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Abstract

Large vision-language models (VLMs) increasingly adopt post-training techniques such as
long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL)
to elicit sophisticated reasoning. While these methods exhibit synergy in language-only
models, their joint effectiveness in VLMs remains uncertain. We present a systematic in-
vestigation into the distinct roles and interplay of long-CoT SF'T and RL across multiple
multimodal reasoning benchmarks. We find that SFT improves performance on difficult
questions by in-depth, structured reasoning, but introduces verbosity and degrades per-
formance on simpler ones. In contrast, RL promotes generalization and brevity, yielding
consistent improvements across all difficulty levels, though the improvements on the hard-
est questions are less prominent compared to SFT. Surprisingly, combining them through
two-staged, interleaved, or progressive training strategies, as well as data mixing and model
merging, all fails to produce additive benefits, instead leading to trade-offs in accuracy, rea-
soning style, and response length. This “synergy dilemma” highlights the need for more
seamless and adaptive approaches to unlock the full potential of combined post-training
techniques for reasoning VLMs. Code, dataset, and fine-tuned models are available at
https://github.com/JierunChen/SFT-RL-SynergyDilemma.

1 Introduction

Large language models (LLMs) like OpenAls ol/03 (Haechef all, P024) and DeepSeck-R1 (Gua et all, PO25)
have demonstrated remarkable reasoning abilities by thinking before answering. These models go beyond
mere pattern matching, exhibiting sophisticated cognitive behaviors like multi-step planning, reflection, error
correction, as well as summarization (Gandhi“et-all, P025; Wang et all, 2025d). This reasoning capability
is primarily enabled by two core post-training techniques: Supervised Fine-Tuning (SFT) on long chain-of-
thought (CoT) data (Muennighoff et all, P025; Noshkov_ef all, 2025; Sun_ef all, 2024), and Reinforcement
Learning (RL) with verifiable feedback (Lyu et all, P025; Lo et all, 2025). In language-only domains, these
methods often show synergistic effects, yielding substantial improvements on complex reasoning benchmarks
when applied sequentially or iteratively (Lin_ef all, 2025; [Team et all, 2025; Yeo ef all, 2025).

This paradigm has naturally motivated researchers to apply similar paradigm to large vision-language models
(VLMs) in pursuit of comparable gains in multimodal reasoning (Huang et all, 2025; Zhang et all, 2025; [Wang
ef"all, 20253). However, the results have been inconsistent and controversial. On one hand, some findings
suggest that even small-scale SFT on long-CoT traces can elicit step-by-step multimodal reasoning and
improve accuracy on multimodal math benchmarks ([Dinef-all, 2025). On the other hand, some studies report
that SFT, even when followed by RL, can degrade performance (Chen et all, P0253). These discrepancies
point to a complex and still poorly understood interplay between training strategies in the multimodal
domain.
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Figure 1: Accuracy gains from various post-training techniques across five difficulty levels (L1, easy to L5,
hard) on five multimodal reasoning benchmarks. Long-CoT SFT boosts Qwen2.5-VL-7B on harder questions
but hurts easier ones, while RL yields steady gains across the board. Hybrid strategies consistently trade off
strengths rather than achieving true synergy.

In this work, we conduct a systematic study, covering diverse post-training paradigms, comprehensive eval-
uations, and varied models, to answer two key questions:

1) What unique roles do long-CoT SFT and RL play in shaping the reasoning abilities of VLMs?

2) Can we effectively combine them to realize the best of both worldsstructured reasoning and robust perfor-
mance?

To answer the first question, we zoom in current multimodal reasoning benchmarks through the lens of
question difficulty, a factor that has often been overlooked. Unlike textual reasoning benchmarks such as
AIME25, MATH500 (Hendrycks et all, 2021), and GPQA (Rein_ef all, P2d), which emphasize logically
demanding and difficult tasks, current multimodal reasoning benchmarks like MathVista (Luief—all, 2023),
MathVerse (Zhang et all, 20244), and MMMU (Yueefall, 2024) contain a large proportion of simple questions
focused on perception and fine-grained visual understanding rather than complex cognitive reasoning. After
categorizing benchmark questions by difficulty, we find that long-CoT SFT improves performance
primarily on hard questions but degrades it on easier ones by introducing unnecessary verbosity and
overthinking. In contrast, RL offers steady gains across questions through concise responses and better
generalization. That said, its gains on the hardest questions are less significant than those achieved by SFT.

Building on these insights, we then explore several strategies for combining SFT and RL, including two-
stage, interleaved, and progressive training, as well as data mixing and model merging. These strategies
differ in timing, adaptability, and method of combination. Two-stage and interleaved training focus on when
each method is used: the former separates SFT and RL into distinct phases (first SFT, then RL), while
the latter interleaves them step by step. Progressive training adds adaptability, fading hints in SFT over
time to smoothly transition toward pure RL. Meanwhile, data mixing blends data distilled from SFT and
RL for a new round of fine-tuning, while model merging directly combines fine-tuned models parameters
via interpolation. Despite their promise, they all hit a synergy dilemma: efforts to fuse long-CoT
SFT and RL often produce trade-offs rather than true complementarity, as shown in Fig. 0.
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For instance, interleaved training balances performance but cannot surpass standalone RL, and data mixing
preserves neither SFTs strength on the MathVision benchmark nor RLs broad gains across other benchmarks.

By surfacing these insights, we provide new clarity on various post-training techniques for reasoning VLMs.
We demonstrate that synergy between SFT and RL is fragile. Achieving it requires not just method stacking,
but nuanced control over adaptivity, compatibility, and difficulty-awareness.

2 Distinct Effects of Long-CoT SFT and RL

In this section, we investigate the distinct effects of long-CoT SFT and RL in enhancing multimodal reason-
ing for VLMs. We begin by analyzing how long-CoT SFT influences performance depending on the modality,
scale, and reasoning quality of the training data, as discussed in Sec. 0. We then examine RL training dy-
namics, highlighting the importance of KL regularization and the necessity of incorporating simple questions
(see Sec. 7). Finally, we present in Sec. B33 a systematical comparison between SFT and RL, revealing
that SFT tends to benefit harder questions through verbose, structured reasoning, while RL yields steadier
improvements with concise responses. Together, these findings offer a nuanced view of how each method
contributes to reasoning capabilities in multimodal settings.

2.1 Long-CoT SFT

Supervised fine-tuning (SFT) with long chain-of-thought (CoT) data has proven effective for language mod-
els (Guo_ef all, 2025), particularly in the mathematical field (Muennighoff et all, 2025). However, its efficacy
for multimodal reasoning remains debated. For example, fine-tuning Qwen2.5-VL-7B with an R1-Onevision
reasoning dataset yields marginal improvements on MathVision (Wang et all, 2024) and even declines on
MathVerse (Zhang et all, P0243), regardless of increased model size or data scale (Chen_efall, P025H). This
raises the question of whether long-CoT SFT offers any tangible benefits for multimodal reasoning. To
answer this, we access the effectiveness by varing the data sources and modalities.

Data. VLM reasoning is typically regarded as textual reasoning conditioned on visual inputs. Therefore,
we hypothesize that SFT with purely textual long-CoT data can enable multimodal reasoning. We use the
sl dataset with 1k diverse and challenging questions (Muennighoft et all, 2025). It has two versions, s1 and
s1.1-R1, distilled from Gemini2.0-flash (Googlé, 2024) and DeepSeek-R1 (Guo_efall, PO25), respectively.
To study the effect of data modality, we construct a multimodal reasoning dataset by distilling from our
s1.1-R1 SFT-ed model on MM-Eureka queries (Meng et all, 2025). We generate eight responses per query,
retain the shortest correct one, and obtain our Eureka-Distill with 34k samples. For each query, we append
a reasoning instruction: Please reason step by step within <think> </think> tags, and put your
final answer within \boxed{}.

Training settings. We employ LLaMa-Factory (Zheng et all, 2024) as the training framework, and
Qwen2.5-VL-Instruct (Bai“et-all, 2025) as the main baseline model for its strong performance and broad
adoption in recent work (Wang et all, 2025a; [Yang et all, 20253; Huang et all, 2025). The ViT visual en-
coder and MLP connector remain frozen during training, as this way compares favorably to unfreezing them.
We use a learning rate of 1x107° and a batch size of 32. We train on sl and s1.1 for 15 epochs and on
Eureka-Distill for 5 epochs. Checkpoints are saved after each epoch.

Evaluation settings. We evaluate models using VLMEvalKit (Dnan_ef all, 2024) on both mathematical
and multi-disciplinary reasoning benchmarks, including MathVision test (Wang et all, 2024), MathVerse
test mini (Zhang et all, 2024a), MathVista test mini (L ef-all, 2023), MMMU val (Yue et all, 2024), and
MMStar val (Chen_efall, P024). We append the aforementioned reasoning instruction to the benchmark
questions when evaluating fine-tuned models. For answer extraction and judgement, we use rule matching
and Qwen2.5-VL-32B as the judge. For inference, we enable sampling using a temperature of 0.6, a top-p of
0.95, a top-k of 20, and a maximum generation length of 24k. Results are averaged over 4 runs to mitigate
statistical variance. To ensure fair comparison under one framework, we reproduce Qwen2.5-VL-7B results.
For fine-tuned models, we report their best checkpoint results. We maintain consistent evaluation settings
throughout the paper.
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Results and analysis are summarized as follows:

e Using just 1k textual data, s1.1-R1 improves multimodal reasoning across four benchmarks:
MathVision, MathVerse, MathVista, and MMMU val, with only a slight trade-off on MMStar compared
to the baseline. This is particularly notable given that s1.1-R1 consists purely of textual long-CoT traces,
yet outperforms Eureka-Distill, a much larger multimodal dataset with 34k samples (see Tab. ). These
results suggest that high-quality reasoning traces, even without visual input, can effectively transfer to
multimodal tasks due to the underlying alignment between language and vision in VLMs.

¢ Long-CoT SFT improves more prominently on difficult benchmarks that inherently require
deeper reasoning, such as MathVision and MathVerse. As illustrated in Fig. B, performance gains correlate
positively with response length, indicating that longer reasoning chains are more beneficial for complex
queries. This pattern highlights the utility of long-CoT supervision in teaching models to break down
and solve harder problems step-by-step.

¢ Long-CoT does not guarantee performance gains. The effectiveness of SF'T depends heavily on the
quality of the reasoning traces. For example, when fine-tuning with s1-Gemini2, despite using the same
query set as s1.1-R1 and generating responses that are 815 times longer than the baseline (see Fig. 0),
model performance deteriorates across nearly all benchmarks (see Tab. ). These findings underscore that
verbosity alone is insufficient; the quality of the reasoning steps is crucial for realizing effective test-time
scaling.

Table 1: Comparison of SFT with different textual and visual long CoT data. M. is short for Math.

Model Modality Data ‘ M.Vision M.Verse M.Vista MMMUval MMStar ‘ Avg.
Qwen2.5-VL-7B - - 26.1 42.3 66.4 53.5 63.2 50.3
+ SFT w/ s1-Gemini2 Text 1k 25.2 41.8 66.8 50.0 59.5 48.7
+ SFT w/ s1.1-R1 Text 1k 30.6 48.1 67.6 54.4 61.8 52.5
+ SFT w/ Eureka-Distill ~ Visual 34k 29.7 47.2 65.6 53.6 60.8 51.4
Baseline SFT w/ s1-Gemini2 B SFT w/sl.1-R1 Baseline ——SFT w/ s1.1-R1 - -SFT shifted
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Figure 2: Response length comparison. Figure 3: Acc. by response length.

22 RL

Unlike the above SFT relying on external reasoning traces, reinforcement learning (RL) focuses on enabling
models to self-explore and self-improve by interacting with the environment and receiving feedback signals.
Notably, the Group Relative Policy Optimization (GRPO) algorithm (Shao ef-all, 20i24) simplifies the train-
ing pipeline by eliminating the need for a value model, making the process more efficient and scalable.
Mathematically, let @ be the query set and {01,092, -+ ,0c} be the sampled outputs from the old policy
model mo1q. GRPO optimizes the following objective:

[oi]

G
1 1 _ . X
Jarro(0) = ]EqNQv{Oi}iG:W"eold el Z m Zlmm (rt(G)Ai,t, clip(r:(6),1 — e, 14+ e)Ai,t> — BDxL (7o || Tret)
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Here, A; = & _sirc‘f&r;(l{:;”rcf)c D is the estimated advantage using a group of rewards {ry,rs,...,7g}, 0 is

the KullbackLeibler (KL) coefficient contorling the deviation of current model 7y from the reference model
Tref, T¢(0) is for importance sampling, and € is the clipping hyper-parameter.
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Building on this algorithm, some studies (Yu efall, P025; Chen efall, 20253) have proposed removing the KL
term for unconstrained exploration. Additionally, it has become common practice to pre-filter or dynamically
filter easy samples where the model consistently predicts all answers correctly (Peng et all, 2025; Vief all,

2025; Wang et all, P025H). We examine these two variations as they can play a crucial role in model training
and performance.

Training Settings. Using the Verl framework (Sheng et all, 2024), we train models on multimodal queries
from Eureka-Distill as described in Sec. 21, with the following settings: a learning rate of 1 x 1076, batch
size of 128, mini-batch size of 64, temperature of 1, rollout number of 8, maximum completion length of 4k
tokens, and 2 training epochs. For reward functions, we combine two types of rewards: accuracy and format.
The accuracy reward is set to 0.9 for correct answers and 0 otherwise, while the format reward is set to 0.1 for
correctly formatted responses and 0 otherwise. We use the same reasoning instruction as previously used for
SFT fine-tuning: Please reason step by step within <think> </think> tags, and put your final
answer within \boxed{}.

Results and analysis are summarized as follows:

e The KL term stabilizes the training process. Without it, the training reward collapses after step
300, and the model exhibits lower entropy and dramatic fluctuations in response length (see Fig. ).
Tab. B also shows that KL regularization improves accuracy by a clear margin across all benchmarks.

e Simple questions matter for maintaining baseline performance. Without them, the model’s
ability to handle simple questions could deteriorate after RL fine-tuning. To validate this, we remove the
easiest questions on which the baseline model predicts correctly across all 8 rollouts. Results in Tab. B
show that RL with these easiest questions leads to higher accuracies. This is because, although the
advantages for these easiest questions become zero after GRPO normalization, they still influence the
training process via the KL loss, ensuring consistently high accuracy on these questions (see Fig. B).
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Figure 4: Training dynamics comparisons. Without KL regularization, RL training suffers from reward
collapse, lower entropy, and more dramatic fluctuations in response length.

Table 2: Abalation of the KL term for RL training. M. is short for Math. RL —==RL w/o the easiest
90
Model | M.Vision M.Verse M.Vista MMMUval MMStar | Avg. g 70
Qwen2.5-VL-7B 26.1 42.3 66.4 53.5 63.2 50.3 § 50
+ RL, KL=0 27.7 47.0 71.5 54.8 63.5 52.9 % 30
+ RL, KL=0.005 29.0 52.1 72.6 55.1 66.5 55.1 £
10
. . . . . . 1 2 3 4 5
Table 3: Ablation of retaining the easiest questions during RL. Difficulty Level
Model ‘ M.Vision M.Verse M.Vista MMMUval MMStar ‘ Avg. .
Figure 5: Accuracy gap
Qwen2.5—VL—7B 26.1 42.3 66.4 53.5 63.2 50.3 differs across questions of
+ RL w/o easiest 26.6 47.1 71.4 54.0 64.8 52.8 . .
+ RL 29.0 52.1 72.6 55.1 66.5 551 varying difficulty levels on

MathVision.
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2.3 Comparisons of Long-CoT SFT and RL

With optimized data sources and training configurations, both long-CoT SFT and RL yield partial or
full improvements in model accuracy. However, the extent of these improvements varies across different
benchmarks, as evidenced in Tab. B. This disparity motivates a granular comparison between SFT and RL
fine-tuned models. For fair comparisons, we use the same Eureka-Distilled dataset.

SFT excels at the most difficult questions, while RL provides steadier, broader improvement.
To analyze performance by difficulty, we categorize all benchmark questions into five levels (easy to hard),
based on the baseline models pass rate P across 16 independant runs: level 1 (P > %)7 level 2 (1% <P< %),

level 3 (i < P < ), level 4 (£ < P < ), and level 5 (P < ). We also provide a more granular
breakdown in Appendix Sec B, using 17 pass rate bins (from % to %). From Fig. @, we see that the
accuracy gain from SFT starts negative at level 1, climbs to positive gains at higher levels, and ultimately
surpasses RL at the most difficult levels, 4 and/or 5. In contrast, RL provides more consistent improvements

across all difficulty levels and benchmarks.

SFT injects rich yet verbose reasoning tokens, while RL preserves concise responses but under-
utilizes structured resoning. To better understand how these fine-tuning methods shape model responses,
we measure token-level KL divergence before and after fine-tuning. As illustrated in Fig. B, the SF'T-ed model
consistently exhibits higher KL divergence at sentence beginnings. Those darker tokens highlight what we
call reasoning pivotal tokens. These include structural words like first, second, and next; logical connec-
tors such as then, alternative, and because; action words like let, consider, and verify; and meta-thinking
phrases like wait, hmm, and maybe. After completing the thinking process, the SFT-ed model first provides
a summary before giving the final answer. However, the average response length is more than 10x longer
than that of the baseline and RL-tuned models (see Fig. B), incurring the overthinking risk. In contrast,
RL-tuned models remain close to the baseline, with little change in token distribution (see Fig. B) and a
continued preference for brief, to-the-point answers (see Fig. B) with only occasional use of reasoning words
(see Tab. B).

Table 4: Comparison of SFT and RL with Eureka-Distill as the training set.

Model ‘ MathVision MathVerse MathVista MMMUval MMStar ‘ Avg.
Qwen2.5-VL-7B 26.1 42.3 66.4 53.5 63.2 50.3
+ SFT 29.7 47.2 65.6 53.6 60.8 51.4
+ RL 29.0 52.1 72.6 95.1 66.5 95.1
Question Response by model after long-CoT SFT
17 3 20 16 i i
@ e} \!i\llgsgelsr(tegzglr?ztlerss;)litep <th Okay see. The image here
o : . . Then .
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E tags, and put your final is here
5 answer within \\boxed{}. :
— these re then The question
Response by model after RL is fina take first the
< Wait, let me verify that The two
me them . Yes is
But let me check if | e operations The left one
"""" . 1
Then . Hmm_ seems correct.
Alternatively  maybe | should have drawn . Like,
with to make
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Yes that . So SR
bl } > First, solve addition on \(1
)-
of )\

Figure 6: Illustration of token-level KL divergence, where darker tokens indicate larger divergence.
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Figure 8: Response length comparison.

3 The Synergy Dilemma of Long-CoT SFT and RL

Long-CoT SFT and RL each bring unique strengths and weaknesses in response styles, efficacy, and efficiency
in solving problems of varying difficulty. The key question is: how can we integrate their strengths to
create synergy? As shown in Fig. O, we approach this by exploring several dimensions, including training
alternation, data mixing, and model merging. For training alternation, we examine strategies such as the
popular two-stage SF'T and RL, interleaved SFT and RL, and progressive SFT and RL. Through systematic
exploration, we uncover a fundamental synergy dilemma for reasoning VLMsLong-CoT SFT and
RL often behave more like a trade-off than a perfect complement. In the following sections, we
dive deeper into each method and evaluate their ineffectiveness in bridging this gap.

3.1 Training Alternation

Two-stage SFT & RL. Starting from the best checkpoint obtained after SF'T on the Eureka-Distill dataset
for 4 epochs, we apply RL fine-tuning using the GRPO algorithm. While the experimental setup matched
the optimal configuration in Sec. 232, we extend the maximum new generation length N from 4k to 16k to
accommodate the models longer outputs. This adjustment is necessary because, with N=4k, the clip ratio
of model outputs surges to 20% early in training, causing instability and crashes as visualized in Fig. [
Results in Tab. B show that the two-stage SFT and RL approach fails to improve performance over SFT
alone, with the average accuracy across five benchmarks stagnating at 51.4%. The model appears to have
overfit to the paradigm established during SFT fine-tuning. We have also attempted reducing the number of
preliminary SET epochs to 1, but this does not alleviate the issue, highlighting the difficulty of overcoming
SFT-induced overfitting or catastrophic forgetting thourgh a subsequent RL fine-tuning.

Interleaved SFT & RL. To mitigate the risk of overfitting and uneven task performance after SF'T, we
employ an interleaved SF'T and RL strategy designed to balance imitation and exploration. Importantly,
we do not apply interleaved training to all samples. Applying SFT loss indiscriminately would cause it
to dominate the optimization process, thereby slowing or even reducing training rewards and validation
accuracy, and resulting in a substantial increase in response lengths (see Fig. ). Instead, we apply the SFT
loss exclusively to questions with zero pass rates, while the RL loss is applied to the rest. This approach aligns



Published in Transactions on Machine Learning Research (01/2026)

(a) Training Alternation
Two-stage Training Interleaved Training

s T3]

Progressjve 'T‘ro.ining

3% %
o%

q

SFT on the off-
policy response

RL on the on-
pohcy rollouts

(b) Data Mixing

SFT Model | — Distiled E SFT Model T~
. ) data : Y MOO(QI
Distiled i Mergin

RL Model —— Dsat: ! RL Model y

Figure 9: Attempts to integrate SF'T and RL, including training alternation, data mixing, and model merging.

Table 6: Acuracy comparison of various attempts for SFT-RL synergy. Values are reported as mean accuracy
+ 95% confidence intervals.

Model | MathVision MathVerse MathVista MMMUval MMStar | Avg.
Qwen2.5-VL-7TB 26.1 + 0.40 42.3 £ 0.18 66.4 + 0.91 53.5 £ 051  63.2 £0.40 | 50.3 £ 0.28
+ SFT 29.7 4+ 0.72 47.2 £ 0.19 65.6 + 1.42 53.6 £ 0.76  60.8 £0.94 | 51.4 + 0.46
+ RL 29.0 + 0.55 52.1 + 0.31 72.6 + 0.44 55.1 + 0.58 66.5 + 0.72 | 55.1 + 0.19
+ Two-stage SFT & RL 29.3 £ 0.70 47.1 £ 0.13 66.6 + 0.53 53.0 £ 061 60.9 +£0.75 | 51.4 £ 0.33
+ Interleaved SFT & RL 29.2 + 0.47 48.7 + 0.54 71.8 +0.36 54.1 + 0.72  64.3 £ 0.48 | 53.6 + 0.10
+ Progressive SFT & RL 29.8 + 0.53 51.0 + 0.30 72.4 + 0.51 55.5 + 0.82 65.9 + 0.52 | 54.9 + 0.22
+ Data Mixing 29.2 + 0.64 51.2 + 0.26 72.0 £ 0.54 55.1 £ 097  62.7 £0.35 | 54.0 + 0.40
+ Model Merging 29.6 + 0.17 50.4 + 0.22 71.8 + 0.67 53.7 + 0.72 66.2 4+ 0.46 | 54.3 + 0.20
Baseline SFT RL Two-stage Interleaved Progressive Data Mixing Model Merging
249k 266k
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Figure 10: Frequency of reasoning words across fine-tuning methods, evaluated on the MathVision.

with our objective of leveraging the complementary strengths of SF'T and RL. As shown in Tab. B, the models
accuracy consistently falls between that of SFT and RL across all benchmarks. Furthermore, Fig. [0 reveals
a similar trend in the frequency of reasoning-related words. These results indicate that interleaved training
achieves a balance between SFT and RL, rather than a complete synergy of their respective advantages.

Progressive SFT & RL. In previous methods involving SFT, the reasoning traces during training are
entirely sourced from external models. However, during inference, the model generates each token based
on self-generated prefix tokens, resulting a mismatch between training and inference. This inconsistency
can be more pronounced in reasoning models that produce long responses. To alleviate this, we explore an
alternative approach called progressive SFT and RL. Early in training, for difficult questions with a pass



Published in Transactions on Machine Learning Research (01/2026)

rate of 0, the model relies on full external traces for SFT. As training goes on, the use of external traces is
gradually reduced, starting with only a prefix and eventually removing them entirely. For loss computation,
prefix tokens are assigned an SFT loss with a weight (empirically set to 0.2), while self-generated tokens
are assigned an RL loss. As illustrated in Fig. I3, the training reward and validation accuracy curves of
progressive training closely align with those of pure RL, while producing longer responses and exhibiting
greater step-to-step fluctuations. As expected in Fig. M, progressive training generates a higher frequency
of reasoning-related words compared to pure RL. Benchmark results in Tab. B indicate that progressive
training outperforms two-stage and interleaved training, with the average accuracy improving from 51.4
and 53.6 to 54.9, approaching RLs 55.1. Notably, progressive training achieves an accuracy of 29.8 on
MathVision, surpassing RLs 29.0 and almost the same as SFTs 29.7. However, this improvement comes at
a cost: progressive training sacrifices performance on MathVerse and MMStar, ultimately falling short of
achieving the desired synergy.
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Figure 11: Training dynamics of RL following SF'T. The model demonstrates a higher clip ratio when the
maximum new token length is set to N=4k and 8k compared to N=16k, and collapses after approximately

100 steps.
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Figure 12: Training dynamics of Interleaved SFT and RL (ISR) applied to all samples or with SFT loss only
for hard questions. Pure RL is compared as the baseline.
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Figure 13: Training dynamics of Progressive SF'T and RL, compared to pure RL training.

3.2 Data Mixing

Data mixing is a simpler alternative to the above training alternation. It blends data distilled from SFT and
RL models, followed by an additional round of SFT. In this method, we generate 8 responses per question
using the RL model on the 34k Eureka-Distill dataset. We collect only the correct ones, getting 230k samples.
For questions with a pass rate of 0, we add long-CoT responses, creating a final dataset of 243k samples. The
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model is then trained on this dataset for 2 epochs, with all other settings consistent with those described in
Sec. 0. As shown in Fig. M, data mixing encourages more frequent use of reasoning tokens. However, it
results in a 3.8% accuracy drop on MMStar and unexpectedly produces responses that are 10 times longer,
as shown in Tab. @. While data mixing demonstrates potential in fostering adaptive reasoning, its overall
accuracy remains lower than that of pure RL.

Table 7: Comparison of model response length and accuracy between RL and data mixing approach.

| Model | MathVision MathVerse MathVista MMMUval MMStar | Avg.

RL 514 338 228 416 187 337
Length ..

Data Mixing 637 381 324 424 1999 753
Aceur RL 29.0 52.1 72.6 55.1 66.5 55.1
CEURACY | Data Mixing 29.2 51.2 72.0 55.1 62.7 54.0

3.3 Model Merging

Model merging is a training-free approach that combines the weights of two or more models to harness their
individual strengths. This technique typically involves interpolating the parameters of pre-trained models.
We conduct experiments using MergeKit (Goddard ef all, 2024), a versatile open-source toolkit for model
merging. We adopt three model merging methods:

o Linear Merging was introduced in the “model soups” approach by Wortsman_ef-all (2022), which
calculates a straightforward weighted average of the models’ parameters.

o TIES Merging sparsifies the parameter changes (task vectors) and resolves sign disagreements before
averaging (Yadav_ef all, P0O23).

e SLERP Merging performs Spherical Linear Interpolation in the weight space between two models,
enabling smooth transitions and preserving geometric consistency in the parameter space (Shoemake,
[985).

For SFT and RL models, we adjust the merging ratio of the SF'T model, testing values of 0, 0.25, 0.5, 0.75,
and 1. A ratio of 0 corresponds to the pure RL model, while a ratio of 1 represents the pure SFT model.
Results are visualized in Fig. 4. Using the TTES method, SFT and RL models exhibit compatibility issues.
In contrast, the Linear and SLERP methods show performance interpolation between SFT and RL, with a
roughly monotonic increase on MathVision and a decrease on the other four benchmarks. The checkpoint
with the highest average accuracy is achieved using the Linear method with an SF'T ratio of 0.25. As shown in
Tab. B, this configuration preserves the high accuracy of the SF'T model on MathVision and the high accuracy
of the RL model on MMStar, while performing less competitively on the remaining datasets. These findings
underscore the persistent challenges in achieving effective synergy between SFT and RL models.

—e— MathVision MathVerse —&— MathVista —— MMMU —+— MMStar

10.0 Linear 20 TIES 10.0 SLERP
g 7.5 7.5
E 0
8 5.0 5.0
% —-20
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8 -40
8 00 0.0
<

-2.5 =60 -2.5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Merging Ratio of SFT model

Figure 14: Accuracy gains of model merging methods (Linear, TIES, SLERP) by merging ratio.
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3.4 Generalizing to Models of Other Sizes and Families

To validate the generalizability of our prior conclusions to other model sizes and families, we employed
Qwen2.5-VL-3B and Gemmad-4B, trained via diverse post-training methods, and evaluated them on Math-
Vision and MMStar (Tabs. B, B). Consistent with earlier findings, RL achieved the best overall performance,
while SFT yielded limited, unstable gains. Among SFT-RL fusion strategies, Progressive training and model
merging performed nearly as well as pure RL. Notably, interleaved training was unsatisfactory, revealing
conflicts between fast and slow thinking training and associated stability risks. Further analysis of problem
difficulty Fig. I3 shows the two models align with Qwen2.5-VL-7B: SFTs accuracy gains rise from easy
to hard questions, outperforming RL on the hardest tasks but degrading by around 30% on simple ones,
whereas RL delivers more balanced, stable improvements across all difficulty levels.

Table 8: Acuracy comparisons with Qwen2.5VL-3B.

Table 9: Acuracy comparisons with Gemma3-4B.

Model | MathVision MMStar | Avg. Model | MathVision MMStar | Avg.

Qwen2.5-VL-3B 21.3 £ 068 53.44+0.70|37.4 +0.64 Gemma3-4B 22.9 £ 040 47.6 £0.27|35.3 £ 0.33
+ SFT 21.8 £ 0.68 55.3 £0.98|38.5 £071 + SFT 20.7 £ 045 47.9 +£1.81(34.3 £ 0.79
+ RL 26.5 £ 0.67 59.4 4+0.54|42.9 + 056 + RL 274 £0.55 50.8 £0.90[39.1 + 0.61
+ Two-stage 21.6 £0.90 55.1 £0.54(38.3 +£0.44 + Two-stage 22.3 £ 047 51.0 £0.33(36.6 + 0.31
+ Interleaved 19.4 £ 059 49.7 £1.49|34.5 £ 0.96 + Interleaved 21.2 £ 027 45.8 £1.47[33.5 £ 0.67
+ Progressive 24.0 £0.35 585 4+ 0.27(41.2 + 0.20 + Progressive 26.4 +£0.61 bH51.7 +£0.45[39.0 + 0.23
+ Data Mixing 25.2 £ 040 57.9 £020[41.6 £0.21 + Data Mixing 22.2 £ 047 49.8 £ 0.66 | 36.0 £ 0.46
+ Model Merging | 24.3 +£0.33 58.1 £ 1.25[41.2 £ 0.74 + Model Merging | 25.6 £ 0.52 52.2 + 1.32(38.9 + 0.71
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Figure 15: Accuracy gains for Qwen2.5-VL-3b and Gemma3-4b across five difficulty levels.

4 Related Work

The remarkable success of language reasoning models, such as OpenAl ol (Iaech et all, 2024) and DeepSeek-
R1 (Guoet all, 2025), has sparked significant interest in improving the reasoning capabilities of vision-
language models (VLMs). These advancements are predominantly driven by novel post-training techniques,
with supervised fine-tuning (SFT) and reinforcement learning (RL) as the two common and key approaches.

Early efforts focused on leveraging SFT to enhance long-form chain-of-thought (CoT) reasoning in VLMs.
For example, LLaVA-CoT (Ku_ef-all, 2024) introduced a structured reasoning dataset that guides models
through sequential stages of summarization, visual interpretation, logical reasoning, and conclusion gen-
eration. Mulberry (Yao ef—all, 2024) utilized the collective knowledge of multiple models to collabora-
tively hypothesize, search, and identify effective reasoning trajectories leading to correct answers. Addi-
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tionally, large-scale rewriting of original responses into CoT-style rationales using off-the-shelf models has
been shown to significantly improve VLM reasoning performance (Guo_ef_all, 2024). On the other hand,
RL-based approaches have also demonstrated remarkable success in enhancing reasoning capabilities. MM-
EUREKA (Meng et all, 2025) introduced the MMK12 dataset and a two-stage training strategy to stabilize
RL training. VisualThinker-R1-Zero (Zhou et all, 2025) replicated R1-Zeros “Aha Moment” for multimodal
reasoning on non-SFT VLMs. VLAA-Thinking (Chen"ef"all, 2025a) challenged the effectiveness of SFT
for cross-modal reasoning transfer and showed that training GRPO with a mixed-reward objective yields
superior performance. Vl-rethinker (Wang et all, 2025a) introduced Selective Sample Replay (SSR) and
Forced Rethinking techniques to address the vanishing advantages problem and encourage slow-thinking
during reasoning.

Many works have explored combining SF'T and RL, particularly within a two-stage training paradigm. These
approaches differ primarily in their fine-tuning dataset design and RL strategies. LLaVA-Reasoner (Zhang
efall, P0241) distilled rationales from GPT-40 and applied Direct Preference Optimization (Rafailov_ef all,
2023) to improve CoT reasoning and generalization. Vision-R1 (Huang et all, 2025) performed SFT using a
synthetic multimodal CoT dataset generated via modality bridging and trained GRPO with their Progressive
Thinking Suppression Training (PTST) strategy. R1-VL (Zhang et all, 2025) proposed StepGRPO, an RL
framework that rewards step-wise accuracy and logical validity rather than merely imitating correct reasoning
paths. Reason-rft (Tan_efrall, 2025) incorporated three distinct types of accuracy rewards during RL training.
Additionally, several studies have emphasized the importance of SFT data construction, systematically
evaluating dataset generation methods to support effective RL from a cold start ([Yang et all, 20255; Wei
ef-all, DO25; Chen_ef all, P025hd; Wen et all, P025; Shen et all, P025). In this work, we present a systematic
analysis of the performance and behavior of VLMs trained exclusively with either SF'T or RL. Furthermore,
we explore various approaches to combine the strengths of SFT and RL from multiple perspectives, including
training strategies, data mixing, and model merging.

5 Summary and Implications for Future Study

This study provides a systematic investigation into the roles of long-CoT SFT and RL in enhancing the
reasoning capabilities of VLMs. Long-CoT SFT demonstrates strong performance on complex problems by
introducing structured, step-by-step reasoning but suffers from verbosity and reduced accuracy on simpler
tasks. RL on the other hand, promotes concise responses and robust generalization, delivering consistent
gains across varying difficulty levels, though its gains on the hardest questions are lower than those from
SET. Attempts to combine SFT and RL, through two-stage, interleaved, and progressive training, as well
as data mixing and model merging, all reveal a persistent “synergy dilemma”, where trade-offs in accuracy,
reasoning style, and response length dominate, preventing true complementarity.

We summarize below the key factors explaining why SFT and RL failed to synergize in our attempts,
supported by experimental evidence. First, unlike sufficiently large models (e.g., >100B-parameter models
such as DeepSeek-R1 and Kimi-k1.5) that use self-distilled long-CoT data for high compatibility and low
overfitting, the relatively smaller models employed in this paper rely on distillation from external models.
This reduces data-model compatibility, causes SF'T-induced overfitting that RL cannot mitigate, and results
in no improvement when combining SFT and RL compared to standalone SFT. Second, integrating SFTs
structured “slow thinking” and RL’s concise “fast thinking” requires adaptive switching between distinct
reasoning styles, which is more complex than focusing on one mode. This results in trade-offs: SFT improves
performance on hard questions but degrades it on easy ones, RL performs steadily across all difficulty
levels but lags behind on the hardest questions, and hybrid strategies only balance these strengths without
surpassing RL.

To address these challenges, future research should prioritize: 1) constructing model-compatible or self-
distilled long-CoT datasets to mitigate data-model incompatibility or catastrophic forgetting after fine-
tuning, using techniques such as prompt engineering and in-context learning; and 2) developing adaptive
frameworks capable of accurately identifying problem difficulty, selecting optimal reasoning modes, and
avoiding interference between different reasoning patterns. By overcoming these obstacles, VLMs can evolve
into truly versatile models capable of reasoning efficiently and effectively across diverse multimodal tasks.
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A Appendix

A.1 Analysis with More Fine-Grained Separation of Difficulty Levels

To increse transparency and granularity of the 5-level difficulty categorization and validate that core trends
are not artifacts of discrete binning, we supplement the main analysis with 17-point quasi-continuous results,
where one data point stands for each possible pass rate of the baseline model (Qwen2.5-VL-7B) across
16 independent runs, ranging from 0/16 (extremely hard, baseline never solves) to 16/16 (trivially easy,
baseline always solves). These results are visualized in Fig. IH, [ , where each point represents the average
accuracy gain of a post-training method (long-CoT SFT, RL, two-stage training, etc.) relative to the baseline,
calculated for all benchmark questions falling into that specific pass rate bin.

Consistent with the 5-level analysis in Fig.l, the 17-point curves confirm three key trends: (1) For long-CoT
SFT, accuracy gains transition from negative (for level 1 to level 7, corresponding to L1 easy questions) to
positive as the difficulty level increases, with the largest gains concentrated at level 15 to level 17 (aligning
with L4L5 hard/extremely hard questions); (2) RL maintains more steady positive gains across level 3 to
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level 17, confirming its strength in generalizing to both easy and hard tasks; (3) Hybrid strategies (e.g.,
interleaved training, model merging) continue to exhibit trade-offs rather than synergy: their curves hover
between the SFT and RL curves for most pass rates, never combining SFTs high gains at low pass rates
with RLs consistent gains at high pass rates.

Notably, the 17-point results exhibit slightly more fluctuations than the 5-level analysis, which is expected
given the smaller sample size per individual pass rate bin (e.g., fewer questions have an exact pass rate of
3/16 or 14/16, compared to the aggregated L3 or L1 bins). Despite this noise, the consistency in directional
trends across both discrete and continuous representations confirms that the papers findings and conclu-
sions, including SFTs difficulty-dependent trade-off, RLs broad generalization, and the SFT-RL synergy
dilemmaare robust to the choice of difficulty granularity.

A.2 Remarks on the Differences to Leaderboard Results

The performance of Qwen2.5-VL-7B, as reported in our paper, is slightly lower than the performance on the
Open VLM Leaderboard™ across the MMStar, MathVista, and MMMU val benchmarks. We clarify that this
slight discrepancy stems from minor variations in evaluation settings, which do not alter the core findings
and conclusions of this paper. We have taken steps to align our experimental setup with the leaderboard
as much as possible: we adopted GPT-40-mini as the judge for MathVista and MMMU val evaluations,
and GPT-4-0125 for MMStar, consistent with the leaderboards configuration. Additionally, we observed
that the leaderboard results are derived from a single run (likely the optimal result selected from multiple
attempts). Likewise, we reproduced the baseline performance of Qwen2.5-VL-7B by taking the maximum
accuracy across 4 independent runs. This maximum value is highly consistent with the leaderboard results
(see Tab. ). For robustness against random errors, the main results reported in the paper are the average
accuracy across 4 runs, which is slightly lower than the maximum accuracy as expected.

To reduce the cost of GPT API calls, we used the locally deployed Qwen2.5-VL-32B as an alternative
judge. Although the absolute accuracy values obtained with the Qwen judge are slightly lower than those
with GPT judges, the trends in performance gains from SFT and RL remain consistent across both judge
settings. Specifically, when using GPT as the judge, SFT leads to an average accuracy drop of 1.2% and RL
leads to an average gain of 3.0%; when using Qwen2.5-VL-32B as the judge, SFT results in a 1.0% average
drop and RL in a 3.7% average gain (see Tab. [). This consistency confirms that the impact of SFT and
RL on model performance is not dependent on the choice of judge, further validating our conclusions.

Table 10: Comparison of Qwen2.5-VL-7B Performance Across Different Evaluation Settings.

Qwen2.5-VL-7B Judge MMStar MathVista MMMU val Avg.
Reported on Open VLM Leaderboard ~ GPT 64.1 68.1 58.0 63.4
Reproduced (Max. of 4 runs) GPT 64.1 68.3 58.6 63.7
Reproduced (Avg. of 4 runs) GPT 63.5 67.5 57.8 62.9

Table 11: Performance Gains of SFT and RL Under Different Judges.

Judge Model MMStar MathVista MMMU val Avg.
Qwen2.5-VL-7B 63.5 67.5 57.8 62.9
GPT + SFT 60.7 66.2 58.1 61.7 (-1.2%)
+ RL 66.5 72.6 58.7 65.9 (+3.0%)
Qwen2.5-VL-7B 63.2 66.4 53.5 61.0
Qwen2.5-VL-32B + SET 60.8 65.6 53.6 60.0 (-1.0%)
+ RL 66.5 72.6 55.1 64.7 (+3.7%)

1Open VLM Leaderboard. https://huggingface.co/spaces/opencompass/open_vim_leaderboard
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A.3 Attempts to Elicit Long-CoT with Prompt Engineering

We explored prompt engineering techniques to elicit long, structured Long-CoT reasoning traces from our
target models. Specifically, we tested a range of strategies: zero-shot prompts (e.g., "Think through this
step by step in detail"), few-shot examples with verbose reasoning demonstrations, and iterative prompting
to encourage extended elaboration. However, these efforts yielded limited success: the models consistently
produced concise, task-oriented responses rather than the detailed, multi-step reasoning we aimed for.

We attribute this to two constraints: 1) The tested models (< 7B parameters) lack the scale (> 100B)
needed to generate complex, high-fidelity Long-CoT traces. 2) Being instruction-tuned, they are optimized
for direct, coherent responses aligned with instruction-following goals, which conflicts with the unconstrained
verbosity required for Long-CoT. This contrasts with base models like DeepSeek-R1, which retain flexibility
to produce the "aha moments" and extended reasoning seen in self-distilled Long-CoT data.
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Figure 16: Accuracy gains from various post-training techniques across 17 difficulty levels.
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