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Abstract

The extensive need for computational resources poses a significant obstacle to deploying
large-scale Deep Neural Networks (DNN) on devices with constrained resources. At the
same time, studies have demonstrated that a significant number of these DNN parameters
are redundant and extraneous. In this paper, we introduce a novel approach for learn-
ing structured sparse neural networks, aimed at bridging the DNN hardware deployment
challenges. We develop a novel regularization technique, termed Weighted Group Sparse
Envelope Function (WGSEF), generalizing the Sparse Envelop Function (SEF), to select
(or nullify) neuron groups, thereby reducing redundancy and enhancing computational ef-
ficiency. The method speeds up inference time and aims to reduce memory demand and
power consumption, thanks to its adaptability which lets any hardware specify group defini-
tions, such as filters, channels, filter shapes, layer depths, a single parameter (unstructured),
etc. The properties of the WGSEF enable the pre-definition of a desired sparsity level to be
achieved at the training convergence. In the case of redundant parameters, this approach
maintains negligible network accuracy degradation or can even lead to improvements in
accuracy. Our method efficiently computes the WGSEF regularizer and its proximal op-
erator, in a worst-case linear complexity relative to the number of group variables. Em-
ploying a proximal-gradient-based optimization technique, to train the model, it tackles the
non-convex minimization problem incorporating the neural network loss and the WGSEF.
Finally, we experiment and illustrate the efficiency of our proposed method in terms of the
compression ratio, accuracy, and inference latency.

1 Introduction

In the past decade, significant progress has characterized the study of Deep Neural Networks (DNNs), which
consistently demonstrate superior performance across the entire spectrum of machine learning tasks. As
modern neural networks increase in size and complexity, with parameters often surpassing the number of
available training samples, their deployment on resource-limited edge devices becomes increasingly challeng-
ing. This difficulty stems from the higher computational demands that lead to greater power consumption,
longer inference times, and the need for substantial memory space for storage, which edge devices typically
lack Deng et al. (2020); Cheng et al. (2017). Notwithstanding, many studies have revealed that modern
neural networks tend to be excessively over-parametrized Han et al. (2015b); Ullrich et al. (2017). This
over-parametrization implies the existence of redundant parameters that could be pruned (or, nullified)
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without compromising network accuracy Molchanov et al. (2017), which are also responsible for issues such
as overfitting Allen-Zhu et al. (2019), memorization of random patterns in the data Zhang et al. (2021), and
a potential degradation in generalization. The realization that numerous redundant parameters exist has
prompted a quest for neural network architectures that are both sparse and efficient, which emerges as a
prominent challenge in the field.

To mitigate the challenges associated with the deployment of modern large DNNs, numerous studies have
suggested compressing their scale. Various approaches have been explored, including (unstructured) sparsity
including regularization Liu et al. (2015), pruning Han et al. (2015), low-rank approximation Han et al.
(2015b); Denton et al. (2014a), quantization Gholami et al. (2022); Wu et al. (2021), and even sparse
neural architecture search (NAS) Yang et al. (2020b); Wu et al. (2021). In the case of the unstructured
sparsity-inducing, the most natural regularizer would be the so-called ℓ0-pseudo-norm function that counts
the number of nonzero elements in the input vector, i.e., ∥z∥0 ≜ | {i : zi ̸= 0} |. These sparse regularized
minimization/training problems are of the form minz∈Rn {f(z) + λ∥z∥0}, or, alternatively, one can explicitly
constrain the number of parameters used for regression and solve minz∈Rn {f(z) : ∥z∥0 ≤ k}. Unfortunately,
the ℓ0-norm is a difficult function to handle being non-convex and even non-continuous. Indeed, these types of
regression models are known to be NP-hard problems, in general, Natarajan (1995) (global optimal solution
can not be computed in a reasonable time, even for a very small number of parameters). As a remedy for
the inherent problem above, Beck & Refael (2022) proposed a highly efficient tractable convex relaxation
technique, termed sparse envelope function (SEF), for the sum of both ℓ0 and ℓ2 norms. Specifically, Beck &
Refael (2022) suggested using this relaxation as a regularizer term for a convex loss objective, particularly for
a linear regression model, to achieve feature selection while explicitly limiting the number of features to be a
fixed parameter k. It was shown that the performance of this sparse inducing regularization method in both
reconstruction of a sparse noisy signal and recovering its support, surpass the performance of state-of-the-art
techniques, such as, the Elastic-net Zou & Hastie (2005), k-support norm Argyriou et al. (2012), etc. Also,
it was shown that the computational complexity of the SEF approach is linear in the number of parameters,
while all others require at least quadratic in the number of features, thus SEF was found very attractive.

Not long ago, the idea of structured sparsification was used in Wen et al. (2016); Bui et al. (2021) to
learn sparse neural networks that leverage tensor arithmetic in dedicated neural processing units (NPUs).
In a nutshell, structured sparsity learning amounts to inducing sparsity onto structured components (e.g.,
channels, filters, or layers) in the neural network during the optimization procedure. This leads, in practice,
to both low latency and lower power consumption, which can not be obtained by deploying unstructured
sparse models on such modern hardware.

With the goal of enabling structured sparsification learning that can be customized for different NPU devices,
in this paper we propose a novel generalized notion of the SEF regularizer to handle group structured
sparsification in neural network training. Our new generalized regularization term selects the most essential
k ≤ m predefined groups of neurons (which could be convolutional filters, channels, individual neurons, or
any other user-defined/NPU definition, where m is the total number of groups) and prunes all others, while
maintaining minimal network accuracy degradation. We define the new regularization term mathematically,
propose an efficient method to calculate its value and proximal operator, and suggest a new algorithm to
solve the complete optimization problem involving the non-convex term, which is the composition of the loss
function and the neural network output.

Related work. The topic of regularization-based pruning received a lot of attention in recent years.
Generally speaking, these studies can be divided into unstructured and structured pruning. Most prominent
regularizers are the convex ℓ1 and ℓ2 norms Liu et al. (2017); Ye et al. (2018); Han et al. (2015b), as well as
the non-convex ℓ0 “norm" Louizos et al. (2017b); Han et al. (2015); Louizos et al. (2017a), where Bayesian
methods and additional regularization terms for practicality, were used to deal with the non-convexity of
the ℓ0 norm. Additional works of Donoho & Elad (2003); Delmer et al. (2021) suggest methods for norm
l0 relaxation by employing l1 minimization in general (nonorthogonal) dictionaries and leading to an error
surface with fewer local minima than the l0 norm. The motivation for these regularizers is their “sparsity-
inducing" property which can be harnessed to learn sparse neural networks. While these fundamental papers
significantly reduce the storage needed to store the networks on hardware, there were no benefits in reducing
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the inference latency time or either in cutting down power consumption. That is, the sparse neural networks,
learned by the aforementioned methods, were not adapted to the tensor arithmetic of the hardware they
aimed to run on.

The practical inefficiency of unstructured sparsity-inducing methods has led researchers to propose
regularization-based structured pruning in favor of accelerating the running time. For example, Lebedev
& Lempitsky (2015); Wen et al. (2016); Yuan & Lin (2006) proposed the use of the Group Lasso regulariza-
tion technique to learn sparse structures, and Scardapane et al. (2017) uses Sparse Group Lasso, summing
Group Lasso with the standard Lasso penalty. Other convex regularizers include the Combined Group and
Exclusive Sparsity (CGES) Yoon & Hwang (2017), which extends Exclusive Lasso (in essence, squared ℓ1
over groups) Zhou et al. (2010) using Group Lasso. Recently, Bui et al. (2021) suggested a family of non-
convex regularizers that blend Group Lasso with nonconvex terms (ℓ0, ℓ1 − ℓ2 Lou et al. (2015), and SCAD
Fan & Li (2001)). Since Bui et al. (2021) introduces non-convexity term into the penalty, it also requires an
appropriate optimization scheme, for which the authors propose an Augmented Lagrangian type method.
However, this optimization algorithm has an inner optimization loop with a high computational cost. More-
over, their extensive experiments do not show an accuracy or sparsity advantages over convex penalties,
suggesting that it might be still desirable to use a convex regularizer. Other methods, such as Chen et al.
(2021); Li et al. (2019), focus on a group structure that captures the relations between parameters, neurons,
and layers, in order to construct groups that can maximize network compression while minimizing accuracy
loss. However, these methods still apply Group Lasso regularization. Specifically in Chen et al. (2021),
the authors introduce the concept of Zero-Invariant Groups (ZIGs), which includes all input and output
connections between layers. In the context of CNNs, it extends the channel-wise grouping Wen et al. (2016)
to include corresponding batch normalization parameters. By using this group structure, entire blocks of pa-
rameters can be removed while keeping dimensions aligned between layers, and ultimately allowing network
compression. Moreover, their optimization scheme utilizes a two-phase algorithm to include a half-space
projection step, which they name HSPG. Lately, a novel methodology that applies adaptive optimization via
weighted proximal operators to induce structured sparsity was suggested in Deleu & Bengio (2023) in seam-
lessly integrating numerical solvers to preserve convergence guarantees, albeit with computational efficiency
concerns due to approximation requirements.

Finally, we mention that there exist other techniques for neural net compression, such as, quantization,
low-rank decomposition, to name a few. In quantization, Courbariaux et al. (2016); Rastegari et al. (2016);
Gong et al. (2014), the precision of the weights is reduced, by representing weights using a low number
of bits (i.e., 8-bit) instead of higher one (i.e., 32-bit floating point values). The low-rank decomposition
approach Denton et al. (2014b); Jaderberg et al. (2014); Lebedev et al. (2014); Li et al. (2020b) is based
on the observation that many weight matrices in neural networks are highly correlated and can be well
approximated by matrices with a lower rank. By decomposing a weight matrix into lower-rank matrices, one
can reduce the total number of parameters in the network.

Notation. We denote e for the vector of all ones. For a positive integer m, we denote [m] ≡ {1, 2, . . . , m}.
We denote by x⟨i⟩ the component of x with the i the largest absolute value, meaning in particular that∣∣x⟨1⟩

∣∣ ≥ ∣∣x⟨2⟩
∣∣ ≥ . . . ≥

∣∣x⟨n⟩
∣∣. |S| refers to the number of elements in the set S. Let f : Rn → R,

be an extended real-valued function, then, the conjugate function of f , denoted by f⋆ : Rn → R is
defined as f⋆(y) = maxx∈Rn {⟨x, y⟩ − f(x)}, for any y ∈ Rn. The bi-conjugate function is defined as
the conjugate of the conjugate function, i.e., f⋆⋆(x) = maxy∈Rn {⟨x, y⟩ − f⋆(y)}, for any x ∈ Rn. Fi-
nally, the proximal operator of a proper, lower semi-continuous convex function f : Rn → R is defined as
proxf (v) = arg minx∈R

{
f(x) + 1

2∥x− v∥2
2
}

, for any v ∈ Rn. The sets R+ and R++ denote all non-negative
and positive real numbers, respectively.

2 Structured sparsity via WGSEF

2.1 Problem formulation

In this subsection, we formulate the problem and introduce the weighted group sparse envelop function
(WGSEF). Without loss of generality, our method is formulated on weights sparsity, but it can be directly
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extended to neuron sparsity (i.e., both weights and bias). Let D be a dataset consisting of N i.i.d. input
output pairs {(x1, y1) , . . . , (xN , yN )}. The general neural network training problem is formalized as the
following regularized empirical risk minimization procedure on the parameters θ ∈ Θ of a given neural
network architecture f(·; θ),

argmin
θ∈Θ

1
N

N∑
i=1
L (f (xi, θ) , yi) + λ · Ω(θ), (1)

where, f(·; θ) is the hypothesis, that is, a given neural network architecture, L(·) ≥ 0 corresponds to a loss
function, e.g., cross-entropy loss for classification, mean-squared error for regression, etc, Ω(·) : Θ → R+ is
the parameters regularization term, λ ∈ R+ is the regularization magnitude. Below, n ≜ |Θ| denotes the
number of parameters.

The most predominant regularizer used for DNNs is the weight decay, also known as the ℓ2 norm regular-
ization. It is known to prevent overfitting and to improve generalization since it enforces the weights to
decrease proportionally to their magnitudes. The most natural way to force a predefined k-level sparsity
would be to constrain the number of non-zeros parameters (e.g., the model weights), which can be done by
adding the constraint that ∥θ∥0 ≤ k, where k ≤ n is the required predefined level of sparsity. In this case,
the training problem is formalized as follows,

argmin
θ∈Θ

1
N

N∑
i=1
L (f (xi, θ) , yi) + λ

2 ∥θ∥
2
2

s.t. ∥θ∥0 ≤ k.

(2)

We refer to the above training problem as unstructured sparsification. In the case of structured sparsity,
the parameters θ are divided into predefined disjoint sub-groups. These subgroups could define the building
blocks architecture of DNNs, i.e., filters, channels, filter shapes, and layer depth. Consider the following
definition.
Definition 1 (Group projection). Let s be a subset of indexes s ⊆ {1, 2, . . . , n} of size |s| ≤ n. Then, given
some vector θ ∈ Rn, the projection Ms : Rn → Rn preserves only the entries of θ that belong to the set s.
Furthermore, let As be an n × n diagonal matrix, where [As]ii = 1 if i ∈ s, and zero, otherwise. Note that
Ms(θ) = Asθ.
Example 1. Let n = 3, θ = (3, 6, 9)⊤, s = {1, 3} ⊆ [n], and accordingly |s| = 2, then Ms(θ) =
Ms

(
(3, 6, 9)⊤) = (3, 0, 9)⊤, with [As]11 = [As]33 = 1, and zero otherwise.

Following the above definition, let m ≤ n subsets s1, s2, . . . , sm be a given (non-overlapping) partition of
[n], namely, si ∩ sj = ∅, for all i ̸= j, and

⋃m
i=1 si = [n]. Without loss of generality, we assume that n

mod m = 0; otherwise, the groups would have different coordinates. Every group is associated with some
weight dj ∈ R++, where j ∈ [m], e.g., dj = 1

|sj | , namely, we normalize by the group size. For simplicity of
notation, let θsi = Msi(θ), for i = 1, 2, . . . , m. Then, our structured training problem is,

argmin
θ∈Θ

1
N

N∑
i=1
L (f (xi, θ) , yi) + λ

2

m∑
j=1

dj∥θsj∥2
2 (3)

s.t.
∥∥∥θs1∥2

2, ∥θs2∥2
2, . . . , ∥θsm∥2

2
∥∥

0 ≤ k.

To wit, we constrain the number of groups which has at least one non-zero coordinate, to be at most k. Let
Ck denote the set of all k sparse groups, i.e.,

Ck ≜
{

θ :
∥∥∥θs1∥2, ∥θs2∥2 . . . , ∥θsm∥2∥∥

0 ≤ k
}

,

and define δCk
as the following extended real-valued function,

δCk
(θ) ≜

{
0,

∥∥∥θs1∥2, ∥θs2∥2 . . . , ∥θsm∥2
∥∥

0 ≤ k,

∞, else.
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Then, the optimization problem in equation 3 can be reformulated as,

argmin
θ∈Θ

1
N

N∑
i=1
L (f (xi, θ) , yi) + λ · gsk(θ), (4)

where gsk(θ) ≜ 1
2
∑m

j=1 dj∥θsj∥2
2 + δCk

(Θ). Equivalently, gsk(θ) can be rewritten as gsk(θ) ≜ 1
2
∑n

i=1 di ·
θ2

i + δCk
(Θ), where di = dj for every i ∈ sj .

The ℓ0-norm that appears in 4, is a difficult function to handle being nonconvex and even non-continuous,
making the problem an untraceable combinatorial NP hard problem Natarajan (1995). Following the work
in Beck & Refael (2022), one approach to deal with this inherent difficulty is to consider the best convex
underestimator of gsk(·). The later is its bi-conjugate function, namely, GSk(θ) = gs⋆⋆

k (θ), which we refer
to as the weighted group sparse envelope function (WGSEF).
Remark 1 (Generalization of SEF). Consider the case m = n, namely, every subset si, i ∈ [m] is a singleton
and ∀j ∈ [m], dj = 1. Here, gsk(θ) = sk(θ), where sk(θ) = 1

2∥θ∥
2
2 if ∥θ∥0 ≤ k and sk(θ) = ∞, otherwise.

Accordingly, in this case, GSk(θ) = Sk(θ) = s⋆⋆
k (θ), and s⋆⋆

k (θ) is exactly the classical SEF, namely, Sk(·).
Therefore, GSk(·) is indeed a new generalization of SEF to handle group sparsity.

Thus, the path taken in this paper is to consider the following relaxed learning problem (training),

argmin
θ∈Θ

1
N

N∑
i=1
L (f (xi, θ) , yi) + GSk(θ). (5)

In the following subsection, we develop an efficient algorithm to calculate the value and the prox-operator
Beck (2017) of WGSEF; these will play an essential ingredient when solving (5).

2.2 Convex relaxation

Let us start by introducing some notation. For any θ ∈ Rn and m subgroups of indexes s1, s2, . . . , sm ⊂ [n],
we denote by M⟨si⟩(θ) the corresponding subgroup of coordinates in θ with the ith largest ℓ2-norm, i.e.
∀i ̸= j ∈ [m], ∥∥M⟨s1⟩(θ)

∥∥
2 ≥

∥∥M⟨s2⟩(θ)
∥∥

2 ≥ . . . ≥
∥∥M⟨sm⟩(θ)

∥∥
2 .

We next show that the conjugate of the k group sparse envelopes is the k weighted group hard thresholding
function. In the sequel, we let D be the n × n diagonal positive-definite weights matrix, such that Di,i =√

di,∀i ∈ sj , and j ∈ [m].
Lemma 1 (The k weighted group sparse envelop conjugate). Let subsets s1, s2, . . . , sm be a set of m ≤ n
disjoint indexes that partition [n]. Then, for any θ̃ ∈ Rn,

gs⋆
k(θ̃) = 1

2

k∑
j=1

1
dj

∥∥M⟨sj⟩(θ̃)
∥∥2

2 . (6)

Next, we obtain the bi-conjugate function of the k weighted group sparse envelope. To express the following
results explicitly, we will deliberately utilize the group projection definition 1 expressed as Ms(θ) = Asθ, for
some set of indices s.
Lemma 2 (The variational bi-conjugate k weighted group sparse envelop). Let s1, s2, . . . , sm be a set of
m ≤ n disjoint subsets that partition [n]. Then, for any θ ∈ Rn, the bi-conjugate of the k group sparse
envelop is given by

GSk(θ) = 1
2 min

u∈Bk


m∑

j=1
djϕ

(
Asj θ, uj

) , (7)
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where,

ϕ
(
Asj θ, uj

)
≜


θ⊤Asj

θ

uj
, uj > 0,

0, uj = 0 ∩Asj
θ = 0,

∞ else.

(8)

The following is a straightforward corollary of Lemma 2.
Corollary 2.1. The following holds:

GSk(θ) =

S((
√

d1∥As1θ∥2,
√

d2∥As2θ∥2, . . . ,
√

dm∥Asm
θ∥2)⊤),

where S(θ) ≜ s⋆⋆
k (θ) is the standard SEF.

The above corollary implies that in order to calculate GSk(θ) we only need to apply an algorithm that
calculates the SEF at (

√
d1∥As1θ∥2,

√
d2∥As2θ∥2, . . . ,

√
dm∥Asm

θ∥2)⊤.
Remark 2. Noting ∥

√
djAsj θ∥2

2 =
∑

i∈sj
djθ2

i we observe that since sj is given, the number of operations
required to calculate ∥

√
djAsj

θ∥2
2 is linear w.r.t. |sj |. Thus, the computational complexity of calculating the

vector (
√

d1∥As1θ∥2,
√

d2∥As2θ∥2, . . . ,
√

dm∥Asmθ∥2)⊤ is linear in n.

2.3 Proximal mapping of the WGSEF

In this subsection, we will show how to efficiently compute the proximal operator of positive scalar multiples
of GSk. The ability to perform such an operation implies that it is possible to employ fast proximal gradient
methods to solve equation 5. We begin with the following lemma that shows that the proximal operator can
be determined in terms of the optimal solution of a convex problem that resembles the optimization problem
defined in Lemma equation 7 for computing GSk.
Lemma 3. Let λ > 0, t ∈ Rn, and s1, s2, . . . , sm be a set of m ≤ n disjoint subsets that partition [n]. Then,
v = proxλGSk

(t) is given by

j ∈ [m], Asj v =
ujAsj

t

λdj + uj
,

where (u1, u2, . . . , un)T is the minimizer of

min
u∈Dk

m∑
j=1

ϕ
(√

djAsj
t, λdj + uj

)
. (9)

Next, we show that the proximal operator of GSk reduces to an efficient one-dimensional search.
Corollary 3.1 (The proximal operator of GSk). The solution uj = uj(µ∗) of equation 9 with uj(·) defined
as1

u(µ∗) =


1,

√
µ∗ ≤ |bj |

αj+1 ,
|bj |√

µ∗ − αj ,
|bj |

αj+1 <
√

µ∗ <
|bj |
αj

,

0,
√

µ∗ ≥ |bj |
αj

.

(10)

for bj =
∥∥√djAsj

t
∥∥

2 and αj = λdj(> 0), and η̃ = 1√
µ∗ is a root of the function

gt(η) ≡
m∑

i=j

uj(η)− k, (11)

1If Asj t = 0, then equation 10 implies that ui(µ) = 0 for all µ ≥ 0.
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which is nondecreasing and satisfies

gt

(
λ ·minj∈[m]{dj}∥∥√d1 ∥As1t∥2 ,
√

d2 ∥As2t∥2 , . . . ,
√

dm ∥Asmt∥2
∥∥

∞

)

=
m∑

i=1
0− k < 0,

and,

gt

(
λ ∥d1, d2, . . . , dm∥∞ + 1∥∥M⟨sm⟩

(√
djt
)∥∥

2

)
=

m∑
i=1

1− k > 0.

In addition, gt can be reformulated as the sum of pairs of the functions

vi(η) ≡ |η|bj | − αj |, wi(η) ≡ 1− |η|bj | − (αj + 1)|, j ∈ [m],

such that,

gt(η) = 1
2

m∑
j=1

vj(η) + 1
2

m∑
j=1

wj(η)− k.

The following important remarks are in order.
Remark 3 (Root search application for function 11). Employing the randomized root search method in (Beck
& Refael, 2022, Algorithm 1) with the 2m one break point piece-wise linear functions vj , wj, as an input to
the algorithm, the root of gt can be found in O(m) time.
Remark 4 (Computational complexity of proxλGSk

). The computation of proxλGSk
boils down to a root

search problem (see, Remark 3), which requires O(m) operations. In addition, before employing the root
search, the assembly of vj , wj, requires the calculations of the m values of bj defined in Corollary 11. Note
that for any j ∈ [m] calculating bj is equivalent to t⊤Asj t =

∑
i∈sj

t2
i . Since sj’s are given, the computational

complexity of calculating all m of bj is linear in n, which is the dimension of t. Thus, the total computational
operations of calculating proxλGSk

summarizes to n with is the dimension of all groups parameters together.

3 Optimization procedure

The general training problem we are solving is of the form

min
x∈Rn

F (x) = f(x) + h(x), (12)

where f = 1
N

∑N
i=1 fi : X → R is continuously differentiable, but possibly nonconvex, and h is a convex

function, but nonsmooth. We adopt the ProxGen Yun et al. (2021), which can accommodate momentum,
and also has a proven convergence rate with a fixed and reasonable minibatch size of order Θ(

√
N) (a

comprehensive discussion on the selection of the optimization method is provided in the appendix A.4).
Next, we provide a convergence guarantee for Algorithm 1, as given in Yang et al. (2020a). This result holds
under several regularity assumptions which can be found in Appendix A.4.1.
Corollary 3.2. Under Assumptions (C-1)–(C-3), Algorithm 1 with constant minibatch size bt = b = Θ(T )
is guaranteed to yield E

[
dist

(
0, ∂̂F (θ)

)2
]
≤ O

(
T −1), where ∂̂F is the Fréchet sub-differential function of F .

Forthwith, we propose Algorithm 2, as an implementation of Algorithm 1 to solve equation 5, where f ≜ L
and h ≜ GSk. Calculating ∇L(θt; ξt), commonly approached using a propagation algorithm, is at least
linear in the number of parameters and is obviously getting more complex as the number of layers increases.
Therefore, the calculation of the prox of the WGSEF is not a bottleneck of the update step complexity (since
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Algorithm 1: General Stochastic Proximal Gradient Method
Input: Stepsize αt, {ρt}t=T

t=1 ∈ [0, 1), regularization parameter λ.
Initialization: θ1 ∈ Rn and m0 = 0 ∈ Rn.
for iteration t = 1, . . . , T :

Draw a minibatch sample ξt

gt ←− ∇f(θt; ξt)
mt ←− ρtmt−1 + (1− ρt)gt

θt+1 ←− proxαtλh (θt − αtmt)
return θ

Algorithm 2: Learning structured k-level sparse neural-network by Prox SGD with WGSEF
regularization
Input: Stepsize αt, {ρt}t=T

t=1 ∈ [0, 1), regularization parameters {λl}l=L
l=1 ∈ [0,∞).

Initialization: Randomly initialize the weights θt=0 ∈ Rn, m0 = 0 ∈ Rn.
for iteration t = 1, . . . , T :

Draw a minibatch sample ξt

gt ←− ∇L(θt; ξt)
mt ←− ρtmt−1 + (1− ρt)gt

θt+1 ←− proxαtλGSk
(θt − αtmt)

Prune (Optional): all # (m− k) smallest ℓ2 group norm values of θ.
return θ

it is linear in the number of parameters). Notice that in our setting, one option is that the regularization may
be separable by layer, as indicated by the regularization function’s definition h(x) =

∑L
l=1 hl(xl). Therefore,

in this case, prox is applied to each layer separately (Beck, 2017, Theorem 6.6) with different λl, kl parameters
per layer. Another option is that the regularization is applied to all groups’ layers collectively, namely, not
in a per-layer fashion, to allow more flexibility in group selection. Formally, in this latter option, only a
single pair of λ, k values needs to be selected, so ∀l ∈ [L], λl = λ, kl = k. For example, regularization is
applied simultaneously on filters across all convolutional layers at once, resulting in different filter sparsity
levels in each layer, but overall adhering to the pre-defined filter sparsity level k. The only condition for
both options is that groups are not overlapping. We note that since Assumptions (C-1)–(C-3) are met,
Algorithm 2 converges to an ϵ-stationary point.

Another technique for solving equation 12 is using the HSPG family of algorithms in Chen et al. (2020); Dai
et al. (2023). These algorithms utilize a two-step procedure in which optimization is carried by standard
first-order methods (i.e., subgradient or proximal) to find an approximation that is “sufficiently close" to a
solution. This step is followed by a half-space step that freezes the sparse groups and applies a tentative
gradient step on the dense groups. Over these dense groups, parameters are zeroed-out if a sufficient decrease
condition is met, otherwise, a standard gradient step is executed. Notice that the half-space step, as a variant
of a gradient method, requires the regularizer term h to have a Lipschitz continuous gradient, which is not
satisfied in our setting. However, this property is required only for the dense groups as there is no use
of the gradient in groups that are already sparse. Since the continuity is violated only for sparse groups,
the condition is satisfied in the required region. Finally, while the “sufficiently close" condition mentioned
above cannot be verified in practice, simple heuristics to switch between steps still work well. We can
either run the first-order step for a fixed number of iterations before switching to the half-space step, or,
alternatively, run the first-order step until the sparsity level stabilizes, and then switch to the half-space
step. The dense groups are defined as I0(x) := {γ | γ ∈ G, ∥xγ∥ = 0}, and sparse groups are defined as
I ̸=0 := {γ | γ ∈ G, ∥xγ∥ ≠ 0. The HSPG pseudo-code (proximal-gradient variant) is given in Algorithm 3 (in
the appendix A.6). We mention the enhanced variant of the standard HSPG algorithm named AdaHSPG+
Dai et al. (2023) improves upon that implementing adaptive strategies that optimize performance, focusing
on better handling of complex or dynamic problem scenarios where standard HSPG may be less efficient.
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4 Experiments

In this section, we present a comprehensive benchmark of structured sparse-inducing regularization tech-
niques. Our evaluation covers a wide range of model architectures, datasets, regularizers, optimizers, and
pruning techniques. This extensive benchmarking demonstrates that WGSEF achieves state-of-the-art per-
formance across all these dimensions.

4.1 Evaluation of sparsity-inducing optimization methods

To demonstrate the performance of Algorithm 2 in terms of compression and accuracy, as compared to
state-of-the-art prox-SGD-based optimization methods, we use the following well-known DNNs benchmark
architectures: VGG16 Simonyan & Zisserman (2014), ResNet18 He et al. (2015), and MobileNetV1 Howard
et al. (2017). These architectures were tested on the datasets CIFAR-10 Krizhevsky et al. (2009) and
Fashion-MNIST Xiao et al. (2017). While WGSEF is a regularizer rather than an optimization algorithm,
we benchmark it versus the Group Lasso regularizer using various optimization algorithms that are well-
known for their superior performance with group sparsity inducing regularization. All experiments were
conducted over 300 epochs. For the first 150 epochs, we employed Algorithm 2, and for the leftover epochs,
we used the HSPG with the WGSEF acting as a regularizer (i.e., Algorithm 3). Experiments were conducted
using a mini-batch size of b = 128 on an A100 GPU. The coefficient for the WGSE regularizer was set to
λ = 10−2. In Table 1, we compare our results with those reported in Dai et al. (2023). The primary metrics
of interest are the neural network group sparsity ratio, and the prediction accuracy (Top-1). Notably, the
WGSE achieves a markedly higher group sparsity compared to all other methods except AdaHSPG+, for
which we obtained slightly better results. It should be mentioned that all techniques achieved comparable
generalization error rates on the validation datasets.

Table 1: Comparison of state-of-the-art techniques to our WGSEF regularization technique, in terms of
group-sparsity-ratio/validation-accuracy (Top-1), both in percentage, for various models and datasets. Our
method provides the highest sparsity level with a comparable accuracy.

Model Dataset Prox-SG Prox-SVRG HSPG AdaHSPG+ WGSEF

VGG16 CIFAR-10 54.0 / 90.6 14.7 / 89.4 74.6 / 91.1 76.1 / 91.0 76.8 / 91.5
F-MNIST 19.1 / 93.0 0.5 / 92.7 39.7 / 93.0 51.2 / 92.9 51.9 / 92.8

ResNet18 CIFAR-10 26.5 / 94.1 2.8 / 94.2 41.6 / 94.4 42.1 / 94.5 42.6 / 94.5
F-MNIST 0.0 / 94.8 0.0 / 94.6 10.4 / 94.9 43.9 / 94.9 44.2 / 94.9

MobileNetV1 CIFAR-10 58.1 / 91.7 29.2 / 90.7 65.4 / 92.0 71.5 / 91.8 71.8 / 91.9
F-MNIST 62.6 / 94.2 42.0 / 94.2 74.3 / 94.5 78.9 / 94.6 79.1 / 94.5

Figure 1: Ratio of the sparse filters in the convolutional layers, according to the order of the layers in the
resnet18 model, as obtained by Algorithm 2, and corresponds to the experiment in row 3 of table 4.
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4.2 Evaluation of different sparsity-inducing regularizers

In this experiment, we trained deep residual networks ResNet40 He et al. (2015) on CIFAR-10, while applying
Algorithm 2, with a predefined sparsity level of 55% for all filters in all convolutional layers of the network,
over 5 runs. Again, to have a fair comparison, the baseline model was trained using SGD, both with an initial
learning rate of α0 = 0.01, regularization magnitude λ = 0.03, a batch size of 128, and a cosine annealing
learning rate scheduler. Our results in Table 2 demonstrate our method’s superiority over state-of-the-art
structured sparsity-inducing regularizers. These results are similar to those in Bui et al. (2021), and are
obtained through a grid search process that varied the magnitude of regularization w.r.t. the sparsity level.
Note that the model trained using our method achieved 2.14× in speedup and 47.3% reduction in FLOPs.

Table 2: Comparison of state-of-the-art structured-sparse inducing regularization methods to our WGSEF
technique, in terms of filter sparsity compression and accuracy in percentage, for Resnet40 and CIFAR-10.
The WGSEF regularization provides the highest sparsity level with even better accuracy.

Method Error Sparsed Filters
Baseline (SGD) 6.854% 0%
SGL1 Scardapane et al. (2017) 7.760% 50.7%
SGL0 Bui et al. (2021) 8.146% 53.4%
SGSCAD Lv & Fan (2009) 8.026% 52.2%
SGTL1 Bui et al. (2021) 8.096% 53.7%
SGTL1L2 Tran & Webster (2019) 7.968% 53.7%
WGSEF 7.264% 54.3%

4.3 Evaluation of different state-of-the-art pruning techniques on ImageNet

In this subsection, we compare our method to the state-of-the-art pruning techniques, which are often used as
an alternative for model compression during (or, post) training. We train Resent50 with ImageNet dataset,
using λ = 0.05, with an initial learning rate of α0 = 0.01, sparsity level k = 0.34, and use a cosine annealing
learning rate scheduler. In table 3, we compare our results to those obtained by the methods in Chen et al.
(2021). We emphasize that, as mentioned later, some of the methods require several stages of training,
fine-tuning, etc. Our method trains the model from scratch once, as well as OTO, and thus, this is the most
fair comparison. Additionally, it should be noted that all techniques achieved comparable generalization
error on the validation datasets, while our method achieved better compression performance as compared to
all the other techniques.

Table 3: Comparison different pruning methods with ResNet50 for ImageNet. Our method provides the
highest sparsity level, lowest total number of parameters, with a comparable accuracy in both Top-1 and
Top-5 metrics.

Method FLOPs Number
of Params

Top-1
Acc.

Top-5
Acc.

Baseline 100% 100% 76.1% 92.9%
DDS-26 Huang et al. (2018b) 57.0 % 61.2 % 71.8 % 91.9 %
CP He et al. (2017) 66.7 % - 72.3 % 90.8 %
RRBP Zhou et al. (2019) 45.4 % - 73.0 % 91.0 %
SFP He et al. (2018) 41.8 % - 74.6 % 92.1 %
Hinge Li et al. (2020a) 46.6 % - 74.7 % -
GBN-60You et al. (2019) 59.5 % 68.2 % 76.2 % 92.8 %
ResRep Ding et al. (2021) 45.5 % - 76.2 % 92.9 %
DDS-26 Hu et al. (2016) 57.0% 61.2% 71.8% 91.9%
ThiNet-50 Luo et al. (2017) 44.2% 48.3% 71.0% 90.0%
RBP Zhou et al. (2019) 43.5% 48.0% 71.1% 90.0%
GHS Yang et al. (2019) 52.9% - 76.4% 93.1%
SCP Kang & Han (2020) 45.7% - 74.2% 92.0%
OTO Chen et al. (2021) 34.5% 35.5% 74.7% 92.1%
WGSEF 34.2% 35.1% 74.2% 92.0%
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4.4 Evaluation of different group structures

In this experiment, we demonstrate WGSEF’s performance across various architectures, datasets, and group
structures. We specifically compare WGSEF to standard training using SGD without regularization. Our
aim is to demonstrate WGSEF’s flexibility by showing its ability to accommodate different group structures,
allowing for consideration of the input data, model architecture, hardware properties, etc. We examine the
effectiveness of the WGSEF in the LeNet-5 convolutional neural network LeCun et al. (1998) (the architecture
is Pytorch and not Caffe and is given in Appendix A.5), on the MNIST dataset LeCun & Cortes (2010).
The networks were trained without any data augmentation. We apply the WGSEF regularization on filters
in convolutional layers using a predefined value for the sparsity level k. Table 4 summarizes the number of
remaining filters at convergence, FLOPs, and the speedups. We evaluate these metrics both for a LeNet-5
baseline (i.e., without sparsity learning), and our WGSEF sparsification technique. To ensure a fair and
accurate comparison, the baseline model was trained using SGD. It can be seen that WGSEF reduces the
number of filters in the convolution layers by a factor of half, as dictated by k = 8, while the accuracy level
did not decrease. Furthermore, since the sparsification is structural, there is a significant improvement in
FLOPs, as well as in the latency time of inference. Repeating the same experiment, but now constraining
the number of non-pruned filters in the second convolutional layer to be at most 4 (i.e., at most quarter of
the baseline), the accuracy slightly deteriorates; however, significant improvements can be observed in both
the FLOPs number and the speed up, as expected. The networks were trained with a learning rate of 0.001,
regularization magnitude λ = 10−5, and a batch size of 32 for 150 epochs across 5 runs.

Table 4: Results of running Algorithm 2, onto redundant filters in LeNet (in the order of conv1-conv2).

LeNet-5 (MNIST) Error Filter (sparsity-level) FLOPs Speedup
Baseline (SGD) 0.84 % 6-16 100 %-100 % 1.00 ×-1.00 ×

WGSEF 0.78 % 3-8 48.7 %-21.6 % 2.06×-4.53 ×
WGSEF 0.89 % 3-4 48.7 %-14.7 % 2.06×-7.31 ×

LeNet-5 (MNIST) Error Parameters FLOPs Speedup
Unstructured WGSEF 0.76 % 75(/150)-1200(/2400) 68.7 %-59.2 % 1×-1×

In Table 5, we present the results when training both VGG16 and DenseNet40 Huang et al. (2018a) on
CIFAR-100 Krizhevsky et al., while applying WGSEF regularization with a predefined sparsity level with
half the number of channels for VGG16, and 60% of those for the DenseNet40. The baseline model was
trained using SGD, both with an initial learning rate of α = 0.01 and regularization magnitude λ = 0.01.

Table 5: Results of running Algorithm 2, onto redundant Channels on CIFAR-100, over 250 epochs.

DCNN
CIFAR-100 Model Error (%) Pruned

Channels
Overall
Density

VGG16 Baseline 26.28 ∼ 0% ∼ 0%
WGSEF 26.46 50% 41.3%

DenseNet40 Baseline 25.36 ∼ 0% ∼ 0%
WGSEF 25.6 60% 42.8%

4.5 Impact of sparsification levels on model error and training dynamics

Here, we examine the effectiveness of WGSEF in training the LeNet-5, on the FasionMNIST dataset. The
networks were trained without any data augmentation. We apply the WGSEF regularization on filters in
convolutional layers using a predefined value for the sparsity level k. Table 6 summarizes the number of
remaining filters at convergence, FLOPs, and the speedups. We evaluate these metrics both for a LeNet
baseline (i.e., without sparsity learning), and our WGSEF sparsification technique. To be accurate and fair
in comparison, the baseline model was trained using SGD. We use a learning rate equal to 1e − 4, with a
batch size of 32, a momentum 0.95, and 15 epochs.
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Table 6: Results of training on FasionMNIST while applying WGSEF sparsification (with λ = 0.05), onto
redundant filters in LeNet-5, (in the order of conv1-conv2), and neurons in Linear layers. The baseline model
was trained using SGD.

LeNet-5
(F-MNIST) Error Filter

(non-sparse)
FC-layers
sparsity Speedup

Baseline 11.1 % 6-16 9 % 1.0 ×-1.0×
WGSEF 11 % 3-8 5% 2×-4.5×
WGSEF 14 % 4-6 62% 1.7×-6.1×
WGSEF 12.3 % 2-3 1% 2×-7.12×

The second row of Table 6 shows that our method exhibits a significant decrease in the number of non-zero
filters, specifically, half of the filters (groups of parameters) were nullified and at the same time the model
performance is improved. The rest of the experiments show that there was a higher sparsification in the
number of non-zero filters (groups of parameters), with only a negligible degradation in the model’s accuracy.
Finally, in Figure 2, we illustrate the sparsity level as a function of the epoch number, during the training of
the model which corresponds to the last row of Table 6. The desired (predefined) sparsity level was rapidly
attained within the first three epochs, while the model continued to improve its accuracy throughout the
remaining epochs without compromising the achieved sparsity.

Figure 2: The graph on the left shows the level of sparseness as a function of epoch number, while the graph
on the right shows the model’s accuracy as a function of epoch number.

5 Discussion

In this study, we introduce a novel method for structured sparsification in neural network training, aiming
to accelerate neural network inference and compress the neural network memory size, while minimizing
the accuracy degradation (or improving accuracy). Our method utilizes a new novel regularizer, termed
weighted group sparse envelope function (WGSEF), which is adaptable for pruning different specified neuron
groups (e.g convolutional filter, channels), according to the unique requirements of NPU’s tensor arithmetic.
Mathematically, the Weighted Group Sparse Envelope Function (WGSEF) represents the optimal convex
underestimator of the combined sum of weighted ℓ2 norms and ℓ0 norms. In this context, the ℓ0 norm
is applied to the squared norms of each group. During the neural network training, the WGSE regularizer
selects the k most essential predefined neuron groups, where k that controls the compression of the network is
configurable to the trainer. Consequently, the trained neural network benefits from reduced inference latency,
a more compact size, and decreased power consumption. Additionally, we show that the computational
complexity of the prox operator of WGSEF, a key component in the training phase, is linear relative to
the number of group parameters. This ensures that it is highly efficient and which does not constitute a
bottleneck in the calculation complexity of the training process.

The experimental results show the effectiveness of WGSEF in achieving high compression ratios (reduced
memory demand), and speed up in inference, with negligible compromising in accuracy. Compared to the
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previous approaches, the proposed method stood out in its compression capabilities while maintaining similar
network performance.

Along with the method’s ability to predetermine the extent of network compression to be obtained at the
training convergence, it is essential to have a prior understanding of the maximum compression level that
can be applied without compromising the network’s performance, and accordingly set the k parameter.
Naturally, it is also necessary to define the groups to which the pruning will be encouraged.

Future research could extend this work by delving into more intricate group definitions such as what could
be defined in large language models. Moreover, we suggest studying a different mechanism for assessing the
importance of each group being regulraized, as an alternative to the current approach which is based on the
group’s squared norm magnitude.
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A Appendix

A.1 Proofs of results in Subsection 2.2

A.1.1 Proof of Lemma 1

Proof. Let us define the axillary diagonal positive definite matrix Dn×n, where the Di,i entry holds Di,i =√
di,∀i ∈ sj , di = dj . Now, consider the following chain of equalities:

gs⋆
k(θ̃) = max

θ∈Rn
{⟨θ̃, θ⟩ − gsk(θ)}

= max
θ∈Rn

θ̃⊤θ − 1
2

m∑
j=1

dj∥θsj∥2
2 − δCk

(θ)


= max

θ∈Ck
∀i∈sj ,di=dj

θ̃⊤θ −
m∑

j=1
dj · ∥θsj∥2

2


= max

θ∈Ck
∀i∈sj ,di=dj

{
θ̃⊤θ − 1

2θ⊤D⊤Dθ

}
(a)= max

t∈C̃k
∀i∈sj ,di=dj

{
θ̃⊤D−1t− 1

2 t⊤t

}

= max
t∈C̃k

∀i∈sj ,di=dj

{
−1

2∥t−D−1θ̃∥2
2 + 1

2∥D
−1θ̃∥2

2

}

= 1
2∥D

−1θ̃∥2
2 + max

t∈C̃k
∀i∈sj ,di=dj

{
−1

2∥t−D−1θ̃∥2
2

}

= 1
2∥D

−1θ̃∥2
2 + max

t∈C̃k
∀i∈sj ,di=dj

{
−1

2

n∑
i=1

(ti −
(
D−1)

ii
θ̃i)2

}

(b)= 1
2∥D

−1θ̃∥2
2 + max

t∈C̃k
∀i∈sj ,di=dj

−1
2

m∑
j=1

∥∥Msj (t−D−1θ̃)
∥∥2

2


= 1

2∥D
−1θ̃∥2

2 −
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j=m−k

∥∥M⟨sj⟩(D−1θ̃)
∥∥2
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(c)= 1
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j=1

∥∥M⟨sj⟩(D−1θ̃)
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2

= 1
2
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j=1

1
dj

∥∥M⟨sj⟩(θ̃)
∥∥2

2
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where, (a) the set C̃k is given by

C̃k =
{

θ :
∥∥∥ (Dθ) s1∥2, ∥ (Dθ) s2∥2 . . . , ∥ (Dθ) sm∥2∥∥

0 ≤ k
}

,

(b) follows by the fact that the sum of the squares of the coordinates of the input vector in the support of
the disjoint subset s1, s2, . . . , sm that completes the index space

⋃m
i=1 si = [n] is equal to the sum of squares

of the coordinates of the original vector, and (c) follows by the fact that
∑m

j=m−k

∥∥M⟨sj⟩(D−1θ̃)
∥∥2

2 is the
sum of square ℓ2-norm of the m− k disjoint subsets of D−1θ̃ with the smallest ℓ2-norm, while is the sum of
squared ℓ2-norm of all disjoint subsets of D−1θ̃. □

A.1.2 Proof of Lemma 2

Proof. We first note that

k∑
i=1

∥∥M⟨si⟩(D−1θ̃)
∥∥

2 = max
u∈Bk

m∑
i=1

ui

∥∥Msi
(D−1θ̃)

∥∥2
2 , (13)

where

Bk ≜
{

u ∈ Rm | 0 ⩽ u ⩽ e, e⊤u ≤ k
}

. (14)

Now, Consider the following chain of inequalities:

GSk(θ) = max
θ̃∈Rn

{
⟨θ, θ̃⟩ − gs⋆(θ̃)

}
= max

θ̃∈Rn

{
θ⊤θ̃ − 1

2

k∑
i=1

∥∥M⟨si⟩(D−1θ̃)
∥∥2

2

}

= max
θ̃∈Rn

t=D−1θ̃

{
θ⊤Dt− 1

2

k∑
i=1

∥∥M⟨si⟩(t)
∥∥2

2

}

= max
t∈Rn

{
θ⊤Dt− 1

2 max
u∈Dk

m∑
i=1

ui ∥Msi(t)∥
2
2

}

= max
t∈Rn

θ⊤Dt− 1
2 max

u∈Dk


m∑

j=1
uj

(
t⊤A⊤

sj
Asj

t
)


(a)= max
t∈Rn

θ⊤Dt + 1
2 min

u∈Dk


m∑

j=1
(−uj)

(
t⊤Asj

t
)


= 1
2 max

t∈Rn

min
u∈Dk

2θ⊤Dt−
m∑

j=1
ujt⊤Asj

t




(b)= 1
2 min

u∈Dk

max
t∈Rn

2θ⊤Dt−
m∑

j=1
ujt⊤Asj

t




= 1
2 min

u∈Dk


m∑

j=1
max
t∈Rn

2θ⊤Asj
Dt− ujtASj

t


= 1

2 min
u∈Dk


m∑

j=1
max
t∈Rn

2
√

djθ⊤Asj t− ujtASj t


18



Published in Transactions on Machine Learning Research (08/2024)

= 1
2 min

u∈Dk


m∑

j=1
ϕ
(√

djAsj
θ, uj

) (15)

= 1
2 min

u∈Dk


m∑

j=1
djϕ

(
Asj

θ, uj

) ,

where (a) follows by the fact that Asj
is a self-adjoint matrix, and (b) follows from the fact that the objective

function is concave w.r.t. ỹ and convex w.r.t u, and the MinMax Theorem v. Neumann (1928). □

A.1.3 Proof of Corollary 2.1

Proof. Directly by expression (34). □

A.2 Proofs of results in Subsection 2.3

A.2.1 Proof of Lemma 3

Proof. Recall that

v = proxλGSk
(t) = argmin

θ∈Rn

{
λGSk(θ) + 1

2∥θ − t∥2
2

}
.

Using Lemma 2, the above minimization problem can be written as
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djϕ
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Solving for θ, we get that for any j ∈ [m], if djAsj
θ ≥ 0 then,

djλAsj
θ̂

uj
+ Asj (θ̂ − t) = 0

Asj
θ̂

(
djλ

uj
+ 1
)
−Asj
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ASj

(
θ̂

(
djλ

uj
+ 1
)
− t
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meaning that,

vi = tiuj

λdj + uj
, j ∈ [m], i ∈ sj , (17)

or, equivalently,

Asj
v =

ujAsj
t

λdj + uj
, j ∈ [m]. (18)

Next, we show that u is the minimizer of the problem minu∈Dk
Φ(θ, u, t). Equation equation 18 also holds

when uj = 0, since in that case, vi = θ̂i = 0, for all i ∈ sj . Plugging equation 18 in Φ, yields,

Φ(θ̂, u, t) = 1
2
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dj

(
λ

θ̂⊤Asj θ̂
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+ 1
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= 1
2
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λdj
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)
∥2
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= 1
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= 1
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, (20)

which concludes the proof. □

A.2.2 Proof of Corollary 3.1

Proof. Assigning a Lagrange multiplier for the inequality constraint eT u ≤ k in problem (16), we obtain the
Lagrangian function

L(u, µ) =
m∑

j=1

(
ϕ
(√

djAsj
t, λdj + uj

)
+ µuj

)
− kµ.

Therefore, the dual objective function is given by

q(µ) ≡ min
u:0≤u≤e

L(u, µ) =
m∑

j=1
φbj ,αj

(µ)− kµ, (21)

for, bj =
∥∥√djAsj

t
∥∥

2 and αj = λdj(> 0), where for any b ∈ R and α ≥ 0, the function φb,α is defined in
Beck & Refael (2022) by

φb,α(µ) ≡ min
0≤u≤1

{ϕ(b, α + u) + µu}, µ ≥ 0. (22)

Thus, the dual of problem (9) is the maximization problem

max{q(µ) : µ ≥ 0} (23)

A direct projection of Lemma (Beck & Refael, 2022, Lemma 2.4) is that if µ̃ > 0, the function u 7→ L(u, µ̃)
has a unique minimizer over {u ∈ Rm : 0 ≤ u ≤ e} given by uj = φ′

bj ,αj
(µ̃), where it was shown that

φbj ,αj
(µ) =


b2

j

αj+1 + µ,
√

µ ≤ |bj |
αj+1

2|bj |
√

µ− αjµ,
|bj |

αj+1 <
√

µ <
|bj |
αj

,
b2

αj
,

√
µ ≥ |bj |

αj
,

for b > 0, otherwise 0, and the minimizer is given by

u(µ∗) =


1,

√
µ ≤ |bj |

αj+1 ,
|bj |√

µ − αj ,
|bj |

αj+1 <
√

µ <
|bj |
αj

,

0,
√

µ ≥ |bj |
αj

.

Problem (23), is concave differentiable and thus the minimizer µ̃ holds q′(µ̃) = 0, meaning

q′(µ̃) =
m∑

j=1
uj(µ)− k = 0.
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We observe that for any j ∈ [m] the functions uj(µ) are monotonically continuous nonincresing, and therefore
utilizing Lemma (Beck & Refael, 2022, Lemma 3.1) µ∗ = 1

η2 is the a root of the nondecreasing function,

gt(η) ≡
m∑

j=1
uj(η)− k.

Note that for

gt

(
λ ·minj∈[m]{dj}∥∥√d1 ∥As1t∥2 ,
√

d2 ∥As2t∥2 , . . . ,
√

dm ∥Asm
t∥2
∥∥

∞

)

=
m∑

i=1
0− k < 0,

while

gt

(
λ ∥d1, d2, . . . , dm∥∞ + 1∥∥M⟨sm⟩

(√
djt
)∥∥

2

)
=

m∑
i=1

1− k > 0.

Now, applying Lemma (Beck & Refael, 2022, Lemma 3.2), we deduce that uj(µ), can be divided into the
sum of the two following functions,

vj(η) ≡ |η|bj | − αj |, wj(η) ≡ 1− |η|bj | − (αj + 1)|, j ∈ [m],

and thus gt can be reformulated as follows

gt(η) = 1
2

m∑
j=1

vj(η) + 1
2

m∑
j=1

wj(η)− k.

□

A.3 Proof of Corollary 3.2

Proof. The proof follows from (Yun et al., 2021, Corollary 1), by taking Ct = 0 and δ = 1. □

A.4 Discussion on the selection of the optimization method

The general training problem we are solving is of the form

min
x∈Rn

f(x) + h(x),

where f = 1
N

∑N
i=1 fi : X → R is continuously differentiable, but possibly nonconvex, and h is a convex

function, but possibly nonsmooth. For practical reasons, we cannot store the full gradient ∇f(x). Hence, we
would like to use a stochastic gradient type algorithm. However, such a structure posses several difficulties
from an optimization perspective, as most research of stochastic first-order algorithms does not account for
both nonconvex smooth term and a nonsmooth convex regularize. In Ghadimi et al. (2016) the authors
provide an analysis of a simple stochastic proximal gradient algorithm, where at each iteration a minibatch
of weights is updated using a gradient step followed by a proximal step. This algorithm is proved to converge,
however, the rate of convergence depends heavily on the minibatch size, and, in fact, for reasonably sized
minibatches it will not converge. J Reddi et al. (2016) proposes variance-reduction type algorithms, but
since these extend SAGA Defazio et al. (2014) and SVRG Johnson & Zhang (2013) to the nonconvex and
nonsmooth setting, they require storing the gradient for each sample (SAGA) which requires O(Nn) storage,
or recomputing the full gradient every s ≥ N iterations (SVRG), which is undesirable for training neural
networks.

The ProxSGD algorithm appears appealing to our problem as it allows for momentum. While the algorithm
has a convergence guarantee, the authors do not provide the rate, making it less appealing, given the known
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issue with the minibatch size. We have found the most suitable optimization algorithm to be ProxGen Yun
et al. (2021), as it can accommodate momentum, and also has a proven convergence rate with a fixed and
reasonable minibatch size of order Θ(

√
N). Next, we provide a convergence guarantee for Algorithm 1, as

given in Yang et al. (2020a). The convergence is in terms of the subdifferential defined as follows.
Definition 2 (Fréchet Subdifferential). Let φ be a real-valued function. The Fréchet subdifferential of φ at
θ̄ with |φ(θ̄)| <∞ is defined by

∂̂φ(x̄) ≜
{

θ∗ ∈ Ω
∣∣∣ lim inf

θ→θ̄

φ(θ)− φ(θ̄)− ⟨θ∗, θ − θ̄⟩
∥θ − θ̄∥

≥ 0
}

.

A.4.1 Assumptions

The following assumptions in terms of the objective function f and the algorithm parameters are required:

(C-1) (L-smoothness) The loss function f is differentiable, L-smooth, and lower-bounded:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ and f(x∗) > −∞.

(C-2) (Bounded variance) The stochastic gradient gt = ∇f(θt; ξ) is unbiased with bounded variance:

Eξ

[
∇f(θt; ξ)

]
= ∇f(θt), Eξ

[
∥gt −∇f(θt)∥2] ≤ σ2.

(C-3) (i) Final step-vector is finite, (ii) the stochastic gradient is bounded, and (iii) the momentum pa-
rameter is exponentially decaying, namely,

(i) ∥θt+1 − θt∥ ≤ D, (ii) ∥gt∥ ≤ G, (iii) ρt = ρ0µt−1,

with D, G > 0 and ρ0, µ ∈ [0, 1).

Based on these assumptions we can state the following general convergence guarantee.

A.5 LeNet convolutional neural network architecture

Layer # filters I
neurons Filter size Stride Size of

feature map
Activation
function

Input − − − 32× 32× 1
Conv 1 6 5× 5 1 28× 28× 6 Relu

MaxPool2d 2× 2 2 14× 14× 6
Conv 2 16 5× 5 1 10× 10× 16 Relu

MaxPool2d 2× 2 2 5× 5× 16
Fully Connected 1 − − − 120 Relu
Fully Connected 2 − − − 84 Relu
Fully Connected 3 − − − 10 Softmax

A.6 Additional algorithm
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Algorithm 3: General Stochastic Proximal Gradient Method
Input: Stepsize αt, {ρt}t=T

t=1 ∈ [0, 1), regularization parameter λ, switch condition S, projection
threshold ϵ.

Initialization: θ1 ∈ Rn and m0 = 0 ∈ Rn.
for iteration t = 1, . . . , T :

if condition S is not satisfied:
Apply Algorithm 2

else:
Draw a minibatch sample ξt

gt ←− ∇f(θI ̸=0

t ; ξt) +∇h(θI ̸=0

t ; ξt)
θ̃I ̸=0

t ←− θt−1 − αtgt, θ̃I0

t ←− 0
for each group γ ∈ I ̸=0:

if ⟨θ̃γ
t , θγ

t−1⟩ < ϵ∥θγ
t−1∥2:

θ̃γ
t ←− 0

θt+1 ←− θ̃γ
t

return θ
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