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Abstract001

Few-shot multi-intent spoken language under-002
standing (SLU) aims to identify users’ multiple003
intents and key slots using a tiny amount of004
annotated data. Recent advances in large lan-005
guage models (LLMs) have utilized instruction006
learning frameworks to model intent-slot in-007
terdependencies, typically requiring abundant008
data for effective training. However, in few-009
shot scenarios, these frameworks face chal-010
lenges such as mismatches between the num-011
ber of generated slots and input lengths, re-012
lational confusion in multi-intent scenarios013
and neglect of task-specific variations in in-014
tent counts across utterances. To overcome015
the challenges, we propose PICD-Instruct, a016
novel generative framework based on Basic017
Instructions (BI), Pairwise Interaction Instruc-018
tions (PII) and Contrastive Distinct Instruc-019
tions (CDI). Specifically, BI directs LLMs to020
generate entities along with associated words,021
thereby mitigating mismatches in quantitative022
correspondences. PII explicitly captures dual-023
task interdependencies by guiding LLMs to024
pair each intent with its related entities. CDI025
enhances understanding of utterances by guid-026
ing LLMs to determine whether two utterances027
share the same intent count. Experimental re-028
sults on public datasets indicate that PICD-029
Instruct achieves state-of-the-art performance.030

1 Introduction031

Spoken Language Understanding (SLU) (Young032

et al., 2013) is a fundamental component of task-033

oriented dialogue systems. Among the various as-034

pects of SLU, multi-intent SLU has gained sig-035

nificant attention due to its practical necessity in036

complex interactive scenarios. This task involves037

two closely linked subtasks: multi-intent detection038

and slot filling. Multi-intent detection focuses on039

identifying the intents embedded within a user ut-040

terance, whereas slot filling extracts key semantic041

information from the utterance. In practical ap-042

plications, however, obtaining sufficient labeled043

data for domain-specific SLU models is often time- 044

intensive and costly. These challenges highlight the 045

critical importance of exploring multi-intent SLU 046

in low-resource settings. 047

Given the bidirectional relationship between in- 048

tents and slots, recent models leverage multi-task 049

joint frameworks to capture these interdependen- 050

cies, achieving strong performance with sufficient 051

training data (Goo et al., 2018; Li et al., 2018; Niu 052

et al., 2019; Liu et al., 2019a; Qin et al., 2020, 053

2021; Song et al., 2022; Chen et al., 2022; Xing 054

and Tsang, 2022a,b; Mei et al., 2023; Song et al., 055

2024). Meanwhile, large language models (LLMs) 056

show promise in the zero-shot SLU task (Pan et al., 057

2023; Zhu et al., 2024) but remain largely de- 058

signed for single-intent scenarios. For instance, 059

Pan et al. (2023) explored prompt-based zero-shot 060

SLU with ChatGPT, but its slot filling lagged far 061

behind fine-tuned models. Similarly, Zhu et al. 062

(2024) proposed a pseudo-labeling framework to 063

enhance task collaboration but faced error propaga- 064

tion issues. To address these limitations, Xing et al. 065

(2024) first introduced instruction learning into gen- 066

erative multi-intent SLU. Their framework lever- 067

ages instruction learning and contrastive learning to 068

model intent-slot relationships through mutual pre- 069

diction of ground-truth labels. By distinguishing 070

task-specific semantics across utterances, this ap- 071

proach enhances SLU reasoning. This raises a key 072

question: Can instruction-guided LLMs achieve su- 073

perior performance in few-shot multi-intent SLU? 074

Beyond traditional SLU challenges, LLMs in- 075

troduce new opportunities by enhancing struc- 076

tured and reliable information extraction (Li et al., 077

2024). SLU plays a crucial role in intelligent agent- 078

driven task completion, where accurate intent detec- 079

tion ensures effective execution of user commands 080

(Caren Han et al., 2022). Unlike open-ended gen- 081

eration, SLU requires structured output to main- 082

tain schema consistency, which is critical for ap- 083

plications in domains such as voice assistants, cus- 084
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Figure 1: An example from MixSNIPS dataset. Traditional LLMs-generated slot labels are in orange, while golden
slot labels and our proposed entity labels are in green. Intent labels are in blue.

tomer service automation, and smart device control085

(Saxon et al., 2021; Irugalbandara, 2024).086

We discover three core challenges in leveraging087

LLMs for the few-shot multi-intent SLU. Firstly,088

the uncontrollable nature of LLM-generated out-089

puts poses significant challenges for slot filling, as090

the number of generated slot often fails to corre-091

spond with the input length. This issue is exacer-092

bated in few-shot settings, where limited training093

data restricts the model’s ability to accurately map094

slots to tokens. As shown in Fig. 1, the example095

demonstrates the over-generation and mismatch of096

slot labels. Secondly, existing generative frame-097

works fail to effectively capture the semantic de-098

pendencies between intents and slots. DC-Instruct099

(Xing et al., 2024) predicts slot labels based on100

the provided utterance and intent labels, but it falls101

short in establishing a one-to-one correspondence102

between each intent and its associated slots. This103

leads to confusion in multi-intent scenarios, mak-104

ing it harder for models to learn dual-task inter-105

dependencies with limited training data. Thirdly,106

as an utterance may contain multiple intents, its107

semantic structure becomes more intricate. There-108

fore, improving the sensitivity of LLMs to the varia-109

tions in intent counts across utterances can enhance110

their understanding of such cases. However, cur-111

rent approaches often overlook this task-specific112

feature, potentially hindering the models’ ability113

to effectively comprehend utterances with multiple114

intents.115

To overcome these challenges, we propose116

PICD-Instruct, a novel generative model based on117

instruction learning. PICD-Instruct employs three118

types of instructions: Basic Instructions (BI), Pair-119

wise Interaction Instructions (PII) and Contrastive120

Distinct Instructions (CDI). BI guides the model in121

generating intent and slot labels by clearly defining122

task instructions, providing candidate labels, and123

specifying output formats. In slot filling, BI utilizes124

a key-value structure to link entities with specific125

tokens, effectively avoiding mismatches between126

generated slots and input lengths observed in the127

process of directly using LLMs to generate slots.128

Considering that each green entity label in Fig. 1 129

aligns exactly with its associated words, PII in- 130

corporates an auxiliary intent-slot pairing task that 131

explicitly models the bidirectional dependencies be- 132

tween intents and slots. By aligning golden intent 133

labels with corresponding entity labels, PII miti- 134

gates relational confisions in multi-intent scenarios. 135

CDI enhances the understanding of utterances with 136

multiple intents by introducing a task to determine 137

whether two utterances share the same number of 138

intents. By leveraging positive and negative sam- 139

ples alongside the current utterance, CDI trains the 140

model to distinguish between utterances based on 141

intent counts, thereby improving its comprehension 142

capabilities. 143

We conduct experiments on two few-shot 144

datasets, FewShotMixATIS and FewShotMixS- 145

NIPS (Hua et al., 2024). Experimental results 146

demonstrate that PICD-Instruct significantly out- 147

performs existing baselines, achieving state-of-the- 148

art (SOTA) performance in the few-shot multi- 149

intent SLU task. The ablation study and additional 150

experiments further confirm the robustness and ad- 151

vantages of our model. 152

In summary, our contributions are three-fold: 153

(1) We propose PICD-Instruct, a novel genera- 154

tive instruction-learning framework that integrates 155

pairwise interactive instructions and contrastive dis- 156

tinct instructions to overcome challenges in the 157

few-shot multi-intent SLU task. 158

(2) We advance the explicit modeling of bidirec- 159

tional dependencies between intents and slots in 160

a low-resource setting, reducing relational confu- 161

sions in multi-intent scenarios through the applica- 162

tion of instruction learning. 163

(3) PICD-Instruct achieves SOTA performance 164

in the few-shot multi-intent SLU task, as evidenced 165

by extensive experiments and analyses. 166

2 Related Work 167

Multi-intent SLU Prevailing models (Kim et al., 168

2017; Gangadharaiah and Narayanaswamy, 2019) 169

often employ joint modeling to simultaneously 170

learn the two tasks in SLU and capture their rela- 171
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tions. Gangadharaiah and Narayanaswamy (2019)172

jointly model multiple intent detection and slot fill-173

ing via a slot-gate mechanism. To better model the174

two tasks’ interactions, graph neural networks have175

been widely utilized (Qin et al., 2020, 2021; Xing176

and Tsang, 2022a,b; Song et al., 2022). The Co-177

guiding Net (Xing and Tsang, 2022a) pioneers in178

achieving mutual guidance between the two tasks179

through a two-stage framework. LCLR (Zhu et al.,180

2023) proposes to leverage the dual-task correla-181

tions in the decoding process. DC-Instruct (Xing182

et al., 2024) employs instructions for LLMs to183

predict one subtask’s labels based on the other’s184

golden labels, effectively capturing the relation-185

ships between intents and slots. UGEN (Wu et al.,186

2022) and PromptSLU (Song et al., 2024) performs187

multi-intent SLU based on the paradigm of prompt188

learning.189

The above approaches primarily focus on scenar-190

ios with abundant training data. However, in few-191

shot settings, capturing the correlations between192

the two tasks in SLU becomes significantly more193

challenging, leading to degraded performance for194

most models (Hua et al., 2024). While UGEN195

and DC-Instruct have demonstrated performance196

in low-resource settings, the few-shot training data197

they utilize does not align well with real-world ap-198

plication scenarios in terms of sample quantity and199

distribution. To better simulate practical applica-200

tion scenarios, we employ FewShotMixATIS and201

FewShotMixSNIPS, two datasets specifically tai-202

lored for few-shot scenarios, as the training data for203

our model. Different from recent works, we pro-204

pose a novel generative framework incorporating205

various instructions to ensure the accuracy of LLM206

outputs. Our approach explicitly captures dual-207

task interdependencies by reducing relational con-208

fusions and effectively harnesses the variations of209

intent counts across different utterances, enabling210

improved performance in the few-shot multi-intent211

SLU task.212

Instruction Learning Recently, the rise of213

LLMs in the natural language processing (NLP)214

field has positioned instruction learning as a com-215

petitive approach across various NLP tasks (Lou216

et al., 2024; Safa et al., 2024). This paradigm effec-217

tively leverages the advanced conversational abili-218

ties of LLMs to perform generative tasks, bridging219

the gap between the pre-training and fine-tuning220

stages.221

In this work, we investigate instruction learn-222

ing for few-shot multi-intent SLU and propose a223

novel model characterized by pairwise interactive 224

instructions and contrastive distinct instructions. 225

3 Task Definition 226

As shown in the example in Fig. 1, multi-intent 227

SLU aims to detect all possible intents within an ut- 228

terance and identify the slot label corresponding to 229

each word. Therefore, multi-intent detection is con- 230

sidered as a multi-label text classification task and 231

slot filling is regarded as a sequence labeling task. 232

The task can be formulated as follows: given an in- 233

put utterance X = {W1,W2, . . . ,Wn}, where n is 234

the length of the utterance. The objective is to pre- 235

dict the correct intents from the candidate intents 236

I = {i1, i2, . . . , im} and indentify the slot label 237

for each word Wi from the candidate slot types 238

S = {s1, s2, . . . , sk}, where m is the number of 239

intent categories, and k is the number of slot types. 240

However, in real-world scenarios, obtaining suffi- 241

cient annotated data is often impractical due to data 242

scarcity and annotation costs. This challenge is par- 243

ticularly pronounced in low-resource domains and 244

emerging applications. Therefore, it is crucial to 245

design models capable of handling the multi-intent 246

SLU task effectively in a few-shot setting, where 247

only limited annotated examples are available. 248

4 Methodology 249

In this section, we introduce our proposed PICD- 250

Instruct framework. As depicted in Fig. 2, we for- 251

mulate our instructions in a question-answer (QA) 252

form. The framework includes three types of in- 253

structions, each corresponding to a specific task. 254

This approach mitigates the effects of uncontrol- 255

lable generation by LLMs and more explicitly mod- 256

els the correlations between the two tasks in SLU, 257

reducing relational confusions. In addition, it en- 258

hances the model’s ability to understand utterances 259

with multiple intents. The following subsections 260

provide a detailed explanation of our proposed ba- 261

sic instructions (I1), pairwise interaction instruc- 262

tions (I2) and contrastive distinct instructions (I3). 263

4.1 Basic Instructions 264

The basic instructions (I1) aim to guide the 265

model in extracting the intents and named entities 266

expressed in the utterance. The key compo- 267

nents of the basic instructions are as follows: 268
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Figure 2: Overview of our framework. Detailed instructions are shown in Appendix A.

             You are an expert in multi-intent 

spoken language understanding. Your task ...

                  First, identify the intents 

in the utterance. The intent options are: 

{Intent Label Set}. Next, identify the named 

entities and list each entity with its 

corresponding words, the entity options are: 

{Entity Label Set}.

[Persona]:

[Instructions]:

269

where the persona specifies the model’s role and270

the tasks to be performed, while the instructions271

detail the specific steps and requirements. To facil-272

itate result extraction and ensure the controllability273

of model outputs, the response format for all tasks274

is standardized to the JSON format. It can be275

formulated as:276

R = L(SP, I) (1)277

where SP represents the system prompt, I is the278

input, L denotes the LLM and R is the response.279

By converting R into a Python dictionary, we can280

extract the intents and entities. After obtaining all281

entities and their corresponding words, inspired by282

(Wang et al., 2023), we map the words back to their283

original slot labels using the BIO rule, adhering to284

the natural left-to-right order of the utterance. This285

approach allows the LLM to concentrate solely on286

establishing correspondence between entities and287

words, disregarding the requirement that the num-288

ber of final slot labels matches the utterance length.289

This effectively circumvents the difficulty LLMs290

face in learning such quantitative correspondences291

in few-shot scenarios.292

4.2 Pairwise Interaction Instructions 293

To explicitly model dual-task dependencies 294

and reduce relationship confusion, we pro- 295

pose the pairwise interaction instructions (PII). 296

PII is designed to pair each intent with its 297

related entities based on the provided utter- 298

ance, along with its intent and entity labels. 299

The key components of the PII are as follows: 300

             You are an expert in multi-intent 

spoken language understanding. You need to ...

                  There is a close relationship 

between each intent and certain named entities. 

You need to pair them separately.

[Persona]:

[Instructions]:

301

As shown in Fig. 2, during training, dual-task 302

dependencies are captured by achieving two kinds 303

of alignments. First, in the input part, both the 304

utterance semantics and the labels for the two 305

subtasks are included, achieving a semantic-label 306

alignment for the tasks. Second, dual-task label 307

alignment is established by pairing intent and 308

entity labels in the generation side. With the 309

straightforward mechanism of separate pairing 310

between each intent and its related entities, the 311

mutual dependencies of the two subtasks can 312

be more easily and directly captured by LLMs 313

with their strong few-shot learning capabilities. 314

In addition, it also subtly reduces relational 315

confusions in multi-intent scenarios. 316

4.3 Contrastive Distinct Instructions 317

Previous works overlook variations in intent 318

counts among utterances, a factor that aids in 319
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Statistic FewShotMixATIS FewShotMixSNIPS

# K-shot 2-shot 4-shot 6-shot 8-shot 10-shot 2-shot 4-shot 6-shot 8-shot 10-shot
# Original training instances 34 66 100 137 172 14 27 40 54 70
# PICD-Instruct training instances 1,717 6,501 14,950 27,948 44,290 287 1,053 2,380 4,347 7,315
# Testing instances 828 2199

Table 1: Detail Statistics of FewShotMixATIS and FewShotMixSNIPS.

����� � � � ��� ���	
	��
������������

����������
	��
����������
����������
��������
���
�
����

��
����
�����

��
	�
��
���
���
�
����

��
����
�����

��
	�
��
�� 
�����������
Figure 3: Traditional contrastive learning and our pro-
posed CDI based on instruction learning.

understanding utterances with multiple intents.320

Inspired by (Xing et al., 2024), such contrastive321

relationships can be leveraged to enhance the322

comprehension of utterances and further improve323

SLU performance. As shown in Fig. 3 (a),324

traditional contrastive learning aims to optimize325

representations by pulling similar samples closer326

in the latent space while pushing dissimilar327

samples away. To adapt this approach to generative328

models, we propose straightforward yet effective329

instructions to implement contrastive learning in330

the instruction learning paradigm, as shown in331

Fig. 3 (b). We first sample a positive utterance332

P and a negative utterance N in relation to the333

current utterance C. Then we construct instructions334

to ask the LLM whether C and P, or C and N335

have the same amount of intents. The expected336

output is a simple binary response:"true" or "false".337

The key components of the CDI are as follows:338

             You are an expert in multi-intent 

spoken language understanding. You need to ...

                  You will be given two user 

utterances. Each utterance may contain single 

or multiple intents. You need to judge whether 

the two utterances contain the same amount of 

intents.

[Persona]:

[Instructions]:

339

This approach leverages contrastive relationships340

to improve the ability of generative LLMs to341

achieve a deeper understanding of utterances.342

4.4 Training and Inference 343

Training First, an I3 is constructed for every two 344

samples. Next, an I1 and an I2 are created for each 345

sample. To facilitate efficient annotation, GPT-4o1 346

is employed to label I2. Details of the prompt 347

settings are provided in Appendix B. The shuffled 348

training data is then utilized to train the model in a 349

text-to-text generation form. The training objective 350

is to minimize the negative log-likelihood for each 351

instruction: L = −
∑N

n=1 log p(yn | y<n, I). N is 352

the length of the golden output sequence y1, ..., yN 353

and I denotes the current input instruction. 354

Inference In the inference stage, only I1 is used 355

to generate predictions for both multiple intent de- 356

tection and slot filling. 357

5 Experiments 358

5.1 Experiment Setup 359

5.1.1 Dataset 360

We compare our method with the baselines on two 361

few-shot multi-intent SLU datasets, FewShotMix- 362

ATIS and FewShotMixSNIPS. They are derived 363

from the MixATIS and MixSNIPS datasets (Qin 364

et al., 2020) using the dynamic sampling algorithm 365

proposed by (Wang et al., 2023). As shown in Ta- 366

ble 1, each dataset includes five types of few-shot 367

samples, ranging from 2-shot to 10-shot for train- 368

ing. For testing, we use the test sets of original 369

standard datasets (i.e., MixATIS and MixSNIPS). 370

This setup effectively simulates a realistic applica- 371

tion scenario for few-shot multi-intent SLU. 372

To ensure a balanced number of the three in- 373

struction types, oversampling is applied to I1 and 374

I2. The final dataset sizes ranging from 2-shot to 375

10-shot are presented in the third row of Table 1. 376

5.1.2 Implementation Details 377

For PICD-Instruct, we use Qwen2.5-7B2 as its 378

backbone model. The model employs AdamW 379

(Loshchilov and Hutter, 2017) as the optimizer with 380

an initial learning rate of 3e-5, a scheduler with 381

a linear warm-up to update and adjust the learn- 382

ing rate. We adopt low-rank adaptation (LoRA) 383

1https://chatgpt.com/
2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

BERT 0 57.38 0 4.47 68.37 2.66 12.44 69.54 6.40 25.36 74.23 10.99 36.11 76.66 17.15
RoBERTa 0 48.90 0 0 56.68 0 6.04 65.17 1.33 6.52 68.27 2.17 16.79 70.96 9.18
AGIF+BERT 0 38.28 0 0.60 32.73 0 10.75 48.13 3.02 15.10 38.79 3.50 29.83 56.91 8.94
GL-GIN+BERT 1.21 6.49 0 6.52 21.32 1.57 14.49 32.09 2.90 18.84 33.89 3.26 23.67 49.54 5.56
UGEN 4.47 54.31 1.33 21.98 68.44 6.52 53.50 72.78 15.94 59.30 74.84 19.57 66.67 76.40 22.71
BERT-SIF 30.31 62.51 5.80 37.56 65.74 7.97 58.09 68.20 13.53 61.47 74.90 21.26 62.56 77.61 23.55
ChatGPT 30.07 6.85 0.60 - - - - - - - - - - - -
PICD-Instruct 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.28 74.06 27.66

Table 2: Overall results on FewShotMixATIS. I-Acc, S-F1, O-Acc refer to the intent-accuracy, slot F1, and overall
accuracy (both intents and slots need to be right), respectively. All models are fine-tuned on the training set of
FewShotMixATIS. The version of ChatGPT: gpt-3.5-turbo-16K.

Model
FewShotMixSNIPS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

BERT 4.46 24.84 0.14 3.91 34.59 0 23.78 38.96 0.73 38.06 49.29 3.00 50.34 57.61 4.91
RoBERTa 0.55 8.87 0 1.36 19.04 0 24.51 33.05 0.50 30.38 33.41 0.68 37.79 37.25 0.68
AGIF+BERT 1.27 2.74 0 6.23 7.11 0 17.69 9.12 0.09 21.15 10.03 0.05 14.78 12.53 0.68
GL-GIN+BERT 7.50 0.61 0 14.19 1.48 0 28.06 2.03 0.09 34.20 5.49 0.27 58.21 9.62 0.18
UGEN 2.64 13.10 0 29.65 33.07 0.23 38.84 40.31 1.96 61.57 46.80 4.37 73.08 58.38 7.78
BERT-SIF 37.61 26.29 0.64 56.34 38.32 2.18 64.39 43.34 3.23 65.39 50.18 7.14 74.12 61.75 11.10
ChatGPT 64.48 3.91 0.18 - - - - - - - - - - - -
PICD-Instruct 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51

Table 3: Overall results on FewShotMixSNIPS. All models are fine-tuned on the training set of FewShotMixSNIPS.

(Hu et al., 2021) to fine-tune the model with384

only 55M/28M trainable parameters for FewShot-385

MixATIS/FewShotMixSNIPS. We set the rank to386

128/64 for FewShotMixATIS/FewShotMixSNIPS.387

The batch size is 16 for both datasets. We con-388

duct experiments based on the llamafactory (Zheng389

et al., 2024) framework to improve the efficiency390

of implementation. Experiments are conducted on391

two NVIDIA A5000 GPUs. In multi-intent SLU,392

accuracy (Acc), F1 score and overall accuracy are393

used as the metrics for multiple intent detection,394

slot filling and the SLU semantic frame parsing.395

Our source code will be released.396

5.2 Main Results397

We compare our model with BERT (Devlin et al.,398

2018), RoBERTa (Liu et al., 2019b), ChatGPT, and399

four other top-performing models. Specifically,400

AGIF (Qin et al., 2020) presents an adaptive in-401

teraction network to achieve fine-grained multiple402

intent information integration for token-level slot403

filling. GL-GIN (Qin et al., 2021) introduces a404

Global-Locally Graph Interaction Network which405

explores a non-autoregressive model for joint mul-406

tiple intent detection and slot filling. Wu et al.407

(2022) proposes a Unified Generative framework408

(UGEN) based on a prompt-based paradigm and409

formulates the task as a question-answering prob-410

lem. BERT-SIF introduces a separate intent-slot411

interaction framework based on prompt learning to412

mitigate relational confusions. The baseline results 413

are sourced from Hua et al. (2024), who imple- 414

mented the above models using their official code. 415

Due to the limitations of prompt length and costs, 416

the ChatGPT experiment is conducted exclusively 417

in the 2-shot setting. Performance comparisons are 418

presented in Tabel 2 and 3, from which we have 419

the following observations: 420

(1) PICD-Instruct achieves new state-of-the-art 421

performance on both datasets. On the FewShot- 422

MixATIS dataset, PICD-Instruct surpasses BERT- 423

SIF in the 2-shot setting by 39.26%, 2.63%, and 424

13.16% on intent accuracy, slot F1 and overall ac- 425

curacy, respectively. On the FewShotMixSNIPS 426

dataset, it outperforms BERT-SIF in the 2-shot 427

setting by 48.84%, 20.21% and 4.86% on intent 428

accuracy, slot F1 and overall accuracy. As the 429

amount of training data increases, the performance 430

of our model and all baselines consistently im- 431

proves across both datasets. This improvement 432

is attributed to our model’s explicit capture of dual- 433

task dependencies via pairwise interaction instruc- 434

tions. The straightforward and effective mecha- 435

nism significantly reduces training complexity in 436

few-shot scenarios. In addition, our designed con- 437

trastive distinct instructions enhance the LLM’s 438

capability to understand utterances with multiple in- 439

tents. Furthermore, our method of guiding the LLM 440

to generate entities along with their corresponding 441

words effectively mitigates the mismatch between 442
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

w/o PII, CDI (I2, I3) 67.51 64.43 17.75 68.84 68.07 20.65 71.50 70.65 22.83 78.02 72.75 26.69 77.66 73.54 26.81
w/o PII (I2) 68.24 64.57 17.87 68.96 68.24 20.77 71.62 70.98 22.95 78.26 72.91 26.81 78.14 73.68 27.05
w/o CDI (I3) 68.48 64.86 18.24 69.20 68.71 21.01 71.98 71.46 23.67 78.50 73.13 27.05 79.23 73.84 27.17
PICD-Instruct 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.28 74.06 27.66

FewShotMixSNIPS

w/o PII, CDI (I2, I3) 84.86 45.14 4.50 85.31 48.27 6.18 86.08 51.16 7.64 86.22 54.31 9.23 86.45 56.25 10.56
w/o PII (I2) 85.08 45.48 4.64 85.54 48.62 6.41 86.36 51.48 7.82 86.45 54.58 9.64 86.68 56.64 10.83
w/o CDI (I3) 85.54 46.11 4.96 85.95 49.03 6.82 86.90 51.93 8.05 86.81 54.97 10.14 87.04 57.13 11.28
PICD-Instruct 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51

Table 4: Results of ablation experiments.

the number of slots and the utterance length, a chal-443

lenge that LLMs typically face when learning quan-444

titative correspondences from a limited amount of445

annotated data.446

(2) ChatGPT can hardly handle few-shot multi-447

intent SLU. The performance of ChatGPT is con-448

sistent with recent findings (Pan et al., 2023; Qin449

et al., 2023). While ChatGPT demonstrates perfor-450

mance comparable to earlier classification-based451

models in the multiple intent detection task, its per-452

formance in slot filling lags far behind other mod-453

els. We suspect there are two main reasons. First,454

insufficiently descriptive prompt wording may neg-455

atively impact ChatGPT’s performance. We be-456

lieve advanced in-context learning strategies, such457

as chain-of-thought prompting, could partially en-458

hance ChatGPT’s performance, while this is be-459

yond the scope of this paper. Second, multi-intent460

SLU requires task-specific knowledge, which is461

more effectively acquired through fine-tuning. This462

finding underscores the need for vertical domain-463

specific development, particularly for tasks requir-464

ing high levels of domain-specific expertise.465

5.3 Ablation Study466

In this section, we conduct ablation experiments to467

explore the effect of each component of our PICD-468

Instruct model. The results are shown in Table. 4.469

Basic Instructions (BI). Retaining only BI (I1)470

still yields significant improvements compared to471

the previous best-performing model, BERT-SIF,472

especially in slot filling, where it outperforms Chat-473

GPT. This demonstrates that BI effectively guides474

the LLM to generate entities along with their corre-475

sponding words, simplifying the process of slot fill-476

ing. Besides, well-crafted instructions fully lever-477

age the few-shot learning capabilities of LLMs,478

enabling a deeper understanding of the multi-intent479

SLU task and improving task execution. Detailed480

instructions are provided in Appendix A.481

Pairwise Interaction Instructions (PII). Adding 482

PII (I2) results in obvious improvements across 483

all metrics and in all few-shot settings. It indi- 484

cates that PII effectively and explicitly captures 485

the dual-task correlations, leading to substantial 486

performance enhancements. Moreover, PII helps 487

mitigate relational confusions in multi-intent sce- 488

narios. The results further verify the fact that a 489

direct and effective interaction mechanism in the 490

instruction learning paradigm is highly beneficial 491

for few-shot learning. 492

Contrastive Distinct Instructions (CDI). The aim 493

of CDI is to enhance the LLM’s capability to under- 494

stand utterances with multiple intents. The experi- 495

mental results reveal that including CDI contributes 496

to improvements in all metrics, verifying its ne- 497

cessity. Besides, combining CDI and PII further 498

enhances the model’s performance. This synergy 499

arises from their individual contributions: CDI and 500

PII excel at their respective tasks, and their inte- 501

gration establishes a strong interdependence. CDI 502

improves the LLM’s initial comprehension of utter- 503

ances, thereby facilitating multiple intent detection. 504

PII explicitly captures dual-task dependencies, rein- 505

forcing the relationship between tasks and enhanc- 506

ing slot filling performance. Therefore, removing 507

any one of CDI and PII leads to performance de- 508

creases on all of intent accuracy, slot F1 and overall 509

accuracy. 510

5.4 Effects of Model Size 511

To further evaluate the impact of model size on 512

performance, we experiment with 3B, 7B and 14B 513

versions of Qwen2.5 on both datasets. Due to space 514

limitation, we only put results in the 2-shot setting 515

in Table 5, detailed results for other settings are 516

provided in Appendix C. This analysis will help 517

determine whether it is necessary to pursue larger 518

model sizes and understand the trade-offs involved. 519

As shown in Table 5, the experimental results 520
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Model FewShotMixATIS FewShotMixSNIPS

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

Qwen2.5-3B 57.25 57.78 16.55 73.22 36.00 3.32
Qwen2.5-7B 69.57 65.14 18.96 86.45 46.50 5.50
Qwen2.5-14B 71.74 70.04 23.67 88.45 51.12 8.23

Table 5: Results comparison of different model sizes in
the 2-shot setting.

Model FewShotMixATIS FewShotMixSNIPS

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

w/o PII, CDI (I2, I3) 48.03 54.21 8.06 62.26 30.02 0.82
LLaMA3.2-3B 49.52 55.66 9.30 68.62 32.79 2.05

Qwen2.5-3B 57.25 57.78 16.55 73.22 36.00 3.32

Table 6: Results comparison of different model types in
the 2-shot setting.

indicate that an increase in Qwen model size leads521

to improved performance. However, the perfor-522

mance gains in multiple intent detection and slot523

filling diminish as the model size increases further.524

For FewShotMixATIS dataset, increasing model525

parameters from 3B to 7B results in improvements526

of 12.32% and 7.36% in intent accuracy and slot F1,527

respectively. However, further increasing param-528

eters from 7B to 14B only yields gains of 2.17%529

and 4.9% in intent accuracy and slot F1, respec-530

tively. A similar trend is observed for the Few-531

ShotMixSNIPS dataset, although overall accuracy532

shows more pronounced improvements when pa-533

rameters are scaled from 7B to 14B. This suggests534

that the overall reasoning capability of the LLM535

improves significantly with increased model size.536

Consequently, pursuing larger-scale language mod-537

els may not be essential for achieving substantial538

performance gains across all metrics in the context539

of multi-intent SLU.540

5.5 Effects of Model Type541

To investigate the effectiveness of different model542

types, we compare the latest versions of LLaMA3543

and Qwen. Due to space limitation, only results in544

the 2-shot setting are presented in Table 6, while545

detailed results for other settings are included in546

Appendix D.547

As shown in Table 6, the results reveal that Qwen548

outperforms LLaMA in terms of all metrics. Espe-549

cially in multiple intent detection, Qwen overpasses550

LLaMA by 7.73% and 4.6% on FewShotMixATIS551

and FewShotMixSNIPS, respectively. A possible552

explanation for this performance gap lies in their553

foundational capabilities. While LLaMA is pri-554

marily trained on English corpora, Qwen excels555

3https://huggingface.co/meta-llama

Model FewShotMixATIS FewShotMixSNIPS

LLaMA3.2-3B 1.33 2.36
Qwen2.5-3B 0.24 0.09

Table 7: Error rate of JSON parsing in the 2-shot setting.

in both Chinese and English, potentially allowing 556

it to learn more diverse language patterns during 557

pre-training, which could benefit multi-intent SLU. 558

Another noteworthy observation is the disparity in 559

their JSON output format capabilities. As shown 560

in Table 7, Qwen exhibits superior JSON output 561

capabilities compared to LLaMA, likely due to its 562

tailored post-training process for generating struc- 563

tured outputs. Specific parsing error analyses are 564

provided in Appendix D. Despite inferior perfor- 565

mances of LLaMA, our proposed instructions still 566

demonstrate their effectiveness in few-shot multi- 567

intent SLU. Notably, removing PII and CDI results 568

in significant performance declines across all met- 569

rics. This analysis underscores the critical impor- 570

tance of model selection, particularly with respect 571

to capabilities relevant to the task at hand. 572

6 Conclusion 573

In this paper, we make in-depth investigations 574

of few-shot multi-intent SLU. We propose PICD- 575

Instruct, a framework designed to address the chal- 576

lenges of generative few-shot multi-intent SLU 577

from three key perspectives. Firstly, we propose 578

basic instructions to tackle the mismatch between 579

generated slot counts and input length. Secondly, 580

we introduce pairwise interaction instructions to 581

explicitly model dual-task dependencies while min- 582

imizing relational confusions in multi-intent scenar- 583

ios. Thirdly, we present contrastive distinct instruc- 584

tions that leverage contrastive relations in intent 585

counts to enhance understanding. Experimental re- 586

sults demonstrate that our proposed model achieves 587

SOTA performance on FewShotMixATIS and Few- 588

ShotMixSNIPS, thereby highlighting our model’s 589

robust generalization capabilities in a simulated 590

real-world application scenario. 591

7 Limitations 592

This paper presents a comprehensive analysis of 593

generative few-shot multi-intent SLU and intro- 594

duces the PICD-Instruct model, which is based on 595

the paradigm of instruction learning. In fact, de- 596

tailed descriptions of intent and slot labels could 597

significantly enhance LLMs’ comprehension of 598

multi-intent SLU, as high-quality external knowl- 599
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edge helps mitigate the hallucination issue in LLMs600

(Wan et al., 2024). In the future, we will explore601

how to integrate external label knowledge into602

LLMs to further improve the performance of few-603

shot multi-intent SLU.604

References605

Soyeon Caren Han, Siqu Long, Henry Weld, and Josiah606
Poon. 2022. Spoken language understanding for con-607
versational ai: Recent advances and future direction.608
arXiv e-prints, pages arXiv–2212.609

Lisong Chen, Peilin Zhou, and Yuexian Zou. 2022.610
Joint multiple intent detection and slot filling via611
self-distillation. In ICASSP 2022-2022 IEEE Inter-612
national Conference on Acoustics, Speech and Signal613
Processing (ICASSP), pages 7612–7616. IEEE.614

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and615
Kristina Toutanova. 2018. Bert: Pre-training of deep616
bidirectional transformers for language understand-617
ing. arXiv preprint arXiv:1810.04805.618

Rashmi Gangadharaiah and Balakrishnan619
Narayanaswamy. 2019. Joint multiple intent620
detection and slot labeling for goal-oriented dialog.621
In Proceedings of the 2019 Conference of the622
North American Chapter of the Association for623
Computational Linguistics: Human Language Tech-624
nologies, Volume 1 (Long and Short Papers), pages625
564–569, Minneapolis, Minnesota. Association for626
Computational Linguistics.627

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,628
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung629
Chen. 2018. Slot-gated modeling for joint slot filling630
and intent prediction. In Proceedings of the 2018631
Conference of the North American Chapter of the632
Association for Computational Linguistics: Human633
Language Technologies, Volume 2 (Short Papers),634
pages 753–757, New Orleans, Louisiana. Association635
for Computational Linguistics.636

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan637
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,638
and Weizhu Chen. 2021. Lora: Low-rank adap-639
tation of large language models. arXiv preprint640
arXiv:2106.09685.641

Wenbin Hua, Yufan Wang, Rui Fan, Xinhui Tu, and642
Tingting He. 2024. Unraveling intricacies: A decom-643
position approach for few-shot multi-intent spoken644
language understanding. In 2024 IEEE International645
Conference on Big Data (BigData), pages 918–927.646
IEEE.647

Chandra Irugalbandara. 2024. Meaning typed prompt-648
ing: A technique for efficient, reliable structured649
output generation. arXiv preprint arXiv:2410.18146.650

Byeongchang Kim, Seonghan Ryu, and Gary Geunbae651
Lee. 2017. Two-stage multi-intent detection for spo-652
ken language understanding. Multimedia Tools and653
Applications, 76:11377–11390.654

Changliang Li, Liang Li, and Ji Qi. 2018. A self- 655
attentive model with gate mechanism for spoken lan- 656
guage understanding. In Proceedings of the 2018 657
Conference on Empirical Methods in Natural Lan- 658
guage Processing, pages 3824–3833. 659

Yinghao Li, Rampi Ramprasad, and Chao Zhang. 2024. 660
A simple but effective approach to improve structured 661
language model output for information extraction. 662
arXiv preprint arXiv:2402.13364. 663

Yijin Liu, Fandong Meng, Jinchao Zhang, Jie Zhou, 664
Yufeng Chen, and Jinan Xu. 2019a. CM-net: A novel 665
collaborative memory network for spoken language 666
understanding. In Proceedings of the 2019 Confer- 667
ence on Empirical Methods in Natural Language Pro- 668
cessing and the 9th International Joint Conference 669
on Natural Language Processing (EMNLP-IJCNLP), 670
pages 1051–1060, Hong Kong, China. Association 671
for Computational Linguistics. 672

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 673
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 674
Luke Zettlemoyer, and Veselin Stoyanov. 2019b. 675
Roberta: A robustly optimized bert pretraining ap- 676
proach. arXiv preprint arXiv:1907.11692. 677

Ilya Loshchilov and Frank Hutter. 2017. Decou- 678
pled weight decay regularization. arXiv preprint 679
arXiv:1711.05101. 680

Renze Lou, Kai Zhang, and Wenpeng Yin. 2024. Large 681
language model instruction following: A survey of 682
progresses and challenges. Computational Linguis- 683
tics, pages 1–10. 684

Jie Mei, Yufan Wang, Xinhui Tu, Ming Dong, and Tingt- 685
ing He. 2023. Incorporating bert with probability- 686
aware gate for spoken language understanding. 687
IEEE/ACM Transactions on Audio, Speech, and Lan- 688
guage Processing, 31:826–834. 689

Peiqing Niu, Zhongfu Chen, Meina Song, et al. 2019. 690
A novel bi-directional interrelated model for joint 691
intent detection and slot filling. arXiv preprint 692
arXiv:1907.00390. 693

Wenbo Pan, Qiguang Chen, Xiao Xu, Wanxiang Che, 694
and Libo Qin. 2023. A preliminary evaluation of 695
chatgpt for zero-shot dialogue understanding. arXiv 696
preprint arXiv:2304.04256. 697

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao 698
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is 699
ChatGPT a general-purpose natural language process- 700
ing task solver? In Proceedings of the 2023 Con- 701
ference on Empirical Methods in Natural Language 702
Processing, pages 1339–1384, Singapore. Associa- 703
tion for Computational Linguistics. 704

Libo Qin, Fuxuan Wei, Tianbao Xie, Xiao Xu, Wanx- 705
iang Che, and Ting Liu. 2021. GL-GIN: Fast and 706
accurate non-autoregressive model for joint multi- 707
ple intent detection and slot filling. In Proceedings 708
of the 59th Annual Meeting of the Association for 709
Computational Linguistics and the 11th International 710

9

https://doi.org/10.18653/v1/N19-1055
https://doi.org/10.18653/v1/N19-1055
https://doi.org/10.18653/v1/N19-1055
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/D19-1097
https://doi.org/10.18653/v1/D19-1097
https://doi.org/10.18653/v1/D19-1097
https://doi.org/10.18653/v1/D19-1097
https://doi.org/10.18653/v1/D19-1097
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2023.emnlp-main.85
https://doi.org/10.18653/v1/2021.acl-long.15
https://doi.org/10.18653/v1/2021.acl-long.15
https://doi.org/10.18653/v1/2021.acl-long.15
https://doi.org/10.18653/v1/2021.acl-long.15
https://doi.org/10.18653/v1/2021.acl-long.15


Joint Conference on Natural Language Processing711
(Volume 1: Long Papers), pages 178–188, Online.712
Association for Computational Linguistics.713

Libo Qin, Xiao Xu, Wanxiang Che, and Ting Liu. 2020.714
AGIF: An adaptive graph-interactive framework for715
joint multiple intent detection and slot filling. In716
Findings of the Association for Computational Lin-717
guistics: EMNLP 2020, pages 1807–1816, Online.718
Association for Computational Linguistics.719

Abdulfattah Safa, Tamta Kapanadze, Arda Uzunoğlu,720
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Steve Young, Milica Gašić, Blaise Thomson, and Ja- 780
son D. Williams. 2013. Pomdp-based statistical spo- 781
ken dialog systems: A review. Proceedings of the 782
IEEE, 101(5):1160–1179. 783

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 784
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified 785
efficient fine-tuning of 100+ language models. In 786
Proceedings of the 62nd Annual Meeting of the As- 787
sociation for Computational Linguistics (Volume 3: 788
System Demonstrations), pages 400–410, Bangkok, 789
Thailand. Association for Computational Linguistics. 790

Zhihong Zhu, Xuxin Cheng, Hao An, Zhichang Wang, 791
Dongsheng Chen, and Zhiqi Huang. 2024. Zero-shot 792
spoken language understanding via large language 793
models: A preliminary study. In Proceedings of the 794
2024 Joint International Conference on Computa- 795
tional Linguistics, Language Resources and Evalu- 796
ation (LREC-COLING 2024), pages 17877–17883, 797
Torino, Italia. ELRA and ICCL. 798

Zhihong Zhu, Xuxin Cheng, Zhiqi Huang, Dongsheng 799
Chen, and Yuexian Zou. 2023. Towards unified spo- 800
ken language understanding decoding via label-aware 801
compact linguistics representations. In Findings of 802
the Association for Computational Linguistics: ACL 803
2023, pages 12523–12531, Toronto, Canada. Associ- 804
ation for Computational Linguistics. 805

10

https://doi.org/10.18653/v1/2020.findings-emnlp.163
https://doi.org/10.18653/v1/2020.findings-emnlp.163
https://doi.org/10.18653/v1/2020.findings-emnlp.163
https://doi.org/10.18653/v1/2024.emnlp-main.152
https://doi.org/10.18653/v1/2024.emnlp-main.152
https://doi.org/10.18653/v1/2024.emnlp-main.152
https://doi.org/10.18653/v1/2023.findings-acl.853
https://doi.org/10.18653/v1/2023.findings-acl.853
https://doi.org/10.18653/v1/2023.findings-acl.853
https://doi.org/10.18653/v1/2023.findings-acl.853
https://doi.org/10.18653/v1/2023.findings-acl.853
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.12
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.18653/v1/2022.emnlp-main.263
https://doi.org/10.1109/JPROC.2012.2225812
https://doi.org/10.1109/JPROC.2012.2225812
https://doi.org/10.1109/JPROC.2012.2225812
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://aclanthology.org/2024.lrec-main.1554
https://aclanthology.org/2024.lrec-main.1554
https://aclanthology.org/2024.lrec-main.1554
https://aclanthology.org/2024.lrec-main.1554
https://aclanthology.org/2024.lrec-main.1554
https://doi.org/10.18653/v1/2023.findings-acl.793
https://doi.org/10.18653/v1/2023.findings-acl.793
https://doi.org/10.18653/v1/2023.findings-acl.793
https://doi.org/10.18653/v1/2023.findings-acl.793
https://doi.org/10.18653/v1/2023.findings-acl.793


��������	�
���
�	�����

��������������� ����� !"�#$�%�!���! ��&'��(�) �*%+(),) (� (��'�-� �+! .%!.��% /���(! /) .0�$�%��(!�-�)��(���&(�!1(�!++�'���)2+��) (� (��! /� !*�/�� ()()���3��*�%����%((��! 1���45)+���(�)1(+6�3�++�4) .�.%)/�+) ���3���7%!+)(6�! /�3��*!(() .08� 9 �(�%1()� �"�:� #$�%�4)++�2��.);� �!�%����%((��! 1�8<� #=�(>��(5) -��(�'�26��(�'0�?)��(<�)/� ()36�(5��) (� (��) �(5��%((��! 1�0�@5��) (� (��'()� ��!��"��9 (� (�=!2�+�A�(B08<� #C�&(<�)/� ()36�(5�� !*�/�� ()()���) �(5��%((��! 1�0�@5�� !*�/�� ()(6��'()� ��!��"��D ()(6�=!2�+�A�(B08<� #93�! �� ()(6�!''�!���*%+()'+��()*���) �(5��%((��! 1�<�+)�(�!++�(5��4��/��(5!(�2�+� .�(��(5��� ()(608<� #E!-���%��� �(�(���%('%(�! 6��&(�!�1� (� (08� F<� G%('%(?��*!("�#�9 (� (�"�:) (� (H<�) (� (IF<�D ()()��"��� ()(6H"�::4��/H<�4��/IF<�:4��/J<�4��/KFF<�� ()(6I"�::4��/LFFBB8<� D&!*'+�"�#�M((��! 1�"�000BN �9 (� (�"�000<�D ()()��"�000B8BO����PQR��� M((��! 1�"�#45!(�4)++�(5��4�!(5���2��) �H�/!6�) �-%4!)(�! /�(5� �9�4! (�(��+)�(� �(��! ��'�3��*�HSST8BU����Q���� 9 (� (�"�:V�(W�!(5��<��+!6E%�)1F<� D ()()��"��� ()*�X! .�"�::) <�H<�/!6FF<� 1�% (�6"�::-%4!)(FF<� *%�)1Y)(�*"�::�'FF<� 6�!�"�::HSSTFF�BB
Figure 4: Details of BI (I1).
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Figure 5: Details of PII (I2).

A The Detailed Instructions806

This section presents the detailed instructions for807

BI, PII, and CDI, as illustrated in Figs. 4, 5, and 6,808

respectively.809

B The Prompt Used by GPT-4o810

To ensure efficient annotation, we employ GPT-4o811

to label I2, with the corresponding prompt illus-812

trated in Fig. 7. First, we define GPT-4o’s role and813

provide an example annotation. Next, we intro-814

duce a labeling technique designed to improve the815

quality of the annotations. Finally, we specify the816

output format.817
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Figure 6: Details of CDI (I3).

 

Figure 7: The prompt used by GPT-4o.

C The Detailed Experimental Results for 818

Model Size 819

This section presents the detailed experimental re- 820

sults for three parameter sizes across all few-shot 821

settings. As shown in Table 8, performance im- 822

proves with an increase in model size. Consistent 823

with the findings in Section 5.4, performance gains 824

for most metrics diminish as the model size con- 825

tinues to increase. Therefore, it is crucial to con- 826

sider both model size and performance together, 827

especially in scenarios with limited computational 828

resources. 829

D The Detailed Experimental Results for 830

Model Type 831

This section provides a comprehensive analysis 832

of the experimental results for two model types 833

across all few-shot settings. As shown in Table 9, 834

Qwen surpasses LLaMA significantly on most of 835

the metrics. This disparity can be attributed partly 836

to differences in their foundational capabilities and 837

partly to variations in their ability to handle JSON 838
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

Qwen2.5-3B 57.25 57.78 16.55 64.86 63.06 17.27 63.89 64.95 20.17 69.57 67.16 21.38 72.83 68.26 21.50
Qwen2.5-7B 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.28 74.06 27.66
Qwen2.5-14B 71.74 70.04 23.67 78.38 70.77 24.76 78.86 72.14 25.36 80.92 75.38 30.68 77.17 76.16 29.71

FewShotMixSNIPS

Qwen2.5-3B 73.22 36.00 3.32 74.90 40.71 4.14 79.04 41.51 4.73 81.08 45.21 6.23 82.36 46.53 7.23
Qwen2.5-7B 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51
Qwen2.5-14B 88.45 51.12 8.23 86.77 56.65 9.00 88.49 57.50 11.41 91.27 61.58 13.78 90.81 63.02 14.51

Table 8: Results comparison of different model sizes on FewShotMixATIS and FewShotMixSNIPS.

Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

LLaMA3.2-3B 49.52 55.66 9.30 56.64 59.68 11.23 58.21 61.55 12.08 56.76 62.98 15.10 67.63 68.92 18.96
Qwen2.5-3B 57.25 57.78 16.55 64.86 63.06 17.27 63.89 64.95 20.17 69.57 67.16 21.38 72.83 68.26 21.50

FewShotMixSNIPS

LLaMA3.2-3B 68.62 32.79 2.05 69.40 37.31 3.05 68.49 41.08 4.09 77.67 45.12 6.37 81.95 48.54 7.19
Qwen2.5-3B 73.22 36.00 3.32 74.90 40.71 4.14 79.04 41.51 4.73 81.08 45.21 6.23 82.36 46.53 7.23

Table 9: Results comparison of different model types on FewShotMixATIS and FewShotMixSNIPS.

Model FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

LLaMA3.2-3B 1.33 0.97 1.33 0.36 0.24
Qwen2.5-3B 0.24 0.12 0.24 0.24 0.24

FewShotMixSNIPS

LLaMA3.2-3B 2.36 1.23 0.68 0.36 0.59
QWen2.5-3B 0.09 0.27 0.18 0.09 0.05

Table 10: Error rate of JSON parsing on FewShotMix-
ATIS and FewShotMixSNIPS.

output formats. Table 10 highlights that Qwen ex-839

hibits a lower JSON parsing error rate compared840

to LLaMA, a result attributed to its specialized841

post-training process designed for generating struc-842

tured outputs, as documented in the official source4.843

Specifically, LLMs frequently generate content844

such as "Cutting Knowledge Date: December 2023845

Today Date: ...", where the ellipsis represents the846

original input, often resulting in errors during JSON847

parsing. This observation underscores that even848

fine-tuned LLMs can produce unexpected content,849

emphasizing the critical importance of selecting850

models with robust controllable generation capabil-851

ities.852

4https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
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