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ABSTRACT

The deployment of large language models (LLMs) is increasingly constrained by
memory and latency bottlenecks, motivating the need for quantization techniques
that flexibly balance accuracy and efficiency. Recent work has introduced multi-
precision models, which enable inference at multiple precisions within a single
model depending on runtime constraints. To support such flexibility, quantized
weights are often stored as bit-planes, where hardware efficiency improves when
the compute operates directly at the bit-plane level and activates only the precision
required by each request. In this work, we present AnyBCQ, a hardware-friendly
multi-precision extension of Binary-Coded Quantization (BCQ) that supports
direct bit-plane operations. By representing weights as binary bit-planes with
corresponding scale factors, AnyBCQ enables bit-plane–level computation and
maps naturally to accelerator-friendly, bit-parallel arithmetic. Our progressive
precision expansion mechanism incrementally refines scaling factors while reusing
previously assigned binary codes, yielding monotonic improvements in accuracy
as additional bits are enabled. We further co-design a specialized kernel that
exploits the BCQ structure to support dynamic per-request precision selection with
negligible overhead. Experiments on recent LLMs demonstrate that AnyBCQ
significantly narrows the accuracy drop in the low-bit regime (e.g. 2-bit), remains
competitive at higher precision, and achieves throughput gains of up to 3.0×
over half precision and 1.2× over state-of-the-art multi-precision methods. By
aligning algorithmic flexibility with hardware efficiency, AnyBCQ provides a
practical foundation for multi-precision LLM deployment across diverse service-
level objectives.

1 INTRODUCTION

The rapid scaling of large language models (LLMs) has brought remarkable improvements in
reasoning, generation, and downstream task performance (Kaplan et al., 2020; Hoffmann et al.,
2022; Wei et al., 2022). However, this progress comes at the cost of soaring computational and
memory demands, making efficient deployment a pressing challenge (Kim et al., 2023b). To address
these constraints, a wide range of model compression techniques has been explored, including
knowledge distillation (Sreenivas et al., 2024; Xu et al., 2024), pruning (Frantar & Alistarh, 2023;
Sun et al., 2023; Lee et al., 2025), and quantization (Xiao et al., 2023; Ashkboos et al., 2024; Kim
et al., 2025). Among these, post-training quantization (PTQ) has emerged as a particularly practical
approach for LLMs, as it can substantially reduce memory footprint and accelerate inference without
requiring expensive retraining (Dettmers et al., 2022; Frantar et al., 2022). Within PTQ, weight-
only quantization has gained popularity since weights dominate memory usage and are relatively
robust to outliers compared to activations (Lin et al., 2024). Recent state-of-the-art methods further
demonstrate that 4-bit quantization can achieve accuracy comparable to full-precision models (Xiao
et al., 2023).

While uniform quantization has been the most widely adopted strategy, recent works have introduced
more expressive schemes, such as binary-coded quantization (BCQ) (You et al., 2024) and clustering-
based non-uniform quantization (Kim et al., 2023a), to better capture the distribution of weight values
and preserve accuracy after quantization. Despite their effectiveness, these methods are typically
bound to a fixed precision configuration, which limits their ability to satisfy diverse service-level
objectives (SLOs) in real-world deployments.
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(a) Progressive precision expansion (pL = 2, pH = 4)
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Figure 1: Overview of AnyBCQ: (a) weights are first quantized to a base precision and progressively
expanded to higher precisions by reusing the existing binary codes while adding residual bit-planes;
(b) p-bit inference reconstructs weights by combining the corresponding scaling factors with the first
p binary bit-planes. In the binary representation, elements denoted as 0 are mapped as -1.

To address this limitation, the concept of multi-precision models has recently been proposed, allowing
a single model to flexibly operate under multi-precisions and thereby adapt accuracy–latency trade-
offs with dynamic system requirements (Yu et al., 2021; Park et al., 2024; Nair et al., 2025). This
flexibility has, in turn, spurred research on mixed-precision inference, including methods that
dynamically assign precision across decoding steps (Chen et al., 2024) or adaptively assign precisions
on a per-layer basis (Kwon et al., 2025). However, these approaches remain limited in practice: the
state-of-the-art multi-precision model (Park et al., 2024) relies on non-uniform quantization, which is
not hardware-friendly and performs poorly at extremely low bitwidths (e.g., 2-bit).

Multi-precision inference often stores weights as bit-planes so that the system can fetch only the
data required by the target precision. In this organization, the most efficient execution strategy is to
compute directly on bit-planes and to activate only the planes needed for each request. Any-Precision
LLM (Park et al., 2024) demonstrated strong accuracy across multiple precisions within a single
unified model, yet its reliance on non-uniform quantization prevents true bit-plane computation. Even
with carefully optimized kernels that accelerate centroid indexing through bit-transpose operations
and table lookups, additional overheads and irregular memory access remain. As a result, dependence
on centroid lookups continues to be a key bottleneck for hardware-efficient inference. Furthermore,
extremely low-bit quantization (e.g., 2-bit) often induces severe accuracy degradation, while 4-bit
quantization achieves accuracy close to full-precision models. As a result, the effective operating
range of current methods is largely restricted to 3–4 bits, limiting the practical benefits of multi-
precision quantization.

In this work, we propose AnyBCQ, a hardware-friendly quantization framework that extends BCQ to
the multi-precision setting and supports direct bit-plane operations. Unlike non-uniform quantization,
which relies on centroid lookups and bit transpositions to construct centroid indices and is therefore
difficult to optimize on hardware, BCQ represents weights as binary bit-planes with associated
scale factors. This structure is inherently accelerator-friendly, enabling efficient mapping to binary
operations and simplifying kernel design (You et al., 2024; Park et al., 2022; 2025; Kim et al., 2023c).

Figure 1(a) presents the overall procedure of AnyBCQ. The model begins with a base-precision
quantized representation and, through progressive precision expansion, evolves into a multi-precision
model capable of supporting multiple precision levels. Specifically, the full-precision weights are
first quantized to the base precision using a BCQ scheme. At each subsequent stage, the binary
codes from earlier levels are frozen, while new scaling factors α are initialized and refined with an
additional residual-derived bit-plane. This procedure is applied iteratively until the desired target
precision is reached, yielding a model that can be used for inference at multiple precision levels.
Figure 1(b) illustrates an example with inference precision p = 3. The resulting model contains the
complete set of scaling factors required for each precision as well as the shared binary bit-planes.
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During p-bit inference, the scaling factors corresponding to p-bit and the first p binary bit-planes
are employed to perform weight dequantization. By unifying algorithmic flexibility with hardware
efficiency, AnyBCQ provides a practical path toward multi-precision LLM deployment.

Our major contributions in this work include the following:

• We introduce AnyBCQ, a BCQ-based multi-precision framework that achieves strong low-bit
accuracy and smooth, monotone improvements as additional bits are enabled.

• We co-design a hardware-friendly CUDA kernel that leverages a binary basis representation,
supports direct bit-plane–level operations, and enables per-request precision selection with
negligible overhead.

• We demonstrate state-of-the-art accuracy–latency trade-offs across LLM benchmarks, show-
ing that AnyBCQ more effectively supports diverse SLOs with a single deployable model.

2 BACKGROUND

2.1 MULTI-PRECISION LLM

The multi-precision paradigm emerged from a practical need to serve heterogeneous SLOs in latency,
throughput, and accuracy with a single deployable model. Early work in computer vision, mainly
with CNNs, demonstrated that one network can operate at multiple precisions by training with
quantization-aware training (QAT) across those settings (Yu et al., 2021). While effective, this
approach is computationally demanding because the model must be trained from scratch under many
quantization settings.

As Transformer-based LLMs scaled up, multi-configuration QAT became impractical due to high
training cost and resource demands. Research therefore shifted toward post-training, often in a weight-
only form. A prominent direction employs clustering-based non-uniform quantization with learned
centroid tables (Kim et al., 2023a). To support multi-precision behavior, Any-Precision LLM (Park
et al., 2024) introduces incremental upscaling, progressively splitting clusters and storing the centroid
table so that a single model covers multiple precisions. Such approaches preserve accuracy well
at medium and high precisions, often matching fixed-precision baselines, but performance drops
sharply in extremely low-bit regimes (e.g., 2 bits). Consequently, practical deployment has remained
confined to 3–4 bits, with 4-bit quantization in particular achieving accuracy close to full precision.

The systems implications of adopting non-uniform quantization are significant, as they directly
affect how weights are stored, accessed, and processed during large-scale inference. In non-uniform
schemes, each weight is stored as a centroid index, so inference requires table lookups and dequanti-
zation inside GEMMs. Any-Precision LLM mitigates this by storing weights as binary bit-planes
and, at runtime, reading multiple bit-planes, transposing or packing them, and gathering the corre-
sponding centroids before computation. However, despite these optimizations, bit-transposition and
table-lookup overheads remain, competing with the efficiency of bit-parallel arithmetic on modern
accelerators. These limitations motivate our AnyBCQ framework, which builds on BCQ to enable
direct bit-plane operations and thereby supports dynamic-precision computation with low overhead.
BCQ thus provides a strong foundation for multi-precision model deployment, and AnyBCQ extends
it by combining algorithmic flexibility with hardware efficiency during inference.

2.2 BINARY-CODED QUANTIZATION

BCQ quantizes a weight matrix W ∈ Rm×n by expressing it as a linear combination of q binary
bases and real-valued scales: Ŵ =

∑q
i=1 αiBi, where each Bi ∈ {−1, 1}m×n and αi ∈ R. Here,

q denotes the quantization bitwidth. The parameters are obtained by minimizing the Frobenius
reconstruction error e = ∥W − Ŵ∥2F . When q = 1, the solution reduces to standard binary
quantization with B∗

1 = sign(W) and α∗
1 = ⟨W,B∗⟩/∥B∗∥2F . For multi-bit quantization (q > 1),

we adopt a greedy initialization followed by alternating refinement (Xu et al., 2018). Specifically,
the residual after i-bit quantization is defined as Ri = W −

∑i
j=1 αjBj . The next binary and

scale are initialized as Bi+1 = sign(Ri) and αi+1 = ⟨Ri,Bi+1⟩/∥Bi+1∥2F . These initial values
are then refined by alternating updates of scales and binary codes. Concatenating binary bases as
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Figure 2: Illustration of the binary-coding quantization scheme. Weights are quantized hierarchically,
with each bit level determining its corresponding binary values. At each level, the scaling factor
and binary assignment are computed and accumulated with the value obtained from the previous bit
level to approximate the original weight. The resulting representation comprises bit-planes for each
precision level, each paired with its associated scaling factors.

B = [B1 · · · Bq], the scale vector is updated by ordinary least squares: α = (B⊤B)−1B⊤W,
after which each Bi is recalibrated using the binary search given the refined α. This greedy-plus-
alternating procedure yields an efficient q-bit BCQ approximation in binary bit-planes that we later
exploit for multi-precision execution without centroid lookups or bit-transpose passes.

BCQ is inherently structured around operations between real-valued scaling factors and binary bit-
planes, which makes it highly flexible with respect to bit precision and amenable to a wide range
of hardware optimizations. For example, iFPU (Kim et al., 2023c) demonstrates that arithmetic
within each binary bit-plane can be simplified by exploiting exponent pre-alignment: floating-point
additions and subtractions are reduced to integer-level operations on mantissas, thereby lowering the
complexity of floating-point computations to that of integer arithmetic. Similarly, LUT-GEMM (Park
et al., 2022) and FIGLUT (Park et al., 2025) both exploit the fact that the output of each binary
bit-plane is ultimately a simple combination (+/−) of floating-point input activations. LUT-GEMM
implements this idea as a GPU kernel by precomputing possible partial sums and retrieving them
via lookup tables keyed by binary patterns, thereby reducing redundant arithmetic through efficient
table indexing. FIGLUT applies the same principle at the architectural level in a custom accelerator
design, where partial sums are stored and reused in hardware to further boost efficiency. Building
multi-precision models on top of BCQ further enhances deployability, as they can seamlessly run
on accelerators that already support BCQ-based formats, ensuring compatibility while retaining
efficiency across diverse bitwidth configurations.

3 METHODOLOGY

AnyBCQ is a multi-precision LLM framework built on Binary-Coded Quantization. It encodes each
weight as a sum of binary components with associated scale factors, which enables direct bit-plane
operations and permits dynamic precision selection at inference time with negligible overhead. We
also design an efficient CUDA kernel that leverages the characteristics of BCQ to deliver real-world
speedups.

3.1 MOTIVATION

Efforts have been made to design multi-precision models for diverse SLOs, but existing methods are
not hardware-friendly since they cannot operate directly at the binary bit-plane level. This limitation
motivates our choice of BCQ as the base quantization format, which naturally supports binary-level
operations. Figure 2 illustrates the hierarchical process of BCQ. Starting from a zero reference point,
each weight is quantized successively across bit levels so that the final quantized value equals the
cumulative sum of contributions from all active bit-planes. For example, the leftmost weight in
Figure 2 (green) is first encoded as 0 at the 1-bit level, representing −α1. At the 2-bit level, it is
again assigned 0, giving −α1 − α2. Finally, at the 3-bit level, it is assigned 1, yielding the final
value −α1 − α2 + α3. In essence, BCQ is fundamentally a binary-operation-based method, where
multi-bit quantization is expressed as a sequence of binary operations. Thus, p-bit inference naturally
corresponds to p binary bit-plane computations, a property that makes BCQ particularly well-suited
for multi-precision LLMs in which bit precision is determined dynamically at runtime.
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Algorithm 1 AnyBCQ initialization and progressive precision expansion
Input: Full-precision weight W ∈ Rm×n, base precision pL, target precision pH , alternating cycles

T
Output: {αpL

i }
pL

i=1, . . . , {α
pH

i }
pH

i=1, {Bi}pH

i=1 with Bi ∈ {−1, 1}m×n

1: Function ANYBCQ(W, pL, pH , T )
2: for p← pL to pH do
3: if p = pL then ▷ Initialization at base precision
4: {αp

i ,Bi}pi=1 ← GREEDY(W)
5: for t← 1 to T do
6: B← [B1, . . . ,Bp ]
7: {αp

i }
p
i=1 ← LS(B, W)

8: {Bi}pi=1 ← BS(αp
1, . . . , α

p
p, W)

9: else ▷ Initialization at progressive expansion step
10: {αp

i }
p
i=1 ← [αp−1

1 , . . . , αp−1
p−1, 0]

11: Bp ← 0
12: for t← 1 to T do
13: R←W − DEQUANT({αp

i ,Bi}pi=1)
14: Bp ← SIGN(R) ▷ Initialize new bit-plane
15: B← [B1, . . . ,Bp ]
16: {αp

i }
p
i=1 ← LS(B, W)

3.2 ANYBCQ FRAMEWORK

In line with the principles of multi-precision LLMs, AnyBCQ introduces a progressive precision
expansion mechanism that enables seamless transitions across different bit-width representations.
Let the candidate precision set be P = {p | pL ≤ p ≤ pH}, where pL and pH denote the lowest
base precision and the highest target precision, respectively (indices L and H). As illustrated in
Figure 1(a) for pL = 2 and pH = 4, the procedure starts from a model quantized at pL bits and then
increases the precision one bit at a time until reaching the target model at pH bits.

To support multiple precision levels while ensuring efficient memory utilization within a single
model, AnyBCQ employs shared binary representations and scaling factors tailored to each target
precision. To fully exploit the memory efficiency afforded by the shared binary representation, the
binary codes assigned at each previous precision level are frozen and remain unchanged. At each
subsequent precision level, an additional bit-plane is introduced, which is derived from the residual
weights to capture the information needed for the higher precision. The scaling factors required for
the current precision are then initialized accordingly, ensuring accurate representation as the model
scales to higher bit-widths. Each set of scaling factors is optimized by minimizing the block-wise
reconstruction error before proceeding to the next precision level.

The optimization procedure for each precision level in AnyBCQ follows a two-stage framework,
consisting of an initialization phase followed by a subsequent error-minimization phase. Algorithm
1 outlines the initialization procedure of the BCQ framework before the error-minimization phase.
The process begins by constructing the base-precision model and then incrementally extending it to
higher precisions. When p = pL, the model is initialized as described in Algorithm 1 (lines 3–8). In
this stage, the scaling factors α and the binary codes B are first determined in a greedy way from the
original weights. Subsequently, during the T optimization cycles, the scaling factors are refined by
solving a least-squares (LS) problem between the binary representation and the original weights, after
which the binary codes are reassigned via a binary search (BS) between the optimized scaling factors
and the original weights. In contrast, for higher target precisions when the current precision exceeds
the base precision, the model initializes both the newly introduced scaling factor α and its associated
bit-plane to zero as described in Algorithm 1 (lines 10–11). During subsequent T optimization cycles,
the binary codes of this additional bit-plane are reassigned by taking the sign of the residual weights
with the optimized scaling factors, while all scaling factors are updated via least-squares refinement
as in the base precision initialization step. Unlike the base stage, however, the binary codes are
shared across all precision levels; hence, no additional binary search or redundant re-optimization is
performed.
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(a) Matrix multiplication with non-uniform quantization (p = 3)

(b) Matrix multiplication with BCQ (p = 3)
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Figure 3: Matrix multiplication with (a) clustering-based quantization, which requires bit-plane
transposition and centroid lookups, and (b) the proposed AnyBCQ kernel, which directly operates on
binary bit-planes with scaling factors for hardware-efficient, dynamic-precision inference.

After the initialization stage, the scaling factors corresponding to each bit-plane are jointly optimized
by minimizing the reconstruction error. Because a distinct set of scaling factors is maintained for
each target precision, the reconstruction error minimization (Li et al., 2021) is applied only to the
scaling factors associated with the current bit precision, while the corresponding bit-plane remains
fixed. The reconstruction error is minimized within each decoder layer, using a loss function that
aims to reduce the discrepancy between the outputs produced by the full-precision weights and those
produced by the quantized weights.

Table 1: Memory footprint (GB) of quantized
Llama-3.1-8B.

Bit Scale Binary Total
BCQ2 0.24 1.95 2.19
BCQ3 0.36 2.92 3.28
BCQ4 0.49 3.89 4.38
Multi-model 1.09 8.76 9.85
Proposed 1.09 3.89 4.99

To preserve accuracy on large LLM matrices, we
adopt group-wise quantization with per-group scale
factors (Yao et al., 2022; Park et al., 2022). Table 1
presents the memory footprint at each target precision
with group size g = 128. Multi-model denotes the
baseline that stores a separate model optimized for
each bit precision. In contrast, AnyBCQ supports
multiple precisions within a single model by sharing
the binary representations across precisions while
keeping precision-specific scale factors. Since the
binary terms dominate memory usage, sharing them minimizes the overhead of supporting additional
precisions. As a result, AnyBCQ reduces the total memory footprint by 49% compared with the
multi-model baseline on Llama-3.1-8B.

3.3 KERNEL DESIGN

To enable efficient inference of multi-precision LLMs, specialized kernel designs are required. Unlike
conventional kernels, a multi-precision kernel is expected to support dynamically varying bit precision
at runtime. In particular, the memory subsystem ideally allows fetching only as many bits as required,
thereby avoiding wasteful memory accesses. For example, in a model with maximum 4-bit precision
(pH = 4), one could perform 3-bit inference (p = 3) by loading 4-bit weights and discarding the least
significant bit. Although this is functionally correct, it eliminates the intended memory bandwidth
savings of 3-bit inference, which is especially detrimental in the memory-bound regime typical of
LLM inference.

To address this inefficiency, prior multi-precision kernels often store weights at the granularity of
individual bit planes. Specifically, a quantized weight matrix of shape M × K with pH bits is
decomposed into a binary tensor of shape M × K × pH . At inference time, only the first p bit
planes are loaded to obtain the indices for centroid table lookup, thus preserving the bandwidth
advantage of lower-bit inference. However, this representation introduces another overhead, namely
bit transposition. The first p bit planes need to be rearranged to form the index values. Because
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bitwise operations are not directly applicable in clustering-based non-uniform quantization, the
fetched M ×K × p binary tensor is then transposed back into an M ×K p-bit matrix to serve as
indices for centroid table lookup (Figure 3(a)).

In contrast, BCQ-based multi-precision models offer a key advantage over prior approaches: they
can directly operate on binary bit-planes at the required precision without incurring the overhead of
bit transposition or centroid table lookup (Figure 3(b)). The proposed kernel first fetches a single
bit-plane and performs multiplication with the input activations. Since each binary bit-plane contains
values in {-1, +1}, the operation reduces to simple addition and subtraction of activation elements. To
further improve efficiency, the kernel adopts a lookup-table–based GEMM scheme (Jeon et al., 2020;
Park et al., 2022; 2025) in which frequently repeated computation results are cached in table form.
Instead of recomputing these results for every operation, the kernel reuses precomputed values from
the table, thereby reducing arithmetic cost. The output of each bit-plane computation is combined
with its corresponding scaling factor αi and accumulated as a partial sum. Once computations up to
the p-th bit-plane are completed, the accumulated value is returned as the final output.

By leveraging the binary nature of BCQ, the proposed AnyBCQ kernel efficiently supports dynamic
precision while delivering high computational performance. This advantage is particularly pronounced
in the memory-bound regime of LLM inference. Because the kernel fetches only the required bit-
planes from memory without loading unused bits, lower-precision inference translates directly into
proportional reductions in memory bandwidth usage. Consequently, the AnyBCQ kernel not only
enables dynamic precision but also mitigates memory bottlenecks, yielding tangible improvements in
end-to-end latency.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Models and Evaluations. We benchmarked our method on the LLaMA-3.1-8B (Grattafiori et al.,
2024) model. To assess general knowledge, we evaluated the model on 5-shot MMLU (Hendrycks
et al., 2020) and zero-shot common sense reasoning tasks: ARC-Challenge (Clark et al., 2018), ARC-
Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Phrase-Indexed Question Answering (Bisk
et al., 2020), and WinoGrande (Sakaguchi et al., 2021), using the lm-eval-harness framework
(v0.4.5) with HuggingFace implementations. Our baselines include state-of-the-art multi-precision
methods together with other weight-only quantization techniques.

Implementation Details. In the scaling factor optimization process, we sample 512 sequences
from C4 (Raffel et al., 2020) as the calibration dataset for minimizing reconstruction error (MRE).
Unless otherwise noted, models are quantized and optimized for 10 epochs under the asymmetric
BCQ (Park et al., 2022) scheme with group-wise quantization, using a fixed group size of g = 128.
The learning rate is set to 1× 10−4, and the number of refinement cycles for both the base-precision
stage and the incremental-precision initialization is T = 20. Kernel latency is measured on NVIDIA
A100 GPUs with 80 GB HBM, running CUDA 12.6.

4.2 ACCURACY EVALUATION

Table 2 compares downstream accuracy on the LLaMA-3.1-8B model across different methods.
Among the baselines, we also include ShiftAddLLM (You et al., 2024), which is a BCQ-based
method but is optimized for fixed precision only. In addition, to isolate the effect of the progressive
bit-width expansion mechanism, we report results for a variant of AnyBCQ optimized at a fixed
bit-width (denoted as Proposed (fixed-precision)).

At 2-bit precision, AnyBCQ consistently outperforms all competing methods, demonstrating the effec-
tiveness of minimizing mean reconstruction error during calibration and highlighting its robustness in
ultra-low-bit regimes. Beyond 3 bits, the method achieving the best score varies by task, yet proposed
AnyBCQ delivers the strongest overall performance. Unlike the 2-bit case, performance differences
between Proposed (multi-precision) and Proposed (fixed-precision) become apparent; this gap arises
from the shared-binary constraint in progressive precision expansion, which narrows the optimization
space as the bit-width increases. At 4 bits, the gap to the FP16 baseline is largely diminished and
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Any-Precision LLM attains the top accuracy on several tasks. Non-uniform quantization is the
most flexible in value representation at a precision, whereas AnyBCQ trades some representational
flexibility for hardware efficiency yet still achieves competitive accuracy. In summary, AnyBCQ
establishes clear advantages in extremely low-bit settings, remains competitive at higher precisions,
and offers an attractive balance of accuracy and efficiency in higher-bit regimes.

Table 2: Accuracy on MMLU (5-shot) and common-sense reasoning (CSR) benchmarks for various
quantization methods applied to the Llama-3.1-8B model. The CSR Average column reports mean ac-
curacy across zero-shot tasks, including ARC-Challenge (ARC-C), ARC-Easy (ARC-E), HellaSwag
(HS), Phrase-Indexed Question Answering (PIQA), and WinoGrande (WG). “Fixed-precision” de-
notes a model optimized to operate at a single bit-width.

Method Bit MMLU ARC-C ARC-E HS PIQA WG CSR Avg.
FP16 16 65.02 53.41 77.69 79.15 80.74 72.61 72.72
AWQ 2 24.12 25.34 25.59 26.63 51.52 48.93 35.60
Any-Precision LLM 2 24.66 25.00 35.61 29.28 56.26 52.09 39.65
ShiftAddLLM 2 24.83 25.85 41.96 44.72 58.54 57.85 45.78
Proposed (fixed-precision) 2 35.96 36.60 63.22 62.56 73.45 58.64 58.89
Proposed (multi-precision) 2 35.32 37.03 62.50 62.61 73.88 57.54 58.71
AWQ 3 47.28 44.51 71.97 75.53 78.85 65.69 67.31
Any-Precision LLM 3 55.53 45.22 71.96 71.31 79.43 64.32 66.45
ShiftAddLLM 3 56.53 47.61 74.54 73.65 78.02 72.85 69.33
Proposed (fixed-precision) 3 59.41 48.46 76.73 75.29 79.22 71.98 70.34
Proposed (multi-precision) 3 58.28 46.76 76.05 74.39 79.38 69.93 69.30
AWQ 4 60.49 51.82 75.42 77.98 79.38 72.35 71.39
Any-Precision LLM 4 64.04 53.32 79.97 78.11 80.25 71.19 72.57
ShiftAddLLM 4 63.50 51.54 79.50 77.39 80.36 74.03 72.56
Proposed (fixed-precision) 4 63.90 52.65 80.09 77.74 81.07 72.69 72.85
Proposed (multi-precision) 4 63.15 51.96 78.79 77.28 80.58 73.24 72.37

4.3 KERNEL EVALUATION

Table 3 compares the latency of matrix–vector multiplication (GEMV) across three settings: cuBLAS
with floating-point weights, the state-of-the-art multi-precision kernel (Park et al., 2024), and our
proposed AnyBCQ at different precisions. To reflect a range of LLM model sizes, we instantiate layer
shapes following the linear-layer configurations of Llama-3.1-8B, Phi-4-14B, and Llama-3.1-70B.

Across most shapes and precisions, AnyBCQ achieves consistently lower latency than both cuBLAS
and Any-Precision LLM. We observe two general trends: (i) the performance gap widens as the model
(matrix) size increases, and (ii) within a model, the gain grows with the input dimension K. These
trends arise because AnyBCQ executes directly over binary bit-planes, which removes dequantization
overheads that are intrinsic to non-uniform schemes, in particular bit transposition and centroid-table
lookup. In addition, the BCQ representation allows AnyBCQ to exploit binary-matrix optimizations
such as LUT-based computation (Park et al., 2022), which suppress redundant operations and further
reduce runtime.

Table 3: Latency (µs) of GEMV kernels for representative linear-layer shapes from Llama-3-8B,
Phi-4-14B, and Llama-3-70B. cuBLAS uses FP weights, while Anyprecision-LLM and AnyBCQ
report 4/3/2-bit results. Lower is better.

N K cuBLAS Any-Precision LLM Proposed
16-bit 2-bit 3-bit 4-bit 2-bit 3-bit 4-bit

4096 4096 296(×1.00) 230(×1.29) 247(×1.20) 266(×1.11) 223(×1.33) 246(×1.20) 263(×1.12)
14336 4096 852(×1.00) 353(×2.41) 404(×2.11) 476(×1.79) 319(×2.67) 384(×2.22) 456(×1.87)
4096 14336 877(×1.00) 356(×2.47) 412(×2.13) 502(×1.75) 315(×2.78) 373(×2.35) 462(×1.90)

5120 5120 433(×1.00) 248(×1.74) 272(×1.59) 304(×1.42) 253(×1.71) 270(×1.60) 298(×1.45)
17920 5120 1230(×1.00) 432(×2.85) 546(×2.25) 631(×1.95) 409(×3.01) 512(×2.40) 597(×2.06)
5120 17920 1272(×1.00) 445(×2.86) 581(×2.19) 687(×1.85) 406(×3.14) 521(×2.44) 593(×2.14)

8192 8192 946(×1.00) 378(×2.50) 439(×2.15) 544(×1.74) 336(×2.82) 428(×2.21) 499(×1.90)
28672 8192 3040(×1.00) 830(×3.66) 1058(×2.87) 1292(×2.35) 747(×4.07) 938(×3.24) 1133(×2.68)
8192 28672 2968(×1.00) 971(×3.06) 1265(×2.35) 1348(×2.20) 742(×4.00) 939(×3.16) 1142(×2.60)
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4.4 END-TO-END EVALUATION

We evaluate the accuracy–throughput trade-off of Any-Precision LLM (AP) and proposed AnyBCQ
(AB) on Llama-3.1-8B, Gemma-2-9B, and Phi-4-14B. Table 4 reports Wiki perplexity (lower is
better), MMLU accuracy, and decoding throughput in tokens per second.

At 2-bit precision, AnyBCQ consistently preserves accuracy substantially better than AP across
all models, indicating that our MRE-based calibration is particularly effective under aggressive
compression. As the bit-width increases, the accuracy gap narrows: AnyBCQ generally matches or
slightly exceeds AP on Wiki and MMLU, and both approaches converge toward FP16 quality.

Throughput consistently favors AnyBCQ. Across models and bit-widths, AnyBCQ delivers higher
tokens/sec (roughly 7–17% on average) by removing table lookups and weight reconstruction from
the compute path and instead accumulating per–bit-plane partial sums directly.

Overall, AnyBCQ offers a stronger accuracy–throughput frontier. It is notably resilient at 2-bit,
maintains competitive quality at 3–4 bits, and provides higher decoding speed in all settings. Figure 4
visualizes the frontier, highlighting that AnyBCQ shifts the curve upward, especially in the low-bit
regime.

Table 4: End-to-end Evaluation of Any-Precision LLM (AP) and AnyBCQ (AB)

Model bit Wiki MMLU Token/sec
FP16 AP AB FP16 AP AB FP16 AP AB

Llama-3.1-8B
2 6.24 1680.77 19.01 0.6535 0.2466 0.3532 105 228 245
3 6.24 8.60 8.08 0.6535 0.5553 0.5828 105 196 212
4 6.24 6.70 6.84 0.6535 0.6404 0.6315 105 169 186

Gemma-2-9b
2 6.84 19.62 12.72 0.7074 0.3309 0.4336 83 163 185
3 6.84 7.94 7.95 0.7074 0.6530 0.6538 83 144 164
4 6.84 7.06 7.23 0.7074 0.6923 0.6881 83 125 146

Phi-4-14b
2 6.46 13.37 9.97 0.8039 0.4952 0.6638 56 147 171
3 6.46 7.14 7.44 0.8039 0.7732 0.7708 56 125 144
4 6.46 6.61 7.16 0.8039 0.7975 0.7904 56 105 123

Figure 4: Accuracy–throughput trade-offs for 2-, 3-, and 4-bit configurations across models. The
rightmost point denotes the 2-bit setting. For a given accuracy, AnyBCQ attains higher throughput
(tokens/sec) than Any-Precision LLM (AP), with the largest gain at 2 bits.

5 SUMMARY AND LIMITATIONS

We present AnyBCQ, a BCQ-based framework for multi-precision LLMs co-designed with an efficient
execution kernel. By sharing binary bit-planes across precisions while learning per-precision scales,
AnyBCQ minimizes the memory overhead of multi-precision deployment, and its kernel executes
directly on bit planes to improve hardware efficiency. Empirically, AnyBCQ substantially improves
accuracy in the low-bit regime (for example, 2-bit), remains competitive at 3–4 bits, and offers a
favorable accuracy–throughput trade-off. A limitation is that the inherent representational capacity
of BCQ, together with the shared-binary constraint, can reduce peak accuracy at higher bit widths
relative to non-uniform schemes. Nevertheless, recent advances in weight-only quantization yield
4-bit performance that is close to the full-precision baseline, so the absolute gap at higher precisions
is modest in practice.
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6 REPRODUCIBILITY STATEMENT

In the Supplementary Materials, we provide the necessary resources to reproduce all results reported
in the Experimental Results section. Specifically, this entails:

• An implementation of our quantization method and evaluation pipelines for the supported
tasks.

• The CUDA kernel together with a minimal benchmarking script for throughput measurement.

• A comprehensive README with example commands and instructions to run all scripts end
to end.
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