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ABSTRACT

Referring expression understanding in remote sensing poses unique challenges,
as it requires reasoning over complex object–context relationships. While su-
pervised fine-tuning (SFT) on multimodal large language models achieves strong
performance with massive labeled datasets, they struggle in data-scarce scenarios,
leading to poor generalization. To address this limitation, we propose Geo-R1, a
reasoning-centric reinforcement fine-tuning (RFT) paradigm for few-shot geospa-
tial referring. Geo-R1 enforces the model to first generate explicit, interpretable
reasoning chains that decompose referring expressions, and then leverage these
rationales to localize target objects. This “reason first, then act” process enables
the model to make more effective use of limited annotations, enhances gener-
alization, and provides interpretability. We validate Geo-R1 on three carefully
designed few-shot geospatial referring benchmarks, where our model consistently
and substantially outperforms SFT baselines. It also demonstrates strong cross-
dataset generalization, highlighting its robustness. Code and data will be released
at http://geo-r1.github.io.

1 INTRODUCTION

Vision language models (VLMs) have become a critical tool for remote sensing imagery (RSI) un-
derstanding (Li et al., 2024d; Weng et al., 2025). By coupling natural language with RSI, VLMs
can drive a wide spectrum of tasks in the RS domain, such as image captioning, visual question an-
swering, referring expression comprehension (REC), referring expression segmentation (RES) (Li
et al., 2024d; Zhou et al., 2024a). Among these capabilities, REC and RES tasks are especially im-
portant: both require the model to resolve free-form linguistic descriptions (e.g., “a small vehicle is
situated at the bottom right adjacent to a large vehicle”) into concrete, spatially localized predictions
(bounding boxes or segmentation masks) in high-resolution aerial images. We henceforth use the
term Referring Expression Understanding (REU) to denote a unified framework encompassing both
REC and RES, where the task is to take an image and a text query as input and output one or more
target objects.

Although recent works (Kuckreja et al., 2024; Yuan et al., 2024; Zhou et al., 2024b) have achieved
remarkable progress on REU tasks with supervised finetuning (SFT), these methods are highly de-
pendent on large-scale training labels. High-quality REU supervision demands not only image-level
labels but also precise language–region alignment at the object and region levels. Creating such
associations in overhead imagery requires expertise and careful tooling: annotators must parse com-
plex scene layouts, disambiguate visually similar man-made structures, and write unambiguous re-
ferring expressions before drawing spatially accurate boxes or masks. Compared with image-level
labels, these fine-grained annotations are orders of magnitude more labor-intensive. For example,
VRSBench (Li et al., 2024c) costs 1,004 labor hours for label verification only.

This reality makes few-shot learning (e.g., only 10 samples are provided for each category) in REU
valuable. Previous works, such as RS-CLIP(Li et al., 2023) and RemoteCLIP (Liu et al., 2024a)
have demonstrated that finetuning CLIP (Radford et al., 2021) on a few samples can yield strong
results for scene classification. However, these advances cannot be directly carried over to REU
since region-level grounding is harder than scene-level classification. Moreover, object relations
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-->  26 samples  
-->  130 samples  
-->  260 samples  

Few-Shot REU Training Set  GRPO Rollout

Generate

n answers

<think>...</think>
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GREC Task
<think>  The task is to identify the vehicle located at the left-most in the
center line of parking spaces. The image shows a parking lot with several
cars parked in designated spaces. The center line of parking spaces is the
second row from the top, and the left-most vehicle in this row is a dark-
colored car. </think>

<answer> [{"bbox_2d": [199, 249, 245, 331]] </answer>

<think> ... </think>
<answer> 
[{"bbox_2d": [60, 95, 187, 154],
"keypoint1": [120, 120],
"keypoint2": [100, 128]}]
 </answer>

GRES Task

SAM

Image

GREC Question
Please provide the
bounding box
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region this sentence
describes: The vehicle
located at the left-
most in the center line
of parking spaces.

Image

Figure 1: Geo-R1 method overview. Geo-R1 is trained on a few labeled samples with reinforcement
learning (e.g., GRPO (Shao et al., 2024)) and can identify target objects (bounding boxes or masks)
from an input image and text query while providing the reasoning process.

are complex for REU, requiring relational reasoning and disambiguation among visually similar
structures. This raises the question: with only a handful of aligned examples for each category, can
a VLM learn to accurately ground language in remote sensing images?

Driven by the impressive reasoning capabilities of OpenAI o1 (Jaech et al., 2024) and DeepSeek-
R1 (Guo et al., 2025), reinforcement learning (RL) has become a powerful post-training paradigm
for augmenting the reasoning capabilities of LLMs during post-training. RL explicitly encourages
intermediate “thinking” steps, and forces the model learns to reason before committing to a predic-
tion. This reasoning-first behavior is particularly well suited to few-shot REU: reasoning steps (e.g.,
“My intuition leads me to identify the vehicle sitting in the circular opening near the roadway as the
small vehicle.”) serve as a transferable experience that generalizes better across different text-image
samples than directly outputting a box/mask from next-token-prediction supervision.

In this work, we introduce a reasoning-centric RL post-training method, Geo-R1, which leverages
task-specific reward functions to address few-shot REU. Geo-R1 encourages the model to generate
explicit reasoning—intermediate hypotheses that parse the referring expression, identify contextual
anchors, and iteratively refine localization—thereby regularizing learning and improving generaliza-
tion. Unlike SFT, which relies on a single teacher-forced trajectory with a differentiable surrogate
loss, Geo-R1 explores multiple reasoning chains and proposals, extracting advantages from N -way
comparisons to provide denser and richer supervision per example, making better use of few-shot
samples. Moreover, for RES, Geo-R1 directly optimizes a task-aligned MaskGIoU reward through
the non-differentiable “BBox + SAM” pipeline (Ravi et al., 2025), enabling end-to-end training for
dense prediction—a capability infeasible under SFT. Method overview can be found in Fig. 1.

In our experiments, we observe three consistent advantages from RL over SFT baselines for few-
shot REU in remote sensing images. (1) With the same small number of labeled examples, our
RFT-based reasoning model substantially outperforms SFT-based models on few-shot REU tasks.
(2) In cross-dataset evaluation, our RFT-based model remarkably outperforms SFT counterparts,
suggesting the reasoning model has stronger cross-dataset generalization than non-reasoning mod-
els. (3) The learned reasoning traces are useful and reasonable, utilizing the spatial and semantic
cues that benefit the final localization, which provides a great interpretability. We further establish
three few-shot benchmarks and define a few-shot protocol for REU. In summary, our contributions
are listed below:

• To the best of our knowledge, we are the first to explore Referring Expression Understanding
(REU) for aerial image understanding under few-shot settings. To facilitate rigorous and re-
producible evaluation, we create VRSBench-FS, EarthReason-FS, and NWPU-FS, establishing
standardized protocols for few-shot REU in remote sensing.

• We define task-aligned rewards and a reasoning-centric RL recipe, including BBoxIoU reward for
REC and a MaskGIoU reward for RES. We introduce the RL-trained reasoning models (Geo-R1)
that generate concise grounding rationales for these tasks.
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• Across all three benchmarks, our Geo-R1 models consistently outperform SFT under identical
few-shot budgets, while exhibiting stronger generalization across datasets and providing human-
auditable reasoning traces that explain successes and failures.

2 TASK AND METHODOLOGY

This section details the adaptation of the GRPO algorithm from language-only tasks to vision-
language tasks. Then, we introduce and formally define the REU task under few-shot settings.
Finally, we discuss how to apply GRPO to these tasks with customized task-specific reward func-
tions.

2.1 GRPO: FROM LLM TO VLM

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a reinforcement learning frame-
work that removes the dependence on a value model and instead utilizes rule-based reward functions.
The GRPO algorithm begins by sampling N candidate outputs {o1, . . . , oN} from the current pol-
icy model πθ for a given query prompt q. Each response oi is then evaluated by a reward function
R(q, oi) to obtain a raw reward score ri. To measure the relative quality of each response within
the sampled group, GRPO standardizes the raw rewards to obtain the advantage value, as shown in
Eq. 1. The advantage value Âi denotes the normalized advantage of the response oi relative to other
samples within the group.

Âi =
ri − mean{r1, r2, . . . , rN}

std{r1, r2, . . . , rN} (1)

The policy πθ is updated with a training objective (Eq. 2), designed to encourage the generation of
responses with higher advantages.

JGRPO(θ) = E{oi}N
i=1∼πθold (·|q)

[
1

N

N∑
i=1

(
min

(
c1 · Âi, c2 · Âi

)
− βDKL(πθ||πref)

)]
, (2)

where

c1 =
πθ(oi | q)
πθold(oi | q)

, c2 = clip
( πθ(oi | q)
πθold(oi | q)

, 1− ε, 1 + ε
)
. (3)

Here, DKL(πθ||πref) denotes the KL divergence between the current policy πθ and the reference pol-
icy πref , which serves as a regularization term to prevent large deviations. The clipping mechanism
in c2 stabilizes training by constraining the policy update ratio.

For LLMs on tasks with definitive answers, like mathematical reasoning, the reward can be cal-
culated using a rule-based verifiable reward function. uilding on GRPO, DeepSeek-R1 (Guo et al.,
2025) demonstrates that such rewards enable models to produce both final answers and coherent rea-
soning traces. This approach has been successfully extended to VLMs by converting visual metrics
into tailored reward signals (Shen et al., 2025; Liu et al., 2025a;b).

2.2 FEW-SHOT REFERRING EXPRESSION UNDERSTANDING TASK

We define referring expression understanding as a unified framework for object recognition (either
detection/segmentation) from referring expressions. Given an image I and a textual query q, a
vision–language model (VLM) F predicts one or more target objects, as formulated in Eq. 4:

{O1, . . . , ON} = F(I, q), (4)

where each Oi denotes a predicted object parsed from VLM text outputs, and N denotes the number
of parsed objects. We define REC, Visual Grounding (VG) (Plummer et al., 2015), and Open-
Vocabulary Detection (OVD) as instances of Generalized REC (GREC), where each referred object
Oi is represented by a bounding box. Likewise, we define RES and Open-Vocabulary Segmenta-
tion (OVS) (Wu et al., 2024) as instances of Generalized RES (GRES), where each object Oi is
represented by an instance mask.

In this work, we focus on three representative REU tasks: (i) REC, which targets single-object
detection from complex reasoning queries; (ii) OVD, which addresses multi-object detection from
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class-based queries; and (iii) GRES, which requires multi-object segmentation from complex rea-
soning queries. All tasks are studied under few-shot settings. In our formulation, each shot label
refers to a annotated bounding box or mask. Specifically, in the GREC setup, one “shot” is defined
as an image–query–box triplet, while in GRES, one “shot” corresponds to an image–query–mask
triplet. Importantly, a ground-truth mask may include multiple valid instances for a single query
(Li et al., 2025b). Among these tasks, GRES is the most challenging, as it requires the model to
generate accurate segmentation masks for (multiple) objects described by natural-language queries
in aerial images (Yuan et al., 2024).

The few-shot setting substantially increases task difficulty by requiring models to generalize from
only a handful of labeled examples, in contrast to large-scale datasets such as VRSBench (Li et al.,
2024c) (36k training examples), and DIOR-RSVG (27k) (Zhan et al., 2023). Few-shot REU is
particularly challenging due to: (1) visual diversity, arising from large variations in object size,
orientation, appearance, and inter-object relationships; and (2) description diversity, as natural lan-
guage queries may vary in structure, vocabulary, abstraction level, and reasoning complexity. These
factors jointly make few-shot REU a more realistic yet significantly harder problem compared to
conventional large-scale training scenarios.

2.3 REWARD DESIGN

Following DeepSeek-R1, the reward function of Geo-R1 includes a task-agnostic format reward and
a task-specific metrics reward. The format reward is applied uniformly across all tasks, whereas the
metric reward is selected according to the requirements of each specific task.

2.3.1 FORMAT REWARD

To ensure reliable parsing and evaluation, the model’s output must follow a well-defined
structure. We define a binary format reward that checks whether the response conforms to
this structure. The output must be wrapped in reasoning tags <think>...</think> and
<answer>...</answer>. The format reward is defined as:

Rformat(q, o) =

{
1, if output follows the expected format
0, otherwise

(5)

2.3.2 METRICS REWARD

GREC. For the REC task, the VLM predicts a single object bounding box, i.e., bpred = F
(
I, q). An

IoU reward can be calculated by comparing bpred with the ground-truth box bgt. For the OVD task,
the VLM predicts is a set of box–label pairs, i.e., Bpred = {(bipred, cipred)}Ni=1, where bi

pred denotes
predicted bounding box, cipred denotes category label. We then calculate reward as mAP1 between
Bpred and corresponding ground truth Bgt, along with a penalty coefficient for overlength predictions.
The metrics reward for GREC task is defined as follow:

Rmetrics(q, o) =

{
IoU(bpred, bgt), for REC task

min( 1,
√

Ngt

N ) · mAP(Bpred,Bgt), for OVD task
(6)

where Ngt denotes the number of ground truth objects.

GRES. For GRES task, the VLM model is prompted to output a set of box–point pairs, Bpred =
{(bipred, p

i
pred)}Ni=1, where bipred denotes a predicted bounding box and pipred denotes the associated

keypoints. These predictions are then provided as prompts to a frozen SAM to generate final instance
masks Mpred. Each predicted instance mask is trimmed to ensure its boundary does not exceed that
of the corresponding bounding box. Finally, all instance masks are combined by taking their union
to form a single predicted segmentation. Given ground truth instance masks Mgt, the metrics reward
for GRES task is defined as follows:

Rmetrics(q, o) = MaskGIoU(Mpred,Mgt). (7)

We follow LISA (Lai et al., 2024) to calculate mask GIoU.
1We set the confidence score of all predicted bounding boxes to 1.

4
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3 MAIN EXPERIMENT

3.1 EXPERIMENT SETUP

Datasets. Unlike conventional few-shot learning (e.g., Prototypical Networks (Snell et al., 2017)
and TFA (Wang et al., 2020)), we do not partition the dataset into base and novel classes. Instead,
we treat all classes as novel and provide only a few labeled examples per class. We construct
instruction-following few-shot datasets for the GREC and GRES tasks by deriving them from the
training sets of three widely used remote sensing benchmarks: VRSBench Li et al. (2024c), NWPU
VHR-10 (Cheng et al., 2014), and EarthReason (Li et al., 2025b). Configurations and statistics are
summarized in Table 1. The term “shot” defines the number of samples per object category. For
the OVD task, we select four classes on which the baseline model (Qwen2.5-VL-3B) demonstrated
decent performance. We select all categories from the training set for other tasks. The low-shot
dataset is a subset of the high-shot dataset. To evaluate cross-dataset generalization, we further
evaluate zero-shot performance on DIOR-RSVG (Zhan et al., 2023) and RRSIS-D (Yuan et al.,
2024) datasets.

Table 1: Overview of our Few-Shot Referring Expression Understanding Datasets.
Dataset Name Source Dataset Task # Categories # Shots # VQAs # Images Shot Definition

VRSBench-FS VRSBench REC 26 {10, 5, 1} 260 254 image-query-box
NWPU-FS NWPU VHR-10 OVD 4 {10, 5} 25 25 image-query-box

EarthReason-FS EarthReason GRES 24 {10, 5, 1} 240 240 image-query-mask

Model and Training Details. We adopt Qwen2.5-VL-3B-Instruct (Bai et al., 2025) as base model.
Our implementation is built on the VLM-R12 and Easy-R13 codebase. Unless otherwise specified,
we strictly inherit the default hyperparameters without manual tuning. We set the same batch size for
different post-training paradigm. We trained comparing models for 30 epochs, with early stopping
when the reward converged. All experiments are conducted on 8 × H100 GPUs, and a full training
run takes approximately 10 to 20 hours. Prompt templates are shown in Appendix C. We apply
thinking prompts for RL-based Paradigms. We adopt GRPO as our primary RL-based post-training
paradigm. For SFT-based post-training, we perform visual instruction tuning with standard next
token prediction (NTP) loss, implemented via LLaMA-Factory (Zheng et al., 2024).

3.2 FEW-SHOT GENERALIZED REFERRING EXPRESSION COMPREHENSION - REC

Task Evaluation. Performance on the REC subtask is measured by Acc@τ (a prediction is correct
if its box IoU with the ground truth exceeds τ ) in the test set of VRSBench. We report metrics for
Acc@0.5 and Acc@0.7. The experiments are conducted in 1-shot, 5-shot, and 10-shot configura-
tions, with “Unique,” “Non-Unique,” and overall results reported. This evaluation compares the SFT
method against two RL-based approaches, GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).
We highlight the performance gap in red.

Results. Table 2 compares models trained on the full VRSBench (Full Amount Fine-tune) against
few-shot models (1/5/10-shot Fine-tune). The few-shot results include both SFT-based models and
our RL-tuned models. Performance data for the full-data baselines (except Qwen2.5-VL) are taken
from the original VRSBench paper. The results reveal a clear performance hierarchy: RL-based
post-training methods consistently and significantly outperform the SFT approach across all settings
and metrics. This advantage is substantial; for example, in the 10-shot overall setting, our GRPO-
based model achieves an Acc@0.5 score 12.30% higher than its SFT counterpart. Remarkably,
our 10-shot GRPO model using only 260 samples, 0.71% data, achieves a score that surpasses all
evaluated models (except Qwen2.5-VL) trained on all 36,313 samples.

Within RL-based approaches, DAPO consistently outperforms GRPO across nearly all scenarios,
indicating that more effective RL training could further enhance performance in few-shot settings.
Moreover, the gains from RL-based methods are more pronounced on the Unique subset than on the
Non-Unique subset, suggesting that RL approaches provide a larger boost on simpler tasks that do
not require distinguishing between same-category distractors.

2https://github.com/om-ai-lab/VLM-R1
3https://github.com/hiyouga/EasyR1
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Table 2: Performance on VRSBench for the REC task. We report grounding accuracy at IoU thresh-
olds of 0.5 and 0.7. Unique and Non-Unique indicate whether a referred object is the only instance
of its category in the image or not.

Method Base LLM Unique Non-Unique Overall
Acc@0.5 Acc@0.7 Acc@0.5 Acc@0.7 Acc@0.5 Acc@0.7

Full Amount Fine-tune (36,313 samples)
LLaVA-1.5 (Liu et al., 2024b) Vicuna1.5-7B 51.10 16.40 34.80 11.50 41.60 13.60
Mini-Gemini (Li et al., 2024f) Gemma-7B 41.10 9.60 22.30 4.90 30.10 6.80
MiniGPT-v2 (Chen et al., 2023) Vicuna1.5-7B 40.70 18.90 32.40 15.20 35.80 16.80
GeoChat (Kuckreja et al., 2024) Vicuna1.5-7B 57.40 22.60 44.50 18.00 49.80 19.90
Qwen2.5-VL (Bai et al., 2025) Qwen2.5-3B 66.54 36.77 60.32 36.30 62.91 36.50

Zero-shot Baseline
GPT-4V (OpenAI, 2024) GPT-4 8.60 2.20 2.50 0.40 5.10 1.10
Qwen2.5-VL w/o thinking Qwen2.5-3B 43.10 25.10 33.46 18.01 37.48 20.97
Qwen2.5-VL w/ thinking Qwen2.5-3B 46.18 26.90 35.22 18.87 39.79 22.22

1-shot Fine-tune (26 samples)
Qwen2.5-VL-SFT Qwen2.5-3B 34.32 18.87 31.62 16.35 32.75 17.40
Geo-R1 (GRPO) Qwen2.5-3B 52.17 (+17.85) 31.18 (+12.31) 41.21 (+9.59) 23.04 (+6.69) 45.78 (+13.03) 26.43 (+9.03)

Geo-R1 (DAPO) Qwen2.5-3B 51.72 (+17.40) 31.68 (+12.81) 42.13 (+10.51) 24.50 (+8.15) 46.13 (+13.38) 27.50 (+10.10)

5-shot Fine-tune (130 samples)
Qwen2.5-VL-SFT Qwen2.5-3B 36.98 16.61 33.94 17.17 35.21 16.94
Geo-R1 (GRPO) Qwen2.5-3B 54.11 (+17.13) 31.35 (+14.74) 42.98 (+9.04) 23.98 (+6.81) 47.62 (+12.41) 27.06 (+10.12)

Geo-R1 (DAPO) Qwen2.5-3B 55.73 (+18.75) 32.19 (+15.58) 44.19 (+10.25) 24.86 (+7.69) 49.00 (+13.79) 27.92 (+10.98)

10-shot Fine-tune (260 samples)
Qwen2.5-VL-SFT Qwen2.5-3B 41.81 18.59 35.78 17.20 38.29 17.78
Geo-R1 (GRPO) Qwen2.5-3B 57.27 (+15.46) 35.61 (+17.02) 45.81 (+10.03) 27.03 (+9.83) 50.59 (+12.30) 30.61 (+12.83)

Geo-R1 (DAPO) Qwen2.5-3B 59.49 (+17.68) 37.11 (+18.52) 47.91 (+12.13) 28.07 (+10.87) 52.74 (+14.45) 31.84 (+14.06)

3.2.1 FEW-SHOT GENERALIZED REFERRING EXPRESSION COMPREHENSION - OVD

Task Evaluation. For the OVD task, we evaluate performance using the COCO-style mean
Average Precision (mAP) in the test set of NWPU VHR-10 (Cheng et al., 2014). Our
evaluation compares the SFT method against our GRPO approach. Experiments are run in
5/10-shot settings. Results are reported for the following four categories: airplane (PL),
ship (SH), ground track field (GTF), and vehicle (VH). We intentionally exclude the 1-
shot setting because training on a single instance would bias the model toward predicting
a single instance per image, creating an inconsistency between the training and testing sets.

Table 3: Performance on NWPU for the OVD
task. We report mAP in COCO style.

PL SH GTF VH Avg.
Zero-shot Baseline
Qwen2.5-VL w/o thinking 23.79 25.34 44.13 24.04 29.33
Qwen2.5-VL w/ thinking 25.17 21.85 57.08 23.95 32.01

5-shot Fine-tune (20 samples)
Qwen2.5-VL-SFT 6.32 22.33 65.48 12.36 26.62
Geo-R1 (GRPO) 21.74 25.42 70.23 15.40 33.20
10-shot Fine-tune (40 samples)
Qwen2.5-VL-SFT 15.76 21.90 68.42 14.73 30.20
Geo-R1 (GRPO) 25.76 28.12 69.24 16.57 34.92

Results. Table 3 presents the OVD perfor-
mance of SFT and GRPO tuned models. A
notable observation is that SFT can be detri-
mental with extremely limited data. In both
10-shot and 5-shot settings, SFT-based mod-
els fail to surpass the performance of the zero-
shot baseline in three out of four categories (air-
plane, ship, and vehicle). This suggests that the
limited training data lacks intra-class diversity,
causing the model to memorize the specific and
even spurious features of the few samples rather
than the general concept of the class, leading to
overfitting, degrading the model’s detection ca-
pabilities. In contrast, the GRPO-tuned model consistently outperforms the SFT model across all
categories and settings, demonstrating that RL is more efficient for learning OVD from a few exam-
ples. More importantly, the advantage of GRPO becomes even more critical in the more challenging
low-data setting. The performance gap between GRPO and SFT increases from 4.72 mAP in the 10-
shot scenario to 6.58 mAP in the 5-shot scenario. This widening margin highlights GRPO’s ability
to learn effectively in data-scarce environments where SFT struggles.

3.2.2 FEW-SHOT GENERALIZED REFERRING EXPRESSION SEGMENTATION

Task Evaluation. We conduct experiments on the EarthReason (Li et al., 2025b) dataset under
few-shot setting. Following LISA (Lai et al., 2024), performance on the GRES task is measured
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by the mask-based gIoU, defined by the average of all per-image IoUs. We use this metric because
alternatives like cIoU are highly biased toward large-area objects and tend to fluctuate significantly.
We report the final gIoU scores on the validation and test sets of the EarthReason dataset. To ensure a
fair comparison with SFT-based approaches, we evaluate our method against SegEarth-R1 (Li et al.,
2025b), trained on the same dataset. SegEarth-R1 serves as a strong SFT baseline, as it employs an
auxiliary segmentation decoder to generate pixel-level masks through a differentiable mask loss.

Results. In Table 4, we demonstrate the effective results of our proposed
pipeline and task-specific reward for training reasoning models on GRES task.

Table 4: Performance on the EarthReason for
the GRES task. We report gIoU.

Val Test
Full Amount Fine-tune
LISA 61.04 60.88
PixelLM 57.94 60.01
PSALM 66.61 68.30
SegEarth-R1 68.60 70.75

Zero-shot Baseline
Qwen2.5-VL w/ thinking 19.35 32.16

1-shot Fine-tune (24 samples)
SegEarth-R1 42.47 43.01
Geo-R1 51.38 50.30

5-shot Fine-tune (120 samples)
SegEarth-R1 45.37 45.46
Geo-R1 54.73 56.01

10-shot Fine-tune (240 samples)
SegEarth-R1 56.40 56.60
Geo-R1 57.78 58.27

First, we found our GRPO-trained model, i.e., Geo-
R1, demonstrates a significant improvement com-
pared to the zero-shot baseline. It achieves a gIoU
increase of up to 38.48% on the validation set (from
19.35% to 57.78%) and up to 26.11% on the test set
(from 32.16% to 58.27%), showing the success of
RL-based post-training paradigm. Then, we observe
that the model exhibits remarkable performance with
a very small number of samples. With just 240 sam-
ples (10-shot), our model demonstrates a compara-
ble performance with PixelLM, which are trained
on 900K instances with descriptions. Using only
240 samples (10-shot), which is roughly 2% train-
ing data, Geo-R1 reaches nearly 83% of the perfor-
mance of the SegEarth-R1 model that was trained on
the entire training set.

In a direct comparison, the GRPO pipeline consis-
tently yields superior models to the SFT approach.
Geo-R1 outperforms SegEarth-R1 in both the 10-
shot and 5-shot settings. Crucially, this performance
gap becomes more significant as the amount of train-
ing data decreases. This trend indicates that RL-
based post-training paradigm is a more effective and
sample-efficient method for adapting large VLM to
this specialized, pixel-level task, especially in data-
scarce scenarios.

4 DISCUSSION

In this section, we first compare the learning dynamics of SFT and GRPO, then examine cross-
dataset generalization, the upper bound of few-shot learning, and the impact of model size. Unless
otherwise specified, experiments are conducted on the VRSBench-FS dataset under the 10-shot
setting.

4.1 LEARNING CURVE COMPARISON
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Learning Curve Comparison: GRPO vs. SFT
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SFT
Performance Gap

Figure 2: Learning curves of GRPO vs. SFT
on REC.

We fine-tune Qwen2.5-VL-3B with both SFT and
GRPO on the REC task using same batch size and
evaluate checkpoints every 100 steps to sketch the
learning curve. As shown in Figure 2, GRPO con-
sistently outperforms SFT at every checkpoint, with
an average gain of 9.74%. GRPO improves steadily,
peaking around 400 steps, and remains strong until
the end, whereas SFT oscillated within 37%–40%.
GRPO achieves a clearly higher ceiling and sta-
bilizes around 50%, indicating better training effi-
ciency under few-shot setting.
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4.2 CROSS DATASET GENERALIZATION

Table 5: Cross Dataset Evaluation.
VRSBench −→ DIOR-RSVG EarthReason −→ RRSIS-D

# shot SegEarth-R1 Geo-R1 SegEarth-R1 Geo-R1
1-shot 32.35 37.27 (+4.92) 18.77 32.11 (+13.34)

5-shot 34.52 40.57 (+6.05) 20.29 36.41 (+16.12)

10-shot 34.86 40.38 (+5.52) 24.27 37.83 (+13.56)

We further assess the cross-dataset generaliza-
tion of the SFT and GRPO approaches on the
GREC and GRES tasks. For the GREC task,
we fine-tune models on the VRSBench dataset
with limited supervision (1, 5, and 10-shot) and
then evaluate model performance on the DIOR-
RSVG target dataset, in a zero-shot manner. As
shown in Table 5, GRPO consistently outper-
forms SFT across all settings, achieving a performance advantage of 4.92%, 6.05%, and 5.52% in
the 1-shot, 5-shot, and 10-shot scenarios, respectively.

Similarly, for the GRES task, models were tuned on the EarthReason dataset (1, 5, and 10-shot) and
tested on the RRSIS-D dataset. Here, the GRPO-based model (Geo-R1) demonstrates a remarkable
improvement over the SFT-based model (SegEarth-R1) under few-shot setting, achieving a relative
improvement up to 80%. These results highlight GRPO’s incredible cross-dataset generalization,
indicating superior transferability and robustness of Geo-R1.

4.3 UPPER BOUND OF FEW-SHOT LEARNING
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Figure 3: Few-shot Learning Upper-Bound.

As shown in Figure 3, GRPO clearly outperforms
SFT in low-shot settings, although this performance
gap narrows as supervision increases. To investi-
gate this trend and determine the upper-bound ca-
pability of Geo-R1, we experimented with addi-
tional shot numbers (20, 50, 100, and 200). Con-
cretely, the margin between GRPO and SFT app-
proaches shrinks from 13.03% at 1-shot to 0.47% at
200-shot. This diminishing advantage suggests both
approaches approach a common upper bound with
more data. Empirically, they converge toward the
full-data SFT result of 62.91%, indicating GRPO’s
strong sample efficiency at small shots but similar
asymptotic performance as shot count grows.

4.4 FEW-SHOT LEARNING MEETS MODEL SIZE
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Figure 4: Few-shot Learning Meets Model
Size.

We then examine how model size influences the per-
formance under different post-training paradigms.
As shown in Figure 4, both SFT and GRPO bene-
fit from increased model scales. However, this trend
exhibits clear diminishing marginal returns. For in-
stance, SFT gains 4.31% when scaling from 3B to
7B but only 2.23% from 7B to 32B, with a similar
slowdown observed for GRPO from 3B to 7B. This
suggests that while larger models provide a stronger
foundation, simply increasing number of parameters
yields limited benefits for the few-shot task. This can
be attributed to the limited fine-tuning data. With
few examples, high-capacity models tend to over-
fit by simply memorizing the training samples rather
than learning generalizable features. Notably, GRPO’s performance decreased on the 32B model,
likely due to two factors: overfitting on limited data and numerical instability from bf16 training.

5 RELATED WORK

Reasoning LLMs and VLMs. The OpenAI o1 (Jaech et al., 2024) showed that RL improves the
reasoning capability of LLMs by learning from feedback on final outcomes. Recently, DeepSeek-
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R1 (Guo et al., 2025) demonstrated that rule-based rewards can be used with the GRPO algorithm
to teach LLMs advanced reasoning skills. Inspired by the success of RL in LLMs, researchers are
now applying the R1 framework to VLMs. R1-OneVision (Yang et al., 2025) created a step-by-
step multimodal reasoning datasets for SFT and RL. Concurrently, R1-V (Chen et al., 2025) applied
the GRPO algorithm to object counting, achieving the remarkable result of a 3B model outper-
forming much larger 72B models. VisualThinker-R1-Zero (Zhou et al., 2025) applied it directly to
base VLMs, observing “visual aha moments”. Other studies refined the training process: Vision-
R1 (Huang et al., 2025) first created a multimodal CoT dataset, serving as a cold-start before RL;
LMM-R1 (Peng et al., 2025) used a two-phase strategy, starting with text-only reasoning before
fine-tuning on multimodal data. Visual-RFT (Liu et al., 2025b), VLM-R1 (Shen et al., 2025), and
Seg-Zero (Liu et al., 2025a) explored applying RL to image perception tasks.

Few-shot Learning in Remote Sensing. Few-shot learning (FSL) is crucial in RS, since it effec-
tively addresses the challenge of limited labeled data. Attention-based contrastive learning have
been shown to significantly improve classification accuracy in scene classification tasks (Xu et al.,
2024; Zeng & Geng, 2022). Prototype-based networks (Li et al., 2021; Cheng et al., 2022) and
multi-scale feature fusion strategies (Zhao et al., 2022) help models obtain diverse object character-
istics, achieving state-of-the-art results on RS object detection benchmarks under few-shot settings.
For segmentation, adaptive prototype clustering and mask-guided correlation learning enable pre-
cise pixel-level interpretation even with few annotated samples (Jiang et al., 2022; Jia et al., 2025;
Li et al., 2024b; Shen et al., 2024). FSL enhances the efficiency and interpretability of RSI analysis,
while also addressing key challenges in generalization and multimodal integration (Sun et al., 2021;
Lee et al., 2024).

REC and RES in Remote Sensing. Referring expression comprehension in remote sensing—often
termed remote sensing visual grounding (RSVG), which localizes a target in aerial imagery from
a natural-language description. Early progress was established by the RSVG benchmark and the
GeoVG model (Sun et al., 2022), and extended by DIOR-RSVG to broaden categories and scene
scale (Zhan et al., 2023). In the MLLM era, GeoChat (Kuckreja et al., 2024) was the first MLLM
to handle a wide range of RS vision-language tasks, including RSVG. Later, VRSBench (Li et al.,
2024c) provided a high-quality dataset for RSVG task. RS-specific MLLMs such as EarthGPT
(Zhang et al., 2024), RSGPT (Hu et al., 2025), SkySenseGPT (Luo et al., 2024), VHM (Pang et al.,
2025), further unified different vision-language tasks, such as captioning, VG, VQA, and OVD,
thus improving RS-specific alignment. For RES, Yuan et al. introduced the RES task for RS and
released the RefSegRS dataset (Yuan et al., 2024). Liu et al. later introduced RRSIS-D, enabling
pixel-level referring at scale (Liu et al., 2024d). Recent works such as GeoGround (Zhou et al.,
2024b) and Skysense-O (Zhu et al., 2025) further unified the REC and RES tasks for RS images.
Besides, works for OVD (Li et al., 2024e; Pan et al., 2025), and OVS (Li et al., 2025a;b) can be
viewed as a special case of REC and RES (locate multiple objects with template-based description),
which support grounding of novel categories.

6 CONCLUSION

In this work, we define a generic task, Referring Expression Understanding that aims to recog-
nize objects (either detection/segmentation) from referring expressions. We then compare RL-based
(GRPO) and SFT-based post-training paradigms on few-shot REC, OVD, and GRES tasks within the
RS domain. Our results show that our GRPO-trained model, Geo-R1, consistently outperforms stan-
dard SFT-tuned models across these tasks. The performance gains are particularly large in low-shot
regimes, and the model exhibits significantly stronger cross-dataset generalization.

While our study demonstrates the effectiveness of reinforcement learning for few-shot referring
expression understanding, several avenues remain. Our evaluation is limited to high-resolution aerial
imagery; extending Geo-R1 to multispectral (e.g., Sentinel-2) and SAR data would further test its
robustness. Beyond the three REU tasks studied (REC, RES, OVD), future work could explore
broader grounding tasks, e.g., OVS. Finally, scaling to larger shots, refining reward functions, and
designing powerful RL training recipes remain promising directions.
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A THE USE OF LARGE LANGUAGE MODELS

The LLMs were used in three ways: (i) to edit and polish grammar and phrasing; (ii) using “Deep-
Research” to help retrieve and cluster related literature (with all citations verified by the authors).
We reviewed, verified, and take full responsibility for the contents.

B REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. When we trained the SFT model,
GRPO model and DAPO model, all the random seeds are fixed. Our implementation is built upon
VLM-R1 and Easy-R1 codebase. All datasets used in our experiments, such as VRSBench, NWPU,
EarthReason, RRSIS-D, and DIOR-RSVG, are publicly available. All models, training recipes will
be open-sourced in http://geo-r1.github.io to make sure the results presented in our main
paper are reproducible.

C PROMPT TEMPLATE

We largely follow the VLM-R1 prompt templates for REC, OVD, and extend the same interface to
the GRES setting. We append the thinking template at the end for all task prompts.

Prompt Template of REC

Please provide the bounding box coordinates of the region this sentence describes: {query}.

Prompt Template of OVD

Please carefully check the image and detect the following objects: {target list}. Output
each detected target’s bbox coordinates in JSON format. The format of the bbox coordinates is:

‘‘‘json
[
{

"bbox_2d": [x1, y1, x2, y2],
"label": "category name"

},
{

"bbox_2d": [x1, y1, x2, y2],
"label": "category name"

}
]
‘‘‘

If there are no such targets in the image, simply respond with None.

14
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Prompt Template of GRES

Please carefully check the image and answer: {query}. Based on your answer, detect all
relevant objects in the image. Output each detected target’s bbox coordinates in JSON format.
The format of the bbox coordinates is:

‘‘‘json
[
{

"bbox_2d": [x1, y1, x2, y2],
"keypoint1": [x3, y3],
"keypoint2": [x4, y4]

},
{

"bbox_2d": [x1, y1, x2, y2],
"keypoint1": [x3, y3],
"keypoint2": [x4, y4]

}
]
‘‘‘

Thinking Template

{problem} Output the thinking process in <think> </think> and final answer in <answer>
</answer> tags.

D DEMO

We visualize the model’s reasoning process for demonstration. Figure 5 shows some successful case
on GRES task, while Figure 6 illustrates examples on GREC tasks. In general, Geo-R1 is able to
provide a reasonable thinking process that leads to the accurate answer.

Question: If an individual is seeking to engage in a team sport 
outdoors in a city park, which location would provide ample 
spaceand proper facilities?

Output: <think> The image shows two basketball courts in a city 
park. These courts are designed for team sports and have 
propermarkings and dimensions. They are surrounded by a paved 
area, which suggests they are well-maintained and 
accessible.Therefore, these courts would provide ample space and 
proper facilities for engaging in a team sport. </think> 
<answer>[     {"bbox_2d": [50, 83, 216, 172], "keypoint1": [82, 
122], "keypoint2": [179, 122]} ] </answer>

Question: What specific facilities should individuals identify on 
the map for playing a game that requires a three-point line?

Output: <think> The image shows an aerial view of a schoolyard 
with multiple sports courts. To play a game that requires athree-
point line, such as basketball or volleyball, one would need to 
identify the basketball court. The basketballcourt has a clearly 
marked three-point line, which is essential for the game. 
Therefore, the relevant object to identifyis the basketball court. 
</think> <answer> [     {"bbox_2d": [60, 95, 187, 154], 
"keypoint1": [120, 120], "keypoint2":[100, 128]} ] </answer>

Question: What specific infrastructure changes would be 
essential to alleviate traffic congestion effectively during the 
busiesthours of the day?

Output: <think> To alleviate traffic congestion effectively during 
the busiest hours of the day, several infrastructure changescould 
be implemented: these include the optimization of traffic signals, 
improving public transportation services, and the addition of 
bicycle lanes. Therefore, road intersections are the key place 
where these changes should be made. </think> <answer> 
[     {"bbox_2d": [92, 100, 247, 222],"keypoint1": [120, 176], 
"keypoint2": [120, 180]} ] </answer>

Figure 5: Geo-R1 inference samples (success case for GRES).
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Question: Please provide the bounding box 
coordinate of the region this sentence describes: 
The airplane positioned at the top-most part of 
the view.

Output: <think> The task is to identify and 
provide the bounding box coordinates for the 
airplane positionedat the top-most part of the 
view. The image shows an airport scene with 
multiple airplanes. The top-most airplane is 
clearly visible and is the largest object in the 
image. It is positioned above theother aircraft 
and is connected to a jet bridge, indicating it is 
at the gate. </think><answer>{"bbox_2d": [153, 
40, 416, 291], "label": "The airplane positioned 
at the top-most part ofthe view."}</answer>

Question: Please carefully check the image and detect 
the following objects: airplane. 
Output: 
<think>I will analyze the image to identify any airplanes 
present. I can see three distinct aircraft on the runway. 
One is closer to the foreground, another is further back, 
and the third is flying above the runway. These are the 
only objects that match the description of 
airplanes.</think>
<answer>```json
[
    {"bbox_2d": [407, 395, 458, 442], "label": "airplane"},
    {"bbox_2d": [426, 180, 473, 221], "label": "airplane"},
    {"bbox_2d": [560, 462, 612, 521], "label": "airplane"}
]``` </answer>

Question: Please carefully check the image and detect the 
following objects: airplane.
Output: 
<think>The image shows an aerial view of an airport 
runway with several airplanes parked on it. There are six 
airplanes visible in the image, arranged in a line parallel to 
the runway. Each airplane has its distinctive features, such 
as wings and tail sections, clearly visible.
Given the description, I can identify the airplanes based on 
their positions and characteristics. The first airplane is on 
the left side of the image, followed by five more airplanes 
in a row towards the right.</think><answer>```json
[
    {"bbox_2d": [43, 295, 97, 364], "label": "airplane"},
    {"bbox_2d": [348, 294, 395, 360], "label": "airplane"},
    {"bbox_2d": [533, 279, 608, 345], "label": "airplane"},
    {"bbox_2d": [642, 281, 696, 336], "label": "airplane"},
    {"bbox_2d": [740, 272, 797, 342], "label": "airplane"},
    {"bbox_2d": [847, 272, 894, 339], "label": "airplane"}
]```</answer>

Question: Please provide the 
bounding box coordinate of the 
region this sentence describes: The 
vehiclelocated at the left-most in the 
center line of parking spaces.

Output: <think> The task is to 
identify the vehicle located at the left-
most in the center line of 
parkingspaces. The image shows a 
parking lot with several cars parked in 
designated spaces. The center line of 
parking spaces is the second row from 
the top, and the left-most vehicle in 
this row is a dark-colored car. 
</think> <answer>{"bbox_2d": [199, 
249, 245, 331], "label": "The vehicle 
located at theleft-most in the center 
line of parking spaces."}</answer>

Figure 6: Geo-R1 inference samples (success case for GREC).

In general, Geo-R1 is able to provide a reasonable thinking process that leads to an accurate answer.
However, we also identify key failure modes that highlight a disconnect between an often-plausible
reasoning process and the final spatial output.

As shown in the top-left of Figure 7, the model can correctly reason in its reasoning process that
the park area is the most suitable region for wildlife preservation, yet its final answer incorrectly
grounds this concept to the nearby sports facility. In the bottom-right example, the model’s reason-
ing correctly identifies the presence of multiple ships, but the final answer detects only the cluster
on the left while omitting the group on the right. Furthermore, we also observe failures in reason-
ing process, the bottom-left example shows a failure within the reasoning process itself. Although
the model accurately understands the task in its reasoning block (to identify the ‘large vehicle’), it
subsequently fails to apply this critical size attribute, incorrectly selecting a much smaller, adjacent
vehicle for its final answer. These cases suggest that a key area for future improvement is strength-
ening the alignment between the model’s high-level semantic understanding and the generation of
accurate, complete, and precise spatial coordinates.

Question: Please carefully check the image and detect 

the following objects: airplane.

Output: 

<think>The image shows an aerial view of an airport 

runway with several airplanes parked on it. There are six 

airplanes visible in the image, arranged in a line parallel 

to the runway. Each airplane has its distinctive features, 

such as wings and tail sections, clearly visible.

Given the description, I can identify the airplanes based 

on their positions and characteristics. The first airplane is 

on the left side of the image, followed by five more 

airplanes in a row towards the 

right.</think><answer>```json

[

{"bbox_2d": [43, 295, 97, 364], "label": "airplane"},

{"bbox_2d": [348, 294, 395, 360], "label": "airplane"},

{"bbox_2d": [533, 279, 608, 345], "label": "airplane"},

{"bbox_2d": [642, 281, 696, 336], "label": "airplane"},

{"bbox_2d": [740, 272, 797, 342], "label": "airplane"},

{"bbox_2d": [847, 272, 894, 339], "label": "airplane"}

]```</answer>

Question: If you had the opportunity to aid in the preservation 

of local wildlife, which specific region would capture your 

interest?

Output: 

<think> The image shows an aerial view of a suburban area 

with residential houses, a park, and a sports facility. 

Topreserve local wildlife, I would be interested in the park 

area as it provides a natural habitat for various species. The 

park is surrounded by greenery and has open spaces that can 

support wildlife. Therefore, the region that captures my 

interest for preserving local wildlife is the park. </think> 

<answer> [ {"bbox_2d": [850, 607, 1209, 936], "keypoint1": 

[970, 666], "keypoint2": [970, 700]} ] </answer>

Question: Please provide the bounding box 

coordinate of the region this sentence describes: 

The large vehicle located at the top-left of the 

image with its rear closest to the top edge.

Output: 

<think> The task is to identify the bounding box 

for the large vehicle located at the top-left of the 

image with its rear closest to the top edge. The 

image appears to be an aerial view of a parking 

area with several vehicles. The vehicle in question 

is a large, rectangular object with a visible rear 

section, positioned towards the top-left corner of 

the image. It is distinct from the smaller vehicles 

and has a more substantial size, which aligns with 

the description of a large vehicle.

</think> <answer>{"bbox_2d": [33, 13, 84, 108], 

"label": "The large vehicle located at the top-left 

of the image with its rear closest to the top 

edge."}</answer>

Figure 7: Geo-R1 inference samples (failure case).
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E ADDITIONAL EXPERIMENTS

E.1 ABLATION STUDY ON FORMAT REWARD

Table 6 shows that without the format reward, Geo-R1 exhibits slightly degraded performance on
both REC and GRES tasks. Empirical results also show that Geo-R1 w/o format reward requires
much longer training time to converge (about 1.6× longer for REC, 1.7x longer for OVD and 1.3x
longer for GRES) compared to Geo-R1 w/ format reward.

Table 6: Ablation on Format Reward.
REC (Acc@0.5) GRES-val (gIoU) GRES-test (gIoU) OVD (mAP)

Geo-R1 w/ format reward 50.59 57.78 58.27 34.92
Geo-R1 w/o format reward 48.23 56.61 57.24 34.64

E.2 ABLATION STUDY ON PENALTY OF OVERLONG OVD PREDICTION RESULT

Table 7 shows that without the length penalty reward, Geo-R1 exhibits significantly degraded per-
formance on the OVD task.

Table 7: Ablation on Length Penalty of OVD task.
OVD (mAP)

Geo-R1 w/ length penalty 34.92
Geo-R1 w/o length penalty 27.52

E.3 VARIANCE AND ROBUSTNESS REPORT

The few-shot training samples were randomly selected. To further assess robustness with respect to
shot selection, we re-sampled the training data using different random seeds and re-ran the experi-
ments for the REC and GRES tasks. For OVD, we re-sampled with 3 different random seeds due
to time constraint and report 5-shot result (10-shot setting for OVD is hard to re-sample different
samples). As shown in the Table 8, our model exhibits stable performance across 10 different seeds,
with standard deviations below 1%.

Table 8: Robustness with Different Few-shot Samples.
Task Metrics Reported (Seed 42) Average ± std Seed 43 Seed 44 Seed 45 Seed 46 Seed 47 Seed 48 Seed 49 Seed 50 Seed 51 Seed 52
REC Acc@0.5 50.59 49.46± 0.95 49.90 49.76 50.34 49.77 50.28 47.43 49.20 49.61 50.33 47.99
GRES-Val gIoU 57.78 59.19± 0.31 59.08 58.78 59.41 59.58 59.57 58.80 59.33 59.52 58.89 58.94
GRES-Test gIoU 58.27 58.05± 0.63 59.00 58.20 58.18 57.27 58.41 57.10 58.47 58.59 58.17 57.11
OVD mAP 33.20 34.29± 0.45 34.36 33.71 34.79

E.4 ADDITIONAL RESULT FOR REC TASK (OPT-RSVG DATASET)

To validate the effectiveness of Geo-R1, we further test the Geo-R1 on OPT-RSVG (Li et al., 2024a)
dataset under a zero-shot setting. SFT baseline is compared, and we report the Acc@0.5. Result can
be seen in Table 9. From this Table, our Geo-R1 model shows significantly better performance than
the SFT counterpart.
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Table 9: REC Result on OPT-RSVG Dataset.
Val Test

SFT 30.24 31.06
Geo-R1 33.76 34.29

E.5 THINKING V.S. NOT THINKING

We provide RFT results with and without thinking in Table 10. Overall, RL training with thinking
provides slightly better performance and much better interpretability. Moreover, RFT consistently
outperforms SFT regardless of whether thinking is applied.

Table 10: Comparison on models with and without Thinking
REC (Acc@0.5) OVD (mAP)

SFT 38.29 30.20
Geo-R1 w/ thinking 50.59 34.92
Geo-R1 w/o thinking 48.10 32.79

E.6 PARAMETER EFFICIENT FINETUNING FOR GEO-R1

we train our Geo-R1 model using LoRA (rank = 64, alpha = 128), and the results are shown in the
Table 11 below. Results show that combining LoRA with Geo-R1 slightly hurts the performance
and does not save much training time compared with full fine-tuning (9 hours vs. 10 hours). This
is because the rollout operation dominates the GRPO training process, while updating the LLM
accounts for only a small portion of the total time.

Table 11: Parameter Efficient Finetuning for Geo-R1.
REC (Acc@0.5) GRES-val (gIoU) GRES-test (gIoU)

Geo-R1 LoRA 47.62 51.46 53.89
Geo-R1 full-finetune 50.59 57.78 58.27

E.7 COMPARISON WITH OTHER APPROACHES.

We add a comparison, Grounding-DINO (Liu et al., 2024c), for REC task. Specifically, the
Grounding-Dino-T is fine-tuned with 10-shot and 5-shot REC data for 30 epoch, using Open-
Grounding-Dino framework 4. The result can be seen in Table 12.

Table 12: Comparison with Other Approaches.
10-shot 5-shot 1-shot

Grounding-DINO 37.65 26.52 22.51
Qwen2.5-VL-SFT 38.29 35.21 32.75
Geo-R1 50.59 47.62 45.78

4https://github.com/longzw1997/Open-GroundingDino
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E.8 ASSESSMENT ON GENERATED REASONING CHAINS

To further validate reasoning quality, we conducted an additional analysis in which we prompted
Qwen3-VL-235B-A22B-Thinking 5 to automatically evaluate a randomly sampled subset of rea-
soning chains whose corresponding predictions have IoU > 0.5 on the VRSBench test set (1500
samples). We carefully designed prompts to assess both the correctness and usefulness of the rea-
soning toward the final prediction, assigning score on a 1–10 scale. As summarized in the Figure 8,
the average reasoning quality score is 8.03 with std of 1.47, indicating that the majority of generated
reasoning chains are reasonable, informative, and supportive of the final predictions.
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Figure 8: Statistics of Quality Assessment on Generated Reasoning Chains.

CoT Quality Evaluation Prompt

You are a strict evaluator for a vision–language model that performs referring expression
comprehension (visual grounding) on remote sensing images.

For each sample, you will be given:
• image: a remote sensing / aerial image.
• question: a natural–language referring expression describing a target region.
• ground truth: the correct bounding box of the referred region: [x min,
y min, x max, y max].

• model output: the model’s full output, which contains:
– a reasoning Chain-of-Thought between <think> ... </think>,
– a final JSON-style prediction between <answer> ... </answer>with

a predicted bbox bbox 2d.
• extracted answer: the predicted bbox [x min, y min, x max,
y max] parsed from the final answer.

• correct: whether the final prediction is counted as correct (1 or 0).
Your job: only evaluate the reasoning text inside <think>...</think> and output a
single overall quality score from 1 to 10 (higher is better).
You should internally consider two aspects:

1. Correctness of the reasoning.
2. Usefulness of the reasoning.

But your final output must be just one combined score that reflects both.
Do not change the model’s prediction. Do not generate a new bounding box.

5https://github.com/QwenLM/Qwen3-VL
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1. Criterion to Consider When Scoring
1.1. Correctness
Correctness measures how factually accurate and logically sound the reasoning is, relative
to:

• the image content,
• the question / referring expression,
• the ground-truth bounding box and the predicted bounding box.

Key points:
1. Visual faithfulness

• The reasoning should accurately describe what is visible (object categories,
spatial relations, comparative relations, etc.).

• Penalize:
– referring to objects that do not exist in the image,
– clearly wrong locations (e.g., calling a top–left object “bottom–right”),
– confusing object types (e.g., calling a tennis court a baseball field).

2. Consistency with ground-truth and prediction
• Use ground truth and extracted answer to understand which region

is correct and how close the prediction is.
• If the predicted bbox is near the ground truth and the reasoning clearly sup-

ports this localization, correctness should be high, as long as there are no
serious hallucinations.

• If the predicted bbox is far from ground truth and the reasoning is based on
the wrong object/region, correctness should be low, even if the text is fluent.

3. Logical consistency
• The reasoning should be internally coherent:

– no self-contradiction (e.g., first says “top–left” then “bottom–right” for the
same object),

– no obvious contradiction with the predicted bbox (e.g., reasoning says the
object is “top–left” but the predicted box is in bottom–right).

Rule: If correctness is extremely low (e.g., the reasoning clearly focuses on a completely
wrong object or is mostly hallucinated), the final overall score must also be low (around
1–3), no matter how nicely written it is.

1.2. Usefulness
Usefulness measures how helpful and informative the reasoning is for explaining why the
model chose the final bounding box.
Key points:

1. Task-specific grounding
• A useful CoT clearly connects the question to the image:

– identifies candidate objects that match the category (ships, vehicles, fields,
buildings, etc.),

– compares positions (left-most, bottom-most, near center, near boundary,
etc.),

– uses context (e.g., “among the ships”, “in the bottom-left corner”, “be-
tween two runways”, “inside the stadium”, “on the water, not on land”).

• Penalize:
– CoT that just paraphrases the question without adding visual evidence,
– very generic lines (“I look at the image and find the object described”)

with no actual reasoning.
2. Conciseness and relevance

• Prefer reasoning that is focused on the grounding task.
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• Penalize:
– very long but repetitive reasoning that adds no extra information,
– completely off-topic storytelling.

2. How to Combine into a Single Score (1–10)
You must convert your internal judgment about correctness and usefulness into a single
integer score from 1 to 10.
Use the following guidelines:

• 9–10 (Excellent overall quality): reasoning is highly correct (no major factual
or spatial mistakes, no hallucinations, strongly aligned with the correct region)
and highly useful (explicitly ties language to visual evidence, considers candidates,
compares positions, and explains why the final region is chosen). This is the kind
of CoT you would want as a gold standard teaching signal.

• 7–8 (Good overall quality): reasoning is mostly correct, with at most minor inac-
curacies or slight vagueness. It is useful but may miss some steps or be less detailed
(e.g., fewer explicit candidate comparisons). Still clearly grounded and helpful.

• 4–6 (Mixed / moderate quality): reasoning is partially correct (right general area
or object type) but has notable gaps, imprecision, or some incorrect statements.
Usefulness is limited: some connection between question and image exists, but
the explanation is shallow, generic, or incomplete. This range also includes cases
where the CoT is well structured but correctness is only moderate.

• 1–3 (Poor overall quality): reasoning is mostly incorrect or hallucinated, focusing
on the wrong object or contradicting obvious visual evidence, or is so vague/generic
that it provides almost no real grounding. Even if the final predicted bbox happens
to be correct, if the CoT is wrong or useless, the score must remain low.

3. Evaluation Procedure
For each sample:

1. Understand the target: read the question to understand what region is being re-
ferred to (e.g., “left-most ship”, “top-center soccer field”, “vehicle at bottom-right”,
“bridge in the middle”).

2. Inspect ground-truth and prediction: use ground truth and
extracted answer to understand which region is correct and which re-
gion was chosen by the model. This helps you judge if the reasoning aligns with
the proper region.

3. Read the CoT inside <think>...</think>: ignore anything outside
<think>...</think> for scoring. Evaluate how correct and how useful this
reasoning is as described above.

4. Assign a single overall score (1–10): combine correctness and usefulness as de-
scribed in Section 2. Also provide a brief explanation of why you chose this score.

4. Output Format
Return your evaluation as a Python-style dictionary literal, with no extra text:

{
"score": <integer 1-10>,
"explanation": "<1-3 short sentences explaining your

judgment of correctness and usefulness together>"
}
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