We focused on scientific journal papers with publication time, title,
abstract, and citation information, reducing the dataset to a more manageable 68 GB gzip-compressed file, comprising about
92 million papers.

B. Creating the concept list
From four preprint dataset of approximately 2.44 million papers, we analyzed each article’s title and abstract using the
RAKE algorithm, enhanced with additional stopwords, to extract potential concept candidates. These candidates were stored
for subsequent analysis. We filtered out concepts to retain only those with two words that appeared in nine or more articles,
and those with three or more words that appeared in six or more articles. This step significantly reduced the noise from the
RAKE-generated concepts, yielding a refined list of 726,439 relevant concepts.

To further enhance the quality of the identified concepts, we developed a suite of automatic tools designed to identify and
eliminate common, domain-independent errors often associated with RAKE. Additionally, we conducted a manual review to
remove inaccuracies in the concepts, such as non-conceptual phrases, verbs, ordinal numbers, conjunctions, and adverbials,
reducing the list to 368,825 concepts.

Next, we used GPT-3.5 to further refine the concepts, which resulted in the removal of 286,311 concepts. To address
potential incorrect removals, we used Wikipedia to recover mistakenly removed concepts, successfully restoring 40,614
concepts. This process ultimately produced a final list of 123,128 concepts.

C. Classification of Max Planck Institutes
We classify all 87 Max Planck Institutes into two classes: Class 1, abbreviated as nat, includes natural sciences, technology,
mathematics, and medicine (68 institutes), while Class 2, abbreviated as soc, includes social sciences and humanities (19
institutes). We did manual classification based on institute titles and research fields, and we also used GPT-4o for automatic
classification. The two approaches perfectly matched each other.

D. Prompt to GPT-4 for concept refinement
The prompt to refine the researchers’ concept list is:
A scientist has written the following papers:
0) title1
1) title2
2) title3
...

I have a noisy list of the researchers topics of interest, and I would like that you help me filtering them. Please
look at the list below, and return all concepts in that list, which are relevant to the scientists research (based on their paper
titles), and that are meaningful in the context of their research direction. The concepts can be detailed, I mainly want that
you filter out not meaningful concepts, words which are not concepts, or concepts that are too general for the direction
of the scientist (for example, artificial intelligence might be a meaningful concept for a geologist, but not for a machine
learning researcher). Do not change or add any of the concepts. only remove them or keep them.

concept list=[c1, c2, c3, c4, c5, c6, ....]
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E. Prompt to GPT-4 for project idea generation
The prompt to suggest research ideas using concept pair from knowledge graph is:
Two researchers A and B, with expertise in “concept1” and “concept2” respectively, are eager to collaborate on a novel
interdisciplinary project that leverages their unique strengths and creates synergy between their fields.

To better understand their backgrounds, here are the titles of recent publications from each researcher:
Researcher A:
1: title1
2: title2
3: title3
...

Researcher B:
1: title1
2: title2
3: title3
...

Please suggest a creative and surprising scientific project that combines “concept1” and “concept2”. In your
response, follow this outline:

First, explain “concept1” and “concept2” in one short sentence each.

Then, do the following three steps 3 times, improving in each time the response:
A) Describe 4 interesting and new scientific contexts, in which those two concepts might appear together in a natural and
useful way.
B) Criticize the 4 contexts (one short sentence each), based on how well the contexts merge the idea of the two concepts.
C) Give a 2 sentence summary of your reflections above, on how well one can combine these concepts naturally and
interestingly.

Then, start finding a project. Taking your reflections from (A-C) into account, define in your response a project
title, followed by a brief explanation of the project’s main objective.

Finally, address the following questions (Take the full reflections (A-C) into account):
What specific interesting research questions will this project address, that will lead to innovative novel results? [2 bullet
points, one sentence each]

Rather than relying on a knowledge graph to supply “concept1” and “concept2” for GPT-4, it is possible to direct GPT-4
to extract these concepts from the titles of research papers authored by Researcher A and Researcher B, respectively.
Subsequently, GPT-4 can use these identified concepts within the same prompting context to generate innovative research
ideas.

F. Interest-Evaluation for three different generation methods
In Fig.5, we show the three different generation methods for the research suggestions. The interest-level distributions are
very similar, particularly between those with and without concepts from the knowledge graph. This similarity allows us to
analyze the correlations between the properties of knowledge graph and interest level, and to use these properties to predict
the interest level of proposals.

G. Predicting high interest from knowledge graph features
In Fig.4 in the main text, our goal is to predict whether a certain research proposal will be evaluated with high interest.
Specifically, using only data from the knowledge graph (and not the final text of the research proposal generated with GPT),
we want to predict whether the proposal receives an interest value of 4 or 5 (on a scale from 1 to 5: not interesting to very
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Figure 5. Interest levels depending on generation method. We use three different ways to generate research ideas: (1) no concepts
provided by the knowledge graph, (2) random concepts from the researchers’ subnetwork, and (3) high-impact concept pairs from the
researchers’ subnetwork. The figures show: (a) the interest level of all answers (numbers inside the bars indicate the number of answers
with that evaluation), (b) answers without using concepts from the knowledge graph, (c) answers with random concept pairs, and (d)
high-impact predicted concept pairs (using the neural network from (Gu & Krenn, 2024)).

interesting) or below 4, which constitutes a binary classification task.

Due to the small dataset size (2,996 answers with properties from the knowledge graph), we use a data-efficient learning
method for the prediction task, specifically a small neural network with dropout. The input to the neural network consists of
the 25 best-performing features from the knowledge graph. The neural network has only one hidden layer with 50 neurons
and a single output neuron. We use mean square error as the loss function.

To get a consistent evaluation of the neural network performance for this small dataset, we perform Monte Carlo cross-
validation. In this method, the dataset is randomly split into training and validation sets multiple times, and the model is
trained and evaluated on each split. This process ensures that the performance metrics are robust and not dependent on a
particular split of the data. We continue splitting and evaluating until the standard deviation of the mean AUC is less than
10−2

3 , which is achieved after 130 iterations. This approach provides a reliable estimate of the model’s performance, which
is crucial for small datasets where individual splits may lead to high variance in the evaluation metrics.

The neural network performance is not specifically sensitive to hyperparameter choices, thus we refrained from hyperparam-
eter optimization, and instead used a reasonable choice: learning rate=0.003, dropout=20%, weight decay=0.0007, training
dataset=75%, validation dataset=15%, test dataset=10%.

We experimented with other data-efficient learning methods, such as decision trees, but they did not significantly outperform
the neural network.
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