ENHANCING NEAR OOD DETECTION IN PROMPT LEARNING: MAXIMUM GAINS, MINIMAL COSTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Prompt learning has shown to be an efficient and effective fine-tuning method for vision-language models like CLIP. While numerous studies have focused on the generalisation of these models in few-shot classification, their capability in near out-of-distribution (OOD) detection has been overlooked. A few recent works have highlighted the promising performance of prompt learning in far OOD detection. However, the more challenging task of few-shot near OOD detection has not yet been addressed. In this study, we investigate the near OOD detection capabilities of prompt learning models and observe that commonly used OOD scores have limited performance in near OOD detection. To enhance the performance, we propose a fast and simple post-hoc method that complements existing logit-based scores and can be easily applied to any prompt learning model without change in architecture or model re-training while keeping the same classification accuracy. Our method boosts existing prompt learning methods' near OOD detection performance in AUROC by up to 11.67% with minimal computational cost. Comprehensive empirical evaluations across 13 datasets and 8 models demonstrate the effectiveness and adaptability of our method¹.

- 028 1 INTRODUCTION
- 029

004

006

008 009

010 011

012

013

014

015

016

017

018

019

020

021

024

025

026 027

Pre-trained vision-language models such as ALIGN (Jia et al., 2021) and CLIP (Radford et al., 2021)
 have shown outstanding visual-text understanding by learning to align image features and textual
 features of a large-scale image-text dataset via contrastive learning. Consequently, CLIP naturally
 excels at zero-shot image classification, utilising a class name as natural language text instead of
 arbitrarily numbered category. For instance, cosine similarity between encoded image feature of an
 image and encoded textual feature of "a photo of a [CLASS]." with a class name as "[CLASS]" can
 perform zero-shot classification without requiring any additional classification head. Logits with
 different class names can then be transformed to probabilities by using the softmax function.

While CLIP's zero-shot capabilities are impressive, recent studies have highlighted its sensitivity
to prompt wording. For instance, Zhou et al. (2022b) demonstrated that small variations in prompt
structure (e.g., "a photo of a [CLASS]" vs. "a photo of [CLASS]") can lead to significant accuracy
drops, sometimes exceeding 5% on standard benchmarks like Caltech101 (Fei-Fei et al., 2004). This
observation has led to an emerging research direction of prompt learning for few-shot classification
with vision-language models (Zhou et al., 2022b;a; Yao et al., 2023; Zhu et al., 2023; Khattak et al.,
2023a;b), which optimises continuous context vectors in the word-embedding space, eliminating the
need for handcrafting prompts.

Although existing methods have shown success in this area, the majority focus primarily on enhancing classification accuracy, leaving the equally important task of out-of-distribution (OOD) detection underexplored. OOD detection is crucial for real-world, safety-critical applications such as autonomous driving, healthcare, and industrial automation, where models must perform reliably under unfamiliar or unexpected conditions. In these applications, excelling in in-distribution (ID) classification is not enough. Models must also be capable of detecting and effectively handling OOD samples. Here, we focus on the more challenging task of *near OOD detection* (Yang et al., 2023;

¹Codes are available at near-OOD-prompt-learning-25D1

https://anonymous.4open.science/r/

2022; Zhang et al., 2023b; Fort et al., 2021; Ren et al., 2021; Winkens et al., 2020). Near OOD detection refers to a scenario where OOD samples share the same domain as ID samples but have different label space (e.g., both ID and near OOD samples are flower images with no overlapping classes).

058 In this paper, we focus on developing a post-hoc method to enhance near OOD detection performance for prompt learning methods in vision-language models without the need to retrain them. To 060 the best of our knowledge, only a few existing works address related problems, and none of them 061 address this specific problem directly. Specifically, Bai et al. (2023); Miyai et al. (2023) investi-062 gated far OOD detection, where OOD samples come from completely different domains. However, 063 these methods are not post-hocs, which require to train the models from scratch. In addition, near 064 OOD tasks are out of their consideration. Existing logit-based OOD scores, such as MaxLogit score (Hendrycks et al., 2022) or Energy score (Liu et al., 2020), which estimate a model's confi-065 dence in its predictions, can be applied to our case in a post-hoc manner. However, these scores 066 are not specifically designed for vision-language models like CLIP where overlapping score distri-067 butions between ID and OOD samples often result in poor detection performance, especially in the 068 near OOD tasks. 069

- 070 We address the above problem by proposing a
- 071 simple yet novel and effective approach, which introduces a new logit-based score named 072 Marginal Logit Score (MLS), computed from 073 the output logits of an existing method. Tai-074 lored for vision-language models, the key idea 075 of MLS is measuring the difference between 076 the existing logit scores and a new comple-077 mentary score named Context score. MLS creates clearer separation between ID and near 079 OOD samples, leading to substantial performance gains. Notably, our method does not re-081 quire any change to the model architecture and does not involve retraining, making it highly efficient and adaptable. Table 1 demonstrates the 083

Table 1: Improvement of near OOD AUROC using MaxLogit score with our method on 1-shot Caltech101 (Fei-Fei et al., 2004) with wall-clock time measured for the method. Refer to Section 5 for details.

Model	\triangle AUROC	Computation Time (s)
CoOp (Zhou et al., 2022b)	+2.66	0.988
CoCoOp (Zhou et al., 2022a)	+5.05	1.703
IVLP (Khattak et al., 2023a)	+3.79	1.055
KgCoOp (Yao et al., 2023)	+7.09	0.989
ProGrad (Zhu et al., 2023)	+5.90	0.994
MaPLe (Khattak et al., 2023a)	+5.74	0.974
PromptSRC (Khattak et al., 2023b)	+6.09	1.005
LoCoOp (Miyai et al., 2023)	+10.57	1.153

performance gain of MLS when used with existing methods.

We validate our method across 13 diverse datasets and 8 state-of-the-art prompt learning models.
Our experiments show that our framework improves near OOD detection performance by up to
11.67% in terms of AUROC, without affecting the classification accuracy of the underlying models.
This demonstrates the versatility and effectiveness of our approach in real-world applications.

089 090

091 092 2 BACKGROUND

2.1 CONTRASTIVE LANGUAGE-IMAGE PRE-TRAINING (CLIP)

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021), a pre-trained vision-094 language model learned to align 400 million image-text pairs, is renowned for its powerful zero-shot 095 image classification performance. It measures cosine similarity between image feature of an unseen 096 image and textual feature of a text prompt formatted as "a photo of a [CLASS]" where [CLASS] is 097 the name of a class in a label space of interest. Formally, given an image $I \in \mathbb{R}^{H \times W \times 3}$ with H 098 being the height and W being the width and a text prompt \overline{T} = "a photo of a [CLASS]", a classification logit is computed by $(\text{Enc}_{I}(I), \text{Enc}_{T}(T))$ where $\langle \cdot, \cdot \rangle$ is cosine similarity, $\text{Enc}_{I}(\cdot)$ is an image 100 encoder, and $Enc_{T}(\cdot)$ is a text encoder. The image encoder can be either ResNet (He et al., 2016) or 101 Vision Transformer (ViT) (Dosovitskiy et al., 2021), and the text encoder is Transformer (Vaswani 102 et al., 2017). For the brevity of notation, we omit the notations of the encoders for the remainder of 103 the paper.

104

- 105 2.2 PROMPT LEARNING OF CLIP
- 107 Prompt learning of CLIP was first introduced by Zhou et al. (2022b) through Context Optimization (CoOp), which adapts popular prompt learning techniques from the natural language pro-

108 cessing (NLP) field to CLIP. It addresses the issue of CLIP's classification being sensitive to the prompt's prefix (e.g., a large performance gap between when using "a photo of a [CLASS]" 110 and "a [CLASS]") by optimising the prefix with few-shot samples. CoOp learns M continuous 111 context vectors $V = \{V_1, V_2, \cdots, V_M\}$ within word-embedding space where $V_i \in \mathbb{R}^D$ is the i^{th} vector with D being the word-embedding dimension. The learnable prompt is formalised as $P = \{V_1, V_2, \cdots, V_M, C\}$ where $C \in \mathbb{R}^D$ is the word-embedding of a class name appended to 112 113 the context vectors. The classification logit of i^{th} class is then computed by $\langle I, P_i \rangle$ where P_i is the 114 learnable prompt with the i^{th} class name. The probability is estimated by the softmax function as 115 $p(y = i|I, P_i) = \frac{\exp(\langle I, P_i \rangle / \tau)}{\sum_{k=1}^{K} \exp(\langle I, P_k \rangle / \tau)}$ where K is the total number of classes and τ is the temperature scale. Cross-entropy loss is then minimised to learn the context vectors. Note that the only 116 117 learnable parameters that are common among different prompt learning models are the M context 118 vectors. Since the introduction of CoOp, a number of subsequent works have aimed to improve its 119 ID accuracy and generalisability with modifications in model architecture or additional loss terms 120 (See Section 4). The aim of the paper is to develop a post-hoc approach that improves near OOD 121 detection performance while being agnostic to base prompt learning models. 122

123 124

2.3 NEAR OUT-OF-DISTRIBUTION DETECTION

125 OOD detection is largely categorised as far OOD detection and near OOD detection based on the dis-126 tribution shift between an ID test dataset and an OOD dataset along with difficulty of detection (Ren 127 et al., 2021; Fort et al., 2021; Yang et al., 2021; 2022; Zhang et al., 2023b). Far OOD datasets have 128 covariate shift in images (i.e., OOD samples are from domains that differ from the training set), and 129 near OOD datasets which are more challenging to detect involve semantic shift (i.e., OOD samples 130 are drawn from the same domain as the training set but belong to previously unseen label classes). 131 Near OOD detection is also synonymous with fine-grained OOD detection (Zhang et al., 2023a) and hard OOD detection (Li et al., 2024; Ming et al., 2022). 132

In this paper, we study near OOD detection via prompt learning of CLIP, a new research problem to which no existing methods are tailored. Given a trained CLIP prompt learning method, we focus on post-hoc approaches that compute a score from the logits of the method to determine whether a given image is from ID or from OOD, which can be written as:

137 138

139 140

141

142 143

144 145 146

147

155

 $g(I; \{P_i\}_{i=1}^K, \alpha) = \begin{cases} 1 & S(I; \{P_i\}_{i=1}^K) \ge \alpha\\ 0 & S(I; \{P_i\}_{i=1}^K) < \alpha \end{cases}$ (1)

where $g(\cdot)$ is a OOD detector, α is the threshold, and $S(\cdot)$ is a score function. By convention, the ground truth label is 1 for ID samples and 0 for OOD samples.

3 Method

3.1 PROBLEM SETTING

We focus on a near OOD detection problem for prompt learning models of CLIP, which is to detect whether a given image I_{test} is from the ID test dataset \mathcal{D}_{test}^{ID} of (I_{test}^{ID}, y^{ID}) pairs or a near OOD dataset $\mathcal{D}_{test}^{nearOOD}$ of $(I_{test}^{nearOOD}, y^{nearOOD})$ pairs where $y^{ID} \in \{1, \dots, K\}$ is the ID label with K classes and $y^{nearOOD} \in \{1, \dots, L\}$ is the near OOD label with L classes. The ID dataset and the near OOD dataset contain the same types of images (i.e., no covariate shift in images) but have no overlapping classes (i.e., $y^{ID} \cap y^{nearOOD} = \emptyset$). Without loss of generality, we assume that the context vectors V have already been fine-tuned using a prompt learning model with a few-shot ID training dataset and only consider post-training stage in a post-hoc manner.

156 3.2 MOTIVATION

Energy and MaxLogit scores are two widely-used scores in the OOD detection literature (Liu et al., 2020; Hendrycks et al., 2022; Yang et al., 2021; Sun et al., 2022; Yang et al., 2022; Zhang et al., 2023b; Han et al., 2022; Sun et al., 2021). In our prompt learning context, these scores can be used to measure a model's confidence from the output logits (i.e., cosine similarity between image and textual features), based on the assumption that ID samples typically have higher scores than OOD

Figure 1: Density plots of Energy scores (left) and MaxLogit (right) computed with CoOp (Zhou et al., 2022b) on Flowers102 (Nilsback & Zisserman, 2008). Large regions of ID and near OOD samples overlap, which are highlighted by shaded boxes.

samples. Specifically, we have:

Energy Score
$$S_{\text{Energy}} = \tau \log \sum_{i=1}^{K} \exp\left(\langle I, P_i \rangle / \tau\right)$$
 (2)

MaxLogit Score
$$S_{\text{MaxLogit}} = \max_{i} \langle I, P_i \rangle$$
 (3)

184 Energy score can be viewed as an approximation of MaxLogit score when $\tau = 1$ as $\max_{i} \langle I, P_i \rangle \leq 185$ 185 $\log \sum_{i=1}^{K} \exp(\langle I, P_i \rangle) \leq \max_{i} \langle I, P_i \rangle + \log K.$

Although these logit-based scores have been commonly used for OOD detection, they perform sub-optimally in near OOD tasks. This is because near OOD samples often generate logit distributions that closely resemble those of ID samples, causing significant overlap between their score distributions. Figure 1 demonstrates this with a real-world dataset in the near OOD setting, where the overlap makes it difficult to distinguish between the two, leading to poor detection performance.

192 193

173

174

175

176 177

178 179

181

182

183

3.3 PROPOSED SCORE FUNCTION

Our objective is to develop a post-hoc method that improves MaxLogit and Energy scores to enhance
 near OOD detection for any CLIP-based prompt learning model with minimal learning cost.

197
 3.3.1 CONTEXT SCORE AND MARGINAL LOGIT SCORE

199 We first introduce the concept of **Context Score** $S_{\text{Context}} = \langle I, V \rangle$, which represents the cosine 200 similarity between the image feature and the textual feature from the context vectors without any 201 class name. The intuition is that the context vectors capture the general features of the model without associating images with any specific class and this score reflects how well the image aligns with 202 these generic and non-class-specific features. The key insight is that for ID samples, the model 203 should have a strong class-specific association, and therefore the Context score should be relatively 204 low. Conversely, for OOD samples, the model's uncertainty should result in a higher Context score. 205 Given a prompt learning method, Context score can be easily obtained by adding an additional label 206 class with no class name (i.e., extending K classes to K + 1 classes). 207

We argue that Context score is a valuable complement to MaxLogit or Energy score, especially when the difference between these scores is leveraged. Ideally, when a model is given an ID image, it confidently predicts that the image belongs to a specific ID class, resulting in high Energy or MaxLogit score which represents the model's confidence. In contrast, its Context score is much lower, as it is calculated using a prompt lacking the ground-truth class name. This creates a large gap between the original score and the Context score.

Conversely, when the model is given a near OOD image, MaxLogit or Energy score is small as the
 model is uncertain about the image belonging to any ID class. As a result, the gap between the
 original score and Context score is much smaller. This difference between Energy or MaxLogit

Figure 2: An example illustrating the effectiveness of MLS using ID and near OOD samples from Flowers102 (Nilsback & Zisserman, 2008) with the MaxLogit score shown in blue and the Context score shown in grey. While the MaxLogit score between the ID image and the near OOD image is not distinguishable (left bar plot), MLS which subtracts Context score from MaxLogit score is much more distinguishable (right bar plot).

score and Context score can be viewed as an alternative score, which we name *Marginal Logit Score* (*MLS*) defined as:

Marginal Logit Score (Energy)
$$S_{MLS-E} = S_{Energy} - S_{Context}$$
 (4)

Marginal Logit Score (MaxLogit)
$$S_{MLS-M} = S_{MaxLogit} - S_{Context}$$
 (5)

To demonstrate the effectiveness of MLS, we present an ID image and a near OOD image from Flowers102 (Nilsback & Zisserman, 2008) in Figure 2, with MaxLogit scores highlighted in blue and Context scores in grey. The MaxLogit score for the OOD sample is higher than that for the ID sample, indicating the model's failure to differentiate between the two. However, when the Context score is subtracted from the MaxLogit score, MLS is higher for the ID sample, showing that the model can successfully distinguish between the two samples.

We further illustrate its geometric interpretation in Figure 3a and Figure 3b where MaxLogit score and MLS-M are plotted at y-axis and Context score is plotted at x-axis. Geometrically, subtracting Context score from MaxLogit score is the same as applying vertical shearing transformation (Lax, 2007) to the samples, which essentially reduces the overlapping area highlighted by shaded boxes. With the MaxLogit score, the near OOD AUROC is 0.785 which is increased to 0.879 when evaluated with MLS-M.

249 3.3.2 MARGIN SCALE

225

226

227

228

229 230 231

232

233 234

235

236

255

256 257

251 While the simple subtraction of the Context score improves OOD performance, its fixed margin 252 limits adaptability across different models and datasets. To address this, we introduce a coefficient 253 β termed *margin scale* that controls the amount of reduction of Context score from MaxLogit or 254 Energy score in a more flexible manner:

Marginal Logit Score (Energy)
$$S_{\text{MLS-E}} = S_{\text{Energy}} - \beta \cdot S_{\text{Context}}$$
 (6)

Marginal Logit Score (MaxLogit)
$$S_{\text{MLS-M}} = S_{\text{MaxLogit}} - \beta \cdot S_{\text{Context}}$$
 (7)

In Figure 3c, we show that if the margin scale is applied, the near OOD AUROC is improved from 0.879 (equivalent to $\beta = 1$) to 0.942 ($\beta = 2.2$). To further demonstrate the importance of β to the base prompt learning models, we show how the near OOD performance in AUROC of different models varies with different β in Figure 4, where $\beta = 0$ represents the case of the original score without the context score and $\beta = 1$ is MLS without the margin scale. One can see that the value of β significantly affects the performance with all the prompt learning models.

This naturally opens a question on how to set β properly. If we were given the OOD samples, we could simply choose the value of β that minimises the near OOD performance. However, such an approach is impractical for real-world applications where near OOD samples are unavailable before deployment. To address this, we propose to estimate the margin scale by only using *fewshot ID training samples*. Initially, MaxLogit score and Context score in Figure 3a exhibit positive correlation, leading to significant overlap in the density distributions of ID and near OOD samples. When the near OOD detection AUROC is maximised, as shown in Figure 3c, this correlation is

Figure 3: (a) MaxLogit score, (b) MLS-M without β , and (c) MLS-M with β of test ID and near OOD samples with respect to Context scores. Areas where ID samples and near OOD samples overlap are highlighted with shaded boxes. All scores are computed using MaPLe (Khattak et al., 2023a) on Caltech101 (Fei-Fei et al., 2004). See Appendix A.4 for additional demonstrations with different models and datasets.

minimised, resulting in reduced overlap between the distributions. Thus, we formulate this problem
as finding the margin scale that minimises the correlation between MaxLogit or Energy score and
Context score.

We propose approximating this correlation using the covariance matrix of a bivariate normal distribution fitted with MLS and Context scores computed from the training samples. A key advantage of this approach is its computational simplicity and the availability of a closed-form solution via maximum likelihood estimation. By leveraging this, we find the margin scale that zeros out the off-diagonals of the covariance matrix of the fitted bivariate normal distribution.

Lemma 3.1. Given N scalar observations $\{\hat{x}_i\}_{i=1}^N$ and $\{\hat{y}_i\}_{i=1}^N$, we define two variables $x = \hat{x}$ and $y = \hat{y} - \beta \cdot \hat{x}$. The scale parameter β that zeros out the covariance of two variables (i.e., the off-diagonals of a covariance matrix) which is approximated by maximum likelihood estimation is:

$$\beta = \frac{\sum_{i=1}^{N} (\hat{x}_i - \mu_{\hat{x}}) (\hat{y}_i - \mu_{\hat{y}})}{\sum_{i=1}^{N} (\hat{x}_i - \mu_{\hat{x}})^2}$$
(8)

where $\mu_{\hat{x}} = \frac{1}{N} \sum_{i=1}^{N} \hat{x}_i$ *and* $\mu_{\hat{y}} = \frac{1}{N} \sum_{i=1}^{N} \hat{y}_i$.

By using Lemma 3.1 with \hat{y} being the MaxLogit score or Energy score and \hat{x} being the Context score, the margin scale can be easily estimated with ID training samples (see Appendix A.1 for proof of the lemma). This scale estimation needs to be conducted only once after training finishes. Figure 4 shows the estimated margin scale in red dotted lines, demonstrating that our estimation is close to the value that results in the best performance. In addition to good accuracy, our method is a close-form estimation that only takes a small number of ID training samples with little computational cost.

4 RELATED WORK

312 Vision-Language Models Vision-language models have significantly advanced in recent years, 313 bridging the gap between visual and textual data. Early approaches, such as image captioning mod-314 els (Karpathy & Fei-Fei, 2015; Wang et al., 2016; You et al., 2016), typically used convolutional 315 neural networks (CNNs) to extract visual features and recurrent neural networks (RNNs) to generate 316 descriptive text. The advent of transformers (Vaswani et al., 2017) handling long-range dependen-317 cies more effectively and contrastive learning (Oord et al., 2018) revolutionised this field. Notably, 318 ALIGN (Jia et al., 2021), CLIP (Radford et al., 2021), and LiT (Zhai et al., 2022) leveraged a con-319 trastive learning framework that aligns image and text embeddings in a multimodal space, allowing for zero-shot learning capabilities and impressive generalisation to unseen tasks and datasets. In this 320 work, we leverage the powerful vision-language model CLIP and extend its near OOD capability. 321

322

281

282

283

284

285

302 303

304

305

306

307

308

309 310

311

323 CLIP-based Prompt Learning Despite the remarkable zero-shot performance of CLIP, CLIP shows inherently unstable classification accuracy that varies by wording of prompt. To mitigate this

Figure 4: Near OOD detection AUROC using MLS-M vs. margin scale β for CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), IVLP (Khattak et al., 2023a), KgCoOp (Yao et al., 2023), ProGrad (Zhu et al., 2023), MaPLe (Khattak et al., 2023a), PromptSRC (Khattak et al., 2023b), and LoCoOp (Miyai et al., 2023) on 16-shots UCF101 (Soomro et al., 2012). The margin scale is approximated by Eq.(8), shown as red dotted lines.

issue, CoOp (Zhou et al., 2022b) was proposed to optimise a prompt in word embedding space, leveraging prompt learning from the NLP literature. CoCoOp (Zhou et al., 2022a) identified that CoOp has limited generalisation and proposed to condition image features to the learnable prompt. Subsequently, many studies have proposed different techniques to improve the generalisation (Yao et al., 2023; Zhu et al., 2023; Khattak et al., 2023a;b). While its generalisation has been largely improved, its OOD detection has been overlooked. LoCoOp (Miyai et al., 2023) proposed a OOD regularisation to improve OOD detection performance. Nevertheless, no study has addressed near OOD detection of prompt learning models.

351 **OOD Detection** An early work of Hendrycks & Gimpel (2017) utilised the maximum softmax 352 probability (MSP) as a score to identify OOD samples. Another notable work is Out-of-DIstribution 353 detector for Neural networks (ODIN) (Liang et al., 2018) which extends MSP by introducing tem-354 perature scaling and input pre-processing to enhance separation of the scores from ID samples and 355 OOD samples. Similar to ODIN, Mahalanobis (Lee et al., 2018) score also uses input pre-processing 356 in addition to measuring distance in feature space. Delving into a more challenging task of near OOD detection, several studies analysed benchmarks of pre-trained networks in near OOD detec-357 tion (Yang et al., 2023; 2022; Zhang et al., 2023b; Fort et al., 2021), and different training methods 358 and score functions were proposed for near OOD detection (Ren et al., 2021; Winkens et al., 2020). 359 Despite significant advancements in OOD detection for traditional classifier-based neural networks, 360 many existing methods are not directly applicable to CLIP-based prompt learning models, which 361 lack classifier heads. Furthermore, since these models do not update their image encoders during 362 fine-tuning, many distance-based methods that rely on image features become ineffective. 363

- 5 EXPERIMENTS
- 365 366

364

337

338

339

340

341 342 343

344

345

346

347

348

349

350

367 5.1 EXPERIMENTAL SETTINGS

368 **Datasets** Following previous works of CLIP-based prompt learning models (Zhou et al., 2022a; 369 Khattak et al., 2023a; Yao et al., 2023; Zhu et al., 2023; Khattak et al., 2023a; Miyai et al., 2023), 370 we use 11 publicly available datasets of ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 371 2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & 372 Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao 373 et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), and UCF101 (Soomro et al., 374 2012). A common task of these works involves training models on half of the label classes (e.g., 375 base classes) and evaluating them on the other half classes (e.g., new classes) to measure base-tonew generalisation. We reframe this task as a near OOD detection problem. Specifically, the models 376 trained on base classes are tested with a dataset where half of the samples belong to the base classes 377 (ID) and the other half to new classes (near OOD). The task is to detect whether each test image

421

424

378 Table 2: Near OOD AUROC (\uparrow) of prompt learning models over 13 datasets using the MaxLogit 379 score and MLS-M.

(a) Ave	erage over	13 datas	sets.	((b) Image	Net.		(c) Caltecl	h101.	
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	<u>م</u>		MaxLogit	MLS-M	Δ
CoOp	80.74	81.84	+1.09	CoOp	93.78	94.66	+0.88	CoOp	88.27	90.12	+1.85
CoCoÔp	81.09	82.74	+1.65	CoCoÒp	94.85	95.14	+0.29	CoCoOp	85.80	89.02	+3.22
IVLP	81.12	84.34	+3.23	IVLP	94.55	94.70	+0.15	IVLP	85.50	90.53	+5.03
KgCoOp	80.84	83.12	+2.28	KgCoOp	94.21	94.21	+0.01	KgCoOp	83.64	90.06	+6.42
ProGrad	79.77	82.35	+2.58	ProGrad	93.62	94.67	+1.04	MoPL e	82.90	88.85 01.53	+5.89
MaPLe DrommtSDC	81.06	83.94	+2.88	MaPLe DromptSDC	94.20	94.35	+0.16	PromptSRC	84 94	90.56	+5.62
LoCoOp	77.55	81.74	+4.18	LoCoOp	93.10	94.56	+1.46	LoCoOp	76.08	87.75	+11.67
	(d) Oxford	lPets.		(e) Stanfor	dCars.		(1	f) Flower	s102.	
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	1 🛆		MaxLogit	MLS-M	Δ
CoOp	86.22	88.73	+2.52	CoOp	91.36	91.59	+0.22	CoOp	90.83	91.99	+1.16
CoCoÔp	89.58	92.28	+2.69	CoCoÔp	92.43	92.99	+0.57	CoCoÔp	87.93	89.41	+1.48
IVLP	88.84	91.94	+3.10	IVLP	90.43	92.98	+2.56	IVLP	86.20	88.45	+2.25
KgCoOp	89.94	92.64	+2.69	KgCoOp	92.77	93.27	+0.51	KgCoOp	87.61	91.12	+3.52
ProGrad	87.82	89.60	+1.78	ProGrad	91.52	92.63	+1.11	ProGrad	89.27	91.41	+2.14
MaPLe	87.40	91.00	+3.60	MaPLe	91.39	92.85	+1.47	MaPLe	86.05	88.34	+2.29
LoCoOp	90.80 84.44	93.45 89.19	+2.65 +4.75	LoCoOp	92.88 88.24	94.24 91.94	+1.35 +3.70	LoCoOp	91.10 86.17	92.61 88.59	+1.51 +2.42
1	(g) Food	101		(h)	FGVCA	ircraft.			(i) SUN3	397.	
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	<u>م</u>		MaxLogit	MLS-M	Δ
CoOp	86.70	87.91	+1.21	CoOp	55.99	56.97	+0.97	CoOp	75.78	76.75	+0.97
CoCoOp	90.52	91.63	+1.10	CoCoOp	52.60	55.04	+2.45	CoCoOp	76.32	78.29	+1.97
IVLP	89.70	91.87	+2.18	IVLP	58.47	64.16	+5.69	IVLP	77.13	79.60	+2.46
KgCoOp	89.87	92.12	+2.25	KgCoOp	57.82	57.46	-0.36	KgCoOp	76.45	77.91	+1.46
ProGrad	88.60	91.05	+2.45	ProGrad	53.69	55.67	+1.97	ProGrad	75.52	77.67	+2.15
MaPLe	89.10	92.00	+2.89	MaPLe	52.18	56.93	+4.74	MaPLe	77.62	79.73	+2.11
PromptSRC LoCoOp	2 90.94 84 87	92.11 90.12	+1.17 +5.25	PromptSRC LoCoOp	60.63 50.99	62.50 56.12	+1.87 +5.13	PromptSRC LoCoOp	78.51 73.97	80.70 78.00	+2.19 +4.02
Locoop	(j) DTI).	10.20	Locoop	(k) Euros	SAT.	15.15		(l) UCF1	01.	11.02
	MaxLogit	MLS-M			MaxLogit	MLS-N	1 🛆		MaxLogit	MLS-M	
CoOr	68.90	69.60	+0.69	CoOp	67.94	67.83	-0.11	CoOp	82.17	83.65	+1.48
CoCoOn	65.10	67.17	+2.07	CoCoOn	66.87	66.76	-0.10	CoCoOn	81.32	84.02	+2.70
IVLP	64.99	67.93	+2.94	IVLP	65.56	70.62	+5.06	IVLP	80.26	84.55	+4.29
KgCoOp	63.79	68.17	+4.39	KgCoOp	62.41	65.66	+3.25	KgCoOp	81.26	84.06	+2.80
ProGrad	62.90	66.96	+4.06	ProGrad	68.96	69.71	+0.75	ProGrad	81.21	83.71	+2.50
MaPLe	64.80	67.79	+2.99	MaPLe	71.18	72.28	+1.09	MaPLe	80.81	84.25	+3.45
PromptSRC	69.09 66.63	70.38	+1.29	PromptSRC	75.22	74.97 67.85	-0.25	PromptSRC LoCoOp	83.19 76.28	85.43 82.54	+2.24
Lucuop	(m) CIFA	R10.	+72.42	(n)	CIFAR1	00.	±1.13		10.20	02.34	+0.20
	May Logit	MI S-M		N	lavLogit M	AI S-M					
CoOr	84.05	85.76	-1.71	CoOn	77.67	78.20	10.63				
CoCoOn	84.05 89.91	85.76 92.40	+1./1 +2.58	CoCoOp	/ /.0/ 80.99	78.30 81.44	+0.03				
IVIP	88 17	92. 4 9 91.10	+2.93	IVIP	84 69	88.01	+3 32				
KgCoOn	90.26	92.77	+2.52	KgCoOn	80.94	81.14	+0.20				
ProGrad	83.94	89.08	+5.13	ProGrad	77.01	79.55	+2.55				
MaPLe	87.79	91.81	+4.02	MaPLe	85.35	88.35	+3.01				
PromptSRC LoCoOp	91.36 84.69	93.97 90.22	+2.60 +5.53	PromptSRC LoCoOp	86.82 76.03	88.78 76.67	+1.96 +0.64				

419 belongs to the ID dataset or the near OOD dataset. In addition, we include CIFAR10 (Krizhevsky 420 et al., 2009) and CIFAR100 (Krizhevsky et al., 2009), which are standard near OOD detection benchmarks (Ren et al., 2021; Fort et al., 2021; Yang et al., 2021; 2022; Zhang et al., 2023b). For 422 CIFAR10 and CIFAR100, we use all classes and evaluate with a test dataset consisting of both 423 CIFAR10 test samples and CIAFR100 test samples, following the literature.

425 Models We use 8 prompt learning models: CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 426 2022a), IVLP (Khattak et al., 2023a), KgCoOp (Yao et al., 2023), ProGrad (Zhu et al., 2023), 427 MaPLe (Khattak et al., 2023a), PromptSRC (Khattak et al., 2023b), and LoCoOp (Miyai et al., 428 2023), all of which uses ViT-B/16 (Dosovitskiy et al., 2021) for the visual encoder and Trans-429 former (Vaswani et al., 2017) for the text encoder. We follow their training details to train them with 16, 8, 4, 2, and 1-shot settings using 3 random seeds (see Appendix A.2 for implementation de-430 tails). For each model, we use MaxLogit score, Energy score, and MCM (Ming et al., 2022) score as 431 baselines where MCM is the state-of-the-art score for CLIP. As our focus is on the post-hoc method

		А	UROC ↑]	FPR95 \downarrow		
	MaxLogit	Energy	MCM	MLS-M	MLS-E	MaxLogit	Energy	MCM	MLS-M	MLS-E
CoOp	80.74	80.44	79.41	81.84	81.71	58.23	59.45	63.70	54.85	55.37
CoCoÔp	81.09	80.53	79.28	82.74	82.74	55.78	57.49	63.76	51.67	51.90
IVLP	81.12	80.49	80.95	84.34	84.40	55.65	57.66	60.05	48.58	49.19
KgCoOp	80.84	80.14	79.82	83.12	83.23	57.16	59.69	62.20	51.52	51.90
ProGrad	79.77	78.79	79.91	82.35	81.93	60.07	62.74	62.89	54.02	55.34
MaPLe	81.06	80.39	80.54	83.94	83.99	55.58	57.82	60.68	48.36	48.76
PromptSRC	83.85	83.48	82.34	85.77	85.88	49.65	51.86	55.86	44.60	45.15
LoĈoOp	77.55	75.94	79.22	81.74	81.25	64.89	69.07	63.37	55.76	57.80

432 Table 3: Near OOD AUROC (\uparrow) and FPR95 (\downarrow) of prompt learning models averaged over 13 datasets using MaxLogit score, Energy score, MLS, and MCM.

directly applicable to fine-tuned prompt learning models without requiring near OOD samples, we exclude other scoring methods that require OOD samples, modifications of training procedures, or architecture changes in models.

449 5.2 EXPERIMENTAL RESULTS

We report average AUROC and false positive rate (FPR) of near OOD samples when true positive 451 rate (TPR) of ID samples is at 95% with 16, 8, 4, 2, and 1-shot settings and 3 randoms seeds. 452 Refer to Appendix A.3 for results of individual few-shot settings with standard deviations across the 453 random seeds. In Table 2, we compare near OOD detection AUROC using the MaxLogit score and MLS-M score. Positive improvements in AUROC are observed in 100 out of 104 evaluations (i.e., 455 13 datasets \times 8 models) when MLS-M is used. 456

On average, the largest improvement was observed with LoCoOp, the recent prompt learning model 457 for OOD detection. The same results for Energy score are shown in Table 12. Similar to MaxLogit 458 score, AUROC is improved in 101 out of 104 evaluations when using Energy score. Refer to Table 6 459 and Table 13 for FPR95. 460

461 Table 3 shows a comparison between MaxLogit score, Energy score, MLS-M, MLS-E, and MCM, in terms of both AUROC and FPR95 averaged across 13 datasets. The MLS-M and Energy score 462 outperform MCM in both AUROC and FPR95. When MLS-M and MLS-E are compared, MLS-M 463 outperforms MLS-E for the half of the models in AUROC and all models in FPR95. This highlights 464 that the proposed scores are better scores for near OOD detection tasks than MCM, and MLS-M is 465 better than MLS-E. Refer to Table 21 and Table 22 for the results of all datasets. 466

467

433

434

444 445

446

447

448

450

DISCUSSION 6

468 469

Comparison with MCM As discussed in Section 5.2, MLS outperforms MCM in AUROC and 470 FPR95 averaged across 13 datasets. We notice that MCM outperforms these scores in a few datasets. 471 We analyse this difference from the perspective of dataset distance. As MCM is the state-of-the-art 472 OOD detection score for far OOD detection, MCM is expected to outperform as the dataset distance 473 between an ID test dataset and a near OOD dataset increases. We empirically validate this assump-474 tion by measuring the dataset distance by Optimal Transport Dataset Distance (OTDD) (Alvarez-475 Melis & Fusi, 2020) which is shown in Figure 5. For each dataset, we measure the distance between 476 the ID test dataset and the near OOD test dataset. The density is then plotted, with blue indicating 477 areas where MLS performs better and grey indicating areas where MCM performs better. While 478 MLS outperforms across a wide range of distance, it excels when the distance decreases. MCM, on 479 the other hand, tends to outperform as the distance increases. Nevertheless, MLS outperforms in the 480 majority of cases, resulting in superior average performance.

481

482 **Application to MCM** A straightforward extension of our method is the application of the post-hoc 483 process to the MCM score (i.e., $S_{MLS-MCM} = S_{MCM} - \beta \cdot S_{Context}$). The differences in AUROC and FPR95 with MCM and MLS-MCM are presented in Table 19 and Table 20. While it improves per-484 formance with MCM on most datasets, some datasets exhibit a decline in performance. This decline 485 is due to the lack of a positive correlation between MCM and the Context score, which was ob-

486 served with logit-based scores in Figure 3. Figure 6 further demonstrates the differing relationships 487 between the score and the Context score. This discrepancy primarily arises from the softmax nor-488 malisation, where MCM only considers the relative magnitude of logits between classes, allowing 489 non-maximum logits to unexpectedly change the relationship.

490

491 Application to Far OOD Detection Al-492 though our method is not designed for far 493 OOD detection, it can be potentially applied 494 to the area. Following the OOD literature of 495 CLIP (Ming et al., 2022; Miyai et al., 2023; 496 Wang et al., 2023; Jiang et al., 2024), we 497 use ImageNet as an ID dataset and iNatural-498 ist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2018), and Tex-499 ture (Cimpoi et al., 2014) as far OOD datasets. 500 We leverage the fine-tuned models in our ex-501 periments and show AUROC results in Ta-502 ble 23 and FPR95 results in Table 24 in Ap-503 pendix A.3.5. The post-hoc framework is effec-504 tive for both MaxLogit score and Energy score, 505 improving AUROC and FPR95 in 126 out of 506 128 evaluations where MLS outperforms MCM 507 in a half of evaluations. This aligns with the 508 near OOD results, being effective across var-509 ious models and OOD datasets. The limited performance also aligns with our observation in 510

Figure 5: Density plot of dataset distance between the ID test dataset and near OOD dataset measured with OTDD. Datasets where MLS outperforms are highlighted in blue, while those where MCM outperforms are highlighted in grey.

Figure 5 that MCM can be more effective when the dataset distance between ID and OOD datasets 511 increases. However, far OOD detection is beyond our focus. 512

513

514 **Comparisons with More OOD Methods** In our experiments, we intentionally excluded OOD 515 methods that require access to OOD samples during training, retraining the prompt learning models, 516 or those incompatible with the fine-tuned CLIP-based prompt learning models. This is because our 517 main contribution is a new score specifically designed for few-shot prompt learning models without 518 these requirements. For example, ODIN (Liang et al., 2018) is not a suitable baseline as it requires access to OOD samples for hyperparameter tuning. Similarly, LogitNorm (Wei et al., 2022) needs 519 to be trained with a specific loss function, requiring the retraining of prompt learning models with 520 modified training objectives. Distance-based scores, such as Mahalanobis distance (Lee et al., 2018) 521 and relative Mahalanobis distance (RMD) (Ren et al., 2021), were originally designed for traditional 522 classifiers and are therefore incompatible with few-shot prompt learning models. For example, to 523 compute RMD in our case, only image features can be used while the textual features are ignored. 524 As the prompt learning models do not update their image encoders while fine-tuning, RMD will 525 be the same regardless of prompt learning model used. Therefore, these scores are not suitable for 526 our problem. However, we provide comparisons with LogitNorm and RMD in Appendix A.3.8 for 527 readers interested in the comparisons.

- 528 529
- 7 CONCLUSION
- 530 531

532 In this work, we address few-shot near OOD detection of CLIP-based prompt learning models. To 533 enhance existing logit-based scores, we propose a simple and fast post-hoc method applicable to 534 any prompt learning model. Without changing training procedures of the existing models nor com-535 promising classification accuracy, our method effectively enhances near OOD AUROC and lowers 536 FPR95 for 8 recent prompt learning models across 13 real-world datasets. While our method is 537 broadly applicable across various prompt learning models, the degree of improvement can vary depending on the underlying model characteristics. Some models may not see as substantial a benefit, 538 particularly if their inherent logit distributions already exhibit strong separability between ID and OOD samples.

540 REFERENCES

- David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. In
 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Infor- mation Processing Systems*, volume 33, pp. 21428–21439. Curran Associates, Inc., 2020.
- 545 Yichen Bai, Zongbo Han, Changqing Zhang, Bing Cao, Xiaoheng Jiang, and Qinghua Hu. Id546 like prompt learning for few-shot out-of-distribution detection. *arXiv preprint arXiv:2311.15243*, 2023.
- 548
 549
 550
 C.M. Bishop. *Pattern Recognition and Machine Learning*. Information science and statistics. Springer (India) Private Limited, 2013. ISBN 9788132209065.
- Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 mining discriminative components with random forests. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision ECCV 2014*, pp. 446–461, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10599-4.
- Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2014.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021.
- Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In 2004 Conference on Computer Vision and Pattern Recognition Workshop, pp. 178–178, 2004. doi: 10.1109/CVPR.2004.383.
- Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution detection. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 7068–7081. Curran Associates, Inc., 2021.
- Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly detection benchmark. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 32142–32159. Curran Associates, Inc., 2022.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), June 2016.
- Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019. doi: 10. 1109/JSTARS.2019.2918242.
- Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In *International Conference on Learning Representations*, 2017.
- Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza Mostajabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
 Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume
 162 of *Proceedings of Machine Learning Research*, pp. 8759–8773. PMLR, 17–23 Jul 2022.

614

630

- ⁵⁹⁴ Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 4904–4916. PMLR, 18–24 Jul 2021.
- Xue Jiang, Feng Liu, Zhen Fang, Hong Chen, Tongliang Liu, Feng Zheng, and Bo Han. Neg ative label guided ood detection with pretrained vision-language models. *arXiv preprint arXiv:2403.20078*, 2024.
- Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), June 2015.
- Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 19113–19122, June 2023a.
- Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without forgetting. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 15190–15200, October 2023b.
- Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 categorization. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops*, June 2013.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 2009.
- 621 Peter D Lax. *Linear algebra and its applications*, volume 78. John Wiley & Sons, 2007.
- Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.
- Tianqi Li, Guansong Pang, Xiao Bai, Wenjun Miao, and Jin Zheng. Learning transferable negative prompts for out-of-distribution detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 17584–17594, June 2024.
- Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image detection in neural networks. In *International Conference on Learning Representations*, 2018.
- Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 21464–21475. Curran Associates, Inc., 2020.
- Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.
- Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li, and Yixuan Li. Delving into out-of-distribution detection with vision-language representations. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 35087–35102. Curran Associates, Inc., 2022.
- Atsuyuki Miyai, Qing Yu, Go Irie, and Kiyoharu Aizawa. Locoop: Few-shot out-of-distribution detection via prompt learning. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 76298–76310. Curran Associates, Inc., 2023.

- Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729, 2008. doi: 10.1109/ICVGIP.2008.47.
- Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
- Andres Palechor, Annesha Bhoumik, and Manuel Günther. Large-scale open-set classification pro tocols for imagenet. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 42–51, January 2023.
- Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3498–3505, 2012. doi:
 10.1109/CVPR.2012.6248092.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 18–24 Jul 2021.
- Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy, and Balaji Lakshmi narayanan. A simple fix to mahalanobis distance for improving near-ood detection. *arXiv preprint arXiv:2106.09022*, 2021.
- Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
 classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.
- Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 144–157. Curran Associates, Inc., 2021.
- Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest neighbors. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 20827–20840. PMLR, 17–23 Jul 2022.
- Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
- Cheng Wang, Haojin Yang, Christian Bartz, and Christoph Meinel. Image captioning with deep bidirectional lstms. In *Proceedings of the 24th ACM International Conference on Multimedia*, MM '16, pp. 988–997, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450336031. doi: 10.1145/2964284.2964299.
- Hualiang Wang, Yi Li, Huifeng Yao, and Xiaomeng Li. Clipn for zero-shot ood detection: Teaching
 clip to say no. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 1802–1812, October 2023.
- Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural network overconfidence with logit normalization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 23631–23644. PMLR, 17–23 Jul 2022.

- Jim Winkens, Rudy Bunel, Abhijit Guha Roy, Robert Stanforth, Vivek Natarajan, Joseph R Ledsam, Patricia MacWilliams, Pushmeet Kohli, Alan Karthikesalingam, Simon Kohl, et al. Contrastive training for improved out-of-distribution detection. *arXiv preprint arXiv:2007.05566*, 2020.
- Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492, 2010. doi: 10.1109/CVPR.2010.
 5539970.
- Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A survey. *arXiv preprint arXiv:2110.11334*, 2021.
- Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, WENXUAN PENG, Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan Hendrycks, Yixuan Li, and Ziwei Liu. Openood: Benchmarking generalized out-of-distribution detection. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 32598–32611. Curran Associates, Inc., 2022.
- Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. *International Journal of Computer Vision*, 131(10):2607–2622, 2023.
- Hantao Yao, Rui Zhang, and Changsheng Xu. Visual-language prompt tuning with knowledgeguided context optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision* and Pattern Recognition (CVPR), pp. 6757–6767, June 2023.
- Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and Jiebo Luo. Image captioning with
 semantic attention. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016.
- Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov, and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 18123–18133, June 2022.
- Jingyang Zhang, Nathan Inkawhich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
 exposure: Towards out-of-distribution detection in fine-grained environments. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 5531–5540,
 January 2023a.

- Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai Li. Openood v1.5: Enhanced benchmark for out-of-distribution detection. *arXiv preprint arXiv:2306.09301*, 2023b.
- Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image database for scene recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(6):1452–1464, 2018. doi: 10.1109/TPAMI.2017.2723009.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
 vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16816–16825, June 2022a.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for visionlanguage models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022b.
- Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for prompt tuning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (*ICCV*), pp. 15659–15669, October 2023.

756 A APPENDIX

761

762

763

764 765

766 767

770

771

781

787

788

789 790

791

800

801

758 A.1 PROOF OF LEMMA 759

⁷⁶⁰ We provide the proof of Lemma 3.1. For completeness of proof, we duplicate the lemma here.

Lemma A.1. Given N scalar observations $\{\hat{x}_i\}_{i=1}^N$ and $\{\hat{y}_i\}_{i=1}^N$, we define two variables $x = \hat{x}$ and $y = \hat{y} - \beta \cdot \hat{x}$. The scale parameter β that zeros out the covariance of two variables (i.e., the off-diagonals of a covariance matrix) which is approximated by maximum likelihood estimation is:

$$\beta = \frac{\sum_{i=1}^{N} (\hat{x}_i - \mu_{\hat{x}})(\hat{y}_i - \mu_{\hat{y}})}{\sum_{i=1}^{N} (\hat{x}_i - \mu_{\hat{x}})^2}$$
(9)

768 where $\mu_{\hat{x}} = \frac{1}{N} \sum_{i=1}^{N} \hat{x}_i$ and $\mu_{\hat{y}} = \frac{1}{N} \sum_{i=1}^{N} \hat{y}_i$. 769

Proof. It is well known that maximum likelihood estimation (MLE) of bivariate normal distribution for N observations of variables x and y results in (Bishop, 2013):

$$\mu_x = \frac{1}{N} \sum_{i} x_i, \quad \mu_y = \frac{1}{N} \sum_{i} y_i$$
(10)

$$\Sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix} = \frac{1}{N} \sum_{i} \left(\begin{bmatrix} x_i \\ y_i \end{bmatrix} - \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix} \right) \left(\begin{bmatrix} x_i \\ y_i \end{bmatrix} - \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix} \right)^T$$
(11)

$$\sigma_{xy} = \frac{1}{N} \sum_{i} (x_i - \mu_x)(y_i - \mu_y)$$
(12)

where μ_x and μ_y are the means of x and y, and Σ is the covariance matrix. We let $x = \hat{x}$ and $y = \hat{y} - \beta \cdot \hat{x}$ and find β that makes $\sigma_{xy} = 0$. By rewriting σ_{xy} in terms of \hat{x} and \hat{y} , we obtain β as:

$$\sigma_{xy} = \frac{1}{N} \sum_{i} (\hat{x}_{i} - \mu_{\hat{x}}) (\hat{y}_{i} - \beta \cdot \hat{x}_{i} - \mu_{\hat{y}} + \beta \cdot \mu_{\hat{x}}) = 0$$
(13)

$$\beta = \frac{\sum_{i} (\hat{x}_{i} - \mu_{\hat{x}})(\hat{y}_{i} - \mu_{\hat{y}})}{\sum_{i} (\hat{x}_{i} - \mu_{\hat{x}})^{2}}$$
(14)

The resulting β is the ratio of covariance of \hat{x} and \hat{y} to variance of \hat{x} .

A.2 IMPLEMENTATION DETAILS

792 We follow the officially released training guidelines for each prompt learning model 793 using the same configuration files. The only additional line of code required is 794 beta=(((y-y.mean())*(x-x.mean())).sum())/(((x-x.mean())**2).sum()) to estimate the margin scale in Eq.(8). The overall algorithm is summarised in Algorithm 1. Table 4 796 shows common hyperparameters which are the number of epochs, batch size, and context vectors 797 initialisation. Refer to their officially released codes for other model-specific hyperparameters. All models were trained on a single NVIDIA GeForce RTX 3090 GPU with PyTorch framework. The 798 temperature scaling is 0.01 for the Energy score and 1 for the MCM score. 799

Algorithm 1: MLS Computation

802 **Input:** Few-shot training dataset of N image-label pairs of $\{I_i, y_i\}_{i=1}^N$ where $y_i \in \{1, \dots, K\}$ 803 with K classes, a test image I_{test} , a fine-tuned prompt learning model with learned 804 context vectors V.

1 for I_i, y_i do

3 Compute and store Context score S_{Context} .

4 end for

- ⁵ Estimate margin scale β by Eq.(8)
 - ⁶ Compute MLS by Eq.(7) and Eq.(6)

811		e	1	1 0
812		# Epochs	Batch Size	Context Vectors Initialisation
813 814	СоОр	50 (ImageNet) 200 (Others)	32	
815	CoCoOn	10	1	
816	IVLP	5	4	
817	KgCoOp	100	128	"a photo of a"
818	ProGrad	200	32	
819	MaPLe	5	4	
820	PromptSRC	20	4	
821	LoĈoOp	50	32	16 vectors drawn from $\mathcal{N}(0, 0.02)$
822				

Table 4: Training details of the prompt learning models..

A.3 ADDITIONAL EXPERIMENTAL RESULTS

We provide additional experimental results other than the results in the main section.

A.3.1 MAXLOGIT SCORE

We provide average AUROC and FPR95 across 13 datasets using MaxLogit in Table 5 and Table 6. Note that Table 5 is duplicated for completeness of this Section. From Table 7 to Table 11, average AUROC across 3 random seeds with standard deviations are reported for each few-shot setting. While overall improvements are observed across different few-shot settings, slight performance degradations are observed in EuroSAT and CIAFR10 at 1-shot. This is because of insufficient training samples used to find the optimal margin scale where EuroSAT and CIFAR10 have 5 classes and 10 classes in their training datasets respectively.

Table 5: Near OOD AUROC (†) of prompt learning models over 13 datasets using the MaxLogit score and MLS-M.

(a) Aver	rage over	13 datas	sets.		(b) Imag	eNet.		(c) Caltec	h101.	
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	<u>∧</u>		MaxLogit	MLS-M	Δ
CoOp	80.74	81.84	+1.09	CoOp	93.78	94.66	+0.88	CoOp	88.27	90.12	+1.85
CoCoOp	81.09	82.74	+1.65	CoCoOp	94.85	95.14	+0.29	CoCoOp	85.80	89.02	+3.22
IVLP	81.12	84.34	+3.23	IVLP	94.55	94.70	+0.15	IVLP	85.50	90.53	+5.03
KgCoOp	80.84	83.12	+2.28	KgCoOp	94.21	94.21	+0.01	KgCoOp	83.64	90.06	+6.42
ProGrad	79.77	82.35	+2.58	ProGrad	93.62	94.67	+1.04	ProGrad	82.96	88.85	+5.89
MaPLe	81.06	83.94	+2.88	MaPLe	94.20	94.35	+0.16	MaPLe DromatSDC	85.91	91.53	+5.62
PromptSRC	83.85	85.77	+1.92	PromptSRC	94.52	95.32	+0.80	LoCoOp	84.94 76.08	90.30 87.75	+11.67
LoCoOp	//.55	81./4	+4.18	LoCoOp	93.10	94.56	+1.40		6 El	-102	111.07
6	u) Oxford	iPets.		(6	e) Stanio	ucars.		(I) Flower	\$102.	
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	1 A		MaxLogit	MLS-M	\triangle
CoOp	86.22	88.73	+2.52	CoOp	91.36	91.59	+0.22	CoOp	90.83	91.99	+1.16
CoCoOp	89.58	92.28	+2.69	CoCoOp	92.43	92.99	+0.57	CoCoOp	87.93	89.41	+1.48
IVLP	88.84	91.94	+3.10	IVLP	90.43	92.98	+2.56	IVLP	86.20	88.45	+2.25
KgCoOp	89.94	92.64	+2.69	KgCoOp	92.77	93.27	+0.51	KgCoOp	87.61	91.12	+3.52
ProGrad	87.82	89.60	+1.78	ProGrad	91.52	92.63	+1.11	ProGrad	89.27	91.41	+2.14
MaPLe	87.40	91.00	+3.60	MaPLe	91.39	92.85	+1.47	MaPLe	86.05	88.34	+2.29
PromptSRC	90.80	93.45	+2.65	PromptSRC	92.88	94.24	+1.35	PromptSRC	91.10	92.61	+1.51
LoCoOp	$\frac{84.44}{(2) \Gamma - 1}$	89.19	+4.75	LoCoOp	88.24	91.94	+3.70	LoCoOp	86.17	88.59	+2.42
	(g) Food	101		(n) FGVCA	Aircraft.			(1) SUN.	397.	
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	1 △		MaxLogit	MLS-M	\triangle
CoOp	86.70	87.91	+1.21	CoOp	55.99	56.97	+0.97	CoOp	75.78	76.75	+0.97
CoCoOp	90.52	91.63	+1.10	CoCoOp	52.60	55.04	+2.45	CoCoOp	76.32	78.29	+1.97
IVLP	89.70	91.87	+2.18	IVLP	58.47	64.16	+5.69	IVLP	77.13	79.60	+2.46
KgCoOp	89.87	92.12	+2.25	KgCoOp	57.82	57.46	-0.36	KgCoOp	76.45	77.91	+1.46
ProGrad	88.60	91.05	+2.45	ProGrad	53.69	55.67	+1.97	ProGrad	75.52	77.67	+2.15
MaPLe	89.10	92.00	+2.89	MaPLe	52.18	56.93	+4.74	MaPLe	77.62	79.73	+2.11
PromptSRC	90.94	92.11	+1.17	PromptSRC	60.63	62.50	+1.87	PromptSRC	78.51	80.70	+2.19
Locoop	64.87	90.12	+3.23	LoCoOp	(l-) E	30.12	+3.13	LocoOp	(1) LICE	/8.00	+4.02
	() DT).			(K) Euro	SAI.			(I) UCF.	101.	
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	1 <u></u>		MaxLogit	MLS-M	\triangle
CoOp	68.90	69.60	+0.69	CoOp	67.94	67.83	-0.11	CoOp	82.17	83.65	+1.48
CoCoOp	65.10	67.17	+2.07	CoCoOp	66.87	66.76	-0.10	CoCoOp	81.32	84.02	+2.70
IVLP	64.99	67.93	+2.94	IVLP	65.56	70.62	+5.06	IVLP	80.26	84.55	+4.29
KgCoOp	63.79	08.17	+4.39	KgCoOp	02.41	05.66	+3.25	KgCoOp	81.26	84.06	+2.80
MaDLa	64.90	67.70	+4.00	MoDL -	08.90	72.20	+0.75	ProGrad MoDL -	81.21 80.81	03./1	+2.50
Promet SPC	60.00	70.39	+2.99	PromotSPC	75 22	74.07	+1.09	PromotSPC	82 10	84.23 85.42	+3.45
LoCoOp	66.63	69.05	+2.42	LoCoOp	66.72	67.85	+1.13	LoCoOp	76.28	82.54	+6.26
((m) CIFA	R10.		(n)	CIFAR	00.					
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-M	Δ				
CoOp	84.05	85.76	+1.71	CoOp	77.67	78.30	+0.63				
CoCoÔp	89.91	92.49	+2.58	CoCoÔp	80.99	81.44	+0.45				
IVLP	88.17	91.10	+2.93	IVLP	84.69	88.01	+3.32				
KgCoOp	90.26	92.77	+2.52	KgCoOp	80.94	81.14	+0.20				
ProGrad	83.94	89.08	+5.13	ProGrad	77.01	79.55	+2.55				
MaPLe	87.79	91.81	+4.02	MaPLe	85.35	88.35	+3.01				
PromptSRC	91.36	93.97	+2.60	PromptSRC	86.82	88.78	+1.96				
LoCoOp	84.69	90.22	+5.53	LoCoOp	76.03	76.67	+0.64				

Table 6: Near OOD FPR95 (\$\$) of prompt learning models over 13 datasets using the MaxLogit score and MLS-M.

(a) Aver	age over	13 datas	sets.		(b) Imag	eNet.		(c) Caltec	h101.	
	MaxLogit	MLS-M	Δ		MaxLogi	t MLS-	M \triangle		MaxLogit	MLS-M	Δ
CoOp	58.23	54.85	-3.38	CoOp	31.02	26.40) -4.62	CoOp	38.42	29.90	-8.5
CoCoOp	55.78	51.67	-4.11	CoCoOp	26.76	23.85	5 -2.92	CoCoOp	42.22	33.02	-9.2
IVLP	55.65	48.58	-7.07	IVLP	27.23	24.54	4 -2.70	IVLP	45.94	30.97	-14.
KgCoOp	57.16	51.52	-5.64	KgCoOp	29.84	27.45	5 -2.39	RgCoOp	49.33	28.80	-20.
ProGrad	60.07	54.02	-6.05	ProGrad	32.73	27.40) -5.33	MoPL e	30.38 44.44	39.33 28.30	-17.
MaPLe	55.58	48.30	-1.22	MaPLe	29.87	26.05	-5.79	PromptSRC	43 79	25.30	-17
LoCoOp	49.65 64.80	44.00 55.76	-5.05	LoCoOp	27.89	22.84	2 -3.07	LoCoOp	69.02	37.02	-32.0
((d) Oxford	Pets.	-9.12	(6	e) Stanfo	rdCars.	-0.01	(f) Flower	s102.	
· · · · · · · · · · · · · · · · · · ·		MCM									
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-N	<u>1</u>		MaxLogit	MLS-M	Δ
CoOp	51.60	45.90	-5.70	CoOp	32.58	31.62	-0.97	CoOp	40.02	36.14	-3.8
CoCoOp	42.47	35.89	-6.58	CoCoOp	28.76	27.18	-1.58	CoCoOp	50.27	45.51	-4.7
IVLP KaCaOn	48.28	40.88	-7.40	IVLP VaCaOn	33.89	26.07	-7.82	IVLP KaCoOn	54.62	49.00	-5.0
ProGrad	47.00	51.04	-11.54	BroGrad	29.00	21.11	-1.29	ProGrad	44.28	45.15	-15.0
MaPL e	50.86	12.94	-7.00	MaPLe	30.75	26.42	-4.02	MaPLe	54.00	17 0/	-6.0
PromptSRC	42 14	38.08	-4.06	PromptSRC	26.27	20.05	-3.38	PromptSRC	38.96	34 33	-4.6
LoCoOp	54.57	48.65	-5.92	LoCoOp	41.93	31.83	-10.10	LoCoOp	52.83	46.72	-6.1
	(g) Food	101		(h) FGVCA	Aircraft	•		(i) SUN	397.	
	MaxLogit	MLS-M	Δ		MaxLogi	t MLS-N	∆ M		MaxLogit	MLS-M	Δ
CoOp	54.00	49.48	-4.52	CoOp	83.67	82.75	-0.92	CoOp	71.81	69.50	-2.3
CoCoOp	41.85	37.57	-4.28	CoCoOp	84.31	81.95	-2.36	CoCoOp	70.74	65.62	-5.1
IVLP	44.36	35.63	-8.74	IVLP	79.19	75.35	-3.84	IVLP	69.31	63.76	-5.5
KgCoOp	44.42	35.98	-8.44	KgCoOp	79.80	79.98	+0.18	KgCoOp	70.46	67.17	-3.2
ProGrad	48.58	40.02	-8.57	ProGrad	84.79	81.38	-3.41	ProGrad	73.83	68.12	-5.7
DrometSBC	45.70	35.20	-10.44	MaPLe	81.98	80.73	-1.25	MaPLe	68.72	63.34	-5.3
LoCoOn	58.03	12 34	-4.00	PromptSRC	76.62	/5.53	-1.08	PromptSRC	66.85	61.55	-5.3
Locoop	(i) DT		-10.57	Locoop	(k) Euro	5.50 S AT	-2.78	LoCoOp	(1) UCE	67.24	-9.2
	0,011	<i>J</i> .			(K) Luio	SAI.				101.	
~ ~	MaxLogit	MLS-M	Δ		MaxLogi	t MLS-N	<u>∆ N</u>		MaxLogit	MLS-M	Δ
CoOp	85.34	85.16	-0.18	CoOp	85.12	85.20	+0.08	CoOp	57.04	50.12	-5.5
Сособр	00.40 97.00	87.50	-0.98		82.23	82.38	+0.13	тл в	57.04 56.06	30.37 47.71	-0.0
	88 52	86.02	-1 50	KaCoOn	82.09	82 20	-1.52	KgCoOp	54.77	50.16	-9.2
ProGrad	87.78	87 55	-0.23	ProGrad	81.61	82.30	+0.22	ProGrad	57.39	48.84	-8.5
MaPLe	88.85	86.81	-2.04	MaPLe	75 22	68.41	-6.81	MaPLe	57.16	49.27	-7.8
PromptSRC	84 52	83 56	-0.97	PromntSRC	65 95	65.83	-0.12	PromptSRC	51.62	46.17	-5.4
LoCoOp	84.51	83.94	-0.57	LoCoOp	81.91	80.88	-1.03	LoCoOp	67.38	55.38	-11.
(m) CIFA	R10.		(n)) CIFAR	100.					
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-M	Δ				
CoOp	53.49	49.45	-4.04	CoOp	74.33	71.48	-2.85				
CoCoÔp	37.07	29.79	-7.28	CoCoÒp	72.96	71.09	-1.88				
IVLP	39.00	30.87	-8.13	IVLP	56.39	45.86	-10.54				
KgCoOp	38.30	30.85	-7.45	KgCoOp	73.27	73.66	+0.39				
ProGrad	52.48	40.59	-11.90	ProGrad	77.89	67.49	-10.40				
MaPLe	40.75	30.00	-10.75	MaPLe	54.19	43.60	-10.59				
PromptSRC	30.54	22.74	-7.80	PromptSRC	51.05	45.82	-5.23				
LoCoOp	51.96	36.97	-14.99	LoCoOp	80.71	81.44	+0.73				

Table 7: Near OOD AUROC (†) of prompt learning models over 13 datasets using the MaxLogit score and MLS-M with 16-shots.

(a) A	verage ov	er 13 da	tasets.		(b) I1	mageNet	•			(c) Calt	ech101.	
	MaxLogit	MLS-M	Δ		MaxLog	git MLS-M	1 /	2		MaxLogit	MLS-M	Δ
CoOp CoCoOp	82.82±10.81 81.51±12.87	83.86±10.79 83.65±11.76	+1.03±1.08 +2.14±2.32	CoOp CoCoOp	93.81±0. 94.90±0.	23 95.38±0. 30 95.15±0.	27 +1.57 80 +0.25	±0.05 ±0.94	CoOp CoCoOp	89.75±0.81 87.12±1.14	91.38±1.11 89.94±1.19	+1.63±1.18 +2.82±1.92
KgCoOp	81.41±12.12	84.08±11.38	+4.02±3.90 +2.67±2.38	IVLP KgCoOp	94.46±0. 94.31±0.	.15 94.58±0. .05 94.18±0.	47 +0.12 27 -0.14:	±0.42 ±0.32	IVLP KgCoOp	87.69±1.59 84.05±0.05	93.21±1.75 90.34±0.33	+5.52±1.82 +6.29±0.38
ProGrad MaPLe	81.76±11.56 83.83±10.89	83.83±11.66 86.35±10.06	+2.07±2.43 +2.52±1.97	ProGrad MoDL o	94.14±0.	18 94.97±0.	06 +0.82	±0.15	ProGrad MoDL o	82.24±2.23	89.63±0.49	+7.40±2.15
PromptSRC	85.76±9.23	87.52±9.07	+1.76±1.55	PromptSR	C 94.66±0.	.31 94.70±0. 21 95.60±0.	18 +0.93	±0.29 ±0.25	PromptSRC	84.68±0.79	90.55±0.15	+5.86±0.14
LoCoOp	/9.26±11.23	82.30±12.45	+3.05±3.61	LoCoOp	93.70±0.	10 94.96±0.	36 +1.26	±0.45	LoCoOp	78.82±1.57	88.71±0.60	+9.89±1.44
	(d) Oxf	ordPets.			(e) Sta	infordCa	rs.			(f) Flow	/ers102.	
	MaxLogit	MLS-M	Δ		MaxLog	git MLS-N	1 /	7		MaxLogit	MLS-M	Δ
CoOp	85.22±1.19	86.66±1.64	$+1.45\pm0.46$	CoOp	93.53±0.	21 93.44±0.	22 -0.09:	±0.16	CoOp	94.30±0.63	94.66±0.57	+0.36±0.07
IVLP	90.95±0.76 91.15±1.82	93.34±0.23 93.74±1.33	+2.59±0.73	IVLP	91.29±1. 90.49±1.	.09 92.82±0. .37 93.21±1.	$1.52 \\ 09 + 2.72 \\ 00 + 2.72$	±0.33	IVLP	90.63±2.80	91.10±0.05 92.62±1.65	+1.99±0.80 +1.99±1.16
KgCoOp	90.28±0.28	92.16±0.97	+1.88±0.80	KgCoOp	92.95±0.	20 93.47±0.	06 +0.51	±0.21	KgCoOp	90.03±0.40	93.09±0.43	+3.05±0.37
MaPLe	87.42±1.41 90.02+0.45	88.59±0.73 94.16±1.27	$+1.1/\pm0.98$ +4.14+1.28	MaPLe	93.25±0. 91.44+1	47 93 23+0	13 +0.80 33 +1.78	±0.08 +1.50	MaPL e	90.72±0.89 89.76±0.79	93.03±0.23 91.43+1.17	+2.32±0.68 +1.67±0.58
PromptSRC	91.64±0.33	94.70±0.45	+3.06±0.19	PromptSR	C 93.84±0.	18 95.35±0.	14 +1.51	±0.13	PromptSRC	94.40±0.18	95.69±0.07	+1.29±0.24
LoCoOp	84.20±3.06	89.18±1.21	+4.98±2.46	LoCoOp	89.08±1.	19 92.10±1.	80 +3.02	±0.94	LoCoOp	87.05±1.89	89.98±0.29	+2.92±2.19
	(g) F0	00101			(11) FG	VCAIICI	a11.			(1) 50	11397.	
	MaxLogit	MLS-M	Δ		MaxLog	it MLS-M	Δ	7		MaxLogit	MLS-M	Δ
CoOp	88.67±0.17	90.13±0.18	+1.46±0.13	CoOp	55.40±1.8	81 56.30±1.8	8 +0.90: 4 +7.21	±1.39 +4.00	CoOp	78.28±0.50	79.55±0.69	+1.27±0.28
IVLP	90.40±0.78	92.43±0.70 92.81±0.52	+2.41±1.29	IVLP	59.68±1.1	37 71.67±1.4	2 +11.99	±0.11	IVLP	77.80±0.43	80.69±0.27	+2.89±0.71
KgCoOp	90.26±0.03	92.80±0.05	$+2.54\pm0.04$	KgCoOp	57.08±0.4	46 57.12±1.4	8 +0.04	±1.10	KgCoOp	77.35±0.10	78.83±0.18	+1.47±0.23
MaPLe	90.36±0.33 90.79±0.89	92.68±0.21 93.10±0.49	$+2.31\pm0.13$ +2.30 ±0.51	MaPLe	56.37±4.9	94 61.55±5.1	8 +5.18:	±0.32	MaPL e	77.06±1.03 78.20+1.74	79.49±0.85 80.68±0.66	$+2.42\pm0.28$ +2.48+1.12
PromptSRC	91.36±0.25	92.63±0.22	+1.26±0.07	PromptSR	C 64.57±1.0	65 66.79±1.9	5 +2.22:	±1.25	PromptSRC	79.60±0.10	82.05±0.47	+2.45±0.37
LoCoOp	85.50±1.17	91.49±0.65	+6.00±1.61	LoCoOp	52.39±1.9	93 49.20±3.5	6 -3.19±	£2.24	LoCoOp	75.80±0.33	79.85±0.46	+4.05±0.72
	(j) D	DTD.			(k) E	EuroSAT				(l) UC	F101.	
	MaxLogit	MLS-M	Δ		MaxLog	it MLS-M	Δ	7		MaxLogit	MLS-M	Δ
CoOp	74.05±1.15	74.30±1.40	+0.24±0.27	CoOp	71.85±1.2	25 73.46±2.6	6 +1.61:	±1.55	CoOp	83.64±0.49	85.37±0.51	+1.73±0.95
IVLP	65.24±1.28 67.09+1.68	69.63±1.46 71.16±0.76	$+3.40\pm1.75$ +4.07+1.01	IVLP	68.61±2.5 74.19±2.5	90 68.29±3.1 37 86.13±3.0	8 -0.32±	±3.57	IVLP	82.76±1.14 82.48+2.21	85.1/±0.81 86.65±0.37	$+2.41\pm0.56$ +4.16+1.93
KgCoOp	65.47±0.65	71.38±0.52	+5.92±0.31	KgCoOp	62.66±0.4	41 69.75±1.1	7 +7.09	±0.89	KgCoOp	82.08±0.13	85.01±0.62	$+2.92\pm0.51$
ProGrad M-DL-	63.89±1.41	68.36±1.45	+4.47±1.16	ProGrad MaPLe	75.98±1.9 80.80±0.9	94 76.16±1.8	0 +0.18:	±0.19 +1.12	ProGrad	82.06±0.46	84.03±0.63	+1.97±0.22
PromptSRC	71.98±0.74	73.59±0.71	$+1.62\pm0.61$	PromptSR	C 80.02±2.0	66 79.75±2.5	4 -0.27±	±0.26	PromptSRC	84.17±0.61	86.03±0.67	+1.81±0.27
LoĊoOp	68.15±0.66	72.60±0.68	+4.45±0.74	LoCoOp	68.62±5.7	75 69.66±5.8	0 +1.04:	±0.55	LoCoOp	78.50±1.08	84.35±1.15	+5.85±2.01
	(m) CI	FAR10.			(n) CIF	AR100.						
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-M	Δ	_				
CoOp	90.39±0.84	90.60±0.76	+0.20±0.26	CoOp	77.81±0.91	78.93±1.06	+1.12±1.7	78				
IVLP	93.84±0.18 93.01±1.30	93.95±0.38 93.10±1.66	+0.10±0.40 +0.09±0.45	CoCoOp IVLP	/6./6±1.06 85.87±0.90	/9.06±1.14 87.68±2.39	+2.31±0.9 +1.81±1.4	94 55				
KgCoOp	93.46±0.12	93.86±0.12	+0.40±0.03	KgCoOp	78.28±0.43	81.07±0.32	+2.79±0.	51				
ProGrad	92.94±0.40	93.30±0.28	+0.36±0.16	ProGrad	78.21±0.48	81.40±0.68	+3.19±0.4	47				
PromptSRC	94.24±0.58 95.13±0.09	94.26±0.79 94.88±0.35	+0.02±0.43 -0.24±0.29	PromptSRC	88.83±0.25	88.50±2.08 90.21±0.13	+3.01±1 +1.38±0	54 38				
LoCoOp	92.34±0.70	91.13±0.46	-1.21±0.59	LoCoOp	76.19±1.57	76.73±1.77	+0.54±1.	17				

Table 8: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the MaxLogit
 score and MLS-M with 8-shots.

(a) Av	verage ov	er 13 da	tasets.		(b) I	mageNet	t.			(c) Calt	ech101.	
	MaxLogit	MLS-M	Δ		MaxLog	git MLS-M	M	Δ		MaxLogit	MLS-M	Δ
CoOp CoCoOp IVLP	81.60±11.10 81.48±12.41 82.20±11.80	82.84±11.08 83.33±11.93 85.11±10.87	+1.24±1.01 +1.85±1.55 +2.91±3.80	CoOp CoCoOp IVI P	93.40±0. 94.87±0. 94.22+1	29 95.13±0 55 95.74±0 03 94.18±0	.43 .18	+1.73±0.70 +0.87±0.42	CoOp CoCoOp IVLP	88.88±0.91 85.61±1.96 88.03+1.47	90.54±1.21 88.06±2.40 92.33±1.21	+1.66±0.85 +2.46±1.43 +4.31±0.55
KgCoOp	80.97±12.22	83.38±11.86	+2.40±2.18	KgCoOp	94.29±0.	04 94.04±0	.38	-0.25±0.36	KgCoOp	83.63±0.18	89.80±0.18	+6.17±0.03
MaPLe	82.67±12.39	82.90±12.03 85.32±12.13	+2.58±2.57 +2.64±3.29	ProGrad MaPLe	93.82±0.	61 94.99±0 36 94.51±1	.22	+1.17±0.60 +0.76±0.40	MaPLe	83.99±1.42 87.09±0.76	89.25±1.18 92.06±0.89	+5.26±1.51 +4.97±1.59
PromptSRC	85.44±9.45	87.36±8.88 82.96±10.27	+1.92±1.70	PromptSR	C 94.64±0.	19 95.54±0	.09	+0.90±0.13	PromptSRC	85.04±0.34	90.68±0.54	+5.64±0.49
Locoop	(d) Ovf	ordPets	13.7124.19	LoCoOp	92.60±0.	52 94.22±0	.53	+1.61±0.44	LoCoOp	(f) Flow	89.72±1.09	+12.14±2.80
	(u) Oxio	oful cts.			(0) 514	unoruca	15.			(1) 110%	c13102.	
	MaxLogit	MLS-M	Δ		MaxLog	git MLS-N	M	Δ		MaxLogit	MLS-M	Δ
CoOp CoCoOp	86.69±1.96 90.96+0.62	89.06±1.86 93.07+0.16	+2.37±0.13 +2.11+0.61	CoOp CoCoOr	92.30±0. 92.64+1	62 93.03±1 14 93.27+1	.10	+0.73±0.56 +0.63+0.56	CoOp CoCoOp	92.28±0.46 88.33+0.08	93.00±0.50 89.32±0.22	+0.72±0.07 +0.99+0.30
IVLP	90.40±0.59	92.21±0.56	+1.81±0.86	IVLP	89.63±1.	84 93.38±1	.22	+3.75±2.47	IVLP	88.07±4.61	88.71±4.29	+0.63±0.32
KgCoOp BroCrod	90.21±0.16	92.49±0.33	+2.28±0.28	KgCoOp	92.90±0.	11 93.35±0	.14	+0.46±0.06	KgCoOp Bro Crod	88.36±0.20	92.26±0.37	+3.90±0.37
MaPLe	89.00±0.59	92.25±1.20	+3.25±0.77	MaPLe	92.93±0. 92.40±0.	.68 93.10±1	.00	$+0.32\pm0.41$ +0.70±0.32	MaPLe	87.04±0.19	88.53±0.40	+1.49±0.72
PromptSRC LoCoOp	91.60±0.19 85.70±2.63	93.92±0.35 89.51±1.11	+2.32±0.21 +3.80±2.38	PromptSR LoCoOp	C 92.94±0. 88.81±0.	24 94.42±0 48 92.42±1	.85 .02	+1.49±0.68 +3.61±1.23	PromptSRC LoCoOp	93.37±0.38 88.52±2.42	94.81±0.27 90.72±1.72	+1.44±0.12 +2.20±0.71
	(g) Fo	od101			(h) FG	VCAircr	aft.			(i) SU	N397.	
	MaxLogit	MLS-M	Δ		MaxLogi	it MLS-M	[Δ		MaxLogit	MLS-M	Δ
CoOp	87.71±1.08	88.22±1.11	+0.51±0.18	CoOp	55.53±5.9	6 56.84±5.7	79	+1.30±1.43	CoOp	76.77±1.16	77.77±0.76	+1.00±0.47
CoCoOp	91.19±0.48	91.74±0.62	+0.55±0.24	CoCoOp	53.41±1.0	06 55.94±2.5	55	+2.54±2.25	CoCoOp	76.74±0.43	79.67±1.02	+2.93±1.39
IVLP KgCoOd	89.41±1.46 89.85±0.10	92.28±0.29 92.00±0.29	$+2.8/\pm1.44$ +2.15 ±0.32	KgCoOp	57.14±1.0	05.22±4.5	42	+0.33±1.41	KgCoOp	78.34±0.12 76.89±0.17	80.45±0.88 78.52±0.31	$+2.12\pm0.81$ +1.63 ±0.35
ProGrad	89.28±0.37	91.03±0.45	+1.75±0.36	ProGrad MoPL o	55.17±1.9	08 55.92±6.7	71 ·	+0.75±5.07	ProGrad	76.17±0.28	79.14±0.62	$+2.97\pm0.77$
MaPLe PromptSRC	90.50±0.81 91.36±0.30	92.68±0.24 92.47±0.37	+2.17±0.94 +1.10±0.36	PromptSR	C 63.32±0.7	7 55.45±14.	82 55	+4.86±1.54	MaPLe PromptSRC	79.09±1.04 79.25±0.23	80.51±0.98 81.65±0.44	$+1.42\pm0.17$ +2.40 ±0.31
LoCoOp	86.12±1.73	89.93±1.12	+3.80±0.75	LoCoOp	56.10±7.2	2 62.22±9.9	93	+6.11±3.34	LoCoOp	75.00±1.06	78.96±0.98	+3.96±1.14
	(j) D	DTD.			(k) E	EuroSAT				(l) UC	F101.	
	MaxLogit	MLS-M	Δ		MaxLog	it MLS-N	м	Δ		MaxLogit	MLS-M	Δ
CoOp	71.45±0.53	72.10±1.04	$+0.64\pm0.55$	CoOp CoCoOp	68.76±3.	30 69.45±3 14 67.82±4	.03	+0.69±0.28 +0.60±0.40	CoOp	83.55±0.94	85.42±0.73	+1.87±0.73
IVLP	67.23±0.51	69.55±0.50	+2.81±0.33 +2.33±0.07	IVLP	62.81±11.	.25 70.59±14	4.90	+7.78±3.79	IVLP	82.04±1.02 81.35±1.72	86.23±1.34	+4.88±1.19
KgCoOp	63.45±0.50	67.91±1.17	+4.46±0.88	KgCoOp	62.47±0.5	59 66.72±2	.87	+4.26±3.46	KgCoOp	81.75±0.34	84.93±0.41	+3.19±0.50
MaPLe	62.05±1.25 66.90+1.49	67.22±1.00 70.91+1.83	+5.1/±0.3/ +4.01+0.52	MaPLe	79.49±3.9	93 83.54±6	.27	+4.05±2.44	MaPLe	80.40±2.13 81.06+0.69	85.18±1.87 84.41+0.65	+4.78±0.32 +3.35+1.24
PromptSRC	70.78±1.16	71.82±1.05	+1.05±0.10	PromptSR	C 81.33±5.	10 81.35±5 20 71.60±5	.33	+0.02±0.25	PromptSRC	84.54±0.84	86.81±0.95	+2.27±0.17
LoCoOp	68.50±0.52	70.79±0.33	+2.29±0.60		(n) CIE	A D 100	.10	15.1025.07	LoCoOp	75.23±2.13	83.62±0.92	+8.39±1.65
	(III) CI	AK10.			(1) CI	AK100.						
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-M		Δ				
CoOp CoCoOp	88.11±2.48 92.96±0.58	88.12±2.73 93.38±0.92	+0.01±0.26 +0.42±0.43	CoOp CoCoOp	75.41±0.95 77.14±1.36	78.30±0.46 81.60±0.63	+2.8	89±0.57 45±1.23				
IVLP KgCoOp	92.27±1.15 93.33±0.01	93.34±0.78 93.67±0.16	+1.07±0.43 +0.34±0.14	IVLP KgCoOp	86.85±0.73 78.39±0.44	87.94±0.63 80.69±0.94	+1.0	09±0.45 30±1.23				
ProGrad MaPL e	92.31±0.54	92.71±0.70	$+0.40\pm0.28$ $\pm0.43\pm0.20$	ProGrad MaPL e	76.86±0.64	80.76±1.26	+3.9	90±0.76				
PromptSRC	94.92±0.47	94.75±0.45	-0.16±0.31	PromptSRC	87.67±0.69	89.33±0.83	+1.6	66±0.18				
LoCoOp	91.96±1.27	88.62±3.55	-3.34±3.08	LoCoOp	75.70±0.75	76.16±2.61	+0.4	46±1.86				

Table 9: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the MaxLogit
 score and MLS-M with 4-shots.

(a) Av	erage ov	ver 13 da	tasets.		(b) Iı	mageNet.				(c) Calt	ech101.		
	MaxLogit	MLS-M	Δ		MaxLog	git MLS-M	1	Δ		MaxLogit	MLS-M	Δ	
CoOp	81.06±11.11	82.10±11.35	+1.04±1.56	CoOp	93.83±0.	51 95.14±0.2	22	+1.31±0.70	CoOp	90.33±1.75	91.76±2.61	+1.42±1.39	
IVLP	81.45±12.10 81.14±12.63	83.09±12.43 84.08±12.27	+1.63±2.06 +2.94±2.39	CoCoOp IVI P	95.32±0. 95.03±0	02 95.73±0.0 13 95.45±0.2	05 25	$+0.41\pm0.04$ +0.42+0.14	CoCoOp IVLP	86.87±1.08 84.15±0.90	89.49±0.16 91.65±0.68	+2.62±1.15 +7.51+1.56	
KgCoOp	80.69±12.01	83.03±12.20	+2.34±2.02	KgCoOp	94.20±0.	08 94.29±0.0	08	+0.10±0.03	KgCoOp	83.66±0.10	90.14±0.62	+6.48±0.58	
MaPLe	80.58±11.41 80.76±11.98	82.50±11.50 83.53±11.47	$+1.92\pm1.76$ $+2.78\pm3.03$	ProGrad MaPL a	93.84±0.	40 94.63±0.3	31	+0.79±0.19	ProGrad MaPLe	84.42±1.03 85.04+3.59	88.66±1.52 91.26±1.94	+4.24±1.81 +6.22+4.19	
PromptSRC	84.27±9.89	86.10±9.92	$+1.83\pm1.54$	PromptSR	2 94.57±0.	47 95.77±0.0 13 95.40±0.2	29	$+0.82\pm0.24$	PromptSRC	85.28±0.44	90.60±0.34	+5.32±0.27	
LoCoOp	78.52±11.12	81.57±11.62	+3.06±4.44	LoCoOp	93.24±0.	26 94.86±0.1	15	+1.62±0.35	LoCoOp	76.00±1.81	87.91±1.29	+11.91±0.60	
	(d) Oxf	ordPets.			(e) Sta	infordCa	rs.			(f) Flow	vers102.		
	MaxLogit	MLS-M	Δ		MaxLog	git MLS-M	1	Δ		MaxLogit	MLS-M	Δ	
CoOp	87.50±1.91	89.59±1.72	+2.09±0.20	CoOp	91.17±1.	22 91.43±1.0	03	+0.26±0.36	CoOp	91.86±1.63	93.13±1.28	+1.27±0.97	
CoCoOp IVI P	89.60±0.93 89.53±1.52	92.90±0.68 93.28±0.55	+3.30±1.49	CoCoOp IVI P	93.30±0. 92.00±1	68 93.57±0.5 03 92.85±1.0	56 03	+0.27±0.23	CoCoOp IVI P	87.75±1.53 86.85+1.79	89.30±0.74 88.54+1.03	+1.55±1.04	
KgCoOp	90.07±0.08	93.18±0.28	+3.11±0.32	KgCoOp	92.81±0.	07 93.38±0.1	17	+0.57±0.14	KgCoOp	86.91±0.26	90.44±0.01	+3.53±0.27	
ProGrad	87.64±1.19	89.51±1.52	+1.87±0.33	ProGrad	92.38±1.	00 92.86±0.7	75	+0.48±0.54	ProGrad	88.87±1.85	91.37±1.52	+2.50±0.87	
PromptSRC	80.47±2.51 90.75±1.02	91.28±1.59 93.93±1.02	$+4.81\pm1.47$ +3.18±0.32	PromptSR	91.80±1. 2 92.77±0.	10 92.96±0.1 19 93.82±0.2	28	$+1.0\pm1.19$ +1.05±0.39	PromptSRC	85.57±2.40 91.72±0.23	87.96±1.68 92.92±0.73	$+2.38\pm1.30$ +1.19 ±0.50	
LoCoOp	86.18±1.10	89.77±1.27	+3.59±1.05	LoCoOp	87.34±1.	74 91.59±0.3	34	+4.25±2.02	LoCoOp	87.15±0.57	89.05±0.72	$+1.90\pm0.65$	
	(g) Fo	od101			(h) FG	VCAircra	aft.			(i) SU	N397.		
	MaxLogit	MLS-M	Δ		MaxLog	it MLS-M	ſ	Δ		MaxLogit	MLS-M	Δ	
CoOp	86.74±1.38	87.79±1.03	+1.05±0.40	CoOp	56.85±1.7	73 57.84±2.9	90	+1.00±2.88	CoOp	76.73±0.94	77.27±0.56	+0.54±0.38	
CoCoOp	90.61±0.90	91.88±0.41	+1.27±0.50	CoCoOp	54.94±2.0	06 53.40±1.2	26	-1.54±2.98	CoCoOp	76.24±0.84	78.52±0.33	+2.28±0.99	
KgCoOp	89.44±0.39 89.57±0.21	92.10±0.73 92.25±0.17	$+2.68\pm0.27$	KgCoOp	57.62±1.5	51 56.08±1.5	55	-1.54±0.51	KgCoOp	76.60±0.44	79.48±0.07 77.76±0.54	$+2.11\pm0.90$ +1.16±0.10	
ProGrad	87.78±0.58	90.72±0.16	$+2.94\pm0.50$	ProGrad	54.14±2.9	94 54.24±3.6	56	+0.10±0.96	ProGrad	75.84±1.03	77.43±1.27	$+1.58\pm0.86$	
MaPLe	88.95±1.02	92.03±0.69	+3.08±1.55	PromptSRC	51.02±0.9	47 62.69+3.5	12 58	$+6.49\pm5.03$ +1.48+2.30	MaPLe	78.33±0.74	79.93±0.40	+1.61±0.95	
LoCoOp	84.36±2.01	90.44±1.29	+6.08±1.32	LoCoOp	52.51±3.9	97 54.96±8.6	53	$+2.45\pm9.18$	LoCoOp	73.59±1.03	78.12±0.62	+4.53±0.64	
	(j) D	DTD.			(k) E	EuroSAT.				(l) UC	F101.		
	MaxLogit	MLS-M	Δ		MaxLog	it MLS-M	1	Δ		MaxLogit	MLS-M	Δ	
CoOp	68.35±0.34	69.74±0.64	+1.39±0.70	CoOp	67.51±2.	56 66.19±2.9	93	-1.32±1.80	CoOp	81.09±1.53	82.52±1.91	+1.43±0.95	
CoCoOp	64.22±1.22	66.23±0.16	$+2.01\pm1.06$	CoCoOp	68.85±2.	31 69.49±2.0	06	+0.64±0.96	CoCoOp	81.34±1.17	84.59±1.22	$+3.25\pm1.91$	
IVLP KaCoOn	65.12±0.45	67.49±0.99	+2.37±0.68	IVLP KgCoOp	60.33±7.	70 65.49±9.6	60 41	+5.16±2.58	IVLP KaCoOn	80.78±1.59	84.87±1.46	$+4.10\pm0.84$	
ProGrad	63.40±1.51	67.36±1.72	+3.96±0.77	ProGrad	74.47±1.	09 74.59±2.9	97	+0.12±1.89	ProGrad	81.07±1.02	83.00±0.40	+1.93±1.29	
MaPLe	64.63±0.99	66.06±0.55	+1.43±1.03	MaPLe	69.89±4.	69 69.99±4.3	37	+0.10±0.58	MaPLe	81.35±0.32	86.21±1.05	+4.85±1.21	
LoCoOp	68.39±1.39 67.92±1.34	70.29±1.02 69.50±0.85	+1.90±0.69 +1.58±0.58	LoCoOp	70.17±5.	65 /8.29±1.0 93 69.65±5.6	08 67	$+0.66\pm0.45$ -0.52 ± 0.63	LoCoOp	84.07±0.51 78.33±0.78	86.77±0.99 83.19±1.89	+2.70±1.15 +4.86±1.34	
	(m) CI	FAR10.			(n) CIE	AR100.							
	MaxLogit	MLS-M	Δ		MaxLogit	MLS-M		Δ					
CoOp	87.12±2.56	87.29±2.73	+0.17±0.24	CoOp	74.64±1.74	77.60±2.69	+2.	96±1.48					
CoCoOp IVI P	92.67±0.76 91.92+1.84	93.13±0.69 92.81+1.31	$+0.45\pm0.17$ $\pm0.89\pm0.54$	CoCoOp IVI P	77.19±1.06 85.72±0.61	81.91±1.30 88.55±0.76	+4.	.72±1.41 83±0.29					
KgCoOp	92.78±0.29	93.39±0.39	+0.61±0.11	KgCoOp	77.99±0.45	81.21±0.38	+3.	22±0.28					
ProGrad	89.36±0.43	90.10±1.12	+0.75±0.76	ProGrad	74.28±0.12	77.97±1.46	+3.	.69±1.52					
MaPLe PromptSRC	8/.53±6.17 92.74±1.69	88.19±4.69 92.86±1.83	+0.66±1.82 +0.13±0.16	MaPLe PromptSRC	85.28±0.74 87.04±0.65	88.79±0.58 89.17±1.09	+3.	51±0.33 .13±0.94					
LoCoOp	90.93±2.17	δ/./U±2.18	-5.25±1.53	LoCoOp	/5.01±1.23	/3./1±2.24	+0.	./1±1.11					

Table 10: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the MaxLogit
 score and MLS-M with 2-shots.

1146 1147	(a) Av	verage ov	ver 13 dat	tasets.		(b) I	mageNet				(c) Calt	ech101.	
1148		MaxLogit	MLS-M	Δ		MaxLog	git MLS-N	4	Δ		MaxLogit	MLS-M	Δ
1149	CoOp CoCoOp	80.05±11.11 80.76±12.16	81.19±11.05 82.12±12.60	+1.14±1.59 +1.35±1.70	CoOp CoCoOp	94.19±0. 94.31±0.	39 94.39±0. 34 94.52±0.	14 + 27 +	0.20±0.25 0.21±0.08	CoOp CoCoOp	88.02±1.73 85.33±0.73	89.90±1.19 88.48±0.99	+1.88±1.20 +3.15±0.28
1150	IVLP KgCoOp	80.12±11.76 80.83±11.54	82.87±10.97 83.13±11.49	+2.75±2.35 +2.30±2.01	IVLP KgCoOp	94.86±0. 94.15±0.	 67 94.65±0. 17 94.32±0. 	24 -(35 +	0.21±0.50 0.17±0.18	IVLP KgCoOp	84.50±1.75 83.72±0.41	88.55±2.19 89.78±0.36	+4.04±2.52 +6.06±0.06
1151	ProGrad MaPLe	79.43±11.87 80.49±11.63	82.07±11.48 83.42±11.27	+2.64±2.91 +2.92±2.35	ProGrad MaPLe	93.22±0. 94.50±0	29 94.76±0. 71 94.45±0	25 +	1.54±0.26	ProGrad MaPLe	83.67±2.53 85.89±1.69	90.32±2.56 91.87±0.61	+6.64±2.43 +5.98±1.71
1152	PromptSRC LoCoOp	83.18±10.43 76.28±12.95	84.99±10.53 80.62±11.92	+1.82±1.58 +4.34±4.81	PromptSR	C 94.48±0. 92.89±0	20 94.95±0. 56 94.31±0	19 + 07 +	0.48 ± 0.20	PromptSRC LoCoOp	85.33±0.27 72.52±4.07	90.50±1.32 86.38±1.65	+5.17±1.50 +13.85±3.56
1153		(d) Oxf	ordPets.			(e) Sta	nfordCa	rs.	1.4220.34		(f) Flow	vers102.	
1154		MaxLogit	MLS-M	Δ		MaxLog	git MLS-N	4	Δ		MaxLogit	MLS-M	Δ
1155	CoOp	86.15±3.09	89.19±3.57	+3.05±0.49	CoOp	90.78±0.	94 91.06±1.	11 +	0.28±0.71	CoOp	90.03±0.97	91.44±0.84	+1.42±0.29
1156	IVLP	87.40±1.25 84.75±1.68	91.23±0.94 89.58±1.17	+3.83±0.41 +4.83±1.67	IVLP	92.91±0. 90.53±1.	91 92.77±1. 63 92.85±0.	46 +	0.14±0.14 2.32±1.23	IVLP	87.50±0.44 82.42±0.56	89.01±0.96 85.94±0.68	$+1.51\pm1.01$ +3.52±0.21
1157	KgCoOp ProGrad	89.65±0.42 88.70±0.71	92.68±0.53 89.82±0.46	+3.04±0.22 +1.12+1.11	KgCoOp ProGrad	92.55±0. 89.29+1	05 93.08±0. 35 91.70+1.	39 + 04 +	0.53±0.44 2.41+0.61	KgCoOp ProGrad	86.51±0.58 88.22+1.50	90.60±0.44 91.20±0.53	+4.08±0.17 +2.98+1.59
1107	MaPLe	86.04±1.41	89.19±2.52	+3.15±2.74	MaPLe	90.47±1.	41 93.26±0.	38 +	2.78±1.69	MaPLe	84.55±0.54	87.98±0.22	+3.43±0.46
1158	LoCoOp	89.91±0.38 82.02±2.93	92.48±0.71 89.14±1.05	+2.57±0.42 +7.12±2.67	LoCoOp	C 92.49±0. 87.43±2.	37 93.75±0. 72 91.69±1.	45 + 86 +	4.26±0.59	LoCoOp	89.06±0.30 86.04±1.21	90.76±0.41 87.79±0.65	+1.70±0.24 +1.75±0.64
1159		(g) Fo	od101			(h) FG	VCAircr	aft.			(i) SU	N397.	
1160		MaxLogit	MLS-M	Δ		MaxLog	git MLS-N	4	Δ		MaxLogit	MLS-M	Δ
1161	CoOp	84.32±0.55	85.60±1.02	+1.28±0.63	CoOp	55.74±1.	10 57.73±2.	73 +	1.99±3.42	CoOp	74.08±0.32	75.16±0.62	+1.08±0.55
1162	IVLP	90.08±0.26	91.09±0.45	+1.01±0.66	IVLP	56.78±3.	46 61.06±2.	52 +	4.28±1.69	IVLP	76.86±0.49	78.73±0.81	+1.87±0.71
1163	KgCoOp ProGrad	89.77±0.31 87.31±2.18	91.94±0.33 90.08±0.53	+2.17±0.11 +2.77±1.69	KgCoOp ProGrad	60.16±2. 52.61±1.	21 59.39±2. 01 56.25±5.	44 -(57 +	0.77±0.44 3.64±6.10	KgCoOp ProGrad	76.06±0.10 75.05±0.82	77.26±0.53 76.26±0.48	$+1.20\pm0.61$ $+1.22\pm0.41$
1164	MaPLe PromptSRC	86.87±0.33	91.34±0.36 91.64±0.59	$+4.48\pm0.64$ +1.02+0.22	MaPLe PromptSR	55.94±1.	28 60.17±3.	89 +	4.22±3.82	MaPLe PromptSRC	76.87±0.15	78.95±0.71 80.19±0.31	$+2.08\pm0.56$ $\pm2.28\pm0.27$
1165	LoCoOp	84.15±0.34	89.87±0.39	+5.71±0.72	LoCoOp	46.36±1.	48 55.36±6.	99 +	9.00±5.61	LoCoOp	72.91±0.71	77.06±0.87	+4.15±0.18
1166		(j) E	DTD.			(k) E	EuroSAT	•			(l) UC	CF101.	
1167		MaxLogit	MLS-M	Δ		MaxLog	git MLS-N	1	Δ		MaxLogit	MLS-M	Δ
1168	CoOp	66.73±1.35	67.52±1.39	$+0.79\pm0.53$ +1.12+0.79	CoOp	69.45±3.	44 68.88±3.	68 -(0.58±0.38	CoOp	82.56±1.23 79.81±0.89	83.75±0.47 82.60±0.71	+1.19±0.77
1100	IVLP	63.97±0.99	66.74±0.74	+2.77±1.15	IVLP	62.65±1.	90 66.29±3.	59 +	3.63±4.77	IVLP	78.07±0.27	82.26±0.57	+4.18±0.40
1109	KgCoOp ProGrad	63.98±0.51 62.75±0.94	67.32±1.14 66.94±0.43	+3.34±1.20 +4.19±0.67	KgCoOp ProGrad	63.15±0. 68.21±5.	24 67.37±1. 43 69.67±3.	54 + 82 +	4.22±1.70 1.46±2.18	KgCoOp ProGrad	80.67±0.15 81.13±0.67	82.96±1.30 84.09±0.61	+2.30±1.19 +2.96±0.21
1170	MaPLe	63.76±2.01	66.17±1.20	+2.41±1.25	MaPLe	65.05±5.	56 68.44±6.	25 +	3.38±1.21	MaPLe	80.17±0.71	83.26±1.24	+3.09±0.54
1171	LoCoOp	63.60±0.41	65.62±1.23	+2.02±0.82	LoCoOp	63.36±2.	81 66.60±4.	91 + 99 +	3.24±2.39	LoCoOp	74.83±3.00	82.08±2.14	+7.25±0.87
1172		(m) CI	FAR10.			(n) CIF	AR100.						
1173		MaxLogit	MLS-M	Δ		MaxLogit	MLS-M	2	Δ				
1174	CoOp	86.90±0.17 93.11+0.38	86.61±0.59 93.36+0.41	-0.29 ± 0.45 $\pm0.24\pm0.08$	CoOp CoCoOp	71.71±1.18 76.71+0.95	74.21±0.75 79.91+2.15	+2.50	0±1.84 0+1.41				
1175	IVLP KgCoOp	92.90±0.41 93.17±0.07	92.94±0.13 93.54±0.06	$+0.04\pm0.53$ $+0.37\pm0.05$	IVLP KgCoOp	83.15±1.72 77.28±0.43	86.63±1.02 80.48±0.31	+3.48	8±0.71				
1176	ProGrad	88.24±0.35	87.03±1.63	-1.21±1.41	ProGrad	74.20±1.65	78.77±1.67	+4.56	6±2.70				
1177	MaPLe PromptSRC	93.02±0.44 93.88±0.11	92.72±0.42 94.33±0.28	-0.30±0.83 +0.45±0.19	MaPLe PromptSRC	83.27±1.28 85.83±0.39	86.61±0.90 88.86±0.45	+3.34	4±2.09 3±0.19				
1178	LoCoOp	92.70±0.80	88.96±1.85	-3.73±2.64	LoCoOp	72.81±1.34	73.16±1.43	+0.36	6±0.82				
1179													
1180													
1180 1181													

Table 11: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the MaxLogit score and MLS-M with 1-shot.

1200 1201	(a) Av	erage ov	er 13 dat	tasets.		(b) Iı	magel	Net.			(c) Calt	ech101.	
1202		MaxLogit	MLS-M	Δ		MaxLog	git M	LS-M	Δ		MaxLogit	MLS-M	Δ
1202	CoOp	77.78±11.44	78.69±11.97	+0.92±2.15	CoOp	93.65±0.	21 93.2	26±0.76	-0.39±0.96	CoOp	84.37±2.48	87.03±1.50	+2.66±1.47
1203 0	OCOOP IVLP	79.70±13.00 80.00±10.91	81.20±12.00 82.27±11.08	+1.56±2.54 +2.26±3.19	CoCoOp IVLP	94.85±0. 94.18±0.	.39 94.3 .49 94.6	57±0.57 64±0.57	-0.28±0.92 +0.45±0.89	IVLP	84.06±0.95 83.13±2.65	89.11±1.24 86.92±2.13	+5.05±1.93 +3.79±2.12
1204 к	gCoOp roGrad	80.19±12.35 78.26+12.72	81.98±12.90 80.32+12.20	+1.79±2.74 +2.06+2.87	KgCoOp	94.07±0.	12 94.2	24±0.29	+0.16±0.23	KgCoOp ProGrad	83.14±0.02 80.48±0.51	90.23±0.24	+7.09±0.25
1205	MaPLe	78.86±13.76	81.13±13.97	+2.27±4.69	MaPLe	93.09±0. 94.12±0.	.62 94.3	32±0.40	+0.90±0.24 +0.19±0.44	MaPLe	83.66±2.91	89.39±1.00	+5.74±3.28
1206 L	oCoOp	81.56±12.17 76.37±12.38	82.81±13.06 79.56±11.73	+1.25±2.45 +3.19±5.99	PromptSR	.C 94.23±0.	49 95.1	10±0.29	+0.87±0.22	PromptSRC LoCoOp	84.36±0.32 75.46±2.62	90.45±0.51 86.03±2.08	+6.09±0.81 +10.57±0.86
1207		(d) Oxfo	ordPets.			(e) Sta	inford	Cars.	•		(f) Flow	vers102.	
1208 —		MaxLogit	MLS-M			MaxLos	zit M	LS-M			MaxLogit	MLS-M	
1209	CoOp	85.54±1.64	89.17±2.00	+3.63±1.51	CoOp	89.04±1.	.69 88.9	99±1.70	-0.05±0.54	CoOp	85.67±1.94	87.73±2.37	+2.06±0.69
1010 C	CoCoOp	89.03±1.15	90.64±0.09	+1.61±1.10	CoCoOp	91.98±0.	63 92.5	54±0.46	+0.56±0.75	CoCoOp	86.67±0.55	88.32±0.52	+1.65±0.14
1210 к	IVLF (gCoOp	89.51±0.24	90.89±0.13 92.67±1.14	+2.30±1.38 +3.16±0.93	KgCoOt	 99.48±0. 92.62±0. 	.12 93.0	08±0.21	+0.46±0.13	KgCoOp	85.04±2.91 86.21±0.08	89.22±0.80	$+3.42\pm1.01$ +3.01±0.84
1211 ^P	roGrad	88.35±2.29	90.89±1.62	+2.54±0.88	ProGrad	89.73±2.	12 91.2	28±0.91	+1.54±1.24	ProGrad MoBL o	88.11±0.73	89.02±0.97	+0.91±0.44
1212 Pro	omptSRC	90.11±0.68	92.23±0.50	$+2.04\pm2.23$ +2.12 ±1.16	PromptSR	C 92.38±0.	.60 93.8	83±0.13	+0.98±0.09 +1.45±0.27	PromptSRC	86.95±0.70	88.89±1.25	+2.40±0.47 +1.94±0.55
1010 L	.oCoOp	84.09±2.60	88.34±1.97	+4.25±3.66	LoCoOp	88.53±2.	.24 91.9	90±0.25	+3.37±2.39	LoCoOp	82.06±1.53	85.38±2.01	+3.32±0.84
1213		(g) Fo	od101			(h) FG	VCAi	rcraf	t.		(i) SU	N397.	
1015		MaxLogit	MLS-M	Δ		MaxLog	it MI	LS-M	Δ		MaxLogit	MLS-M	Δ
1215 -	CoOp	86.05±1.60	87.82±2.12	+1.77±0.54	CoOp	56.46±1.5	55 56.1 42 57 1	3±4.61	-0.33±3.69	CoOp	73.03±1.27	73.99±2.01	+0.95±0.77
1216	IVLP	90.07±0.73 89.15±1.82	90.91±0.37 91.01±0.78	+0.84±0.75 +1.86±1.17	IVLP	59.36±1.0	26 62.4	0±4.31	+3.04±3.42	IVLP	75.31±0.70	78.63±0.77	$+1.21\pm0.20$ +3.32±1.46
1217 K	lgCoOp	89.88±0.14	91.58±0.47	+1.70±0.56	KgCoOp ProGrad	57.11±1.2	22 57.2 64 57.8	3±3.26	+0.12±2.04	KgCoOp	75.35±0.08	77.19±0.14	+1.84±0.22
1010	MaPLe	88.40±0.68	90.73±1.42 90.83±0.75	+2.48±1.10 +2.43±0.59	MaPLe	48.73±7.	71 51.9	7±5.93	+3.24±13.20	MaPLe	75.59±1.31	78.56±0.92	$+2.37\pm0.20$ +2.97±0.44
1218 Pro	omptSRC	90.59±0.12	91.76±0.16	+1.17±0.08	PromptSR LoCoOn	C 53.69±2.5	55 52.6 93 58.8	7±1.32	-1.02±3.51 +11.26+9.05	PromptSRC	77.19±0.99	79.17±0.71	+1.98±0.32
1219 —	осоор	64.22±3.03	00.07±1.10	+4.00±2.07		(lz) I		AT	111.2020.00	Locoop	(1) LIC	73.99±0.80	+3.43±0.20
1220		() L	ID.			(K) E	LUIOS	AI.			(1) UC	F101.	
1221		MaxLogit	MLS-M	Δ		MaxLog	it M	ILS-M	Δ		MaxLogit	MLS-M	Δ
1222	CoOp 'oCoOp	63.93±1.09 64.23±0.39	64.32±0.70 65.22±1.19	+0.40±0.79 +0.99+0.87	CoOp CoCoOr	62.12±4. 60.92+3	42 61. 46 58 9	19±4.11 94+3.27	-0.93±0.61 -1.98+1.72	CoOp CoCoOp	79.98±1.30 80.07+1.01	81.17±0.71 82.40±0.35	+1.19±0.69 +2.32+1.18
1000	IVLP	61.56±1.52	64.71±1.91	+3.16±0.85	IVLP	67.81±4.	12 64.0	61±5.13	-3.21±5.92	IVLP	78.63±1.72	82.75±0.78	+4.12±2.11
1223 к	(gCoOp	62.95±1.40	67.80±0.89	+4.85±0.51	KgCoOp ProGrad	60.86±1.	13 57.0 14 60.0	60±2.80	-3.26±1.67	KgCoOp	81.02±0.88 81.30±1.05	83.41±1.66	+2.39±0.84
1224	MaPLe	61.56±0.70	64.89±0.47	+3.33±0.97	MaPLe	60.69±7.	74 57.2	24±10.24	-3.45±4.26	MaPLe	78.44±0.58	82.58±0.49	+4.14±0.29
1225 I	omptSRC	66.69±1.81 65.00±1.05	67.99±2.73 66 74±0 67	+1.30±0.98 +1.74+0.62	PromptSR LoCoOr	C 65.51±4. 63.02±4.	26 62.5 28 61.7	56±2.38 75±6.38	-2.95±1.87 -1.27±2.61	PromptSRC LoCoOp	81.02±0.85 74 53+1 82	83.40±0.99 79.48+2.15	+2.38±0.14 +4.95+0.33
1226	locoop	(m) CII	FAR10.			(n) CIF	AR10	0.		Locoop	7110021102	77.1012.10	110020000
1227		MaxLogit	MLS-M			MaxLogit	MLS-	M					
1228	CoOp	83.06±1.34	81.77±0.90	-1.29±1.60	CoOp	68.18±1.23	70.43±3	3.00 +	2.24±2.90				
1220 C	oCoOp IVLP	90.85±2.48 87.01+6.32	90.01±2.16 86.81+3.85	-0.84±0.59	CoCoOp	76.01±1.44	79.86±	1.91 +	3.85±0.47				
1229 к	gCoOp	93.01±0.32	91.78±1.72	-1.23±1.61	KgCoOp	76.77±0.66	79.69±	1.55 +	4.04±0.72 2.92±0.91				
1230 P	roGrad MaPL e	87.62±4.43 92.41+1.38	86.07±4.47 92.43+2.35	-1.55 ± 2.03 +0.02+1.21	ProGrad MoBL o	70.90±2.52	74.08±	1.77 +	3.18±1.24				
1231 Pro	mptSRC	93.62±0.39	92.59±2.13	-1.02±1.78	PromptSRC	83.99±0.11	85.91±0	0.88 +	1.92±0.82				
1232	oCoOp	89.29±1.17	82.42±10.55	-6.87±9.46	LoCoOp	73.40±1.57	74.07±	1.22 +	0.67±0.54				
1233													
1234													
1235													

1242 A.3.2 ENERGY SCORE

We provide the same results of Table 5 to Table 11 using Energy score in Table 12 to Table 18.

Table 12: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the Energy score and MLS-E.
1251

	ige over	13 data	sets.		(b) Imag	geinet.		(C) Caltec	n101.	
	Energy	MLS-E	Δ		Energy	MLS-E	Δ		Energy	MLS-E	
CoOp	80.44	81.71	+1.27	CoOp	93.73	94.83	+1.10	CoOp	87.31	89.48	+2.
CoCoOp	80.53	82.74	+2.21	CoCoOp	94.76	95.30	+0.54	CoCoOp	84.19	88.04	+3.
IVLP	80.49	84.40	+3.91	IVLP	94.50	94.94	+0.44	IVLP	84.08	89.85	+5.
KgCoOp	80.14	83.23	+3.09	KgCoOp	94.05	94.41	+0.36	KgCoOp	80.39	88.79	+8.
ProGrad	78.79	81.93	+3.14	ProGrad	93.46	94.79	+1.33	ProGrad	80.60	87.60	+7.
MaPLe	80.39	83.99	+3.60	MaPLe	94.07	94.58	+0.51	MaPLe	84.52	90.95	+6.
PromptSRC	83.48	85.88	+2.40	PromptSRC	94.46	95.56	+1.10	PromptSRC	82.59	89.70	+7.
LoCoOp	75.94	81.25	+5.31	LoCoOp	92.25	94.53	+2.28	LoCoOp	71.45	86.09	+14
(d) Oxfore	dPets.		(e) Stanfo	rdCars.		(f) Flower	rs102.	
	Energy	MLS-E	Δ		Energy	MLS-E			Energy	MLS-E	2
CoOp	85.91	88.62	+2.71	CoOp	91.37	91.66	+0.29	CoOp	90.12	91.51	+1
CoCoOp	88.93	92.01	+3.08	CoCoOp	92.56	93.17	+0.62	CoCoOp	86.76	88.89	+2
IVLP	88.27	91.67	+3.40	IVLP	90.45	93.24	+2.79	IVLP	84.51	87.44	+2
KgCoOp	89.25	92.28	+3.03	KgCoOp	92.85	93.43	+0.59	KgCoOp	85.78	90.51	+4
ProGrad	87.54	89.51	+1.97	ProGrad	91.34	92.55	+1.21	ProGrad	87.51	90.37	+2
MaPLe	86.66	90.64	+3.98	MaPLe	91.53	93.14	+1.62	MaPLe	84.45	87.40	+2
PromptSRC	90.38	93.29	+2.90	PromptSRC	92.97	94.47	+1.51	PromptSRC	89.92	91.86	+1
LoCoOp	82.90	88.44	+5.54	LoCoOp	87.93	92.16	+4.23	LoCoOp	83.73	87.14	+:
(g) Food	101.		(h)) FGVC.	Aircraft.			(1) SUN	397.	
	Energy	MLS-E	Δ		Energy	MLS-E	Δ		Energy	MLS-E	
CoOp	86.32	87.70	+1.38	CoOp	58.92	59.98	+1.06	CoOp	75.10	76.19	+1
CoCoOp	90.09	91.44	+1.35	CoCoOp	57.28	61.61	+4.33	CoCoOp	75.10	77.36	+2
IVLP	89.22	91.73	+2.51	IVLP	63.66	71.01	+7.35	IVLP	76.17	79.03	+2
KgCoOp	89.29	91.96	+2.67	KgCoOp	66.07	66.68	+0.61	KgCoOp	74.80	76.54	+
ProGrad	87.93	90.90	+2.98	ProGrad	57.15	59.58	+2.43	ProGrad	74.00	76.48	+2
MaPLe	88.43	91.84	+3.41	MaPLe	57.03	63.37	+6.33	MaPLe	76.65	79.09	+2
PromptSRC	90.59	91.97	+1.38	PromptSRC	68.80	70.34	+1.54	PromptSRC	77.26	79.91	+2
LoCoOp	82.51	89.45	+6.94	LoCoOp	55.31	61.06	+5.75	LoCoOp	71.27	76.23	+4
	(j) DT	D.			(k) Euro	SAT.			(1) UCF	101.	
	Energy	MLS-E	Δ		Energy	MLS-E	Δ		Energy	MLS-E	
CoOp	68.35	69.16	+0.81	CoOp	67.54	67.49	-0.06	CoOp	81.31	82.96	+
CoCoOp	63.75	66.27	+2.52	CoCoOp	66.12	65.99	-0.13	CoCoOp	79.65	82.92	+.
IVLP	63.94	67.25	+3.31	IVLP	63.89	69.72	+5.83	IVLP	78.96	83.84	+4
KgCoOp	61.31	66.69	+5.38	KgCoOp	62.36	66.24	+3.88	KgCoOp	79.04	82.76	+.
ProGrad	60.84	65.22	+4.38	ProGrad	68.19	69.10	+0.90	ProGrad	79.39	82.30	+
MaPLe	63.54	66.92	+3.38	MaPLe	70.02	71.94	+1.93	MaPLe	79.38	83.45	+-
PromptSRC	67.56	69.27	+1.71	PromptSRC	74.40	74.30	-0.10	PromptSRC	81.77	84.56	+
LoCoOp	65.29	68.07	+2.78	LoCoOp	66.04	67.80	+1.77	LoCoOp	73.63	81.13	+
(n	n) CIFA	R10.		(n) CIFAR	2100.					
	Energy	MLS-E	Δ		Energy	MLS-E	Δ				
CoOp	82.84	84.86	+2.02	CoOp	76.84	77.75	+0.91				
CoCoOp	88.08	91.91	+3.83	CoCoOp	79.64	80.73	+1.09				
IVLP	86.40	90.40	+3.99	IVLP	82.35	87.05	+4.70				
KgCoOp	88.09	91.93	+3.84	KgCoOp	78.54	79.78	+1.23				
ProGrad	81.61	87.96	+6.35	ProGrad	74.71	78.76	+4.05				
M.DL.	85.68	91.07	+5.38	MaPLe	83.17	87.49	+4.32				
Maple	80.76	93 41	+3.65	PromptSRC	84.76	87.83	+3.07				
PromptSRC	09.70	25.11		· · · ·							

Table 13: Near OOD FPR95 (\downarrow) of prompt learning models over 13 datasets using the Energy score and MLS-E.

(a) Avera	age over	: 13 data	sets.		(b) Ima	geNet.		(c) Caltech101.			
	Energy	MLS-E	Δ		Energy	MLS-I	ΞΔ		Energy	MLS-E	
CoOp	59.45	55.37	-4.08	CoOp	33.04	26.96	-6.08	CoOp	42.21	32.07	-1
CoCoOp	57.49	51.90	-5.59	CoCoOp	29.16	24.69	-4.47	CoCoOp	48.28	36.22	-1
IVLP	57.66	49.19	-8.47	IVLP	29.40	24.78	-4.62	IVLP	51.35	34.09	-1
KgCoOp	59.69	51.90	-7.80	KgCoOp	33.09	28.35	-4.74	KgCoOp	61.27	34.10	-2
ProGrad	62.74	55.34	-7.41	ProGrad	35.87	28.41	-7.46	ProGrad	65.31	45.11	-2
MaPLe	57.82	48.76	-9.07	MaPLe	32.34	26.52	-5.82	MaPLe	49.42	31.23	-1
PromptSRC	51.86	45.15	-6.71	PromptSRC	2 30.06	22.97	-7.09	PromptSRC	52.12	28.81	-2
LoCoOp	69.07	57.80	-11.27	LoCoOp	45.33	32.02	-13.31	LoCoOp	80.74	44.34	-3
(d) Oxfor	dPets.		(0	e) Stanfo	ordCars		(1) Flowe	ers102.	
	Energy	MLS-E	Δ		Energy	MLS-I	ΞΔ		Energy	MLS-E	
CoOp	52.87	46.91	-5.95	CoOp	32.23	30.96	-1.27	CoOp	42.18	37.55	-4
CoCoOp	45.06	37.87	-7.18	CoCoOp	28.37	26.83	-1.54	CoCoOp	53.82	46.99	-
IVLP	50.67	43.75	-6.92	IVLP	33.75	25.40	-8.34	IVLP	59.10	51.31	- É
KgCoOp	49.07	38.01	-11.06	KgCoOp	28.62	27.05	-1.57	KgCoOp	62.44	45.23	-1
ProGrad	51.49	52.73	+1.23	ProGrad	32.69	28.19	-4.49	ProGrad	49.71	43.54	-(
MaPLe	53.88	45.57	-8.30	MaPLe	30.20	25.29	-4.91	MaPLe	58.30	50.79	
PromptSRC	44.32	39.70	-4.62	PromptSRC	26.11	22.29	-3.82	PromptSRC	42.84	36.78	-
LoCoOp	58.27	52.35	-5.92	LoCoOp	42.86	31.34	-11.52	LoCoOp	59.87	51.74	-
	(g) Food	1101		(h) FGVC	Aircraf	t		(1) SUN	397.	
	Energy	MLS-E	Δ		Energ	y MLS-	E 🛆		Energy	MLS-E	
CoOp	55.28	50.05	-5.23	CoOp	81.31	80.09	-1.22	CoOp	73.24	70.54	
CoCoOp	43.18	37.95	-5.23	CoCoOp	81.38	76.55	-4.83	CoCoOp	73.55	67.30	
IVLP	45.66	35.66	-10.00	IVLP	75.61	69.78	-5.83	IVLP	71.54	65.08	
KgCoOp	46.71	36.35	-10.36	KgCoOp	72.11	72.30	+0.18	KgCoOp	74.01	70.02	-
ProGrad	50.78	39.99	-10.79	ProGrad	82.41	78.20	-4.21	ProGrad	76.75	70.20	
MaPLe	47.53	35.38	-12.15	MaPLe	78.68	75.01	-3.67	MaPLe	71.20	64.64	-
PromptSRC	40.21	34.84	-5.36	PromptSRO	C 69.47	69.00	0 -0.48	PromptSRC	69.99	63.56	-
LoCoOp	65.29	44.22	-21.06	LoCoOp	83.64	79.53	-4.11	LoCoOp	81.12	71.02	-1
	(j) DT	D.			(k) Eur	oSAT.			(l) UCF	5101.	
	Energy	MLS-E	Δ		Energ	y MLS-	E 🛆		Energy	MLS-E	
CoOp	86.00	85.21	-0.79	CoOp	85.49	85.25	-0.24	CoOp	56.84	51.16	-
CoCoOp	88.92	87.58	-1.34	CoCoOp	82.05	81.58	-0.47	CoCoOp	58.31	50.90	-
IVLP	87.86	87.82	-0.04	IVLP	81.29	74.34	-6.96	IVLP	58.72	48.52	-1
KgCoOp	88.49	86.42	-2.08	KgCoOp	82.60	79.15	-3.45	KgCoOp	56.41	50.89	-
ProGrad	88.90	88.31	-0.59	ProGrad	82.91	82.99	+0.09	ProGrad	59.53	50.75	-
MaPLe	89.53	87.31	-2.22	MaPLe	76.75	67.28	-9.47	MaPLe	58.65	49.51	-
PromptSRC	86.43	84.32	-2.11	PromptSR	C 67.18	66.27	-0.91	PromptSRC	53.91	47.33	-
LoCoOp	85.52	85.52	+0.01	LoCoOp	82.06	79.99	-2.07	LoCoOp	70.46	57.05	-1
(1	m) CIFA	R10.		(n) CIFAR	100.					
	Energy	MLS-E	Δ		Energy	MLS-E	\triangle				
CoOp	56.82	51.62	-5.20	CoOp	75.30	71.41	-3.89				
CoCoOp	41.65	30.48	-11.17	CoCoOp	73.60	69.70	-3.90				
IVLP	43.38	32.73	-10.65	IVLP	61.31	46.22	-15.08				
KgCoOp	45.90	33.20	-12.70	KgCoOp	75.27	73.58	-1.69				
ProGrad	58.65	43.18	-15.47	ProGrad	80.70	67.79	-12.91				
MaPLe	46.10	31.57	-14.53	MaPLe	59.11	43.73	-15.38				
PromptSRC	35.64	24.13	-11.51	PromptSRC	55.95	47.00	-8.95				
LoCoOp	60.82	39.74	-21.08	LoCoOp	81.91	82.49	+0.59				
P				P		>					

Table 14: Near OOD AUROC ([↑]) of prompt learning models over 13 datasets using the Energy score
 and MLS-E with 16-shots.

(a) Av	verage ov	ver 13 da	tasets.		(b) Iı	nageNet.				(c) Calt	ech101.	
	Energy	MLS-E	Δ		Energy	MLS-E	2	Δ		Energy	MLS-E	Δ
CoOp CoCoOp IVLP	82.67±10.20 81.21±12.20 83.25±9.90	83.84±10.18 83.70±10.99 87.55±7.60	+1.17±1.20 +2.49±2.54 +4.30±4.05	CoOp CoCoOp IVLP	93.74±0. 94.85±0. 94.49±0.	33 95.56±0.2 32 95.38±0.7 16 94.84±0.5	27 + 75 + 50 +	+1.82±0.06 +0.53±0.90 +0.36±0.48	CoOp CoCoOp IVLP	89.02±0.89 85.89±1.40 86.56±1.70	90.88±1.16 89.16±1.35 92.84±1.90	+1.87±1.31 +3.27±2.20 +6.27±2.02
KgCoOp ProGrad MaPLe PromptSRC	81.02±11.18 80.90±11.25 83.60±10.11 85.53±8.47	84.36±9.84 83.32±11.27 86.54±9.03 87.67±8.19	+3.34±2.72 +2.42±2.81 +2.94±2.28 +2.13±1.90	KgCoOp ProGrad MaPLe PromptSR	94.15±0. 94.03±0. 94.64±0. C 94.64+0.	05 94.39±0.2 13 95.15±0.0 55 95.00±0.5 21 95.88±0.1	25 + 09 + 51 + 16 +	+0.24±0.30 +1.12±0.14 +0.36±0.42 +1.25+0.22	KgCoOp ProGrad MaPLe PromptSRC	80.89±0.06 79.45±2.82 86.60±0.87 82.29±0.19	89.13±0.43 88.37±0.45 92.58±1.67 89.74±0.16	+8.24±0.49 +8.92±2.73 +5.98±2.16 +7.44±0.11
LoCoOp	78.03±10.52	81.70±11.89	+3.67±4.56	LoCoOp	93.06±0.	25 95.10±0.2	29 -	+2.04±0.54	LoĈoOp	74.46±1.75	87.26±0.73	+12.80±1.62
	(u) OXI	orur ets.			(0) 514	moruca	13.			(1) 1 100	ve13102.	
	Energy	MLS-E	Δ		Energy	MLS-E		Δ		Energy	MLS-E	Δ
CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp	84.87±1.44 90.51±0.79 90.80±1.97 89.58±0.21 87.13±1.50 89.43±0.65 91.23±0.29 82.84±3.33	86.40±1.96 93.43±0.31 93.60±1.41 91.70±1.01 88.41±0.68 93.96±1.35 94.58±0.45 88.48±1.24	+1.52±0.54 +2.92±0.70 +2.80±0.80 +2.12±0.89 +1.28±1.05 +4.53±1.38 +3.36±0.20 +5.64±2.74	CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSR LoCoOp	93.48±0. 91.39±1. 90.53±1. 93.03±0. 93.03±0. 91.51±1. C 93.86±0. 88.72±1.	19 93.41±0.2 69 92.97±0.8 54 93.44±1.2 23 93.61±0.0 10 93.90±0.1 54 93.46±0.2 16 95.49±0.1 18 92.35±1.8	20 - 86 - 29 - 13 - 20 - 13 - 87 -	-0.07 ± 0.18 +1.58±1.07 +2.90±0.30 +0.59±0.25 +0.86±0.06 +1.95±1.50 +1.63±0.18 +3.63±0.92	CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp	93.69±0.72 88.15±1.05 89.67±3.16 87.91±0.45 88.36±1.15 88.72±0.83 93.36±0.19 84.27±2.11	94.14±0.65 90.26±0.13 91.96±1.95 92.03±0.53 91.54±0.28 90.62±1.40 94.96±0.13 87.83±0.61	$+0.45\pm0.08$ +2.11±0.99 +2.28±1.22 +4.12±0.43 +3.18±0.87 +1.90±0.67 +1.59±0.30 +3.56±2.63
	(g) Fo	od101			(h) FG	VCAircra	aft.			(i) SU	N397.	
	Energy	MLS-E	Δ		Energy	MLS-E		Δ		Energy	MLS-E	Δ
CoOp CoCoOp IVLP	88.26±0.17 90.04±0.56 89.87±1.04	89.91±0.19 92.29±0.80 92.63±0.48	+1.65±0.13 +2.25±0.30 +2.76±1.48	CoOp CoCoOp IVLP	58.67±1.6 54.18±2.1 64.80±2.1	68 59.64±1.7 5 62.75±2.4 1 75.75±0.9	8 + 3 + 9 +	+0.98±1.53 +8.57±3.29 10.95±1.23	CoOp CoCoOp IVLP	77.47±0.49 76.14±0.51 76.77±0.53	78.91±0.71 78.46±0.49 80.07±0.26	+1.45±0.29 +2.31±0.37 +3.30±0.78
KgCoOp ProGrad MaPLe PromptSRC	89.71±0.06 89.78±0.36 90.26±1.07 91.05±0.24	92.76±0.03 92.64±0.27 93.01±0.63 92.49±0.21	+3.04±0.06 +2.87±0.10 +2.74±0.50 +1.44±0.07	KgCoOp ProGrad MaPLe PromptSR	65.66±0.5 58.30±0.5 61.47±5.8 C 71.61±1.3	55 67.11±1.25 58.03±4.5 58.03±4.5 68.17±4.9 50 74.28±2.0	8 + 7 - 5 + 1 +	+1.45±0.74 •0.28±4.51 +6.71±1.30 +2.67±0.91	KgCoOp ProGrad MaPLe PromptSRC	75.66±0.09 75.33±1.06 77.24±1.89 78.24±0.09	77.43±0.22 78.14±0.99 80.02±0.76 81.28±0.58	+1.76±0.27 +2.81±0.32 +2.79±1.18 +3.04±0.49
LoCoOp	83.07±1.58	90.78±0.93	+7.71±2.00	LoCoOp	56.94±2.1	8 52.02±3.0	1 -	4.92±2.79	LoCoOp	73.04±0.30	77.96±0.65	+4.92±0.89
	(J) L	ЛD.			(K) E	uroSAI.				(1) UC	F101.	
	Energy	MLS-E	Δ		Energy	MLS-E		Δ		Energy	MLS-E	Δ
CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp	73.46±1.11 64.88±1.32 66.08±1.73 62.52±0.75 61.18±1.21 66.07±3.15 70.23±0.69 66.54±0.84	73.78±1.37 68.81±1.39 70.45±0.85 69.68±0.49 65.78±1.57 70.26±2.28 72.32±0.79 71.23±0.91	+0.32±0.30 +3.93±2.01 +4.37±1.00 +7.15±0.46 +4.61±1.22 +4.19±2.02 +2.09±0.69 +4.69±0.82	CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSR LoCoOp	71.11±0.8 67.77±3.3 72.49±2.7 62.59±0.3 74.04±2.1 79.57±1.1 C 78.87±2.4 67.22±5.8	30 72.98±2.63 30 67.38±3.57 75 85.82±2.86 31 70.32±1.20 33 74.19±2.13 34 81.41±2.37 35 78.58±2.22 38 68.64±5.90	2 + 7 - 6 + 0 + 3 + 7 + 7 - 0 +	+1.87±1.90 •0.39±0.30 113.34±3.57 +7.73±0.99 +0.15±0.09 +1.84±1.48 •0.29±0.27 +1.41±0.55	CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp	82.77±0.52 81.32±1.02 81.30±2.34 79.79±0.09 79.94±0.49 81.63±1.04 82.61±0.58 75.72±1.15	84.74±0.62 84.19±0.56 85.95±0.24 83.61±0.82 82.33±0.97 83.84±1.25 84.96±0.67 82.57±1.31	+1.98±1.08 +2.87±0.64 +4.64±2.18 +3.82±0.73 +2.39±0.49 +2.21±0.32 +2.35±0.25 +6.85+2.26
	(m) CI	FAR10.			(n) CIE	AR100.						
	Energy	MLS-E	Δ		Energy	MLS-E		Δ				
CoOp CoCoOp	90.39±0.84 93.84±0.18	90.60±0.76	+0.20±0.26	CoOp	77.81±0.91	78.93±1.06	+1.1	2±1.78				
IVLP KgCoOp	93.01±1.30 93.46±0.12	93.10±1.66 93.86±0.12	$+0.09\pm0.40$ +0.09±0.45 +0.40±0.03	IVLP KgCoOn	85.87±0.90 78.28±0.43	87.68±2.39 81.07±0.32	+1.8	31±1.55 9+0.51				
ProGrad MaPL e	92.94±0.40 94.24±0.58	93.30±0.28 94.26±0.79	$+0.36\pm0.16$ +0.02+0.43	ProGrad MaPL e	78.21±0.48 85.48±0.77	81.40±0.68 88.50±2.08	+3.1	9±0.47				
PromptSRC	95.13±0.09 92.34±0.70	94.88±0.35 91.13±0.46	-0.24±0.29	PromptSRC	88.83±0.25 76 19+1 57	90.21±0.13 76 73±1 77	+1.3	8±0.38				
Locoop	,2.3420.70	\$1.15±0.40				.5.15±1.11	10.5					

Table 15: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the Energy score and MLS-E with 8-shots.

(a) Av	verage ov	er 13 da	tasets.		(b) I	mageNet				(c) Calt	ech101.	
	Energy	MLS-E	Δ		Energy	MLS-F	Ξ	Δ		Energy	MLS-E	Δ
CoOp CoCoOp	81.38±10.64 81.16±11.79	82.77±10.65 83.44±10.96	+1.39±1.17 +2.28±1.87	CoOp CoCoOp	93.29±0. 94.78±0.	22 95.34±0. 62 95.89±0.	.45 .09	+2.05±0.64 +1.11±0.56	CoOp CoCoOp	87.86±1.05 84.16±2.29	89.96±1.31 87.06±2.75	+2.09±1.00 +2.90±1.66
KgCoOp	80.61±11.35	83.71±10.47	+3.10±2.60	IVLP KgCoOj	94.18±1. 94.16±0.	20 94.51±0. 03 94.22±0.	.61	+0.34±1.68 +0.05±0.41	KgCoOp	80.33±0.24	91.78±1.38 88.50±0.27	+4.82±0.57 +8.17±0.15
ProGrad MaPL e	79.71±12.08 82.29±11.58	82.65±11.65 85.45+11.08	+2.93±2.57 +3 16+3 24	ProGrad	93.68±0.	72 95.14±0.	.25	+1.47±0.71	ProGrad MoPL a	81.78±1.73	88.09±1.39	+6.31±1.76
PromptSRC	85.28±8.51	87.53±8.05	+2.26±1.90	PromptSF	93.56±1. C 94.57±0.	53 94.72±0. 20 95.81±0.	.96 .08	$+1.16\pm0.63$ $+1.24\pm0.14$	PromptSRC	82.61±0.45	89.88±0.67	+7.27±0.55
LoCoOp	78.06±10.24	82.63±9.46	+4.57±4.78	LoCoOp	91.81±0.	61 94.26±0.	.56	+2.45±0.52	LoCoOp	73.11±2.77	88.20±1.08	+15.10±2.96
	(d) Oxfo	ordPets.			(e) Sta	infordCa	rs.			(f) Flow	vers102.	
	Energy	MLS-E	Δ		Energy	MLS-H	Ξ	Δ		Energy	MLS-E	Δ
CoOp	86.31±2.02	88.83±1.92	+2.53±0.15	CoOp	92.24±0.	57 93.06±1.	.08	+0.82±0.58	CoOp	91.48±0.50	92.37±0.52	+0.89±0.11
CoCoOp IVLP	90.57±0.75 89.92±0.68	92.98±0.16 91.94+0.65	+2.41±0.70 +2.02±0.89	CoCoO _I IVLP	92.83±1. 89.48+2	12 93.50±1. 02 93.57+1.	.37	+0.67±0.58 +4.09+2.67	CoCoOp IVLP	87.02±0.02 86.79+4.78	88.32±0.43 87.59+4.46	+1.30±0.45 +0.80+0.32
KgCoOp	89.48±0.16	92.12±0.35	+2.64±0.35	KgCoOj	92.97±0.	10 93.51±0.	.13	+0.54±0.06	KgCoOp	86.43±0.09	91.65±0.48	+5.22±0.49
ProGrad MoDL o	86.58±1.15	89.05±1.69	$+2.47\pm0.54$	ProGrac MoBL o	l 92.76±0.	97 93.15±0.	.67	+0.39±0.44	ProGrad MaPL a	88.67±0.30	91.35±0.56	+2.68±0.67
PromptSRC	91.19±0.27	93.77±0.38	+2.58±0.24	PromptSF	C 93.02±0.	22 94.64±0.	.83	$+1.62\pm0.68$	PromptSRC	92.24±0.37	94.05±0.07	+1.81±0.82
LoCoOp	84.20±3.03	88.73±1.24	+4.53±2.83	LoCoOp	88.46±0.	57 92.62±1.	.03	+4.17±1.25	LoCoOp	86.09±2.83	88.96±2.00	+2.87±0.84
	(g) Fo	od101			(h) FG	VCAircr	aft	t.		(i) SU	N397.	
	Energy	MLS-E	Δ		Energy	MLS-E	3	Δ		Energy	MLS-E	Δ
CoOp	87.40±1.19	87.98±1.22	+0.58±0.21	CoOp	58.51±6.	36 59.92±6.	08	+1.41±2.28	CoOp	76.02±1.27	77.14±0.85	+1.12±0.50
IVLP	90.81±0.62 88.77+1.69	91.4/±0./5 92.09+0.36	$+0.66\pm0.30$ $+3.32\pm1.67$	IVLP	65.14±5.	0 63.19±3. 72 71.74±2.	58 69	+4.58±5.21 +6.60±8.26	IVLP	75.58±0.45 77.43+0.18	78.93±1.13 79.94+0.97	$+3.35\pm1.56$ +2.51+0.94
KgCoOp	89.28±0.13	91.85±0.42	+2.57±0.43	KgCoOp	65.74±0.9	96 67.61±0.	96	+1.87±1.73	KgCoOp	75.27±0.18	77.23±0.45	+1.96±0.44
ProGrad MoPL e	88.63±0.47	90.80±0.54	+2.18±0.45	ProGrad MaPLe	58.66±2.4 53.69±8.3	45 60.02±7. 20 59.43+14	36 57	+1.36±5.42 +5.74+8.67	ProGrad MoPL e	74.63±0.37	78.07±0.63	+3.45±0.86
PromptSRC	91.03±0.27	92.31±0.43	+1.28±0.45	PromptSR	C 71.14±0.4	43 75.76±0.	58	+4.61±0.83	PromptSRC	77.94±0.24	80.88±0.55	+2.93±0.36
LoCoOp	83.90±2.11	88.93±1.64	+5.03±0.63	LoCoOp	60.78±7.5	50 67.63±9.	05	+6.85±3.06	LoCoOp	72.28±1.21	77.06±1.26	+4.77±1.50
	(j) D	DTD.			(k) E	EuroSAT	•			(l) UC	CF101.	
	Energy	MLS-E	Δ		Energy	MLS-I	E	Δ		Energy	MLS-E	Δ
CoOp	70.79±0.49	71.54±1.12	+0.74±0.63	CoOp	67.67±3.2	77 68.53±3	.37	+0.86±0.45	CoOp	82.79±1.00	84.92±0.78	+2.14±0.76
IVLP	65.93±0.38 66.04+0.36	67.29±0.37 68.68+0.39	$+3.36\pm0.19$ +2.64+0.10	IVLP	61.18±10.	79 69.72±15	5.85	+8.54±5.16	IVLP	81.08±1.02 79.97+1.70	84.27±0.40 85.60+1.40	+3.19±0.76 +5.63+0.99
KgCoOp	60.85±0.26	66.50±1.25	+5.65±1.13	KgCoOp	62.19±0.	52 67.08±3	.15	+4.89±3.56	KgCoOp	79.53±0.41	83.58±0.46	+4.05±0.62
ProGrad MoPL o	59.71±1.04	64.97±0.88	+5.26±0.60	MaPLe	63.62±2.4 77.01±4.5	40 00.39±0. 54 83.09±6.	.81	+2.78±2.00 +6.07±2.26	ProGrad MoPL e	78.41±2.14	83.91±2.00	+5.50±0.14
PromptSRC	69.00±1.03	70.36±1.04	+1.36±0.05	PromptSR	C 80.14±4.	58 80.46±4	.80	+0.32±0.21	PromptSRC	83.12±0.90	85.94±0.98	+2.82±0.27
LoCoOp	66.91±0.80	69.47±0.47	+2.57±0.48	LoCoOp	66.85±0.3	86 /1.13±4	.97	+4.28±4.19	LoCoOp	72.75±2.31	82.37±1.28	+9.62±1.61
	(m) CII	FAR10.			(n) CIF	AR100.						
	Energy	MLS-E	Δ		Energy	MLS-E		Δ				
CoOp CoCoOp	88.11±2.48 92.96±0.58	88.12±2.73 93.38±0.92	+0.01±0.26 +0.42±0.43	CoOp CoCoOp	75.41±0.95 77.14±1.36	78.30±0.46 81.60±0.63	+2	2.89±0.57 4.45±1.23				
IVLP	92.27±1.15	93.34±0.78	+1.07±0.43	IVLP	86.85±0.73	87.94±0.63	+1	1.09±0.45				
KgCoOp ProGrad	93.33±0.01 92.31+0.54	93.67±0.16 92.71+0.70	+0.34±0.14 +0.40+0.28	KgCoOp ProGrad	76.86+0.64	80.69±0.94 80.76+1.26	+2	2.30±1.23 3.90+0.76				
MaPLe	93.54±0.44	93.97±0.47	+0.43±0.20	MaPLe	86.01±0.50	89.21±0.23	+3	3.19±0.31				
PromptSRC LoCoOp	94.92±0.47 91.96±1.27	94.75±0.45 88.62±3.55	-0.16±0.31	PromptSRC LoCoOp	87.67±0.69 75.70±0.75	89.33±0.83 76.16±2.61	+1	1.66±0.18 0.46±1.86				
200000	21.90±1.27	00.02±0.00	-3.34±3.08		, <u>5.10±0.15</u>	70.10±2.01	ŦŪ	0.4011.00				

Table 16: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the Energy score and MLS-E with 4-shots.

(a) A	verage ov	ver 13 da	tasets.		(b) I	mageNe	t.			(c) Calt	ech101.	
	Energy	MLS-E	Δ		Energy	/ MLS-	E	Δ		Energy	MLS-E	Δ
CoOp	80.96±10.65	82.10±10.96	+1.15±1.67	CoOp	93.77±0.	.52 95.28±0).21	+1.50±0.71	CoOp	89.67±1.88	91.35±2.71	+1.67±1.55
CoCoOp	81.06±11.56	83.05±11.69	+1.99±2.22	CoCoOp	95.25±0.	.06 95.87±0).11	$+0.62\pm0.10$	CoCoOp	85.37±1.02	88.46±0.33	+3.09±1.23
IVLP	80.84±12.25	84.23±11.72 82.21±10.05	$+3.39\pm2.85$ +2.05 ±2.45	IVLP	95.03±0.	.05 95.60±0).17	+0.57±0.20	IVLP	82.49±1.10	91.07±0.79	+8.57±1.87
ProGrad	79.95+10.93	82.21+10.85	+2.26+1.91	KgCoOp DroCrod	94.03±0.	07 94.47±0).07	+0.43±0.08	ProGrad	80.41±0.10 82.12+1.31	88.88±0.74 87.22+1.70	$\pm 5.47 \pm 0.09$ $\pm 5.10 \pm 1.09$
MaPLe	80.39±11.25	83.76±10.48	+3.37±3.27	MoPL e	93.72±0. 03.70±1	60 94.73±0) 70	$\pm 0.21 \pm 0.95$	MaPLe	83.52±4.07	90.61±1.95	$+7.09\pm4.68$
PromptSRC	84.22±8.81	86.37±8.78	+2.15±1.78	PromptSR	C 94.49±0.	11 95.67±0).24	$+1.18\pm0.23$	PromptSRC	82.95±0.45	89.72±0.36	+6.77±0.30
LoCoOp	77.45±10.27	81.35±10.79	+3.90±5.10	LoCoOp	92.51±0.	31 94.90±0	0.13	$+2.39\pm0.40$	LoCoOp	71.40±2.18	86.42±1.52	+15.02±0.79
	(d) Oxf	ordPets.			(e) Sta	infordCa	ars.			(f) Flow	vers102.	
	Energy	MLS-E	Δ		Energy	/ MLS-	Е	Δ		Energy	MLS-E	Δ
CoOp	87.32±2.01	89.57±1.80	+2.26±0.22	CoOp	91.15±1.	.35 91.46±1	1.09	+0.31±0.42	CoOp	91.32±1.85	92.79±1.47	+1.47±1.14
CoCoOp	88.88±1.08	92.69±0.75	+3.81±1.65	CoCoOp	93.45±0.	.67 93.80±0).54	+0.35±0.30	CoCoOp	86.33±1.79	88.59±0.54	+2.26±1.32
IVLP	88.91±1.64	93.05±0.53	$+4.14\pm1.27$	IVLP	92.10±1.	07 93.13±1	1.07	+1.03±0.06	IVLP	85.48±2.02	87.61±1.04	+2.13±1.12
KgCoOp	89.34±0.08	92.86±0.31	+3.52±0.35	KgCoOp	92.92±0.	.11 93.56±0).19	+0.65±0.16	KgCoOp	85.19±0.47	89.96±0.09	+4.77±0.38
MoDI e	87.23±1.22 85.70±2.55	89.33±1.33	$\pm 2.08 \pm 0.34$	MoDLe	92.22±1.	02 92.77±0).75	$\pm 0.33 \pm 0.01$	MoPL e	87.02±2.01 83.84±2.60	90.2/±1.00 86.06±1.50	$+3.23\pm1.00$
PromptSRC	90 31+0 99	93 77+0 99	$+3.46\pm0.32$	PromptSR	C 92.88+0	20 94.09+0) 33	$+1.20\pm1.21$ +1.22+0.42	PromptSRC	90.48+0.17	92 09±0 82	$+1.61\pm0.65$
LoCoOp	84.77±1.22	88.96±1.47	+4.19±1.08	LoCoOp	86.92±1.	.81 91.75±0).44	+4.83±2.07	LoCoOp	84.97±0.79	87.66±0.73	+2.69±0.88
	(g) Fo	od101			(h) FG	VCAirci	raf	t.		(i) SU	N397.	
	Energy	MLS-E	Δ		Energy	MLS-	E	Δ		Energy	MLS-E	Δ
CoOp	86.33±1.54	87.58±1.09	+1.25±0.51	CoOp	59.53±1.	10 60.54±3	3.45	+1.01±3.31	CoOp	76.15±0.98	76.74±0.56	+0.59±0.43
CoCoOp	90.04±1.32	91.66±0.73	$+1.62\pm0.62$	CoCoOp	59.21±2.0	05 58.83±2	.44	-0.38±4.13	CoCoOp	75.10±0.98	77.71±0.31	+2.61±1.09
IVLP	88.91±0.68	92.08±0.74	+3.17±0.71	IVLP	61.99±8.4	45 67.41±1	1.46	+5.43±4.79	IVLP	76.42±1.31	78.87±0.72	+2.45±1.04
KgCoOp	88.93±0.26	92.11±0.17	+3.18±0.28	KgCoOp	66.06±1.0	05 65.16±1	.56	-0.90±1.01	KgCoOp	74.99±0.39	76.35±0.54	+1.36±0.16
ProGrad	86.91±0.76	90.44±0.15	+3.53±0.66	MoDL e	55.05±1.0	95 58.04±3 20 64.26±3	2.91	$+0.94\pm1.11$	ProGrad	74.40±1.10	76.22±1.36	+1.81±0.97
MaPLe DromotSDC	88.2/±1.22	91.90±0.72	+3.63±1.80	PromptSR	C 6946+2	71 70.66+2	79	+1.19+1.34	DromatEDC	77.45±0.88	79.31±0.52	+1.85±1.06
LoCoOp	90.37±0.14 81.84±2.30	91.94±0.40 90.01±1.67	+1.37±0.20 +8.17±1.13	LoCoOp	57.42±3.9	96 60.08±9	.93	+2.66±9.23	LoCoOp	70.75±0.99	76.45±0.42	+2.22±0.71 +5.70±0.61
	(j) E	DTD.			(k) E	EuroSAT	Γ.			(l) UC	CF101.	
	Energy	MLS-E			Energy	MLS-	E			Energy	MLS-E	
CoOn	67.82+0.29	69 37±0 74	+1 55+0 74	CoOn	67 49+3 (02 66 17+3	58	-1 31+1 75	CoOn	80 10+1 53	81 59+1 90	+1 49+1 01
CoCoOp	62.92±1.15	65.30±0.10	$+2.38\pm1.06$	CoCoOp	67.69±1.9	96 68.18±2	2.08	+0.49±0.72	CoCoOp	79.68±1.26	83.47±1.38	$+3.79\pm2.20$
IVLP	63.93±0.52	66.58±1.12	$+2.64\pm0.82$	IVLP	58.42±8.0	07 64.08±10	0.84	+5.66±3.42	IVLP	79.58±1.87	84.16±1.72	+4.58±0.93
KgCoOp	60.68±0.24	64.77±0.88	$+4.09\pm0.65$	KgCoOp	62.82±0.2	26 67.44±1	.00	+4.62±0.76	KgCoOp	78.52±0.23	82.86±0.30	+4.34±0.37
ProGrad	61.17±1.47	65.56±1.81	+4.39±1.02	ProGrad	74.08±0.8	89 74.19±2	2.60	+0.12±1.74	ProGrad	79.12±1.21	81.29±0.23	+2.17±1.39
MaPLe	63.47±0.98	65.11±0.45	$+1.64\pm1.15$	MaPLe DromatCD/	68.42±5.4	44 69.97±4	26	+1.55±0.89	MaPLe	79.79±0.36	85.53±1.24	+5.74±1.36
LoCoOp	66.84±1.42	69.09±0.80 68.70±0.99	+2.34±0.87 +1.86±0.66	LoCoOp	69.77±4.9	99 69.54±5	5.02	-0.23±0.76	LoCoOp	82.62±0.65 75.77±1.05	85.95±1.04 81.68±2.47	+5.91±1.60
	(m) CI	FAR10.			(n) CIF	AR100.						
	Energy	MLS-E	Δ		Energy	MLS-E		Δ				
CoOp	87.12±2.56	87.29±2.73	+0.17±0.24	CoOp	74.64±1.74	77.60±2.69	+	2.96±1.48				
CoCoÒp	92.67±0.76	93.13±0.69	+0.45±0.17	CoCoOp	77.19±1.06	81.91±1.30	+	4.72±1.41				
IVLP	91.92±1.84	92.81±1.31	$+0.89\pm0.54$	IVLP	85.72±0.61	88.55±0.76	+	2.83±0.29				
KgCoOp	92.78±0.29	93.39±0.39	+0.61±0.11	KgCoOp	77.99±0.45	81.21±0.38	+	3.22±0.28				
ProGrad M-DI	89.36±0.43	90.10±1.12	+0.75±0.76	ProGrad	/4.28±0.12	//.97±1.46	+	3.69±1.52				
PromptSPC	87.53±0.17 02.74+1.60	88.19±4.69	$+0.00\pm1.82$ $\pm0.13\pm0.16$	PromptSRC	87.04±0.65	80 17+1 00	+	-3.31±0.33				
LoCoOp	90.93±2.17	\$2.00±1.83 87.70±2.18	-3.23±1.33	LoCoOp	73.01±1.23	73.71±2.24	+	0.71±1.11				
				· ·								

Table 17: Near OOD AUROC ([↑]) of prompt learning models over 13 datasets using the Energy score and MLS-E with 2-shots.

(a) A	verage ov	ver 13 da	tasets.		(b) Iı	mageNet				(c) Calt	ech101.	
	Energy	MLS-E			Energy	/ MLS-F	2			Energy	MLS-E	
CoOp	79.88±10.72	81.13±10.73	+1.25±1.73	CoOp	94.23±0.	46 94.56±0.	.19	+0.33±0.27	CoOp	87.05±1.86	89.19±1.14	+2.14±1.37
CoCoOp	80.48±11.52	82.25±11.63	+1.77±1.74	CoCoOp	94.20±0.	38 94.73±0.	.29	+0.53±0.10	CoCoOp	83.71±0.91	87.54±1.14	+3.83±0.28
KgCoOp	80.47±10.84	83.35±10.44	+2.88±2.41	IVLP KgCoOr	94.80±0. 94.01±0	18 94.90±0.	23	$+0.10\pm0.55$ $\pm0.56\pm0.10$	KgCoOn	82.89±2.19 80.43+0.39	87.62±2.42 88.42+0.39	$+4.73\pm2.85$ +7.99+0.12
ProGrad	78.86±11.41	81.87±11.07	+3.02±3.25	ProGrad	93.00±0.	.30 94.86±0.	.24	$+1.87\pm0.32$	ProGrad	81.49±2.78	89.30±2.72	+7.81±2.94
MaPLe	80.20±10.89	83.68±10.41 85.12±0.76	+3.48±2.64	MaPLe	94.34±0.	81 94.63±0.	.23	$+0.29\pm0.62$	MaPLe	84.73±1.85	91.47±0.64	+6.75±1.89
LoCoOp	75.13±12.35	80.57±10.96	+5.44±5.58	PromptSR LoCoOr	C 94.46±0. 92.01+0.	.16 95.25±0. 72 94.18+0.	.18	+0.79±0.23 +2.17+0.57	LoCoOp	83.15±0.36 67.65±4.62	89.57±1.49 84.35±2.10	+6.41±1.80 +16.70±4.18
	(d) Oxf	ordPets.			(e) Sta	infordCa	rs.			(f) Flow	vers102.	
	Energy	MLS-E	Δ		Energy	/ MLS-H	Ξ	Δ		Energy	MLS-E	Δ
CoOp	85.82±2.98	89.09±3.50	+3.26±0.53	CoOp	90.82±0.	.93 91.21±1.	.08	+0.39±0.80	CoOp	89.39±1.03	91.05±0.92	+1.65±0.34
CoCoOp	86.48±1.05	90.84±0.82	+4.37±0.30	CoCoOp	93.11±0.	99 93.01±1.	.08	-0.10±0.13	CoCoOp	86.69±0.68	89.06±0.95	$+2.37\pm1.43$
IVLP K-C-O-	83.94±1.84	89.19±1.36	+5.25±1.88	IVLP	90.64±1.	.66 93.14±0.	.51	+2.50±1.24	IVLP	80.13±1.23	84.73±0.67	+4.60±0.56
ProGrad	89.06±0.43 88.59±0.72	92.42±0.59 89.84+0.48	+3.30±0.30 +1.25+1.12	ProGrad	92.64±0.	43 9168+1	05	$+0.60\pm0.42$ +2.60±0.73	ProGrad	84.07±0.55 86.54+1.70	90.18±0.58 90.38±0.68	$+3.31\pm0.23$ +3.84+1.91
MaPLe	85.18±1.66	88.66±2.71	+3.48±3.03	MaPLe	90.52±1.	62 93.65±0.	.26	+3.13±1.81	MaPLe	82.72±0.76	87.12±0.21	+4.40±0.68
PromptSRC	89.54±0.38	92.33±0.80	+2.79±0.46	PromptSR	C 92.57±0.	43 93.98±0.	.44	+1.41±0.59	PromptSRC	87.93±0.38	90.10±0.45	+2.17±0.27
LoCoOp	80.35±3.33	88.62±1.51	+8.27±2.97	LoCoOp	87.21±2.	59 92.03±1.	.78	+4.82±0.97	LoCoOp	83.93±1.6/	86.6/±0.85	+2./4±1.21
	(g) Fo	od101			(h) FG	VCAircr	aft.	•		(1) SU	N397.	
	Energy	MLS-E	Δ		Energy	MLS-E		Δ		Energy	MLS-E	Δ
CoOp	84.00±0.44	85.45±0.95	+1.45±0.68	CoOp	58.16±0.9	90 60.28±3.3	37	+2.12±3.84	CoOp	73.46±0.35	74.67±0.70	+1.21±0.61
CoCoOp	89.85±1.08	91.07±1.15	+1.23±0.39	CoCoOp	57.39±1.4	46 58.44±2.6	58	+1.05±2.38	CoCoOp	74.54±0.61	76.14±0.22	+1.60±0.53
IVLP KcCoOp	89.78±0.22 89.16±0.42	90.94±0.57 91.76±0.44	$\pm 1.10 \pm 0.77$ $\pm 2.60 \pm 0.10$	KgCoOn	68.05+1.3	67.95 ± 1.5	20 71	-0.10+0.39	KgCoOp	76.05±0.70 74.45±0.16	75.27±0.96	$\pm 2.22 \pm 0.84$ $\pm 1.41 \pm 0.74$
ProGrad	86.64±2.46	89.99±0.49	+3.35±1.99	ProGrad	55.95±1.	16 59.68±6.8	81	+3.73±6.80	ProGrad	73.52±0.79	74.90±0.47	+1.37±0.43
MaPLe	85.91±0.46	91.15±0.30	+5.24±0.73	MaPLe	61.81±0.9	97 67.97±3.4	44	+6.16±3.07	MaPLe	75.84±0.05	78.26±0.67	$+2.42\pm0.71$
PromptSRC	90.31±0.51	91.53±0.62	+1.22±0.24	LoCoOn	C 67.39±3. 50 10+1 9	22 69.02±3.9 99 61.06+6.9	91 93	+1.64±1.99	PromptSRC	76.71±0.13	79.41±0.36	+2.70±0.36
Locoop	(i) [07D	+7.09±0.70		(k) F	FuroS AT				(1) U(F101	+5.2110.58
	() L	71D.			(K) I	20105/11	•			(1) 00	1 101.	
	Energy	MLS-E	Δ		Energy	/ MLS-H	Ξ	Δ		Energy	MLS-E	Δ
CoOp	66.18±1.37 64.06±0.20	67.09±1.37 65.47±1.14	$+0.91\pm0.55$ $\pm1.41\pm1.11$	CoOp	69.04±4.	15 68.32±4.	32	-0.73 ± 0.56 -0.04+0.14	CoOp	81.62±1.38 78.09±1.09	82.97±0.68 81.44±0.81	$+1.34\pm0.79$ +3.35+0.43
IVLP	63.06±1.22	66.37±0.81	+3.31±1.26	IVLP	60.75±1.	27 65.01±3.	.98	+4.27±4.75	IVLP	76.70±0.25	81.43±0.43	+4.73±0.57
KgCoOp	61.72±0.30	65.84±1.29	+4.12±1.44	KgCoOp	62.98±0.	32 67.79±1.	.51	+4.81±1.81	KgCoOp	78.47±0.10	81.53±1.52	+3.07±1.45
ProGrad	61.17±0.96	65.97±0.32	+4.80±0.67	ProGrad	67.28±5.	.69 69.20±4.	.12	+1.92±2.58	ProGrad	79.42±0.61	82.78±0.77	+3.36±0.27
PromptSRC	62.53±1.74 66.17±0.12	65.49±0.73 67.04±0.12	+2.96±1.30 +0.87+0.17	PromptSR	63.82±4.	.56 67.53±7. 67 71.91+2	.51	$+3.71\pm2.94$ +1.84+1.73	PromptSRC	/8.8/±0.45 80.85±0.86	82.52±0.99 83.30±0.17	+3.64±0.55 +2.45+0.73
LoCoOp	62.43±0.38	64.85±1.41	+2.42±1.03	LoCoOp	62.99±2.	58 67.56±5.	.05	+4.57±2.96	LoCoOp	72.37±3.29	80.97±2.80	+8.60±0.58
	(m) CI	FAR10.			(n) CIF	AR100.						
	Energy	MLS-E	Δ		Energy	MLS-E		Δ				
CoOp	86.90±0.17	86.61±0.59	-0.29±0.45	CoOp	71.71±1.18	74.21±0.75	+2	2.50±1.84				
IVLP	93.11±0.38 92.90±0.41	93.36±0.41 92.94±0.13	$+0.24\pm0.08$ $+0.04\pm0.53$	IVLP	/6./1±0.95 83.15±1.72	79.91±2.15 86.63±1.02	+3	.20±1.41				
KgCoOp ProGrad	93.17±0.07 88.24±0.35	93.54±0.06 87.03+1.63	+0.37±0.05	KgCoOp ProGrad	77.28±0.43	80.48±0.31 78 77+1 67	+3	.20±0.50				
MaPLe	93.02±0.44	92.72±0.42	-0.30±0.83	MaPLe	83.27±1.28	86.61±0.90	+3	.34±2.09				
PromptSRC LoCoOp	93.88±0.11 92.70±0.80	94.33±0.28 88.96±1.85	+0.45±0.19 -3.73±2.64	PromptSRC LoCoOp	85.83±0.39 72.81±1.34	88.86±0.45 73.16±1.43	+3 +0	0.03±0.19 0.36±0.82				

Table 18: Near OOD AUROC ([↑]) of prompt learning models over 13 datasets using the Energy score
 and MLS-E with 1-shot.

(a) Av	verage ov	ver 13 da	tasets.		(b) I	mageNet	•			(c) Calt	ech101.	
	Energy	MLS-E	Δ		Energy	/ MLS-E	1	Δ		Energy	MLS-E	Δ
CoOp	77.68±10.89	78.75±11.51	+1.08±2.34	CoOp	93.63±0.	19 93.42±0.	82	-0.21±1.00	CoOp	82.95±2.81	86.02±1.74	+3.07±1.81
CoCoOp IVLP	79.42±12.18 79.62±10.43	81.51±11.59 82 58+10 29	+2.09±2.95 +2.96+3.38	CoCoOp	94.72±0.	50 94.62±0.	52 50	-0.10±0.96	CoCoOp	81.84±1.15 81.47±3.02	87.99±1.30 85.04±2.46	+6.15±2.32
KgCoOp	79.88±11.50	82.26±11.74	+2.38±3.14	KgCoOr	94.02±0. 93.88+0.	11 94.41+0.	30	$+0.53\pm0.25$	KgCoOp	79.90±0.14	88.99±0.16	+9.09±0.30
ProGrad	77.86±12.21	80.27±11.67	+2.41±3.09	ProGrad	92.87±0.	67 94.08±0.	47	+1.21±0.21	ProGrad	78.15±0.45	85.03±3.93	+6.88±3.49
PromptSRC	81.76±10.60	83.23±11.69	+1.47±3.32	MaPLe	94.00±0.	71 94.53±0.	44 22	+0.53±0.39	MaPLe PromptSRC	82.01±2.96 81.94+0.44	88.55±1.13 89.58±0.54	+6.53±3.62 +7.65±0.98
LoCoOp	75.17±11.73	79.38±10.84	+4.22±6.61	LoCoOp	91.88±0.	.49 95.21±0. .55 94.21±0.	32 21	$+1.04\pm0.17$ +2.33 ±0.43	LoCoOp	70.62±2.79	84.24±2.65	+13.62±1.42
	(d) Oxf	ordPets.			(e) Sta	infordCa	rs.			(f) Flow	vers102.	
	Energy	MLS-E	Δ		Energy	/ MLS-E	1	Δ		Energy	MLS-E	Δ
CoOp	85.22±1.81	89.19±2.02	+3.97±1.71	CoOp	89.17±1.	70 89.18±1.	69	+0.01±0.54	CoOp	84.70±2.03	87.21±2.66	+2.51±0.84
CoCoOp	88.24±1.31	90.13±0.36	+1.89±1.23	CoCoOp	91.99±0.	73 92.58±0.	37 52	$+0.59\pm0.76$	CoCoOp	85.61±0.63	88.20±0.53	+2.59±0.11
KgCoOp	88.80±0.21	92.32±1.21	$+3.52\pm1.04$	KgCoOr	92.69±0.	.10 93.24±0.	17	$+0.55\pm0.12$	KgCoOp	84.69±0.36	88.76±1.03	+4.07±1.05
ProGrad	88.13±2.30	90.92±1.65	$+2.79\pm0.89$	ProGrad	89.62±2.	18 91.26±0.	93	$+1.63\pm1.28$	ProGrad	86.98±0.75	88.34±1.07	+1.36±0.56
MaPLe	84.55±5.20	87.52±2.77	+2.97±2.43	MaPLe	91.06±0.	93 92.08±0.	24	$+1.02\pm0.69$	MaPLe	81.17±2.31	84.68±3.01	+3.51±0.71
LoCoOp	89.65±0.69 82.36±2.92	91.97±0.36 87.42±2.17	$+2.32\pm1.23$ +5.06±4.41	LoCoOp	88.34±2.	.47 94.18±0. .38 92.03±0.	30 27	$+1.66\pm0.29$ +3.69 ±2.48	LoCoOp	79.39±1.42	88.09±1.66 84.59±2.18	+2.48±0.75 +5.20±1.08
	(g) Fo	od101			(h) FG	VCAircr	aft.	•		(i) SU	N397.	
	Energy	MLS-E	Δ		Energy	MLS-E		Δ		Energy	MLS-E	Δ
CoOp	85.62±1.78	87.58±2.38	+1.96±0.62	CoOp	59.73±2.4	43 59.49±5.9	9	-0.25±4.21	CoOp	72.41±1.26	73.47±2.07	+1.06±0.86
CoCoOp	89.73±0.89	90.73±0.24	+0.99±0.81	CoCoOp	57.01±2.0	68 64.83±3.9	9	+7.81±3.17	CoCoOp	74.11±0.24	75.57±0.64	+1.46±0.40
KgCoOn	88.70±2.17 89.35±0.21	90.89±0.91 91.33±0.65	$+2.14\pm1.39$ +1.97+0.70	KgCoOp	64.85±1.	17 65.58±3.3	5	$+0.34\pm3.98$ +0.74±2.21	KgCoOn	73.65+0.13	77.99±0.88 75.85±0.15	$+3.83\pm1.00$ +2.20+0.27
ProGrad	87.67±1.79	90.64±1.43	+2.96±1.31	ProGrad	55.12±1.8	86 61.51±2.6	0	+6.40±2.98	ProGrad	72.12±0.57	75.09±0.67	+2.97±0.19
MaPLe	87.72±0.98	90.56±0.84	+2.84±0.69	MaPLe	52.24±9.9	93 57.00±5.7	1 .	+4.76±14.41	MaPLe	74.47±1.59	77.94±1.17	+3.47±0.48
LoCoOp	90.21±0.12 81.94±3.22	91.58±0.12 88.04±1.50	+1.37±0.14 +6.10±3.09	LoCoOp	51.32±7.0	65 64.50±3.2	7	+13.18±8.77	LoCoOp	75.98±1.06 69.97±0.93	74.18±0.84	+2.3/±0.35 +4.21±0.29
	(j) [DTD.			(k) E	EuroSAT.				(l) UC	CF101.	
	Energy	MLS-E	Δ		Energy	y MLS-F	Ξ	Δ		Energy	MLS-E	Δ
CoOp	63.49±0.91	64.01±0.75	+0.52±0.95	CoOp	62.39±4	.19 61.44±3.	.94	-0.96±0.62	CoOp	79.25±1.33	80.57±0.71	+1.32±0.81
CoCoOp	62.98±0.54	64.51±1.40	$+1.52\pm0.98$	CoCoOp	61.28±3	.47 59.37±3.	.06	-1.91±1.79	CoCoOp	78.08±1.14	81.23±0.28	+3.15±1.41
IVLP KcCoOp	60.59±1.37	64.18±1.78	+3.59±0.89	IVLP	66.60±3	.49 63.96±5.	.02	-2.64±4.86	IVLP KaCoOn	77.24±1.68	82.06±0.86	$+4.82\pm2.30$ $+3.33\pm1.06$
ProGrad	60.96±1.56	63.81±1.94	+2.85±0.61	ProGrad	61.96±1	.16 61.51±4.	.02	-2.05±2.20 -0.45±5.17	ProGrad	80.03±1.83	81.16±1.73	+1.14±0.19
MaPLe	60.16±1.09	63.91±0.52	+3.75±0.92	MaPLe	61.26±6	.96 57.71±8.	.88	-3.54±3.44	MaPLe	76.88±0.38	81.71±0.46	+4.84±0.53
PromptSRC LoCoOp	65.66±1.40 63.76±0.92	67.55±2.69 66.10±0.60	+1.89±1.39 +2.34±0.49	PromptSR LoCoOn	C 65.55±4 63.35+4	.74 62.45±2. .19 62.14±6.	.70 .91	-3.10±2.07 -1.21+3.25	PromptSRC LoCoOp	79.62±0.96 71.54±1.89	82.63±1.13 78.06±2.52	+3.01±0.21 +6.52±0.63
•	(m) CI	FAR10.			(n) CIF	AR100.						
	Energy	MLS-E	Δ		Energy	MLS-E		Δ				
CoOp	83.06±1.34	81.77±0.90	-1.29±1.60	CoOp	68.18±1.23	70.43±3.00	+2.	.24±2.90				
CoCoOp IVLP	90.85±2.48 87.01±6.32	90.01±2.16 86.81±3.85	-0.84±0.59 -0.20±3.51	CoCoOp IVLP	76.01±1.44 83.00±0.54	79.86±1.91 87.04±0.30	+3.	.85±0.47 .04±0.72				
KgCoOp	93.01±0.38	91.78±1.72	-1.23±1.61	KgCoOp	76.77±0.66	79.69±1.55	+2	.92±0.91				
ProGrad MaPL e	87.62±4.43	86.07±4.47 02.43+2.35	-1.55 ± 2.03 $\pm0.02\pm1.21$	ProGrad MaDL a	70.90±2.52	74.08±1.77	+3.	.18±1.24				
PromptSRC	93.62±0.39	92.59±2.13	-1.02±1.78	PromptSRC	83.99±0.11	85.91±0.89	+4.	.03±2.34 .92±0.82				
LoCoOp	89.29±1.17	82.42±10.55	-6.87±9.46	LoCoOp	73.40±1.57	74.07±1.22	+0	.67±0.54				

1620 A.3.3 MCM SCORE

We show the effectiveness of our method with MCM measured by average AUROC and FPR95 across 13 datasets in Table 19 and Table 20, where $S_{\text{MLS-MCM}} = S_{\text{MCM}} - \beta \cdot S_{\text{Context}}$. Also, we compare the correlation between scores and the Context score using MaxLogit and MCM in Figure 6.

Table 19: Near OOD AUROC ([†]) of prompt learning models over 13 datasets using the MCM score and MLS-MCM.

(a) Aver	age ov	ver 13 datas	sets.		(b) Im	ageNet.		(ech101.		
	MCM	MLS-MCM	Δ		MCM	MLS-MCM	Δ		MCM	MLS-MCM	Δ
CoOp	79.41	81.31	+1.90	CoOp	93.48	94.48	+0.99	CoOp	92.57	92.42	-0.15
CoCoOp	79.28	82.59	+3.31	CoCoOp	94.16	94.93	+0.77	CoCoOp	90.71	90.27	-0.44
IVLP	80.95	84.48	+3.53	IVLP	93.68	94.18	+0.50	IVLP	91.35	91.56	+0.21
RgCoOp	79.82	83.31	+3.49	RgCoOp	93.84	94.30	+0.46	RgCoOp	91.08	90.83	-0.26
MoDI e	79.91 80.54	81.81	+1.90	MoDL e	95.20	94.08	+0.88	MoDI e	91.10	91.15	-0.01
PromptSRC	82 34	85.49	+3.15	PromptSRC	94 46	95.30	+0.50	PromptSRC	91.52	90.93	-0.34
LoCoOp	79.22	80.36	+1.14	LoCoOp	93.23	93.81	+0.59	LoCoOp	91.02	90.97	-0.04
(0	l) Oxf	ordPets.		(6	e) Stan	fordCars.		(1	f) Flov	vers102.	
	MCM	MLS-MCM	Δ		MCM	MLS-MCM			MCM	MLS-MCM	
CoOn	85 75	88 59	+2.84	CoOn	82.61	88.62	+6.01	CoOn	90.08	90.79	+0.71
CoCoOp	86.85	91.41	+4.56	CoCoOp	83.77	91.30	+7.53	CoCoOp	84.56	88.24	+3.69
IVLP	87.51	91.01	+3.50	IVLP	84.75	92.66	+7.91	IVLP	87.31	89.33	+2.02
KgCoOp	88.35	92.51	+4.16	KgCoOp	83.38	92.41	+9.03	KgCoOp	87.00	91.50	+4.50
ProGrad	86.86	88.12	+1.26	ProGrad	84.23	90.32	+6.09	ProGrad	89.66	90.80	+1.14
MaPLe	86.31	90.39	+4.08	MaPLe	83.80	92.13	+8.33	MaPLe	86.07	88.84	+2.77
PromptSRC	88.69	93.24	+4.55	PromptSRC	84.64	93.85	+9.21	PromptSRC	90.61	92.96	+2.35
LoCoOp	86.56	87.12	+0.56	LoCoOp	82.83	88.23	+5.40	LoCoOp	86.98	87.05	+0.07
	(g) Fo	od101.		(h) FGV	CAircraft.			(i) SU	N397.	
	MCM	MLS-MCM	Δ		MCM	MLS-MCM	Δ		MCM	MLS-MCM	Δ
CoOp	85.65	87.72	+2.07	CoOp	41.22	52.57	+11.35	CoOp	78.86	78.83	-0.03
CoCoOp	89.05	91.64	+2.59	CoCoOp	37.53	57.00	+19.47	CoCoOp	79.97	80.13	+0.17
IVLP	88.71	92.07	+3.36	IVLP	40.70	65.75	+25.05	IVLP	80.41	80.74	+0.33
KgCoOp	89.41	92.30	+2.89	RgCoOp	37.83	58.34	+20.51	KgCoOp	80.25	80.37	+0.12
ProGrad M-DL-	88.29	90.88	+2.59	MoDI e	40.00	50.54	+9.88	ProGrad M-DL-	79.63	79.68	+0.06
DrommtSDC	88.90	92.22	+3.20	PromptSRC	39.89	61 58	+19.10 +21.69	DrommtSDC	80.21	80.72	+0.52
LoCoOp	88.29	90.05	+3.00 +1.76	LoCoOp	38.94	50.03	+11.09	LoCoOp	79.75	79.72	-0.03
F	(j) E	DTD.			(k) Eu	IroSAT.		F	(l) UC	CF101.	
	MCM	MI S-MCM			MCM	MI S-MCM			MCM	MI S-MCM	
CoOn	60.80	70.02	10.14	CoOn	67.40	65.22	2.16	CoOn	84.05	04.92	.0.75
CoCoOn	66.96	67.41	+0.14	CoCoOn	63.63	63.22	-2.10	CoCoOp	83.95	84.82	+0.78
IVLP	69.26	69.24	-0.02	IVLP	68.85	67.28	-1.58	IVLP	83.46	85.01	+1.55
KgCoOp	68.88	69.11	+0.23	KgCoOp	62.17	62.20	+0.03	KgCoOp	84.55	85.22	+0.67
ProGrad	68.21	68.17	-0.04	ProGrad	66.93	65.91	-1.02	ProGrad	85.03	85.40	+0.37
MaPLe	68.39	68.62	+0.23	MaPLe	69.72	67.60	-2.13	MaPLe	83.34	84.78	+1.44
PromptSRC	71.40	71.45	+0.05	PromptSRC	72.57	68.61	-3.96	PromptSRC	85.11	86.47	+1.36
LoCoOp	69.76	69.82	+0.06	LoCoOp	63.23	61.57	-1.66	LoCoOp	83.57	83.77	+0.20
(m) CI	FAR10.		(n) CIFA	R100.					
	MCM	MLS-MCM	Δ		MCM	MLS-MCM	\bigtriangleup				
CoOp	87.12	86.88	-0.24	CoOp	73.55	75.89	+2.34				
CoCoOp	92.69	92.76	+0.08	CoCoOp	76.76	80.47	+3.71				
IVI D	91.42	91.80	+0.38	IVLP	84.92	87.57	+2.65				
IVLI	93 15	93.25	+0.10	KgCoOp	77.74	80.63	+2.89				
KgCoOp	20.10	0.0	0.25	Dave Canad	74 89	78 60	+3.70				
KgCoOp ProGrad	90.09	89.84	-0.25	ProGrad	04.05	00.00	0.50				
KgCoOp ProGrad MaPLe	90.09 92.15	89.84 92.31	+0.17	MaPLe	84.42	88.00	+3.58				
KgCoOp ProGrad MaPLe PromptSRC	90.09 92.15 94.05	89.84 92.31 93.88	-0.25 +0.17 -0.17	MaPLe PromptSRC	84.42 86.67	88.00 88.70	+3.58 +2.02				

Table 20: Near OOD FPR95 (\downarrow) of prompt learning models over 13 datasets using the MCM score and MLS-MCM.

(a) Aver	rage ov	ver 13 data	sets.		(b) Im	ageNet.		(
	MCM	MLS-MCM	Δ		MCM	MLS-MC	M \triangle		MCM	MLS-MCM	Δ
CoOp	63.70	57.48	-6.21	CoOp	32.74	26.85	-5.89	CoOp	24.16	24.43	+0.27
CoCoOp	63.76	53.62	-10.14	CoCoOp	30.51	24.63	-5.89	CoCoOp	31.48	31.77	+0.28
IVLP	60.05	49.23	-10.83	IVLP	31.20	26.31	-4.89	IVLP K-C-O-	31.33	29.16	-2.17
ProGrad	62.20	56.22	-10.33	RgCoOp	31.99	27.10	-4.89	RgCoOp	27.22	27.34	+0.12
MaPLe	60.68	49.00	-11.68	MaPL e	32 58	29.29	-4.00	MaPLe	32.98	27.50	-5.48
PromptSRC	55.86	46.13	-9.73	PromptSR	C 28.77	22.81	-5.97	PromptSRC	26.36	25.61	-0.75
LoCoOp	63.37	60.63	-2.74	LoĊoOp	35.06	31.97	-3.09	LoCoOp	30.81	30.76	-0.05
(d) Oxf	ordPets.			(e) Stan	fordCars.		(f) Flov	vers102.	
	MCM	MLS-MCM	Δ		MCM	MLS-MCM	1 A		MCM	MLS-MCM	Δ
CoOp	55.23	46.74	-8.49	CoOp	64.30	41.26	-23.05	CoOp	45.66	42.85	-2.81
CoCoOp	53.26	40.67	-12.59	CoCoOp	63.84	34.19	-29.65	CoCoOp	62.92	52.14	-10.79
IVLP	50.43	43.36	-7.08	IVLP KaCaOn	59.38	27.69	-31.69	IVLP KaCaOn	55.70	48.98	-6.72
ProGrad	54.48	55.72	+1.20	ProGrad	62.17	37.12	-32.97	ProGrad	37.90 46.41	40.80	-17.04
MaPLe	52.24	42.94	-9.30	MaPLe	62.20	28.56	-33.64	MaPLe	57.83	49.43	-8.40
PromptSRC	49.69	38.07	-11.62	PromptSRO	59.71	24.71	-35.01	PromptSRC	43.15	34.45	-8.70
LoĈoOp	53.91	53.14	-0.77	LoĈoOp	64.56	46.73	-17.83	LoĈoOp	54.17	53.85	-0.32
	(g) Fc	od101		(1	h) FGV	CAircraft.			(i) SU	JN397.	
	MCM	MLS-MCM	Δ		MCM	MLS-MCN	1 🛆		MCM	MLS-MCM	Δ
CoOp	64.07	53.69	-10.38	CoOp	96.60	87.13	-9.47	CoOp	67.98	68.17	+0.18
CoCoOp	55.24	39.39	-15.86	CoCoOp	97.73	79.83	-17.90	CoCoOp	65.10	64.27	-0.83
IVLP	56.66	35.87	-20.79	IVLP	96.33	73.45	-22.89	IVLP	65.20	63.57	-1.62
RgCoOp	58.86	36.14	-18.04	RgCoOp	97.50	79.50	-18.00	KgCoOp	64.31	63.76	-0.55
MaPLe	54 93	35.68	-19.45	MaPLe	90.20	79.37	-17.78	MoPL e	65 25	63.02	-0.23
PromptSRC	54.50	35.58	-18.91	PromptSRO	2 96.76	75.93	-20.83	PromptSRC	62.12	60.91	-1.21
LoCoOp	56.78	45.80	-10.97	LoCoOp	97.11	89.01	-8.10	LoCoOp	65.51	65.60	+0.09
	(j) I	DTD.			(k) Eu	roSAT.			(l) UC	CF101.	
	MCM	MLS-MCM	Δ		MCM	MLS-MCN	A A		MCM	MLS-MCM	Δ
CoOp	87.99	86.66	-1.33	CoOp	87.62	86.12	-1.49	CoOp	61.80	54.14	-7.65
CoCoÔp	90.93	89.61	-1.32	CoCoOp	90.61	86.67	-3.94	CoCoOp	63.33	50.41	-12.93
IVLP	88.19	87.42	-0.77	IVLP	82.81	80.20	-2.60	IVLP	59.62	47.81	-11.81
KgCoOp	88.74	87.37	-1.37	KgCoOp	89.72	87.54	-2.18	KgCoOp	58.62	50.47	-8.14
ProGrad	89.19	88.90	-0.29	ProGrad	86.46	84.96	-1.50	MoPLe	59.14 63.36	51.74 40.15	-/.41
PromptSPC	83.07	87.79	-1.28	PromptSR	~ 78.29	82.00	+3.10	PromptSRC	56.65	47.04	-9.62
LoCoOp	87.82	86.76	-1.06	LoCoOp	90.22	87.44	-2.78	LoCoOp	61.10	57.06	-4.04
((m) CI	FAR10.		(1	n) CIFA	R100.					
	MCM	MLS-MCM	Δ		MCM N	ALS-MCM	Δ				
CoOn	53 53	52.71	-0.83	CoOn	86.40	76.54	-9.86				
CoCoOp	37.02	31.98	-5.04	CoCoOp	86.82	71.48	-15.35				
IVLP	38.67	31.04	-7.63	IVLP	65.16	45.08	-20.08				
KgCoOp	35.12	32.46	-2.66	KgCoOp	87.26	73.61	-13.65				
ProGrad	45.00	42.88	-2.12	ProGrad	85.42	68.06	-17.37				
MaPLe	36.95	29.19	-7.76	MaPLe	66.44	42.43	-24.00				
PromptSRC	27.73	23.03	-4.70	PromptSRC	59.12	46.33	-12.79				
LoCoOp	37.78	54.39	+16.62	LoCoOp	88.94	85.63	-3.31				

Figure 6: Comparison of MaxLogit (left) or MCM score (right) vs. Context score for near OOD
samples with IVLP Khattak et al. (2023a) on EuroSAT Helber et al. (2019). MaxLogit score shows
positive correlation with the Context score while MCM score lacks the correlation.

1744 A.3.4 SCORE COMPARISON

In the main section, average AUROC and FPR95 of different scores are compared in Table 3. Here,
we provide the individual's dataset results averaged across 16, 8, 4, 2, and 1-shot with 3 random seeds in Table 21 and Table 22.

Table 21: Near OOD AUROC ([†]) of prompt learning models across 13 datasets using the MaxLogit score, the Energy score, MLS-M, MLS-E, and MCM.

1752	(a) A	werage	e over	13 d	ataset	s.		(b)	Image	eNet.				(c) (Caltec	h101	•	
1753		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM
1754 1755	CoOp CoCoOp IVLP KeCoOp	80.74 81.09 81.12 80.84	81.84 82.74 84.34 83.12	80.44 80.53 80.49 80.14	81.71 82.74 84.40 83.23	79.41 79.28 80.95 79.82	CoOp CoCoOp IVLP KgCoOp	93.78 94.85 94.55 94.21	94.66 95.14 94.70 94.21	93.73 94.76 94.50 94.05	94.83 95.30 94.94 94.41	93.48 94.16 93.68 93.84	CoOp CoCoOp IVLP KgCoOp	88.27 85.80 85.50 83.64	90.12 89.02 90.53 90.06	87.31 84.19 84.08 80.39	89.48 88.04 89.85 88.79	92.57 90.71 91.35 91.08
1756	ProGrad MaPLe PromptSRC	79.77 81.06 83.85 77.55	82.35 83.94 85.77 81 74	78.79 80.39 83.48 75.94	81.93 83.99 85.88 81.25	79.91 80.54 82.34 79.22	ProGrad MaPLe PromptSRC	93.62 94.20 94.52 93.10	94.67 94.35 95.32 94 56	93.46 94.07 94.46 92.25	94.79 94.58 95.56 94 53	93.20 93.42 94.46 93.23	ProGrad MaPLe PromptSRC	82.96 85.91 84.94 76.08	88.85 91.53 90.56 87.75	80.60 84.52 82.59 71.45	87.60 90.95 89.70 86.09	91.16 91.32 91.27 91.02
1750	Locoop	(d) (Dxfor	dPets		17.22	Locoop	(e) St	tanfor	dCar	5.	75.25	Locoop	(f) F	lower	s102		,1102
0671								(-)										
1759		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM
1760 1761 1762	CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC	86.22 89.58 88.84 89.94 87.82 87.40 90.80	88.73 92.28 91.94 92.64 89.60 91.00 93.45	85.91 88.93 88.27 89.25 87.54 86.66 90.38	88.62 92.01 91.67 92.28 89.51 90.64 93.29	85.75 86.85 87.51 88.35 86.86 86.31 88.69	CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC	91.36 92.43 90.43 92.77 91.52 91.39 92.88	91.59 92.99 92.98 93.27 92.63 92.85 94.24	91.37 92.56 90.45 92.85 91.34 91.53 92.97	91.66 93.17 93.24 93.43 92.55 93.14 94.47	82.61 83.77 84.75 83.38 84.23 83.80 84.64	CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC	90.83 87.93 86.20 87.61 89.27 86.05 91.10	91.99 89.41 88.45 91.12 91.41 88.34 92.61	90.12 86.76 84.51 85.78 87.51 84.45 89.92	91.51 88.89 87.44 90.51 90.37 87.40 91.86	90.08 84.56 87.31 87.00 89.66 86.07 90.61
1763	LoCoOp	84.44 (σ)	Eood	82.90	88.44	86.56	LoCoOp	(h) F(ircra	92.16	82.83	LoCoOp	86.17	88.59 SUN	83.73 397	87.14	86.98
1764		(6)	1000	1101				(11) 1 (5101	meru				(1)	5011.			
1765		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM
1766 1767 1768	CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp	86.70 90.52 89.70 89.87 88.60 89.10 90.94 84.87	87.91 91.63 91.87 92.12 91.05 92.00 92.11 90.12	86.32 90.09 89.22 89.29 87.93 88.43 90.59 82.51	87.70 91.44 91.73 91.96 90.90 91.84 91.97 89.45	85.65 89.05 88.71 89.41 88.29 88.96 89.39 88.29 88.29	CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp	55.99 52.60 58.47 57.82 53.69 52.18 60.63 50.99	56.97 55.04 64.16 57.46 55.67 56.93 62.50 56.12	58.92 57.28 63.66 66.07 57.15 57.03 68.80 55.31	59.98 61.61 71.01 66.68 59.58 63.37 70.34 61.06	41.22 37.53 40.70 37.83 40.66 38.94 39.89 38.94	CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp	75.78 76.32 77.13 76.45 75.52 77.62 78.51 73.97	76.75 78.29 79.60 77.91 77.67 79.73 80.70 78.00	75.10 75.10 76.17 74.80 74.00 76.65 77.26 71.27	76.19 77.36 79.03 76.54 76.48 79.09 79.91 76.23	78.86 79.97 80.41 80.25 79.63 80.21 81.71 79.75
1769		(j) DT	D.				(k)	Euro	SAT.				(1)	UCF	101.		
1770		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM		MaxLogit	MLS-M	Energy	MLS-E	MCM
1771 1772	CoOp CoCoOp IVLP KgCoOp ProGrad	68.90 65.10 64.99 63.79 62.90 64.80	69.60 67.17 67.93 68.17 66.96 67.70	68.35 63.75 63.94 61.31 60.84 63.54	69.16 66.27 67.25 66.69 65.22 66.02	69.89 66.96 69.26 68.88 68.21 68.21	CoOp CoCoOp IVLP KgCoOp ProGrad	67.94 66.87 65.56 62.41 68.96 71.18	67.83 66.76 70.62 65.66 69.71 72.28	67.54 66.12 63.89 62.36 68.19 70.02	67.49 65.99 69.72 66.24 69.10 71.04	67.49 63.63 68.85 62.17 66.93 60.72	CoOp CoCoOp IVLP KgCoOp ProGrad	82.17 81.32 80.26 81.26 81.21	83.65 84.02 84.55 84.06 83.71 84.25	81.31 79.65 78.96 79.04 79.39 70.38	82.96 82.92 83.84 82.76 82.30	84.05 83.95 83.46 84.55 85.03
1773	PromptSRC	69.09 66.63	70.38	67.56 65.29	69.27 68.07	71.40	PromptSRC LoCoOp	75.22 66.72	74.97	74.40 66.04	74.30	72.57	PromptSRC LoCoOp	83.19 76.28	85.43 82.54	81.77 73.63	84.56 81.13	85.11 83.57
1774		(m)	CIFA	R10.				(n) CI	FAR1	00.								
1775																		
1776	CoOp	MaxLogit 84.05	MLS-M 85.76	Energy 82.84	MLS-E 84.86	MCM 87.12	CoOp	axLogit M 77.67 7	LS-M Er 8.30 7	ergy Mi 5.84 7	LS-E M 7.75 73	CM 3.55						
1777	CoCoOp IVLP	89.91 88.17	92.49 91.10	88.08 86.40	91.91 90.40	92.69 91.42	CoCoOp IVLP	80.99 8 84.69 8	1.44 79 8.01 8	9.64 80 2.35 81	0.73 76 7.05 84	5.76 1.92						
1778	KgCoOp ProGrad MaPLe	90.26 83.94 87.79	92.77 89.08 91.81	88.09 81.61 85.68	91.93 87.96 91.07	93.15 90.09 92.15	KgCoOp ProGrad MaPLe	80.94 8 77.01 7 85.35 8	1.14 7 9.55 7 8.35 8	8.54 79 4.71 71 3.17 8	9.78 77 8.76 74 7.49 84	7.74 1.89 1.42						
1779	PromptSRC LoCoOp	91.36 84.69	93.97 90.22	89.76 81.33	93.41 89.26	94.05 91.44	PromptSRC LoCoOp	86.82 8 76.03 7	8.78 8- 6.67 7.	4.76 8 3.54 74	7.83 86 4.83 74	5.67 4.22						
1780																		

1781

1782

1831

1832

1833

1834 1835

Table 22: Near OOD FPR95 (\downarrow) of prompt learning models across 13 datasets using the MaxLogit score, the Energy score, MLS-M, MLS-E, and MCM.

(a) Average over 13 datasets. (c) Caltech101. (b) ImageNet. MaxLogit MLS-M Energy MCM MaxLogit MLS-M MLS-E MCM MaxLogit MLS-M Energy MLS-E MCM MLS-E Energy 32.74 30.51 31.20 31.99 34.16 32.58 28.77 35.06 CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 55.37 51.90 49.19 51.90 55.34 48.76 45.15 57.80 CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 31.02 26.76 27.23 29.84 32.73 29.87 33.04 29.16 29.40 33.09 35.87 32.34 42.21 48.28 51.35 61.27 65.31 49.42 52.12 80.74 63.70 63.76 60.05 62.20 CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 32.07 36.22 34.09 34.10 24.16 31.48 31.33 27.22 58.23 55.78 55.65 57.16 54.85 51.67 48.58 51.52 54.02 48.36 44.60 55.76 59.45 57.49 57.66 59.69 62.74 57.82 51.86 69.07 26.40 23.85 24.54 27.45 27.40 26.09 22.82 28.94 26.96 24.69 24.78 28.35 28.41 26.52 22.97 32.02 38.42 42.22 45.94 49.33 56.38 44.44 43.79 69.02 29.90 33.02 **30.97** 28.80 39.35 **28.30 25.83** 37.02 60.07 55.58 49.65 64.89 62.89 60.68 45.11 31.23 **33.36** 32.98 PromptSRC LoCoOp 27.89 36.95 30.06 45.33 PromptSR0 LoCoOp 55.86 63.37 PromptSR0 LoCoOp 28.81 44.34 26.36 30.81 (d) OxfordPets. (f) Flowers102. (e) StanfordCars. MCM MaxLogit MLS-M Energy MLS-E MCM MaxLogit MLS-M Energy MLS-E MCM MaxLogit MLS-M Energy MLS-E CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 51.60 42.47 48.28 47.06 50.75 50.86 45.90 35.89 40.88 35.52 51.94 42.87 52.87 45.06 50.67 49.07 51.49 53.88 55.23 53.26 50.43 51.32 54.48 52.24 CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 32.58 28.76 33.89 29.06 32.44 30.75 32.23 28.37 33.75 28.62 32.69 30.20 CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 42.18 53.82 59.10 62.44 49.71 58.30 45.66 62.92 55.70 57.90 46.41 57.83 46.91 37.87 43.75 38.01 52.73 45.57 40.02 50.27 54.62 56.18 44.28 54.00 31.62 27.18 26.07 27.77 28.42 26.05 22.88 31.83 37.55 46.99 51.31 45.23 43.54 50.79 36.78 51.74 30.96 26.83 25.40 27.05 28.19 25.29 22.29 31.34 64.30 63.84 59.38 64.69 62.17 62.20 59.71 64.56 36.14 45.51 49.00 43.15 38.84 47.94 34.33 46.72 42.14 54.57 PromptSRC LoCoOp 38.08 48.65 44.32 58.27 39.70 52.35 49.69 53.91 PromptSRC LoCoOp 26.27 41.93 26.11 42.86 PromptSRC LoCoOp 38.96 52.83 42.84 59.87 43.15 54.17 (g) Food101 (h) FGVCAircraft. (i) SUN397. MaxLogi MI S.M MCM MaxL or MLS-M MI S.F MCM MaxLog MI S.M MI S.F MCM Energy MI S.F Energy CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp 73.24 73.55 71.54 74.01 76.75 71.20 69.99 81.12 67.98 65.10 65.20 64.31 66.65 65.25 54.00 41.85 44.36 44.42 48.58 45.70 39.21 58.93 49.48 37.57 35.63 35.98 40.02 35.26 34.61 42.34 55.28 43.18 45.66 46.71 50.78 47.53 40.21 65.29 50.05 37.95 35.66 36.35 **39.99** 35.38 34.84 44.22 64.07 55.24 56.66 54.18 58.86 54.93 54.50 56.78 83.67 84.31 79.19 79.80 84.79 81.98 76.62 86.36 82.75 81.95 75.35 79.98 81.38 80.73 75.53 83.58 81.31 81.38 75.61 **72.11** 82.41 78.68 69.47 83.64 80.09 76.55 69.78 72.30 78.20 75.01 69.00 79.53 96.60 97.73 96.33 97.50 96.26 97.15 96.76 97.11 71.81 70.74 69.31 70.46 73.83 68.72 66.85 76.47 69.50 65.62 67.17 68.12 63.34 61.55 67.24 70.54 67.30 65.08 70.02 70.20 64.64 63.56 71.02 PromptSRC LoCoOp 62.12 65.51 (j) DTD. (k) EuroSAT. (1)UCF101. MLS-M MLS-E MCM MaxLogi MLS-M MCM MLS-M MLS-E MCM MaxLogit Energy Energy MLS-E MaxLogit Energy CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 85.16 87.50 87.11 86.93 87.55 86.81 83.56 83.94 CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 85.34 88.48 **87.08** 88.52 87.78 88.85 84.52 84.52 84.51 85.21 87.58 87.99 90.93 85.20 82.38 73.84 82.30 82.31 68.41 65.83 80.88 87.62 90.61 86.00 88.92 87.86 88.49 88.90 89.53 86.43 85.52 85.12 82.25 81.16 82.08 81.61 75.22 65.95 81.91 85.49 82.05 81.29 82.60 82.91 76.75 67.18 82.06 85.25 81.58 74.34 79.15 82.99 67.28 66.27 79.99 55.64 57.04 56.96 54.77 57.39 57.16 51.62 67.38 50.12 50.37 47.71 50.16 48.84 49.27 46.17 55.38 56.84 58.31 58.72 56.41 59.53 58.65 53.91 70.46 51.16 50.90 48.52 50.89 50.75 49.51 47.33 57.05 61.80 63.33 87.38 87.82 86.42 88.31 87.31 84.32 85.52 90.93 88.19 88.74 89.19 89.07 83.29 87.82 90.81 82.81 89.72 86.46 77.79 78.29 90.22 63.33 59.62 58.62 59.14 63.36 56.65 61.10 PromptSRC LoCoOp PromptSR LoCoOp (m) CIFAR10. (n) CIFAR100. MCM MaxLogit MLS-M Energy MLS-E MCM MaxLogit MLS-M Energy MLS-E CoOp CoCoOp IVLP CoOp CoCoOp IVLP KgCoOp ProGrad MaPLe 53.49 37.07 39.00 38.30 52.48 40.75 30.54 51.96 49.45 29.79 30.87 30.85 40.59 30.00 22.74 36.97 56.82 41.65 43.38 45.90 58.65 46.10 35.64 60.82 51.62 30.48 32.73 33.20 43.18 31.57 24.13 39.74 53.53 37.02 38.67 35.12 45.00 36.95 27.73 37.78 74.33 72.96 56.39 **73.27** 77.89 54.19 51.05 **80.71** 71.48 71.09 **45.86** 73.66 **67.49 43.60 45.82** 81.44 75.30 73.60 61.31 75.27 80.70 59.11 55.95 81.91 71.41 69.70 46.22 73.58 67.79 43.73 47.00 82.49 86.40 86.82 65.16 87.26 85.42 66.44 59.12 88.94 IVLP KgCoOp ProGrad MaPLe PromptSRC LoCoOp PromptSRC LoCoOp

1836 A.3.5 FAR OOD DETECTION 1837

1840

1843

1838 We provide additional far OOD detection results of AUROC and FPR in Table 23 and Table 241839 respectively.

1841Table 23: OOD detection AUROC (†) averaged over 16, 8, 4, 2, and 1 few-shot settings with 31842random seeds.

			(a) Place	es.		
		MaxLogit			Energy	
	Original	MLS-M	\triangle	Original	MLS-E	\triangle
CoOp	96.22	96.78	+0.56	95.80	96.65	+0.85
CoCoOp	96.90	96.79	-0.11	96.50	96.51	+0.01
IVLP	95.79	96.01	+0.22	95.18	95.77	+0.60
KgCoOp	96.67	96.91	+0.24	96.12	96.74	+0.62
ProGrad	95.21	96.05	+0.84	94.52	95.76	+1.25
MaPLe	96.61	96.52	-0.09	96.00	96.11	+0.11
PromptSRC	96.54	96.59	+0.05	96.00	96.20	+0.21
LoCoOp	94.67	97.10	+2.43	91.59	96.45	+4.86
			(b) SUN	1.		
		MaxLogit			Energy	
	Original	MLS-M	\triangle	Original	MLS-E	Δ
CoOp	96.49	97.88	+1.39	95.69	97.62	+1.93
CoCoOp	98.17	98.47	+0.30	97.64	98.21	+0.57
IVLP	97.61	98.20	+0.58	96.98	97.97	+0.99
KgCoOp	97.50	98.47	+0.96	96.61	98.29	+1.68
ProGrad	96.51	97.73	+1.22	95.60	97.35	+1.75
MaPLe	97.91	98.54	+0.63	97.13	98.21	+1.07
PromptSRC	97.63	98.11	+0.48	96.88	97.64	+0.76
LoCoOp	95.38	98.94	+3.56	90.79	98.20	+7.40
			(c) Textu	re.		
		MaxLogit			Energy	
	Original	MLS-M	\triangle	Original	MLS-E	Δ
CoOp	93.38	93.74	+0.36	92.51	93.07	+0.56
CoCoOn	94.79	95.29	+0.50	93.72	94.51	+0.79
IVLP	93.32	95.49	+2.17	91.78	94.90	+3.12
KgCoOp	93.59	96.30	+2.71	92.03	95.90	+3.86
ProGrad	91.36	94.22	+2.86	89.72	93.37	+3.65
MaPLe	93.36	93.89	+0.52	91.73	92.64	+0.91
PromptSRC	92.69	94.52	+1.83	90.94	93.52	+2.58
LoĈoOp	93.18	96.16	+2.98	89.80	94.82	+5.02
		(0	l) iNatura	alist.		
	1	MaxLogit			Energy	
	Original	MLS-M		Original	MLS-F	^
	04.59	07.22	12.65	02.66	06.29	12.62
CoCoOn	94.38	97.25 97.65	+2.03 ± 0.63	92.00	90.28	+3.02 ± 0.07
	05.02	07.88	+0.05	03 74	96.80	+0.97
IVI P		21.00	T1.71	95.7 4 05.61	08 00	±2.15
	97.05	08 /0	A/A		70.00	T2.39
IVLP KgCoOp ProGrad	97.05 92.90	98.49 96.04	+1.44 +3.14	90.46	94 73	+4 27
IVLP KgCoOp ProGrad MaPL e	97.05 92.90 95.80	98.49 96.04 97.60	+1.44 +3.14 +1.80	90.46 93.43	94.73 96.25	+4.27
IVLP KgCoOp ProGrad MaPLe PromptSBC	97.05 92.90 95.80 96.37	98.49 96.04 97.60 96.76	+1.44 +3.14 +1.80 +0.38	90.46 93.43 94.41	94.73 96.25 95.01	+4.27 +2.82
IVLP KgCoOp ProGrad MaPLe PromptSRC	97.05 92.90 95.80 96.37 93.41	98.49 96.04 97.60 96.76 98 46	+1.44 +3.14 +1.80 +0.38 +5.05	90.46 93.43 94.41 87.11	94.73 96.25 95.01	+4.27 +2.82 +0.60 +9.97

1894Table 24: OOD detection FPR95 (\downarrow) averaged over 16, 8, 4, 2, and 1 few-shot settings with 3 random1895seeds.

			(a) Place	es.			
		MaxLogit			Energy		мсм
	Original	MLS-M	\triangle	Original	MLS-E	\triangle	mem
CoOp	17.58	13.56	-4.01	20.90	14.42	-6.48	16.40
CoCoOp	13.01	12.92	-0.09	15.41	14.09	-1.33	14.78
IVLP	17.82	15.32	-2.50	22.14	16.67	-5.47	15.41
KgCoOp	14.43	12.46	-1.97	18.32	13.33	-4.99	14.34
ProGrad	22.47	16.28	-6.19	28.38	17.85	-10.52	18.51
MaPLe	15.37	14.01	-1.37	19.35	16.74	-2.62	14.32
PromptSRC	14.88	13.77	-1.11	18.70	16.04	-2.66	13.77
LoCoOp	27.58	11.05	-16.52	53.58	14.25	-39.33	12.43
			(b) SUN	١.			
		MaxLogit			Energy		MCM
	Original	MLS-M	\bigtriangleup	Original	MLS-E	\bigtriangleup	
CoOp	19.44	10.06	-9.38	26.66	11.60	-15.06	10.24
CoCoOp	8.37	6.39	-1.98	11.64	7.18	-4.46	8.15
IVLP	10.77	7.92	-2.86	15.85	9.35	-6.50	7.49
KgCoOp	12.98	6.81	-6.17	20.58	7.32	-13.26	7.77
ProGrad	19.14	10.37	-8.77	27.60	12.33	-15.28	11.37
MaPLe	9.67	5.91	-3.76	15.09	7.69	-7.40	7.10
PromptSRC	11.48	8.37	-3.11	17.35	11.28	-6.08	6.84
LoĈoOp	29.82	3.76	-26.06	64.29	7.80	-56.49	4.51
			(c) Textu	re.			
		MaxLogit			Energy		
	Original	MLS-M	^	Original	MLS-F	^	MCM
CoOn	25.02	21.20	2.62	42.04	27.22	5 70	17.20
CoOp	26.11	22.14	-5.05	45.04	20.21	-3.12	17.29
	20.11	25.14	-2.90	30.08	29.51	-7.57	13.31
IVLP VaCaOm	33.43 22.06	20.23	-15.16	45.80	24.40	-19.40	17.70
BraCrad	42 21	10.50	-14.70	40.00	22.20	-23.79	16.12
	42.31	20.07	-13.04	J4.21 17.83	30.97 40.47	-17.30	10.12
PromptSRC	37.51	27.43 26.00	-5.77	+7.00 52 50	36.40	-7.50	12.49
LoCoOp	39.95	19.69	-20.25	68.07	32.19	-35.87	14.72
· - 1		((l) iNatura	list.			
		×			F		
]	MaxLogit			Energy		MCM
	Original	MLS-M	\bigtriangleup	Original	MLS-E	\bigtriangleup	
CoOp	32.70	13.64	-19.07	48.16	20.24	-27.93	9.38
CoCoOp	14.03	9.68	-4.35	24.75	16.71	-8.04	12.13
IVLP	22.51	8.85	-13.66	39.50	15.17	-24.33	7.28
KgCoOp	14.76	5.76	-9.00	25.50	8.60	-16.90	9.32
ProGrad	43.71	21.29	-22.42	58.34	32.44	-25.90	13.93
1100144	23.97	10.38	-13.58	42.23	19.62	-22.62	6.76
MaPLe					00.00	0.00	= 0=
MaPLe PromptSRC	19.38	16.03	-3.35	33.65	29.98	-3.67	5.87

1944 A.3.6 COMPARISON WITH ZERO-SHOT CLIP OOD DETECTION

Although our work is specifically designed for few-shot prompt learning CLIP models and is
not comparable to zero-shot CLIP OOD detection models, we here provide a comparison with
CLIPN (Wang et al., 2023) in Table 25. Following the original setting, we use the maximum softmax
probability as an OOD score. Note that MLS cannot be applied to CLIPN as it is a zero-shot model
which lacks the context vectors.

Table 25: Near OOD AUROC (\uparrow) and FPR95 (\downarrow) of prompt learning models and CLIPN averaged over 13 datasets.

	I	AUROC ↑			FPR95 \downarrow	
	MLS-M	MLS-E	MCM	MLS-M	MLS-E	MCM
CoOp	81.84	81.71	79.41	54.85	55.37	63.70
CoCoOp	82.74	82.74	79.28	51.67	51.90	63.76
IVLP	84.34	84.40	80.95	48.58	49.19	60.05
KgCoOp	83.12	83.23	79.82	51.52	51.90	62.20
ProGrad	82.35	81.93	79.91	54.02	55.34	62.89
MaPLe	83.94	83.99	80.54	48.36	48.76	60.68
PromptSRC	85.77	85.88	82.34	44.60	45.15	55.86
LoĈoOp	81.74	81.25	79.22	55.76	57.80	63.37
CLIPN	N/A	N/A	79.64	N/A	N/A	64.44

1967 A.3.7 IMAGENET PROTOCOL RESULTS

In addition to 13 datasets used in the main experiments, we also provide experimental results on ImageNet Protocol (Palechor et al., 2023) in Table 26. We follow the four-split setting used by Li et al. (2024).

Table 26: OOD AUROC ([†]) of 8 prompt learning models averaged over 4 ImageNet protocol datasets using the MaxLogit score, the Energy score, MLS-M, MLS-E, and MCM.

	MaxLogit	MLS-M	Energy	MLS-E	MCM
CoOp	96.46	96.74	96.43	96.72	91.11
CoCoOp	97.42	97.69	97.34	97.65	93.77
IVLP	97.19	97.60	97.03	97.50	94.35
KgCoOp	97.34	97.57	97.24	97.50	94.09
ProGrad	96.84	97.20	96.73	97.12	93.18
MaPLe	97.48	97.48	97.38	97.23	94.16
PromptSRC	97.57	97.73	97.49	97.66	94.61
LoCoOp	96.59	97.19	96.15	96.94	93.76

1984 1985 1986

1975 1976

1978

1981 1982

1954 1955

1957 1958 1959

1987 A.3.8 OTHER OOD SCORES

1988 We intentionally excluded OOD scores that require model retraining, architectural modifications, 1989 access to OOD samples, or those that are incompatible with fine-tuned prompt learning models. For 1990 examples, LogitNorm (Wei et al., 2022) requires training a model with its dedicated training loss to 1991 use the score, and relative Mahalanobis distance (RMD) (Ren et al., 2021) is intended to be used 1992 with a traditional classifier which has a classifier head. Even if RMD is applied to image features of 1993 the CLIP prompt learning models, all prompt learning models output the same RMD score as their image networks are not optimised during fine-tuning. Nonetheless, we provide experimental results of LogitNorm and RMD in Table 27, using 12 datasets excluding ImageNet with 16, 8, 4, and 2-shot settings. For LogitNorm, we trained the prompt learning models with LogitNorm loss substituting the original cross entropy loss. Following the original setting in (Wei et al., 2022), we used the 1997 temperature scale of 0.04 and calculated the maximum softmax probability score.

2001			MLS-M	MLS-E	MCM	LogitNorm	RMD		
2002		CoOp	80.77	80.61	78.24	77.55	57.58	-	
2003		CoCoOp	81.71	81.70	78.04	77.86	57.58		
2004		IVLP	83.48	83.52	79.89	79.56	57.58		
2005		KgCoOp	82.20	82.30	78.65	77.38	57.58		
2006		ProGrad	81.32	80.86	78.80	77.16	57.58		
2007		MaPLe	83.07	83.11	79.47	78.39	57.58		
2008		PromptSRC	84.97	85.08	81.33	80.28	57.58		
2009		LoCoOp	80.67	80.14	78.05	77.52	57.58		
2010								-	
2011									
2012		TIONAL DEMON							
2013	A.4 ADDI	TIONAL DEMON	STRATIONS)					
2014									
2015									
2016	0.45 ₁								
2017		MaxLogit: 0.2	270				•	ID	
2018		Context Scor	re: 0.205				•	Near OO	C
2019									
2020	0.40	MaxLogit: 0.2	270						
2021		Context Scor	e: 0.207						
2022		MaxLogit: 0.2	266						
2023		Context Scor	re: 0.207				•		
2024	0.35								
2025					1.1		•		
2026				1.24	20.454				
2027	0.20				1. r. 61.				
2028	0.50		. • . `			50			
2029									
2030	Bit		•						
2031	× 0.25				100				
2032	ă Maria			5 C	2683.72	25.2			
2033	0,		• • •						
2034			* • • •						
2035	0.20		•			• •			
2036									
2037									
2038			<u> </u>						_
2039	0.15	MaxLogit: 0.2	212				MaxLogi	t: 0.270	
2040		Context Scor	re: 0.213				Context	Score: 0.260	D
2040									-
2042		MaxLogit: 0.2	200				MaxLogr	t: 0.270 Sooro: 0.26'	,
2042	0.10	Marcontext Scol	6. 0.207				Context		
2043		MaxLogit: 0.1	198				MaxLogi	t: 0.266	
2044		Context Scor	re: 0.195				Context	Score: 0.260	D
2045		L							
2040	0.05	0.15		0.20	0	25	0,30		0.35
2041	0.10	0.15		Sc	ontext		0.50		5.55
2U40				c					

Table 27: Near OOD AUROC ([†]) of prompt learning models averaged over 12 datasets with Logit Norm and RMD scores.

Figure 8: Additional demonstrations of the relationship between MaxLogit score and Context Score using Caltech101 (16-shots) with different prompt learning models.

Figure 9: Additional demonstrations of the relationship between Energy score and Context Score using Caltech101 (16-shots) with different prompt learning models.

Figure 10: Additional demonstrations of the relationship between MaxLogit score and Context Score using ImageNet (16-shots) with different prompt learning models.

Figure 11: Additional demonstrations of the relationship between Energy score and Context Score using ImageNet (16-shots) with different prompt learning models.

Figure 12: Additional demonstrations of the relationship between MaxLogit score and Context Score using OxfordPets (16-shots) with different prompt learning models.

Figure 13: Additional demonstrations of the relationship between Energy score and Context Score using OxfordPets (16-shots) with different prompt learning models.

Figure 14: Additional demonstrations of the relationship between MaxLogit score and Context Score using StanfordCars (16-shots) with different prompt learning models.

Figure 15: Additional demonstrations of the relationship between Energy score and Context Score using StanfordCars (16-shots) with different prompt learning models.

Figure 16: Additional demonstrations of the relationship between MaxLogit score and Context Score using Flowers102 (16-shots) with different prompt learning models.

Figure 17: Additional demonstrations of the relationship between Energy score and Context Score using Flowers102 (16-shots) with different prompt learning models.

Figure 18: Additional demonstrations of the relationship between MaxLogit score and Context Score using Food101 (16-shots) with different prompt learning models.

Figure 19: Additional demonstrations of the relationship between Energy score and Context Score using Food101 (16-shots) with different prompt learning models.

Figure 20: Additional demonstrations of the relationship between MaxLogit score and Context Score using FGVCAircraft (16-shots) with different prompt learning models.

Figure 21: Additional demonstrations of the relationship between Energy score and Context Score using FGVCAircraft (16-shots) with different prompt learning models.

Figure 22: Additional demonstrations of the relationship between MaxLogit score and Context Score using SUN397 (16-shots) with different prompt learning models.

Figure 23: Additional demonstrations of the relationship between Energy score and Context Score using SUN397 (16-shots) with different prompt learning models.

Figure 24: Additional demonstrations of the relationship between MaxLogit score and Context Score using DTD (16-shots) with different prompt learning models.

Figure 25: Additional demonstrations of the relationship between Energy score and Context Score using DTD (16-shots) with different prompt learning models.

Figure 26: Additional demonstrations of the relationship between MaxLogit score and Context Score using EuroSAT (16-shots) with different prompt learning models.

Figure 27: Additional demonstrations of the relationship between Energy score and Context Score using EuroSAT (16-shots) with different prompt learning models.

Figure 28: Additional demonstrations of the relationship between MaxLogit score and Context Score using UCF101 (16-shots) with different prompt learning models.

0.20 0.25 S_{Context}

0.15

0.15

0.20

0.25

Scontext

0.15

0.1

0.3

0.2

Scontex

Figure 29: Additional demonstrations of the relationship between Energy score and Context Score using UCF101 (16-shots) with different prompt learning models.

2636

2637 2638 0.15

2614

2615 2616

2617

0.15

0.20 0.25 S_{Context}

0.30

Figure 30: Additional demonstrations of the relationship between MaxLogit score and Context Score using CIFAR10 (16-shots) with different prompt learning models.

Figure 31: Additional demonstrations of the relationship between Energy score and Context Score using CIFAR10 (16-shots) with different prompt learning models.

Figure 32: Additional demonstrations of the relationship between MaxLogit score and Context Score using CIFAR100 (16-shots) with different prompt learning models.

Figure 33: Additional demonstrations of the relationship between Energy score and Context Score using CIFAR100 (16-shots) with different prompt learning models.