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Abstract

Large vision-language models (VLMs) increasingly adopt post-training techniques such as
long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL)
to elicit sophisticated reasoning. While these methods exhibit synergy in language-only
models, their joint effectiveness in VLMs remains uncertain. We present a systematic in-
vestigation into the distinct roles and interplay of long-CoT SFT and RL across multiple
multimodal reasoning benchmarks. We find that SFT improves performance on difficult
questions by in-depth, structured reasoning, but introduces verbosity and degrades per-
formance on simpler ones. In contrast, RL promotes generalization and brevity, yielding
consistent improvements across all difficulty levels, though the improvements on the hard-
est questions are less prominent compared to SFT. Surprisingly, combining them through
two-staged, interleaved, or progressive training strategies, as well as data mixing and model
merging, all fails to produce additive benefits, instead leading to trade-offs in accuracy, rea-
soning style, and response length. This “synergy dilemma” highlights the need for more
seamless and adaptive approaches to unlock the full potential of combined post-training
techniques for reasoning VLMs. Code, dataset, and fine-tuned models will be made publicly
available.

1 Introduction

Large language models (LLMs) like OpenAI’s o1/o3 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025)
have demonstrated remarkable reasoning abilities by thinking before answering. These models go beyond
mere pattern matching, exhibiting sophisticated cognitive behaviors like multi-step planning, reflection, error
correction, as well as summarization (Gandhi et al., 2025; Wang et al., 2025c). This reasoning capability
is primarily enabled by two core post-training techniques: Supervised Fine-Tuning (SFT) on long chain-of-
thought (CoT) data (Muennighoff et al., 2025; Moshkov et al., 2025; Sun et al., 2024), and Reinforcement
Learning (RL) with verifiable feedback (Lyu et al., 2025; Luo et al., 2025). In language-only domains, these
methods often show synergistic effects, yielding substantial improvements on complex reasoning benchmarks
when applied sequentially or iteratively (Liu et al., 2025; Team et al., 2025; Yeo et al., 2025).

This paradigm has naturally motivated researchers to apply similar paradigm to large vision-language models
(VLMs) in pursuit of comparable gains in multimodal reasoning (Huang et al., 2025; Zhang et al., 2025; Wang
et al., 2025a). However, the results have been inconsistent and controversial. On one hand, some findings
suggest that even small-scale SFT on long-CoT traces can elicit step-by-step multimodal reasoning and
improve accuracy on multimodal math benchmarks (Du et al., 2025). On the other hand, some studies report
that SFT, even when followed by RL, can degrade performance (Chen et al., 2025a). These discrepancies
point to a complex and still poorly understood interplay between training strategies in the multimodal
domain.

In this work, we conduct a systematic study to answer two key questions:

1) What unique roles do long-CoT SFT and RL play in shaping the reasoning abilities of VLMs?
2) Can we effectively combine them to realize the best of both worlds—structured reasoning and robust per-

formance?
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Figure 1: Accuracy gains from various post-training techniques across five difficulty levels (L1, easy to L5,
hard) on five multimodal reasoning benchmarks. Long-CoT SFT boosts Qwen2.5-VL-7B on harder questions
but hurts easier ones, while RL yields steady gains across the board. Hybrid strategies consistently trade off
strengths rather than achieving true synergy.

To answer the first question, we zoom in current multimodal reasoning benchmarks through the lens of
question difficulty, a factor that has often been overlooked. Unlike textual reasoning benchmarks such as
AIME25, MATH500 (Hendrycks et al., 2021), and GPQA (Rein et al., 2024), which emphasize logically
demanding and difficult tasks, current multimodal reasoning benchmarks like MathVista (Lu et al., 2023),
MathVerse (Zhang et al., 2024a), and MMMU (Yue et al., 2024) contain a large proportion of simple questions
focused on perception and fine-grained visual understanding rather than complex cognitive reasoning. After
categorizing benchmark questions by difficulty, we find that long-CoT SFT improves performance
primarily on hard questions but degrades it on easier ones by introducing unnecessary verbosity and
overthinking. In contrast, RL offers steady gains across questions through concise responses and better
generalization. That said, its gains on the hardest questions are less significant than those achieved by SFT.

Building on these insights, we then explore several strategies for combining SFT and RL, including two-stage,
interleaved, and progressive training, as well as data mixing and model merging. These strategies differ in
timing, adaptability, and method of combination. Two-stage and interleaved training focus on when each
method is used: the former separates SFT and RL into distinct phases (first SFT, then RL), while the
latter interleaves them step by step. Progressive training adds adaptability, fading hints in SFT over time
to smoothly transition toward pure RL. Meanwhile, data mixing blends data distilled from SFT and RL
for a new round of fine-tuning, while model merging directly combines fine-tuned models’ parameters via
interpolation. Despite their promise, they all hit a synergy dilemma: efforts to fuse long-CoT SFT and
RL often produce trade-offs rather than true complementarity, as shown in Fig. 1. For instance,
interleaved training balances performance but cannot surpass standalone RL, and data mixing preserves
neither SFT’s strength on the MathVision benchmark nor RL’s broad gains across other benchmarks.

By surfacing these insights, we provide new clarity on various post-training techniques for reasoning VLMs.
We demonstrate that synergy between SFT and RL is fragile. Achieving it requires not just method stacking,
but nuanced control over adaptivity, compatibility, and difficulty-awareness.
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2 Distinct Effects of Long-CoT SFT and RL

In this section, we investigate the distinct effects of long-CoT SFT and RL in enhancing multimodal reason-
ing for VLMs. We begin by analyzing how long-CoT SFT influences performance depending on the modality,
scale, and reasoning quality of the training data, as discussed in Sec. 2.1. We then examine RL training dy-
namics, highlighting the importance of KL regularization and the necessity of incorporating simple questions
(see Sec. 2.2). Finally, we present in Sec. 2.3 a systematical comparison between SFT and RL, revealing
that SFT tends to benefit harder questions through verbose, structured reasoning, while RL yields steadier
improvements with concise responses. Together, these findings offer a nuanced view of how each method
contributes to reasoning capabilities in multimodal settings.

2.1 Long-CoT SFT

Supervised fine-tuning (SFT) with long chain-of-thought (CoT) data has proven effective for language mod-
els (Guo et al., 2025), particularly in the mathematical field (Muennighoff et al., 2025). However, its efficacy
for multimodal reasoning remains debated. For example, fine-tuning Qwen2.5-VL-7B with an R1-Onevision
reasoning dataset yields marginal improvements on MathVision (Wang et al., 2024) and even declines on
MathVerse (Zhang et al., 2024a), regardless of increased model size or data scale (Chen et al., 2025b). This
raises the question of whether long-CoT SFT offers any tangible benefits for multimodal reasoning. To
answer this, we access the effectiveness by varing the data sources and modalities.

Data. VLM reasoning is typically regarded as textual reasoning conditioned on visual inputs. Therefore,
we hypothesize that SFT with purely textual long-CoT data can enable multimodal reasoning. We use the
s1 dataset with 1k diverse and challenging questions (Muennighoff et al., 2025). It has two versions, s1 and
s1.1-R1, distilled from Gemini2.0-flash (Google, 2024) and DeepSeek-R1 (Guo et al., 2025), respectively.
To study the effect of data modality, we construct a multimodal reasoning dataset by distilling from our
s1.1-R1 SFT-ed model on MM-Eureka queries (Meng et al., 2025). We generate eight responses per query,
retain the shortest correct one, and obtain our Eureka-Distill with 34k samples. For each query, we append
a reasoning instruction: Please reason step by step within <think> </think> tags, and put your
final answer within \boxed{}.

Training settings. We employ LLaMa-Factory (Zheng et al., 2024) as the training framework, and
Qwen2.5-VL-Instruct (Bai et al., 2025) as the baseline model for its strong performance and broad adoption
in recent work (Wang et al., 2025a; Yang et al., 2025a; Huang et al., 2025). The ViT visual encoder and
MLP connector remain frozen during training, as this way compares favorably to unfreezing them. We use a
learning rate of 1×10−5 and a batch size of 32. We train on s1 and s1.1 for 15 epochs and on Eureka-Distill
for 5 epochs. Checkpoints are saved after each epoch.

Evaluation settings. We evaluate models using VLMEvalKit (Duan et al., 2024) on both mathematical
and multi-disciplinary reasoning benchmarks, including MathVision test (Wang et al., 2024), MathVerse
test mini (Zhang et al., 2024a), MathVista test mini (Lu et al., 2023), MMMU val (Yue et al., 2024), and
MMStar val (Chen et al., 2024). We append the aforementioned reasoning instruction to the benchmark
questions when evaluating fine-tuned models. For answer extraction and judgement, we use rule matching
and Qwen2.5-VL-32B as the judge. For inference, we enable sampling using a temperature of 0.6, a top-p of
0.95, a top-k of 20, and a maximum generation length of 24k. Results are averaged over 4 runs to mitigate
statistical variance. To ensure fair comparison under one framework, we reproduce Qwen2.5-VL-7B results.
For fine-tuned models, we report their best checkpoint results. We maintain consistent evaluation settings
throughout the paper.

Results and analysis are summarized as follows:

• Using just 1k textual data, s1.1-R1 improves multimodal reasoning across four benchmarks:
MathVision, MathVerse, MathVista, and MMMU val, with only a slight trade-off on MMStar compared
to the baseline. This is particularly notable given that s1.1-R1 consists purely of textual long-CoT traces,
yet outperforms Eureka-Distill, a much larger multimodal dataset with 34k samples (see Tab. 1). These
results suggest that high-quality reasoning traces, even without visual input, can effectively transfer to
multimodal tasks due to the underlying alignment between language and vision in VLMs.
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• Long-CoT SFT improves more prominently on difficult benchmarks that inherently require
deeper reasoning, such as MathVision and MathVerse. As illustrated in Fig. 3, performance gains correlate
positively with response length, indicating that longer reasoning chains are more beneficial for complex
queries. This pattern highlights the utility of long-CoT supervision in teaching models to break down
and solve harder problems step-by-step.

• Long-CoT does not guarantee performance gains. The effectiveness of SFT depends heavily on the
quality of the reasoning traces. For example, when fine-tuning with s1-Gemini2, despite using the same
query set as s1.1-R1 and generating responses that are 8–15 times longer than the baseline (see Fig. 2),
model performance deteriorates across nearly all benchmarks (see Tab. 1). These findings underscore that
verbosity alone is insufficient; the quality of the reasoning steps is crucial for realizing effective test-time
scaling.

Table 1: Comparison of SFT with different textual and visual long CoT data. M. is short for Math.

Model Modality Data M.Vision M.Verse M.Vista MMMUval MMStar Avg.

Qwen2.5-VL-7B – – 26.1 42.3 66.4 53.5 63.2 50.3
+ SFT w/ s1-Gemini2 Text 1k 25.2 41.8 66.8 50.0 59.5 48.7
+ SFT w/ s1.1-R1 Text 1k 30.6 48.1 67.6 54.4 61.8 52.5
+ SFT w/ Eureka-Distill Visual 34k 29.7 47.2 65.6 53.6 60.8 51.4
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Figure 2: Response length comparison.
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Figure 3: Acc. by response length.

2.2 RL

Unlike the above SFT relying on external reasoning traces, reinforcement learning (RL) focuses on enabling
models to self-explore and self-improve by interacting with the environment and receiving feedback signals.
Notably, the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024) simplifies the train-
ing pipeline by eliminating the need for a value model, making the process more efficient and scalable.
Mathematically, let Q be the query set and {o1, o2, · · · , oG} be the sampled outputs from the old policy
model πold. GRPO optimizes the following objective:

JGRPO(θ) = Eq∼Q,{oi}G
i=1∼πθold

 1
G

G∑
i=1

1
|oi|

|oi|∑
t=1

min
(

rt(θ)Âi,t, clip(rt(θ), 1 − ϵ, 1 + ϵ)Âi,t

)
− βDKL(πθ ∥ πref)

 .

Here, Ai = ri−mean({r1,r2,...,rG})
std({r1,r2,...,rG}) is the estimated advantage using a group of rewards {r1, r2, . . . , rG}, β is

the Kullback–Leibler (KL) coefficient contorling the deviation of current model πθ from the reference model
πref, rt(θ) is for importance sampling, and ϵ is the clipping hyper-parameter.

Building on this algorithm, some studies (Yu et al., 2025; Chen et al., 2025c) have proposed removing the KL
term for unconstrained exploration. Additionally, it has become common practice to pre-filter or dynamically
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filter easy samples where the model consistently predicts all answers correctly (Peng et al., 2025; Yu et al.,
2025; Wang et al., 2025b). We examine these two variations as they can play a crucial role in model training
and performance.

Training Settings. Using the Verl framework (Sheng et al., 2024), we train models on multimodal queries
from Eureka-Distill as described in Sec. 2.1, with the following settings: a learning rate of 1 × 10−6, batch
size of 128, mini-batch size of 64, temperature of 1, rollout number of 8, maximum completion length of 4k
tokens, and 2 training epochs. For reward functions, we combine two types of rewards: accuracy and format.
The accuracy reward is set to 0.9 for correct answers and 0 otherwise, while the format reward is set to 0.1 for
correctly formatted responses and 0 otherwise. We use the same reasoning instruction as previously used for
SFT fine-tuning: Please reason step by step within <think> </think> tags, and put your final
answer within \boxed{}.

Results and analysis are summarized as follows:

• The KL term stabilizes the training process. Without it, the training reward collapses after step
300, and the model exhibits lower entropy and dramatic fluctuations in response length (see Fig. 4).
Tab. 2 also shows that KL regularization improves accuracy by a clear margin across all benchmarks.

• Simple questions matter for maintaining baseline performance. Without them, the model’s
ability to handle simple questions could deteriorate after RL fine-tuning. To validate this, we remove the
easiest questions on which the baseline model predicts correctly across all 8 rollouts. Results in Tab. 3
show that RL with these easiest questions leads to higher accuracies. This is because, although the
advantages for these easiest questions become zero after GRPO normalization, they still influence the
training process via the KL loss, ensuring consistently high accuracy on these questions (see Fig. 5).
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Figure 4: Training dynamics comparisons. Without KL regularization, RL training suffers from reward
collapse, lower entropy, and more dramatic fluctuations in response length.

Table 2: Abalation of the KL term for RL training. M. is short for Math.

Model M.Vision M.Verse M.Vista MMMUval MMStar Avg.

Qwen2.5-VL-7B 26.1 42.3 66.4 53.5 63.2 50.3
+ RL, KL=0 27.7 47.0 71.5 54.8 63.5 52.9
+ RL, KL=0.005 29.0 52.1 72.6 55.1 66.5 55.1

Table 3: Ablation of retaining the easiest questions during RL.
Model M.Vision M.Verse M.Vista MMMUval MMStar Avg.

Qwen2.5-VL-7B 26.1 42.3 66.4 53.5 63.2 50.3
+ RL w/o easiest 26.6 47.1 71.4 54.0 64.8 52.8
+ RL 29.0 52.1 72.6 55.1 66.5 55.1
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Figure 5: Accuracy gap
differs across questions of
varying difficulty levels on
MathVision.
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2.3 Comparisons of Long-CoT SFT and RL

With optimized data sources and training configurations, both long-CoT SFT and RL yield partial or
full improvements in model accuracy. However, the extent of these improvements varies across different
benchmarks, as evidenced in Tab. 4. This disparity motivates a granular comparison between SFT and RL
fine-tuned models. For fair comparisons, we use the same Eureka-Distilled dataset.

SFT excels at the most difficult questions, while RL provides steadier, broader improvement.
To analyze performance by difficulty, we categorize all benchmark questions into five levels (easy to hard),
based on the baseline model’s pass rate P across 16 independant runs: level 1 (P ≥ 12

16 ), level 2 ( 8
16 ≤ P < 12

16 ),
level 3 ( 5

16 ≤ P < 8
16 ), level 4 ( 2

16 ≤ P < 5
16 ), and level 5 (P < 2

16 ). From Fig. 7, we see that the accuracy
gain from SFT starts negative at level 1, climbs to positive gains at higher levels, and ultimately surpasses
RL at the most difficult levels, 4 and/or 5. In contrast, RL provides more consistent improvements across
all difficulty levels and benchmarks.

SFT injects rich yet verbose reasoning tokens, while RL preserves concise responses but un-
derutilizes structured resoning. To better understand how these fine-tuning methods shape model
responses, we measure token-level KL divergence before and after fine-tuning. As illustrated in Fig. 6, the
SFT-ed model consistently exhibits higher KL divergence at sentence beginnings. Those darker tokens high-
light what we call reasoning pivotal tokens. These include structural words like “first,” “second,” and “next”;
logical connectors such as “then,” “alternative,” and “because”; action words like “let,” “consider,” and “ver-
ify”; and meta-thinking phrases like “wait,” “hmm,” and “maybe.” After completing the thinking process,
the SFT-ed model first provides a summary before giving the final answer. However, the average response
length is more than 10× longer than that of the baseline and RL-tuned models (see Fig. 8), incurring the
overthinking risk. In contrast, RL-tuned models remain close to the baseline, with little change in token
distribution (see Fig. 6) and a continued preference for brief, to-the-point answers (see Fig. 8) with only
occasional use of reasoning words (see Tab. 5).

Table 4: Comparison of SFT and RL with Eureka-Distill as the training set.

Model MathVision MathVerse MathVista MMMUval MMStar Avg.
Qwen2.5-VL-7B 26.1 42.3 66.4 53.5 63.2 50.3
+ SFT 29.7 47.2 65.6 53.6 60.8 51.4
+ RL 29.0 52.1 72.6 55.1 66.5 55.1

What is the final result?
Please reason step by step 
within <think> </think> 
tags, and put your final 
answer within \\boxed{}.

Response by model after RL 

Question Response by model after long-CoT SFT

Figure 6: Illustration of token-level KL divergence, where darker tokens indicate larger divergence.
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Figure 7: Accuracy gain of SFT and RL across 5 difficulty levels on 5 benchmarks.
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Table 5: Frequency of reasoning
words evaluated on MathVision.

Word Baseline SFT RL

“wait” 0 249091 0
“check” 790 18501 671
“mistake” 151 4345 7
“alternative” 0 96815 1
“however” 917 36625 764

3 The Synergy Dilemma of Long-CoT SFT and RL

Long-CoT SFT and RL each bring unique strengths and weaknesses in response styles, efficacy, and efficiency
in solving problems of varying difficulty. The key question is: how can we integrate their strengths to
create synergy? As shown in Fig. 9, we approach this by exploring several dimensions, including training
alternation, data mixing, and model merging. For training alternation, we examine strategies such as the
popular two-stage SFT and RL, interleaved SFT and RL, and progressive SFT and RL. Through systematic
exploration, we uncover a fundamental synergy dilemma for reasoning VLMs—Long-CoT SFT and
RL often behave more like a trade-off than a perfect complement. In the following sections, we
dive deeper into each method and evaluate their ineffectiveness in bridging this gap.

3.1 Training Alternation

Two-stage SFT & RL. Starting from the best checkpoint obtained after SFT on the Eureka-Distill dataset
for 4 epochs, we apply RL fine-tuning using the GRPO algorithm. While the experimental setup matched
the optimal configuration in Sec. 2.2, we extend the maximum new generation length N from 4k to 16k to
accommodate the model’s longer outputs. This adjustment is necessary because, with N=4k, the clip ratio
of model outputs surges to 20% early in training, causing instability and crashes as visualized in Fig. 11.
Results in Tab. 6 show that the two-stage SFT and RL approach fails to improve performance over SFT
alone, with the average accuracy across five benchmarks stagnating at 51.4%. The model appears to have
overfit to the paradigm established during SFT fine-tuning. We have also attempted reducing the number of
preliminary SFT epochs to 1, but this does not alleviate the issue, highlighting the difficulty of overcoming
SFT-induced overfitting or catastrophic forgetting thourgh a subsequent RL fine-tuning.

Interleaved SFT & RL. To mitigate the risk of overfitting and uneven task performance after SFT, we
employ an interleaved SFT and RL strategy designed to balance imitation and exploration. Importantly,
we do not apply interleaved training to all samples. Applying SFT loss indiscriminately would cause it
to dominate the optimization process, thereby slowing or even reducing training rewards and validation
accuracy, and resulting in a substantial increase in response lengths (see Fig. 12). Instead, we apply the SFT
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Figure 9: Attempts to integrate SFT and RL, including training alternation, data mixing, and model merging.

Table 6: Acuracy comparison of various attempts for SFT-RL synergy.

Model MathVision MathVerse MathVista MMMUval MMStar Avg.

Qwen2.5-VL-7B 26.1 42.3 66.4 53.5 63.2 50.3
+ SFT 29.7 47.2 65.6 53.6 60.8 51.4
+ RL 29.0 52.1 72.6 55.1 66.5 55.1

+ Two-stage SFT & RL 29.3 47.1 66.6 53.0 60.9 51.4
+ Interleaved SFT & RL 29.2 48.7 71.8 54.1 64.3 53.6
+ Progressive SFT & RL 29.8 51.0 72.4 55.5 65.9 54.9
+ Data Mixing 29.2 51.2 72.0 55.1 62.7 54.0
+ Model Merging 29.6 50.4 71.8 53.7 66.2 54.3
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Figure 10: Frequency of reasoning words across fine-tuning methods, evaluated on the MathVision.

loss exclusively to questions with zero pass rates, while the RL loss is applied to the rest. This approach aligns
with our objective of leveraging the complementary strengths of SFT and RL. As shown in Tab. 6, the model’s
accuracy consistently falls between that of SFT and RL across all benchmarks. Furthermore, Fig. 10 reveals
a similar trend in the frequency of reasoning-related words. These results indicate that interleaved training
achieves a balance between SFT and RL, rather than a complete synergy of their respective advantages.

Progressive SFT & RL. In previous methods involving SFT, the reasoning traces during training are
entirely sourced from external models. However, during inference, the model generates each token based
on self-generated prefix tokens, resulting a mismatch between training and inference. This inconsistency
can be more pronounced in reasoning models that produce long responses. To alleviate this, we explore an
alternative approach called progressive SFT and RL. Early in training, for difficult questions with a pass
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rate of 0, the model relies on full external traces for SFT. As training goes on, the use of external traces is
gradually reduced, starting with only a prefix and eventually removing them entirely. For loss computation,
prefix tokens are assigned an SFT loss with a weight (empirically set to 0.2), while self-generated tokens
are assigned an RL loss. As illustrated in Fig. 13, the training reward and validation accuracy curves of
progressive training closely align with those of pure RL, while producing longer responses and exhibiting
greater step-to-step fluctuations. As expected in Fig. 10, progressive training generates a higher frequency of
reasoning-related words compared to pure RL. Benchmark results in Tab. 6 indicate that progressive training
outperforms two-stage and interleaved training, with the average accuracy improving from 51.4 and 53.6 to
54.9, approaching RL’s 55.1. Notably, progressive training achieves an accuracy of 29.8 on MathVision,
surpassing RL’s 29.0 and almost the same as SFT’s 29.7. However, this improvement comes at a cost:
progressive training sacrifices performance on MathVerse and MMStar, ultimately falling short of achieving
the desired synergy.
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Figure 11: Training dynamics of RL following SFT. The model demonstrates a higher clip ratio when the
maximum new token length is set to N=4k and 8k compared to N=16k, and collapses after approximately
100 steps.
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Figure 12: Training dynamics of Interleaved SFT and RL (ISR) applied to all samples or with SFT loss only
for hard questions. Pure RL is compared as the baseline.
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Figure 13: Training dynamics of Progressive SFT and RL, compared to pure RL training.

3.2 Data Mixing

Data mixing is a simpler alternative to the above training alternation. It blends data distilled from SFT and
RL models, followed by an additional round of SFT. In this method, we generate 8 responses per question
using the RL model on the 34k Eureka-Distill dataset. We collect only the correct ones, getting 230k samples.
For questions with a pass rate of 0, we add long-CoT responses, creating a final dataset of 243k samples. The
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model is then trained on this dataset for 2 epochs, with all other settings consistent with those described in
Sec. 2.1. As shown in Fig. 10, data mixing encourages more frequent use of reasoning tokens. However, it
results in a 3.8% accuracy drop on MMStar and unexpectedly produces responses that are 10 times longer,
as shown in Tab. 7. While data mixing demonstrates potential in fostering adaptive reasoning, its overall
accuracy remains lower than that of pure RL.

Table 7: Comparison of model response length and accuracy between RL and data mixing approach.

Model MathVision MathVerse MathVista MMMUval MMStar Avg.

Length RL 514 338 228 416 187 337
Data Mixing 637 381 324 424 1999 753

Accuracy RL 29.0 52.1 72.6 55.1 66.5 55.1
Data Mixing 29.2 51.2 72.0 55.1 62.7 54.0

3.3 Model Merging

Model merging is a training-free approach that combines the weights of two or more models to harness their
individual strengths. This technique typically involves interpolating the parameters of pre-trained models.
We conduct experiments using MergeKit (Goddard et al., 2024), a versatile open-source toolkit for model
merging. We adopt three model merging methods:

• Linear Merging was introduced in the “model soups” approach by Wortsman et al. (2022), which
calculates a straightforward weighted average of the models’ parameters.

• TIES Merging sparsifies the parameter changes (task vectors) and resolves sign disagreements before
averaging (Yadav et al., 2023).

• SLERP Merging performs Spherical Linear Interpolation in the weight space between two models,
enabling smooth transitions and preserving geometric consistency in the parameter space (Shoemake,
1985).

For SFT and RL models, we adjust the merging ratio of the SFT model, testing values of 0, 0.25, 0.5, 0.75,
and 1. A ratio of 0 corresponds to the pure RL model, while a ratio of 1 represents the pure SFT model.
Results are visualized in Fig. 14. Using the TIES method, SFT and RL models exhibit compatibility issues.
In contrast, the Linear and SLERP methods show performance interpolation between SFT and RL, with a
roughly monotonic increase on MathVision and a decrease on the other four benchmarks. The checkpoint
with the highest average accuracy is achieved using the Linear method with an SFT ratio of 0.25. As shown in
Tab. 6, this configuration preserves the high accuracy of the SFT model on MathVision and the high accuracy
of the RL model on MMStar, while performing less competitively on the remaining datasets. These findings
underscore the persistent challenges in achieving effective synergy between SFT and RL models.
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Figure 14: Accuracy gains of model merging methods (Linear, TIES, SLERP) by merging ratio.
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4 Related Work

The remarkable success of language reasoning models, such as OpenAI o1 (Jaech et al., 2024) and DeepSeek-
R1 (Guo et al., 2025), has sparked significant interest in improving the reasoning capabilities of vision-
language models (VLMs). These advancements are predominantly driven by novel post-training techniques,
with supervised fine-tuning (SFT) and reinforcement learning (RL) as the two common and key approaches.

Early efforts focused on leveraging SFT to enhance long-form chain-of-thought (CoT) reasoning in VLMs.
For example, LLaVA-CoT (Xu et al., 2024) introduced a structured reasoning dataset that guides models
through sequential stages of summarization, visual interpretation, logical reasoning, and conclusion gen-
eration. Mulberry (Yao et al., 2024) utilized the collective knowledge of multiple models to collabora-
tively hypothesize, search, and identify effective reasoning trajectories leading to correct answers. Addi-
tionally, large-scale rewriting of original responses into CoT-style rationales using off-the-shelf models has
been shown to significantly improve VLM reasoning performance (Guo et al., 2024). On the other hand,
RL-based approaches have also demonstrated remarkable success in enhancing reasoning capabilities. MM-
EUREKA (Meng et al., 2025) introduced the MMK12 dataset and a two-stage training strategy to stabilize
RL training. VisualThinker-R1-Zero (Zhou et al., 2025) replicated R1-Zero’s “Aha Moment” for multimodal
reasoning on non-SFT VLMs. VLAA-Thinking (Chen et al., 2025a) challenged the effectiveness of SFT
for cross-modal reasoning transfer and showed that training GRPO with a mixed-reward objective yields
superior performance. Vl-rethinker (Wang et al., 2025a) introduced Selective Sample Replay (SSR) and
Forced Rethinking techniques to address the vanishing advantages problem and encourage slow-thinking
during reasoning.

Many works have explored combining SFT and RL, particularly within a two-stage training paradigm. These
approaches differ primarily in their fine-tuning dataset design and RL strategies. LLaVA-Reasoner (Zhang
et al., 2024b) distilled rationales from GPT-4o and applied Direct Preference Optimization (Rafailov et al.,
2023) to improve CoT reasoning and generalization. Vision-R1 (Huang et al., 2025) performed SFT using a
synthetic multimodal CoT dataset generated via modality bridging and trained GRPO with their Progressive
Thinking Suppression Training (PTST) strategy. R1-VL (Zhang et al., 2025) proposed StepGRPO, an RL
framework that rewards step-wise accuracy and logical validity rather than merely imitating correct reasoning
paths. Reason-rft (Tan et al., 2025) incorporated three distinct types of accuracy rewards during RL training.
Additionally, several studies have emphasized the importance of SFT data construction, systematically
evaluating dataset generation methods to support effective RL from a cold start (Yang et al., 2025b; Wei
et al., 2025; Chen et al., 2025d; Wen et al., 2025; Shen et al., 2025). In this work, we present a systematic
analysis of the performance and behavior of VLMs trained exclusively with either SFT or RL. Furthermore,
we explore various approaches to combine the strengths of SFT and RL from multiple perspectives, including
training strategies, data mixing, and model merging.

5 Summary and Implications for Future Study

This study provides a systematic investigation into the roles of long-CoT SFT and RL in enhancing the
reasoning capabilities of VLMs. Long-CoT SFT demonstrates strong performance on complex problems by
introducing structured, step-by-step reasoning but suffers from verbosity and reduced accuracy on simpler
tasks. RL on the other hand, promotes concise responses and robust generalization, delivering consistent
gains across varying difficulty levels, though its gains on the hardest questions are lower than those from SFT.
Attempts to combine SFT and RL, through two-stage, interleaved, and progressive training, as well as data
mixing and model merging, all reveal a persistent “synergy dilemma”, where trade-offs in accuracy, reasoning
style, and response length dominate, preventing true complementarity. To address these challenges, future
research should prioritize: 1) constructing model-compatible or self-distilled long-CoT datasets to mitigate
data-model incompatibility or catastrophic forgetting after fine-tuning, using techniques such as prompt
engineering and in-context learning; and 2) developing adaptive frameworks capable of accurately identifying
problem difficulty, selecting optimal reasoning modes, and avoiding interference between different reasoning
patterns. By overcoming these obstacles, VLMs can evolve into truly versatile models capable of reasoning
efficiently and effectively across diverse multimodal tasks.
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