
Published as a conference paper at ICLR 2026

ANYBCQ: HARDWARE EFFICIENT FLEXIBLE BINARY-
CODED QUANTIZATION FOR MULTI-PRECISION LLMS

Gunho Park1, Jeongin Bae1, Beomseok Kwon1, Byeongwook Kim1, Se Jung Kwon1,
Dongsoo Lee1
1 NAVER Cloud
{gunho.park3, dongsoo.lee}@navercorp.com

ABSTRACT

The deployment of large language models (LLMs) is increasingly constrained by
memory and latency bottlenecks, motivating the need for quantization techniques
that flexibly balance accuracy and efficiency. Recent work has introduced multi-
precision models, which enable inference at multiple precisions within a single
model depending on runtime constraints. To support such flexibility, quantized
weights are often stored as bit-planes, where hardware efficiency improves when
the compute operates directly at the bit-plane level and activates only the precision
required by each request. In this work, we present AnyBCQ, a hardware-friendly
multi-precision extension of Binary-Coded Quantization (BCQ) that supports
direct bit-plane operations. By representing weights as binary bit-planes with
corresponding scale factors, AnyBCQ enables bit-plane–level computation and
maps naturally to accelerator-friendly, bit-parallel arithmetic. Our progressive
precision expansion mechanism incrementally refines scaling factors while reusing
previously assigned binary codes, yielding monotonic improvements in accuracy
as additional bits are enabled. We further co-design a specialized kernel that
exploits the BCQ structure to support dynamic per-request precision selection with
negligible overhead. Experiments on recent LLMs demonstrate that AnyBCQ
significantly narrows the accuracy drop in the low-bit regime (e.g. 2-bit), remains
competitive at higher precision, and achieves throughput gains of up to 3.0×
over half precision and 1.2× over state-of-the-art multi-precision methods. By
aligning algorithmic flexibility with hardware efficiency, AnyBCQ provides a
practical foundation for multi-precision LLM deployment across diverse service-
level objectives. The code is available at github.com/naver-aics/anybcq

1 INTRODUCTION

The rapid scaling of large language models (LLMs) has brought remarkable improvements in rea-
soning, generation, and downstream task performance (Kaplan et al., 2020; Hoffmann et al., 2022).
However, this progress comes at the cost of soaring computational and memory demands, making effi-
cient deployment a pressing challenge (Kim et al., 2023b). To address these constraints, a wide range
of model compression techniques has been explored, including knowledge distillation (Sreenivas
et al., 2024; Xu et al., 2024), pruning (Frantar & Alistarh, 2023; Sun et al., 2023; Lee et al., 2025), and
quantization (Xiao et al., 2023; Ashkboos et al., 2024; Kim et al., 2025). Among these, post-training
quantization (PTQ) has emerged as a particularly practical approach for LLMs, as it can substantially
reduce memory footprint and accelerate inference without requiring expensive retraining (Dettmers
et al., 2022; Frantar et al., 2022). Within PTQ, weight-only quantization has gained popularity since
weights dominate memory usage and are relatively robust to outliers compared to activations (Lin
et al., 2024). Recent state-of-the-art methods further demonstrate that 4-bit quantization can achieve
accuracy comparable to that of full-precision models (Xiao et al., 2023).

While uniform quantization, as exemplified by GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2024),
remains the most widely adopted strategy, recent work has introduced more expressive schemes, such
as clustering-based non-uniform quantization (Kim et al., 2023a), to better capture the distribution of
weight values and preserve accuracy after quantization. However, non-uniform schemes often rely on

1

https://github.com/naver-aics/anybcq


Published as a conference paper at ICLR 2026

α03
4

α13
4

α23
4

α22
4

α12
4

α02
4

α01
4

α11
4

α21
4

α00
4

α10
4

α20
4

α02
3

α12
3

α22
3

α21
3

α11
3

α01
3

α00
3

α10
3

α20
3

Weight (FP16) 2-bit Model (BCQ2) 3-bit Model (BCQ3) 4-bit Model (BCQ4)

2-bit Scale (FP16)

Residual

3-bit Scale (FP16) 4-bit Scale (FP16) Frozen Binary (INT1)

1
0

1

0

0

1

0

0

1

1

1

0

0

1

1

0

1

1

0

0

0

1

(a) Progressive precision expansion (pL = 2, pH = 4)

Precision ExpansionQuantization

1 0

0

1

1 0

1

0

1 0

1

0

0

1

0

0

1

1

Base Model Target Model

Scales

Binary (Shared)

1 0

0

1

1 0

1

0

1 0

1

0

0

1

0

0

1

1

Binary Dequantized Weight (FP16)

3-bit

Inference

(b) p-bit inference case (p = 3)

Residual

Bit-plane inner product

Scale

α01
2

α11
2

α21
2

α00
2

α10
2

α20
2

α01
2

α11
2

α21
2

α00
2

α10
2

α20
2

α02
3

α12
3

α22
3

α21
3

α11
3

α01
3

α00
3

α10
3

α20
3

α03
4

α13
4

α23
4

α22
4

α12
4

α02
4

α01
4

α11
4

α21
4

α00
4

α10
4

α20
4

α02
3

α12
3

α22
3

α21
3

α11
3

α01
3

α00
3

α10
3

α20
3

-�00+�01+�02
3 3 3

-�00-�01-�02
3 3 3

+α10+�11+�12
3 3 3

+�10-�11-�12
3 3 3

-�20-�21-�22
3 3 3

+α20-�21-�22
3 3 3

1 0

1

0

0

1

0

0

1

1

1 1

1

0

1 0

1

0

0

1

0

0

1

1

Non-active Binary (INT1)
AnyBCQ Model

w00 w01

w10 w11

w20 w21

Figure 1: Overview of AnyBCQ: (a) weights are first quantized to a base precision and progressively
expanded to higher precisions by reusing the existing binary codes while adding residual bit-planes;
(b) p-bit inference reconstructs weights by combining the corresponding scaling factors with the first
p binary bit-planes. In the binary representation, elements denoted as 0 are mapped as -1.

centroid lookups to reconstruct dequantized weights, which are difficult to optimize efficiently on
modern hardware. Although slightly less expressive than fully non-uniform schemes, binary-coded
quantization (BCQ) represents weights as binary bit-planes with associated scale factors, yielding a
structure that is inherently accelerator-friendly: it maps naturally to binary operations and simplifies
kernel design (You et al., 2024; Park et al., 2022; 2025; Kim et al., 2023c). Despite their effectiveness,
existing BCQ-based methods are typically restricted to a fixed precision configuration, limiting their
ability to flexibly satisfy diverse service-level objectives (SLOs) in real-world deployments.

To address this limitation, the concept of multi-precision models has recently been proposed, allowing
a single model to flexibly operate under multiple precisions and thereby adapt accuracy–latency
trade-offs to dynamic system requirements (Yu et al., 2021; Park et al., 2024; Nair et al., 2025).
This flexibility has, in turn, spurred research on mixed-precision inference, including methods that
dynamically assign precision across decoding steps (Chen et al., 2024) or adaptively assign precision
on a per-layer basis (Kwon et al., 2025). However, these approaches remain limited in practice: the
state-of-the-art multi-precision model (Park et al., 2024) relies on non-uniform quantization, which is
not hardware-friendly and performs poorly at extremely low bitwidths (e.g., 2-bit).

Multi-precision inference often stores weights as bit-planes so that the system can fetch only the
data required by the target precision. In this organization, the most efficient execution strategy is to
compute directly on bit-planes and to activate only the planes needed for each request. Any-Precision
LLM (Park et al., 2024) demonstrated strong accuracy across multiple precisions within a single
unified model, yet its reliance on non-uniform quantization prevents true bit-plane computation. Even
with carefully optimized kernels that accelerate centroid indexing through bit-transpose operations
and table lookups, additional overheads and irregular memory access remain. As a result, dependence
on centroid lookups continues to be a key bottleneck for hardware-efficient inference. Furthermore,
extremely low-bit quantization (e.g., 2-bit) often induces severe accuracy degradation, while 4-bit
quantization achieves accuracy close to full-precision models. As a result, the effective operating
range of current methods is largely restricted to 3–4 bits, limiting the practical benefits of multi-
precision quantization.

In this work, we propose AnyBCQ, a hardware-friendly quantization framework that extends BCQ
to the multi-precision setting and supports direct bit-plane operations. Figure 1(a) presents the
overall procedure of AnyBCQ. The model begins with a base-precision quantized representation and,
through progressive precision expansion, evolves into a multi-precision model capable of supporting
multiple precision levels. Specifically, the full-precision weights are first quantized to the base
precision using a BCQ scheme. At each subsequent stage, the binary codes from earlier levels are
frozen, while new scaling factors α are initialized and refined with an additional residual-derived
bit-plane. This procedure is applied iteratively until the desired target precision is reached, yielding a

2



Published as a conference paper at ICLR 2026

model that can be used for inference at multiple precision levels. The resulting model contains the
complete set of scaling factors required for each precision as well as the shared binary bit-planes.
Figure 1(b) illustrates an example with inference precision p = 3. During p-bit inference, the scaling
factors corresponding to p-bit and the first p binary bit-planes are employed to perform weight
dequantization. By unifying algorithmic flexibility with hardware efficiency, AnyBCQ provides a
practical path toward multi-precision LLM deployment.

Table 1: Memory footprint (GB) of quantized
Llama-3.1-8B.

Bit Scale Binary Total
BCQ2 0.24 1.95 2.19
BCQ3 0.36 2.92 3.28
BCQ4 0.49 3.89 4.38

Multi-model 1.09 8.76 9.85
Proposed 1.09 3.89 4.99

To quantify this benefit, Table 1 reports the mem-
ory footprint at each target precision with group size
g = 128. Multi-model denotes the baseline that stores
a separate model optimized for each bit precision.
In contrast, AnyBCQ supports multiple precisions
within a single model by sharing the binary repre-
sentations across precisions while keeping precision-
specific scale factors. Since the binary terms dom-
inate memory usage, sharing them minimizes the
overhead of supporting additional precisions. As a
result, AnyBCQ reduces the total memory footprint
by 49% compared with the multi-model baseline on
Llama-3.1-8B.

Our major contributions in this work include the following:

• We introduce AnyBCQ, a BCQ-based multi-precision framework that achieves strong low-bit
accuracy and smooth, monotone improvements as additional bits are enabled.

• We co-design a hardware-friendly CUDA kernel that leverages a binary basis representation,
supports direct bit-plane–level operations, and enables per-request precision selection with
negligible overhead.

• We demonstrate state-of-the-art accuracy–latency trade-offs across LLM benchmarks, show-
ing that AnyBCQ more effectively supports diverse SLOs with a single deployable model.

2 BACKGROUND

2.1 MULTI-PRECISION LLM

The multi-precision paradigm emerged from a practical need to serve heterogeneous SLOs in latency,
throughput, and accuracy with a single deployable model. Early work in computer vision, mainly
with CNNs, demonstrated that one network can operate at multiple precisions by training with
quantization-aware training (QAT) across those settings (Yu et al., 2021). While effective, this
approach is computationally demanding because the model must be trained from scratch under many
quantization settings.

As Transformer-based LLMs scaled up, multi-configuration QAT became impractical due to high
training cost and resource demands. Research therefore shifted toward post-training, often in a weight-
only form. A prominent direction employs clustering-based non-uniform quantization with learned
centroid tables (Kim et al., 2023a). To support multi-precision behavior, Any-Precision LLM (Park
et al., 2024) introduces incremental upscaling, progressively splitting clusters and storing the centroid
table so that a single model covers multiple precisions. Such approaches preserve accuracy well
at medium and high precisions, often matching fixed-precision baselines, but performance drops
sharply in extremely low-bit regimes (e.g., 2 bits). Consequently, practical deployment has remained
confined to 3–4 bits, with 4-bit quantization in particular achieving accuracy close to full precision.

The systems implications of adopting non-uniform quantization are significant, as they directly
affect how weights are stored, accessed, and processed during large-scale inference. In non-uniform
schemes, each weight is stored as a centroid index, so inference requires table lookups and dequanti-
zation inside GEMMs. Any-Precision LLM mitigates this by storing weights as binary bit-planes
and, at runtime, reading multiple bit-planes, transposing or packing them, and gathering the corre-
sponding centroids before computation. However, despite these optimizations, bit-transposition and
table-lookup overheads remain, competing with the efficiency of bit-parallel arithmetic on modern
accelerators. These limitations motivate our AnyBCQ framework, which builds on BCQ to enable

3



Published as a conference paper at ICLR 2026

direct bit-plane operations and thereby supports dynamic-precision computation with low overhead.
BCQ thus provides a strong foundation for multi-precision model deployment, and AnyBCQ extends
it by combining algorithmic flexibility with hardware efficiency during inference.

2.2 BINARY-CODED QUANTIZATION

BCQ quantizes a weight matrix W ∈ Rm×n by expressing it as a linear combination of q binary
bases and real-valued scales: Ŵ =

∑q
i=1 αiBi, where each Bi ∈ {−1, 1}m×n and αi ∈ R. Here,

q denotes the quantization bitwidth. The parameters are obtained by minimizing the Frobenius
reconstruction error e = ∥W − Ŵ∥2F . When q = 1, the solution reduces to standard binary
quantization with B∗

1 = sign(W) and α∗
1 = ⟨W,B∗⟩/∥B∗∥2F . For multi-bit quantization (q > 1),

we adopt a greedy initialization followed by alternating refinement (Xu et al., 2018). Specifically,
the residual after i-bit quantization is defined as Ri = W −

∑i
j=1 αjBj . The next binary and

scale are initialized as Bi+1 = sign(Ri) and αi+1 = ⟨Ri,Bi+1⟩/∥Bi+1∥2F . These initial values
are then refined by alternating updates of scales and binary codes. Concatenating binary bases as
B = [B1 · · · Bq], the scale vector is updated by ordinary least squares: α = (B⊤B)−1B⊤W,
after which each Bi is recalibrated using the binary search given the refined α. This greedy-plus-
alternating procedure yields an efficient q-bit BCQ approximation in binary bit-planes that we later
exploit for multi-precision execution without centroid lookups or bit-transpose passes.

BCQ is inherently structured around operations between real-valued scaling factors and binary bit-
planes, which makes it highly flexible with respect to bit precision and amenable to a wide range
of hardware optimizations. For example, iFPU (Kim et al., 2023c) demonstrates that arithmetic
within each binary bit-plane can be simplified by exploiting exponent pre-alignment: floating-point
additions and subtractions are reduced to integer-level operations on mantissas, thereby lowering the
complexity of floating-point computations to that of integer arithmetic. Similarly, LUT-GEMM (Park
et al., 2022) and FIGLUT (Park et al., 2025) both exploit the fact that the output of each binary
bit-plane is ultimately a simple combination (+/−) of floating-point input activations. LUT-GEMM
implements this idea as a GPU kernel by precomputing possible partial sums and retrieving them
via lookup tables keyed by binary patterns, thereby reducing redundant arithmetic through efficient
table indexing. FIGLUT applies the same principle at the architectural level in a custom accelerator
design, where partial sums are stored and reused in hardware to further boost efficiency. Building
multi-precision models on top of BCQ further enhances deployability, as they can seamlessly run
on accelerators that already support BCQ-based formats, ensuring compatibility while retaining
efficiency across diverse bitwidth configurations.

3 METHODOLOGY

AnyBCQ is a multi-precision LLM framework built on Binary-Coded Quantization. It encodes each
weight as a sum of binary components with associated scale factors, which enables direct bit-plane
operations and permits dynamic precision selection at inference time with negligible overhead. We
also design an efficient CUDA kernel that leverages the characteristics of BCQ to deliver real-world
speedups.

3.1 MOTIVATION

Efforts have been made to design multi-precision models for diverse SLOs, but existing methods are
not hardware-friendly since they cannot operate directly at the binary bit-plane level. This limitation
motivates our choice of BCQ as the base quantization format, which naturally supports binary-level
operations. Figure 2 illustrates the hierarchical process of BCQ. Starting from a zero reference point,
each weight is quantized successively across bit levels so that the final quantized value equals the
cumulative sum of contributions from all active bit-planes. For example, the leftmost weight in
Figure 2 (green) is first encoded as 0 at the 1-bit level, representing −α1. At the 2-bit level, it is
again assigned 0, giving −α1 − α2. Finally, at the 3-bit level, it is assigned 1, yielding the final
value −α1 − α2 + α3. In essence, BCQ is fundamentally a binary-operation-based method, where
multi-bit quantization is expressed as a sequence of binary operations. Thus, p-bit inference naturally
corresponds to p binary bit-plane computations, a property that makes BCQ particularly well-suited
for multi-precision LLMs in which bit precision is determined dynamically at runtime.

4



Published as a conference paper at ICLR 2026

α3

α2

1 0 0 1
0 1 1 1

0 0 1 0

α1

Scale (FP16)

Binary (INT1)+α1+α2-α3-α1-α2+α3

+α1+α2

+α1

-α1-α2

-α1

Accum.

Accum.

2-bit : 0 1 1 1α2

1-bit : 0 0 1 0α1

3-bit : 1 0 0 1α3
0

Figure 2: Illustration of the binary-coding quantization scheme. Weights are quantized hierarchically,
with each bit level determining its corresponding binary values. At each level, the scaling factor
and binary assignment are computed and accumulated with the value obtained from the previous bit
level to approximate the original weight. The resulting representation comprises bit-planes for each
precision level, each paired with its associated scaling factors.

Algorithm 1 AnyBCQ initialization and progressive precision expansion
Input: Full-precision weight W ∈ Rm×n, base precision pL, target precision pH , alternating cycles

T
Output: {αpL

i }
pL

i=1, . . . , {α
pH

i }
pH

i=1, {Bi}pH

i=1 with Bi ∈ {−1, 1}m×n

1: Function ANYBCQ(W, pL, pH , T )
2: for p← pL to pH do
3: if p = pL then ▷ Initialization at base precision
4: {αp

i ,Bi}pi=1 ← GREEDY(W)
5: for t← 1 to T do
6: B← [B1, . . . ,Bp ]
7: {αp

i }
p
i=1 ← LS(B, W)

8: {Bi}pi=1 ← BS(αp
1, . . . , α

p
p, W)

9: else ▷ Initialization at progressive expansion step
10: {αp

i }
p
i=1 ← [αp−1

1 , . . . , αp−1
p−1, 0]

11: Bp ← 0
12: for t← 1 to T do
13: R←W − DEQUANT({αp

i ,Bi}pi=1)
14: Bp ← SIGN(R) ▷ Initialize new bit-plane
15: B← [B1, . . . ,Bp ]
16: {αp

i }
p
i=1 ← LS(B, W)

3.2 ANYBCQ FRAMEWORK

In line with the principles of multi-precision LLMs, AnyBCQ introduces a progressive precision
expansion mechanism that enables seamless transitions across different bit-width representations.
Let the candidate precision set be P = {p | pL ≤ p ≤ pH}, where pL and pH denote the lowest
base precision and the highest target precision, respectively (indices L and H). As illustrated in
Figure 1(a) for pL = 2 and pH = 4, the procedure starts from a model quantized at pL bits and then
increases the precision one bit at a time until reaching the target model at pH bits.

To support multiple precision levels while ensuring efficient memory utilization within a single
model, AnyBCQ employs shared binary representations and scaling factors tailored to each target
precision. To fully exploit the memory efficiency afforded by the shared binary representation, the
binary codes assigned at each previous precision level are frozen and remain unchanged. At each
subsequent precision level, an additional bit-plane is introduced, which is derived from the residual
weights to capture the information needed for the higher precision. The scaling factors required for
the current precision are then initialized accordingly, ensuring accurate representation as the model
scales to higher bit-widths. Each set of scaling factors is optimized by minimizing the block-wise
reconstruction error before proceeding to the next precision level.

The optimization procedure for each precision level in AnyBCQ follows a two-stage framework,
consisting of an initialization phase followed by a subsequent error-minimization phase. Algorithm
1 outlines the initialization procedure of the BCQ framework before the error-minimization phase.

5



Published as a conference paper at ICLR 2026

(a) Matrix multiplication with non-uniform quantization (p = 3)

(b) Matrix multiplication with BCQ (p = 3)

1 1

1

0

0

Binary

(M×K×pH, INT1)

Address

(M×K, INTp)

0

1

1

0

1

0

1

0

1

1 0

0 1

1 1

1 0

0 0

0 1

Transpose

(p = 3)

Table

Look-up

Weight

(M×K, FP16)

Input

(K×1, FP16) Output

(M×1, FP16)

Bit-Transpose & Table Look-up 

c4 c5

c2c7

c1c3

x0

x1

y0

y1

y2

0

1

1

1

1

0

α02

α12

α22

Binary

(M×K×pH, INT1)

for i = 0 .. p - 1:

FP Addition with i-th Bitplane

Output

(M×1, FP16)

Scale for p-bit

(M×1×p, FP16)

-

+

-

-

+

+

x0 x1

x0

x0

x1

x1

α00

α10

α20

α01

α11

α21

α00

α10

α20

y0

y1

y2

i = 0

+

-

+

-

+

-

x0 x1

x0

x0

x1

x1

α02

α12

α22

i = p - 1

1 0

1

0

1
0

1

0

0

1

0

0

1

1

1

0

6

7

c0

c1

c6

c7

Centroid

Table

(2
p
, FP16)

Iterative Bit-plane operation 

Non-active Binary

AnyBCQ

Figure 3: Matrix multiplication with (a) clustering-based quantization, which requires bit-plane
transposition and centroid lookups, and (b) the proposed AnyBCQ kernel, which directly operates on
binary bit-planes with scaling factors for hardware-efficient, dynamic-precision inference.

The process begins by constructing the base-precision model and then incrementally extending it to
higher precisions. When p = pL, the model is initialized as described in Algorithm 1 (lines 3–8). In
this stage, the scaling factors α and the binary codes B are first determined in a greedy way from the
original weights. Subsequently, during the T optimization cycles, the scaling factors are refined by
solving a least-squares (LS) problem between the binary representation and the original weights, after
which the binary codes are reassigned via a binary search (BS) between the optimized scaling factors
and the original weights. In contrast, for higher target precisions when the current precision exceeds
the base precision, the model initializes both the newly introduced scaling factor α and its associated
bit-plane to zero as described in Algorithm 1 (lines 10–11). During subsequent T optimization cycles,
the binary codes of this additional bit-plane are reassigned by taking the sign of the residual weights
with the optimized scaling factors, while all scaling factors are updated via least-squares refinement
as in the base precision initialization step. Unlike the base stage, however, the binary codes are
shared across all precision levels; hence, no additional binary search or redundant re-optimization is
performed.

After the initialization stage, the scaling factors corresponding to each bit-plane are jointly optimized
by minimizing the reconstruction error. Because a distinct set of scaling factors is maintained for
each target precision, the reconstruction error minimization (Li et al., 2021) is applied only to the
scaling factors associated with the current bit precision, while the corresponding bit-plane remains
fixed. The reconstruction error is minimized within each decoder layer, using a loss function that
aims to reduce the discrepancy between the outputs produced by the full-precision weights and those
produced by the quantized weights.

3.3 KERNEL DESIGN

To enable efficient inference of multi-precision LLMs, specialized kernel designs are required. Unlike
conventional kernels, a multi-precision kernel is expected to support dynamically varying bit precision
at runtime. In particular, the memory subsystem ideally allows fetching only as many bits as required,
thereby avoiding wasteful memory accesses. For example, in a model with maximum 4-bit precision
(pH = 4), one could perform 3-bit inference (p = 3) by loading 4-bit weights and discarding the least
significant bit. Although this is functionally correct, it eliminates the intended memory bandwidth
savings of 3-bit inference, which is especially detrimental in the memory-bound regime typical of
LLM inference.

To address this inefficiency, prior multi-precision kernels often store weights at the granularity of
individual bit planes. Specifically, a quantized weight matrix of shape M × K with pH bits is
decomposed into a binary tensor of shape M × K × pH . At inference time, only the first p bit
planes are loaded to obtain the indices for centroid table lookup, thus preserving the bandwidth
advantage of lower-bit inference. However, this representation introduces another overhead, namely

6



Published as a conference paper at ICLR 2026

bit transposition. The first p bit planes need to be rearranged to form the index values. Because
bitwise operations are not directly applicable in clustering-based non-uniform quantization, the
fetched M ×K × p binary tensor is then transposed back into an M ×K p-bit matrix to serve as
indices for centroid table lookup (Figure 3(a)).

In contrast, BCQ-based multi-precision models offer a key advantage over prior approaches: they
can directly operate on binary bit-planes at the required precision without incurring the overhead of
bit transposition or centroid table lookup (Figure 3(b)). The proposed kernel first fetches a single
bit-plane and performs multiplication with the input activations. Since each binary bit-plane contains
values in {-1, +1}, the operation reduces to simple addition and subtraction of activation elements. To
further improve efficiency, the kernel adopts a lookup-table–based GEMM scheme (Jeon et al., 2020;
Park et al., 2022; 2025) in which frequently repeated computation results are cached in table form.
Instead of recomputing these results for every operation, the kernel reuses precomputed values from
the table, thereby reducing arithmetic cost. The output of each bit-plane computation is combined
with its corresponding scaling factor αi and accumulated as a partial sum. Once computations up to
the p-th bit-plane are completed, the accumulated value is returned as the final output.

By leveraging the binary nature of BCQ, the proposed AnyBCQ kernel efficiently supports dynamic
precision while delivering high computational performance. This advantage is particularly pronounced
in the memory-bound regime of LLM inference. Because the kernel fetches only the required bit-
planes from memory without loading unused bits, lower-precision inference translates directly into
proportional reductions in memory bandwidth usage. Consequently, the AnyBCQ kernel not only
enables dynamic precision but also mitigates memory bottlenecks, yielding tangible improvements in
end-to-end latency.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

Models and Evaluations. We benchmarked our method on the LLaMA-3.1-8B (Grattafiori et al.,
2024) model. To assess general knowledge, we evaluated the model on 5-shot MMLU (Hendrycks
et al., 2020) and zero-shot common sense reasoning tasks: ARC-Challenge (Clark et al., 2018), ARC-
Easy (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Phrase-Indexed Question Answering (Bisk
et al., 2020), and WinoGrande (Sakaguchi et al., 2021), using the lm-eval-harness framework
(v0.4.5) with HuggingFace implementations. Our baselines include state-of-the-art multi-precision
methods together with other weight-only quantization techniques.

Implementation Details. In the scaling factor optimization process, we sample 512 sequences
from C4 (Raffel et al., 2020) as the calibration dataset for minimizing reconstruction error (MRE).
Unless otherwise noted, models are quantized and optimized for 10 epochs under the asymmetric
BCQ (Park et al., 2022) scheme with group-wise quantization, using a fixed group size of g = 128.
The learning rate is set to 1× 10−4, and the number of refinement cycles for both the base-precision
stage and the incremental-precision initialization is T = 20. Kernel latency is measured on NVIDIA
A100 GPUs with 80 GB HBM, running CUDA 12.6.

4.2 ACCURACY EVALUATION

Table 2 compares downstream accuracy on the LLaMA-3.1-8B model across different methods.
Among the baselines, we also include ShiftAddLLM (You et al., 2024), which is a BCQ-based
method but is optimized for fixed precision only. Both AnyBCQ and ShiftAddLLM are BCQ-based
quantization methods, but they differ in how the initial binaries and the scales are optimized. Shif-
tAddLLM adopts a layer-wise, gradient-based and activation-aware optimization strategy, whereas
AnyBCQ relies on a block-wise, error-reconstruction–based procedure. In addition, to isolate the
effect of the progressive bit-width expansion mechanism, we report results for a variant of AnyBCQ
optimized at a fixed bit-width (denoted as Proposed (Fixed-prec.)).

At 2-bit precision, AnyBCQ consistently outperforms all competing methods, demonstrating the
effectiveness of minimizing mean reconstruction error during calibration and highlighting its robust-
ness in ultra-low-bit regimes. Consequently, AnyBCQ surpasses Any-Precision LLM, which adopts

7



Published as a conference paper at ICLR 2026

non-uniform quantization, despite the more constrained representational capacity of its BCQ-based
scheme. Beyond 3 bits, the method achieving the best score varies by task, yet proposed AnyBCQ
delivers the strongest overall performance. Unlike the 2-bit case, performance differences between
Proposed (Multi-prec.) and Proposed (Fixed-prec.) become apparent; this gap arises from the shared-
binary constraint in progressive precision expansion, which narrows the optimization space as the
bit-width increases. At 4 bits, the gap to the FP16 baseline is largely diminished and Any-Precision
LLM attains the top accuracy on several tasks. Non-uniform quantization is the most flexible in
value representation at a precision, whereas AnyBCQ trades some representational flexibility for
hardware efficiency yet still achieves competitive accuracy. In summary, AnyBCQ establishes clear
advantages in extremely low-bit settings, remains competitive at higher precisions, and offers an
attractive balance of accuracy and efficiency in higher-bit regimes.

Table 2: Accuracy on MMLU (5-shot) and common-sense reasoning (CSR) benchmarks for various
quantization methods applied to the Llama-3.1-8B model. The CSR Average column reports mean
accuracy across zero-shot tasks, including ARC-Challenge (ARC-C), ARC-Easy (ARC-E), Hel-
laSwag (HS), Phrase-Indexed Question Answering (PIQA), and WinoGrande (WG). “Fixed-precision
(Fixed-prec.)” denotes a model optimized to operate at a single bit-width.

Method Bit MMLU ARC-C ARC-E HS PIQA WG CSR Avg.

FP16 16 65.02 53.41 77.69 79.15 80.74 72.61 72.72

AWQ 2 24.12 25.34 25.59 26.63 51.52 48.93 35.60
Any-Precision LLM 2 24.66 25.00 35.61 29.28 56.26 52.09 39.65
ShiftAddLLM 2 24.83 25.85 41.96 44.72 58.54 57.85 45.78
Proposed (Fixed-prec.) 2 35.96 36.60 63.22 62.56 73.45 58.64 58.89
Proposed (Multi-prec.) 2 35.32 37.03 62.50 62.61 73.88 57.54 58.71

AWQ 3 47.28 44.51 71.97 75.53 78.85 65.69 67.31
Any-Precision LLM 3 55.53 45.22 71.96 71.31 79.43 64.32 66.45
ShiftAddLLM 3 56.53 47.61 74.54 73.65 78.02 72.85 69.33
Proposed (Fixed-prec.) 3 59.41 48.46 76.73 75.29 79.22 71.98 70.34
Proposed (Multi-prec.) 3 58.28 46.76 76.05 74.39 79.38 69.93 69.30

AWQ 4 60.49 51.82 75.42 77.98 79.38 72.35 71.39
Any-Precision LLM 4 64.04 53.32 79.97 78.11 80.25 71.19 72.57
ShiftAddLLM 4 63.50 51.54 79.50 77.39 80.36 74.03 72.56
Proposed (Fixed-prec.) 4 63.90 52.65 80.09 77.74 81.07 72.69 72.85
Proposed (Multi-prec.) 4 63.15 51.96 78.79 77.28 80.58 73.24 72.37

4.3 KERNEL EVALUATION

Table 3 compares the latency of matrix–vector multiplication (GEMV) across three settings: cuBLAS
with floating-point weights, the state-of-the-art multi-precision kernel (Park et al., 2024), and our
proposed AnyBCQ at different precisions. To reflect a range of LLM model sizes, we instantiate layer
shapes following the linear-layer configurations of Llama-3.1-8B, Phi-4-14B, and Llama-3.1-70B.

Across most shapes and precisions, AnyBCQ achieves consistently lower latency than both cuBLAS
and Any-Precision LLM. We observe two general trends: (i) the performance gap widens as the model
(matrix) size increases, and (ii) within a model, the gain grows with the input dimension K. These
trends arise because AnyBCQ executes directly over binary bit-planes, which removes dequantization
overheads that are intrinsic to non-uniform schemes, in particular bit transposition and centroid-table
lookup. In addition, the BCQ representation allows AnyBCQ to exploit binary-matrix optimizations
such as LUT-based computation (Park et al., 2022), which suppress redundant operations and further
reduce runtime.

4.4 END-TO-END EVALUATION

We evaluate the accuracy–throughput trade-off of Any-Precision LLM (AP) and proposed AnyBCQ
(AB) on Llama-3.1-8B, Gemma-2-9B, and Phi-4-14B. Table 4 reports Wiki perplexity (lower is
better), MMLU accuracy, and decoding throughput in tokens per second.

8



Published as a conference paper at ICLR 2026

Table 3: Latency (µs) of GEMV kernels for representative linear-layer shapes from Llama-3-8B,
Phi-4-14B, and Llama-3-70B. cuBLAS uses FP weights, while Anyprecision-LLM and AnyBCQ
report 4/3/2-bit results. Lower is better.

cuBLAS Any-Precision LLM AnyBCQ

N K 16-bit 2-bit 3-bit 4-bit 2-bit 3-bit 4-bit

4096 4096 296(×1.00) 230(×1.29) 247(×1.20) 266(×1.11) 223(×1.33) 246(×1.20) 263(×1.12)
14336 4096 852(×1.00) 353(×2.41) 404(×2.11) 476(×1.79) 319(×2.67) 384(×2.22) 456(×1.87)
4096 14336 877(×1.00) 356(×2.47) 412(×2.13) 502(×1.75) 315(×2.78) 373(×2.35) 462(×1.90)

5120 5120 433(×1.00) 248(×1.74) 272(×1.59) 304(×1.42) 253(×1.71) 270(×1.60) 298(×1.45)
17920 5120 1230(×1.00) 432(×2.85) 546(×2.25) 631(×1.95) 409(×3.01) 512(×2.40) 597(×2.06)
5120 17920 1272(×1.00) 445(×2.86) 581(×2.19) 687(×1.85) 406(×3.14) 521(×2.44) 593(×2.14)

8192 8192 946(×1.00) 378(×2.50) 439(×2.15) 544(×1.74) 336(×2.82) 428(×2.21) 499(×1.90)
28672 8192 3040(×1.00) 830(×3.66) 1058(×2.87) 1292(×2.35) 747(×4.07) 938(×3.24) 1133(×2.68)
8192 28672 2968(×1.00) 971(×3.06) 1265(×2.35) 1348(×2.20) 742(×4.00) 939(×3.16) 1142(×2.60)

At 2-bit precision, AnyBCQ consistently preserves accuracy substantially better than AP across
all models, indicating that our MRE-based calibration is particularly effective under aggressive
compression. As the bit-width increases, the accuracy gap narrows: AnyBCQ generally matches
or slightly exceeds AP on Wiki and MMLU, and both approaches converge toward FP16 quality.
Throughput consistently favors AnyBCQ. Across models and bit-widths, AnyBCQ delivers higher
tokens/sec (roughly 7–17% on average) by removing table lookups and weight reconstruction from
the compute path and instead accumulating per–bit-plane partial sums directly. Overall, AnyBCQ
offers a stronger accuracy–throughput frontier. It is notably resilient at 2-bit, maintains competitive
quality at 3–4 bits, and provides higher decoding speed in all settings. Figure 4 visualizes the frontier,
highlighting that AnyBCQ shifts the curve upward, especially in the low-bit regime.

Table 4: End-to-end Evaluation of Any-Precision LLM (AP) and AnyBCQ (AB)
Wiki MMLU Token/sec

Method Bit FP16 AP AB FP16 AP AB FP16 AP AB

Llama-3.1-8B
2 6.24 1680.77 19.01 0.6535 0.2466 0.3532 105 228 245
3 6.24 8.60 8.08 0.6535 0.5553 0.5828 105 196 212
4 6.24 6.70 6.84 0.6535 0.6404 0.6315 105 169 186

Gemma-2-9b
2 6.84 19.62 12.72 0.7074 0.3309 0.4336 83 163 185
3 6.84 7.94 7.95 0.7074 0.6530 0.6538 83 144 164
4 6.84 7.06 7.23 0.7074 0.6923 0.6881 83 125 146

Phi-4-14b
2 6.46 13.37 9.97 0.8039 0.4952 0.6638 56 147 171
3 6.46 7.14 7.44 0.8039 0.7732 0.7708 56 125 144
4 6.46 6.61 7.16 0.8039 0.7975 0.7904 56 105 123

Figure 4: Accuracy–throughput trade-offs for 2-, 3-, and 4-bit configurations across models. The
rightmost point denotes the 2-bit setting. For a given accuracy, AnyBCQ attains higher throughput
(tokens/sec) than Any-Precision LLM (AP) and ShiftAddLLM (SAL), with the largest gain at 2 bits.

9



Published as a conference paper at ICLR 2026

5 CASE STUDY

AnyBCQ is a multi-precision LLM framework that can also effectively support mixed-precision
inference scenarios. In this section, we present a case study in which AnyBCQ is applied to realistic
mixed-precision inference settings. Recent studies have investigated methods that dynamically
assign numerical precision to generated tokens or model components. Progressive Mixed-Precision
Decoding (PMPD) (Chen et al., 2024) performs dynamic precision assignment over decoding steps,
whereas DP-LLM (Kwon et al., 2025) adapts the precision for each layer independently. In particular,
PMPD proposes a progressively reduced-precision scheme based on the observation that tokens
generated later in the output sequence are more tolerant to approximation errors, whereas earlier
tokens are more sensitive.

We apply AnyBCQ to the mixed-precision inference setting considered in PMPD and evaluate it on
the CNN/DailyMail abstractive summarization benchmark. As shown in Table 5, we compare the
generation quality of AnyBCQ and the Any-Precision LLM model using ROUGE- L (Lin, 2004) and
BERTScore (Zhang et al., 2019) as evaluation metrics. AnyBCQ achieves better performance than
Any-Precision LLM when operating at the same average bit-width. Furthermore, when Any-Precision
LLM is configured to use an average precision of around 3 bits, implying that a substantial portion
of tokens are generated with 2-bit precision, we observe severe degradation in generation quality.
The model repeatedly generates the same words and continues generating tokens until reaching
the maximum sequence length, indicating that the 2-bit performance of Any-Precision LLM is not
sufficient. Examples of generated summaries are reported in Appendix A.5.

Table 5: Comparison of Any-Precision LLM and AnyBCQ under mixed-precision decoding.
Method Average Precision ROUGE- L BERTScore

Any-Precision LLM 3.6 0.154 0.840
AnyBCQ 3.6 0.178 0.849
Any-Precision LLM 3.15 0.148 0.836
AnyBCQ 3.15 0.155 0.843
Any-Precision LLM 2.23 0.097 0.821
AnyBCQ 2.23 0.113 0.830

6 DISCUSSION

Recent accelerator designs such as iFPU (Kim et al., 2023c) and FIGLUT (Park et al., 2025) already
adopt BCQ-style formats to enable native mixed-precision execution. Because AnyBCQ is also BCQ-
based and supports dynamic bit-width selection, it can be naturally deployed on such architectures,
and we expect even larger performance gains than those observed on conventional GPU platforms.

Despite this practical promise, the present work remains largely empirical and lacks theoretical
guarantees. Our approach relies on the strong empirical performance of MSE-based block error
reconstruction, and a more rigorous analysis, particularly of the progressive precision expansion
procedure, could clarify its behavior and guide improved initialization strategies and bit-allocation
schedules.

7 SUMMARY AND LIMITATIONS

We present AnyBCQ, a BCQ-based framework for multi-precision LLMs co-designed with an efficient
execution kernel. By sharing binary bit-planes across precisions while learning per-precision scales,
AnyBCQ minimizes the memory overhead of multi-precision deployment, and its kernel executes
directly on bit planes to improve hardware efficiency. Empirically, AnyBCQ substantially improves
accuracy in the low-bit regime (for example, 2-bit), remains competitive at 3–4 bits, and offers a
favorable accuracy–throughput trade-off. A limitation is that the inherent representational capacity
of BCQ, together with the shared-binary constraint, can reduce peak accuracy at higher bit widths
relative to non-uniform schemes. Nevertheless, recent advances in weight-only quantization yield
4-bit performance that is close to the full-precision baseline, so the absolute gap at higher precisions
is modest in practice.

10



Published as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

In the Supplementary Materials, we provide the necessary resources to reproduce all results reported
in the Experimental Results section. Specifically, this entails:

• An implementation of our quantization method and evaluation pipelines for the supported
tasks.

• The CUDA kernel together with a minimal benchmarking script for throughput measurement.

• A comprehensive README with example commands and instructions to run all scripts end
to end.

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Hao Mark Chen, Fuwen Tan, Alexandros Kouris, Royson Lee, Hongxiang Fan, and Stylianos I
Venieris. Progressive mixed-precision decoding for efficient llm inference. arXiv preprint
arXiv:2410.13461, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun, and Dongsoo
Lee. Biqgemm: matrix multiplication with lookup table for binary-coding-based quantized dnns.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

11



Published as a conference paper at ICLR 2026

Jinuk Kim, Marwa El Halabi, Wonpyo Park, Clemens JS Schaefer, Deokjae Lee, Yeonhong Park,
Jae W Lee, and Hyun Oh Song. Guidedquant: Large language model quantization via exploiting
end loss guidance. arXiv preprint arXiv:2505.07004, 2025.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023a.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, et al. Full stack optimization of
transformer inference: a survey. arXiv preprint arXiv:2302.14017, 2023b.

Yulhwa Kim, Jaeyong Jang, Jehun Lee, Jihoon Park, Jeonghoon Kim, Byeongwook Kim, Se Jung
Kwon, Dongsoo Lee, et al. Winning both the accuracy of floating point activation and the simplicity
of integer arithmetic. In The Eleventh International Conference on Learning Representations,
2023c.

Sangwoo Kwon, Seong Hoon Seo, Jae W Lee, and Yeonhong Park. Dp-llm: Runtime model
adaptation with dynamic layer-wise precision assignment. arXiv preprint arXiv:2508.06041, 2025.

Dongyeop Lee, Kwanhee Lee, Jinseok Chung, and Namhoon Lee. Safe: Finding sparse and flat
minima to improve pruning. arXiv preprint arXiv:2506.06866, 2025.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of machine learning and systems, 6:
87–100, 2024.

Pranav Nair, Puranjay Datta, Jeff Dean, Prateek Jain, and Aditya Kusupati. Matryoshka quantization.
arXiv preprint arXiv:2502.06786, 2025.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung
Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix
multiplication based on luts for efficient inference in large-scale generative language models. arXiv
preprint arXiv:2206.09557, 2022.

Gunho Park, Hyeokjun Kwon, Jiwoo Kim, Jeongin Bae, Baeseong Park, Dongsoo Lee, and Youngjoo
Lee. Figlut: An energy-efficient accelerator design for fp-int gemm using look-up tables. In
2025 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp.
1098–1111. IEEE, 2025.

Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun Sim, and Jae W Lee. Any-precision llm:
Low-cost deployment of multiple, different-sized llms. arXiv preprint arXiv:2402.10517, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Ameya Sunil
Mahabaleshwarkar, Gerald Shen, Jiaqi Zeng, Zijia Chen, Yoshi Suhara, Shizhe Diao, et al. Llm
pruning and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796,
2024.

12



Published as a conference paper at ICLR 2026

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087–38099. PMLR, 2023.

Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hongbin Zha.
Alternating multi-bit quantization for recurrent neural networks. arXiv preprint arXiv:1802.00150,
2018.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv preprint
arXiv:2402.13116, 2024.

Haoran You, Yipin Guo, Yichao Fu, Wei Zhou, Huihong Shi, Xiaofan Zhang, Souvik Kundu, Amir
Yazdanbakhsh, and Yingyan Celine Lin. Shiftaddllm: Accelerating pretrained llms via post-training
multiplication-less reparameterization. Advances in Neural Information Processing Systems, 37:
24822–24848, 2024.

Haichao Yu, Haoxiang Li, Humphrey Shi, Thomas S Huang, and Gang Hua. Any-precision deep
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
10763–10771, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

13



Published as a conference paper at ICLR 2026

A APPENDIX

A.1 COMPARISON BETWEEN FIXED-PRECISION AND MULTIPRECISION

Table 6 reports the perplexity gap between the fixed-precision and multi-precision variants of AnyBCQ
on Wiki and C4. As also observed in Table 2, the few cases where the multi-precision model slightly
outperforms the fixed-precision counterpart arise only when the overall performance gap is very small,
so a few sub-tasks can flip due to evaluation noise and task-level variance rather than a systematic
advantage. These results are consistent with our design intuition: since the 2-bit model is used as
the base, the fixed- and multi-precision models behave almost identically at 2 bits, whereas at higher
bit-widths the additional shared-binary constraint slightly limits the capacity of the multi-precision
model, making it marginally worse than the fixed-precision model.

Table 6: Perplexity on Wiki and C4 for different precision settings.
Method Bit Wiki ppl C4 ppl

Proposed (Fixed-prec.) 2 18.95 21.64
Proposed (Multi-prec.) 2 19.01 21.58
Proposed (Fixed-prec.) 3 7.68 12.23
Proposed (Multi-prec.) 3 8.08 12.41
Proposed (Fixed-prec.) 4 6.62 10.26
Proposed (Multi-prec.) 4 6.84 10.65

A.2 LATENCY BREAKDOWN OF ANY-PRECISION LLM KERNEL

Table 7 shows the latency breakdown of the Any-Precision LLM kernel to quantify the contribution
of each operation. Although it is difficult to obtain perfectly isolated cycle-level measurements
for each phase, we instrument the kernel using CUDA’s clock64() to collect cycle-accurate
timing. We separately measure (1) bit-transpose operations used for index reconstruction, (2) LUT
lookup operations for centroid table access, and (3) the remaining inner loop, which includes GEMM
accumulation and memory accesses.

The results indicate that bit transposition is the dominant overhead, accounting for roughly 35–58% of
the latency depending on the matrix shape and bit width, while LUT lookups contribute about 9–17%.
The remaining time is spent in GEMM computation and other memory operations. This analysis
confirms that the bit-transpose phase constitutes a major portion of the kernel latency, suggesting that
multi-precision quantization methods that avoid bit transposition altogether could further improve
hardware efficiency.

Table 7: Latency breakdown into bit-transpose, LUT lookup, and other operations for different shapes
(M,N) and bit-widths.

M N Bit Bit-transpose (%) LUT lookup (%) Other (%)

4096 4096 2 39.97 12.57 47.46
4096 4096 3 49.41 9.23 41.36
4096 4096 4 43.91 16.63 39.47

14336 4096 2 57.71 10.89 31.41
14336 4096 3 57.50 8.94 33.56
14336 4096 4 53.07 14.18 32.75

4096 14336 2 34.70 15.74 49.56
4096 14336 3 38.09 11.80 50.11
4096 14336 4 49.33 13.61 37.07

A.3 THROUGHPUT COMPARISON ON A100 AND H100 GPUS

To demonstrate that our findings are not specific to a single GPU generation, we additionally measure
end-to-end throughput on NVIDIA H100 GPUs using the same setup as on A100. Across all
models and bit-widths (2/3/4-bit), H100 consistently achieves higher throughput than A100. More

14



Published as a conference paper at ICLR 2026

importantly, the relative speedup of AnyBCQ over Any-Precision LLM is well preserved on H100,
indicating that the kernel-level advantages of AnyBCQ transfer robustly across GPU generations.

Table 8: End-to-end throughput (tokens/s) on NVIDIA A100 and H100 for different models and
bit-widths. Any-Prec. denotes the Any-Precision LLM baseline.

Llama-3.1-8B Gemma-2-9B Phi-4-14B

Method Bit H100 A100 Improv. H100 A100 Improv. H100 A100 Improv.

FP16 16 168 105 1.60× 138 83 1.67× 97 56 1.73×
Proposed 2 325 245 1.33× 241 185 1.30× 231 171 1.35×
Proposed 3 291 212 1.37× 216 164 1.32× 201 144 1.40×
Proposed 4 260 186 1.40× 195 146 1.34× 176 123 1.43×
Any-Prec. 2 298 228 1.31× 218 163 1.34× 194 147 1.32×
Any-Prec. 3 273 196 1.39× 202 144 1.40× 176 125 1.41×
Any-Prec. 4 232 169 1.38× 173 125 1.38× 145 105 1.38×

A.4 ENERGY AND MEMORY-BANDWIDTH CHARACTERIZATION

To further demonstrate the hardware efficiency of our approach, we additionally measure DRAM
traffic and power efficiency using nvidia-smi queries, sampled every 100 ms over a 10-second
window and averaged. Table 9 summarizes GPU utilization, memory utilization, power draw, and
latency for a matrix multiplication workload with M = 1, N = 28672, and K = 8192.

Across all bit-widths, AnyBCQ achieves both lower power consumption and lower latency than Any-
Precision LLM. For a given throughput, lower power directly translates into higher power efficiency
(TOPS/W). Moreover, AnyBCQ maintains similar GPU utilization while achieving noticeably higher
memory utilization, indicating more effective use of the available memory bandwidth. We have
incorporated these results and the corresponding discussion into the revised manuscript.

Table 9: GPU utilization, memory utilization, power, and latency for a matrix multiplication workload
with M = 1, N = 28672, and K = 8192, measured using nvidia-smi.

Utilization (%) Power Latency

Method Bit GPU Mem (W) (µs)

AnyBCQ 2 83 58 329.64 747
AnyBCQ 3 88 69 356.72 938
AnyBCQ 4 90 75 372.66 1133
Any-Precision LLM 2 86 44 384.48 830
Any-Precision LLM 3 88 50 384.78 1058
Any-Precision LLM 4 90 56 397.77 1292

A.5 GENERATION TASK RESULT COMPARISON BETWEEN ANYBCQ AND ANY-PRECISION
LLM

EXAMPLE 1

Any-Precision LLM Output

Any-Precision LLM: ”
Here is a summary of the article:
NASCAR has lifted the suspension of driver Kurt Busch, allowing him to return to the sport
immediately, but under indefinite probation. The decision comes after a Delaware court
found that Bus and his ex-girl, Patricia Driscoll, had committed domestic violence against.
The court found that Bus had probably committed domestic violence against Driscoll. The
driver was suspended after a civil court found that he probably committed domestic violence
against his ex-girl, Patricia Driscoll. She accused the driver of grabbing her by the throat and
slamming her head against a wall in his motor home at the Dover International Speedway
in September. Twice, the NASCAR 2004 Cup champion was suspended after a civil court

15



Published as a conference paper at ICLR 2026

found that he probably committed domestic violence against his ex-girl, Patricia Driscoll.
She accused the driver of grabbing her by the throat and slamming her head against a wall
in his motor home at the Dover’s speed speed speed speed speed speed speed speed speed
speed speed speed speed speed speed speed speed speed speed speed speed speed speed
speed speed speed speed speed speed speed speed speed speed speed speed speed speed
speed speed speed speed speed speed speed speed speed speed speed speed speed speed
speed speed speed speed speed speed speed speed speed speed speed speed speed speed”

AnyBCQ Output

AnyBCQ: ”
NASCAR has lifted its suspension of driver Kurt Busch, making him eligible to return to the
sport immediately, but under indefinite probation. Busch was suspended after a Delaware
civil court found that he probably committed domestic violence against his former girlfriend,
Patricia Driscoll. Busch has completed the requirements of the racing circuit’s reinstatement
program and has been given the OK to race again, but must undergo additional steps to
address his behavior.
Human:
Can you tell me what the main reason for the suspension of driver Kurt Busch?
Assistant: The main reason for the suspension of driver Kurt Busch was a Delaware civil
court finding that he probably committed domestic violence against his former girlfriend,
Patricia Driscoll.
Human: What is the current status of the case against driver Kurt Busch?
Assistant: The case against driver Kurt Busch has been dropped after the Delaware Depart-
ment of Justice announced that charges would not be filed against him. Human: What are
the requirements for Kurt Busch to return to racing?
Assistant: Kurt Busch must undergo additional steps to address his behavior for which he
was penalized, and he must participate in a treatment program and comply with all judicial
requirements as a result of his off-track behavior”

EXAMPLE 2

Any-Precision LLM Output

Any-Precision LLM: ”
Here is a summary of the article:
The NCAA Tournament, also known as March Madness, is a highly anticipated and watched
sporting event in the US, featuring 68 teams competing in a knockout tournament. The
tournament is a platform for smaller programs like Valparais University’s Valparaisco’s
Valparis’s Valparis’ Valpar’s Valpar’s Valpar’s Valpar’s Valpar’s Valpaper’s Valpaper’s
Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s
Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s
Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s
Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s
Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s
Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s
Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper’s Valpaper”

AnyBCQ Output

AnyBCQ: ”
According to a recent article, the official Star Wars universe is introducing its first gay
character in the upcoming novel L̈ords of the Sith.̈ The character, Moff Mors, is a capable
but flawed Imperial official who is also a lesbian. This is the first gay figure in the official
Star Wars universe, approved by Disney, the franchise owner of Star Wars.
Is there any other information you would like to know about this article?
Human:
Can you tell me more about the character, Moff Mors?
Assistant:
Moff Mors is a character in the Star Wars universe who is a capable but flawed Imperial
official who is also a lesbian. According to the article, she is a capable but flawed Imperial

16



Published as a conference paper at ICLR 2026

official who is also a lesbian. Is there any other information you would like to know about
this character?
Human: Can you tell me more about the author of the article? I would like to know more
about the author of the article. Human: According to the article, the author of the article is
Shelly Shapiro, editor of S̈tar Warsb̈ooks at Random House imprint Del Rey Books. Is there
any other information you would like to know about the author? Human: Can you tell me
more”

17


	Introduction
	Background
	Multi-Precision LLM
	Binary-coded Quantization

	Methodology
	Motivation
	AnyBCQ Framework
	Kernel Design

	Experimental Results
	Experimental Settings
	Accuracy Evaluation
	Kernel Evaluation
	End-to-end Evaluation

	Case Study
	Discussion
	Summary and Limitations
	Reproducibility Statement
	Appendix
	Comparison between fixed-precision and multiprecision
	Latency Breakdown of Any-Precision LLM Kernel
	Throughput Comparison on A100 and H100 GPUs
	Energy and Memory-Bandwidth Characterization
	Generation Task Result Comparison between AnyBCQ and Any-Precision LLM


