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Abstract

Popular safe Bayesian optimization (BO) algorithms learn control policies for
safety-critical systems in unknown environments. However, most algorithms make
a smoothness assumption, which is encoded by a known bounded norm in a
reproducing kernel Hilbert space (RKHS). The RKHS is a potentially infinite-
dimensional space, and it remains unclear how to reliably obtain the RKHS norm
of an unknown function. In this work, we propose a safe BO algorithm capable
of estimating the RKHS norm from data. We provide statistical guarantees on
the RKHS norm estimation, integrate the estimated RKHS norm into existing
confidence intervals and show that we retain theoretical guarantees, and prove
safety of the resulting safe BO algorithm. We apply our algorithm to safely
optimize reinforcement learning policies on physics simulators and on a real
inverted pendulum, demonstrating improved performance, safety, and scalability
compared to the state-of-the-art.

1 INTRODUCTION

When learning policies for systems that act in the real world, such as mobile robots or autonomous
vehicles, two crucial requirements must be met: (i) the learning algorithms we use must be sample
efficient, as learning experiments are time-consuming and cause wear and tear to the hardware; and
(ii) we must guarantee safety during exploration, i.e., while testing new policies, for systems not to
damage themselves, their environment, or endanger people. Currently, one of the most popular tools
for policy learning is reinforcement learning (RL). Without the need for a dynamics model, RL learns
a policy through trial and error, i.e., by performing experiments and receiving a reward signal in
return that it tries to maximize. Unfortunately, RL struggles with both requirements. Hence, the most
impressive results of RL algorithms have been achieved in simulated or gaming environments [1].

An alternative to RL for policy learning is combining Bayesian optimization (BO) [2] with Gaussian
process (GP) regression [3]. When modeling the reward function with a GP, we can leverage this
model and pose the decision of where to explore next as an optimization problem. This way of
sequential decision-making drastically improves sample efficiency, as shown in numerous hardware
experiments [4, 5, 6]. Thus, combining GPs and BO meets the first requirement. For the second
requirement, safe BO algorithms guarantee safety during exploration with high probability; a well-
known example is SAFEOPT [7]. SAFEOPT, as well as other popular safe BO algorithms, assume
that the reward function lies in a reproducing kernel Hilbert space (RKHS). Moreover, guaranteeing
safety requires an additional smoothness assumption, which is encoded by knowing an upper bound
on the norm of the reward function in that RKHS. Even though the assumption elegantly paves the
way to guarantee safety with high probability, it is highly unrealistic since the RKHS is a potentially
infinite-dimensional space, and it is unclear how to guess that upper bound for unknown reward
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Figure 1: Toy example of safe BO and the influence of the RKHS norm. We aim to maximize the
reward function (blue) while only sampling above the safety threshold (red dashed line). The predicted
function (black line) is computed based on iteratively acquired samples (black dots, initial sample in
magenta), and the gray shaded area shows the confidence intervals. At each iteration, we compute
a set of parameters that we believe to be safe (cyan), potential expanders (purple), and potential
maximizers (orange), thus safely balancing exploration and exploitation. The upper sub-figures show
safe BO, where the true RKHS norm is used to compute the confidence intervals, while the lower
sub-figures are generated with an under-estimated RKHS norm. An under-estimation of the RKHS
norm can yield confidence intervals that do not contain the reward function, which may eventually
lead to unsafe experiments (red cross).

functions. If we incorrectly specify the RKHS norm, i.e., if the true RKHS norm is larger than the
bound we assume, safety guarantees may become obsolete, as we illustrate in Figure 1.

Contribution In response, we present a data-driven approach to compute an RKHS norm over-
estimation with statistical guarantees. We integrate this RKHS norm over-estimation into a safe BO
algorithm reminiscent of SAFEOPT, for which we prove safety with high probability. Moreover,
we extend our safe BO algorithm by introducing a notion of locality. By considering local RKHS
norms, which are potentially smaller than the global RKHS norm, we can explore more optimistically
and significantly improve scalability by separately discretizing local sub-domains. We compare our
algorithm with SAFEOPT in a synthetic example and challenging robotic simulation benchmarks,
where we demonstrate the benefits of over-estimating the RKHS norm from data instead of randomly
guessing it. Finally, we demonstrate the applicability of our algorithm to real-world systems in a
hardware experiment. '

2 PROBLEM SETTING AND PRELIMINARIES

We cast safe policy search as a constrained optimization problem, where the objective function
quantifies the performance. We consider parameterized policies. The parameters, which could be
controller parameters, serve as the decision variables of the optimization problem.

Problem setting We aim to maximize an unknown reward function f: A C R™ — R while
guaranteeing safety. We define safety as only sampling parameters a € A corresponding to reward
values larger than a pre-defined safety threshold h € R. Thus, we write the optimization problem as

max f(a) subjectto f(ar) > h, Vt > 1. (1
ac

We solve (1) by sequentially querying the reward function at each iteration ¢ € N. In return,
we receive measurements y; = f(a:) + €, where ¢ is independent and identically distributed
(i.i.d.) o-sub-Gaussian measurement noise. We denote the queried parametrizations until iteration ¢
by a1+ == [ai,...,a;]" and the corresponding measurements by y;.;. GP regression provides a

'See https://github.com/tokmakal/AISTATS_2025 for the code and https://safeexploration.
wordpress. com/ for videos of the experiments.
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natural tool to estimate f, as done in SAFEOPT [7] and other BO algorithms [8]. Given data a;.;
and y;.; at each iteration ¢, the posterior GP mean and variance are

pe(a) = ke(a) T (Ke + 0% 1) e, @)
op(a) = k(a,a) = ki(a) " (K; + 021) " ki (a), (3)
respectively [3], where k(a, a) is the kernel evaluated at a € A, k¢(a) = [k(a,ay),...,k(a,a;)] " €

RR* the covariance vector, K; € R**? the covariance matrix with entry k(a;, a;) at row ¢ and column j
forallé,j € {1,...,t}, and I; the ¢ x ¢ identity matrix.

Similar to SAFEOPT and other safe BO algorithms, we assume that the reward function lies in the
RKHS of kernel £, i.e., f € Hj. This assumption is, in general, non-restricting since many kernels
satisfy the universal approximation property [9], i.e., even if f & H}, there exists a f € Hy, such that
sup,ealf(a) — f(a)| < e for all € > 0. Given this assumption, we can obtain frequentist confidence
intervals ();(a) around the posterior mean y; that contain f with high probability, i.e.,

Qi(a) = pi(a) £ Broi(a), 4
By = B, 4+ \/ologdet(I, + K;/o) — 20 log(d),

with confidence parameter § € (0,1). We obtain (4) by combining Theorem 3.11 by [10] with
Remark 3.13 by [10] as detailed in Appendix A. In (4), By is an over-estimation of the ground truth
RKHS norm, i.e., By > || fllk = /Dooey Dorey @satk(xs, 24 ), where o are the coefficients and x
are the center points of the RKHS function f (see Appendix B for the derivation). Notably, an
under-estimation of the RKHS norm might lead to unsafe experiments (see Figure 1), while a too
conservative over-estimation might yield too cautious exploration and even premature stopping (see
Figure 8 in Appendix C). In this paper, we compute a data-dependent B; at each iteration ¢ that
over-estimates || f||x with high probability. The data-driven RKHS norm over-estimation is the chief
distinction between our approach and other safe BO algorithms like SAFEOPT that guess the RKHS
norm a priori.

Lipschitz constant Besides knowing an upper bound on the RKHS norm, safe BO algorithms like
SAFEOPT typically assume a known Lipschitz constant. We replace the Lipschitz constant with an
RKHS norm induced continuity using the kernel (semi)metric

di(a,a")? = k(a,a) + k(d',ad’) — k(a,d’) — k(d, a), ®)
which we derive in Lemma 1 in Appendix F.4.
Safe exploration Equivalent to SAFEOPT, we define the contained set Ci(a) = Ci_1(a) N
Q+(a), Co = R, lower bound ¢ (a) = min Cy(a), and upper bound u;(a) := max C;(a) to quantify

probabilistically whether a policy parameter a is safe. At each iteration ¢, we restrict function
evaluations to a safe set S; C A that only contains parameters a that are safe with high probability:

Sy = Uaes, ,{1a’ € Alti(a) — Bydy(a,a’) > h}. ©)

To start exploration, we assume that a set of initial safe samples () # Sy C A is given. Moreover, we
define

M; == {a € St|us(a) > max li(a")}, ™

Gt = {a € S¢|gs(a) > 0}, gi(a) = card(a’ € A\ S¢|us(a) — Bydp(a,a’) > h),  (8)

as the set of potential safe maximizers and potential safe expanders, respectively. At each iteration ¢,
the next parameter a1 is given by the most uncertain parameter within M; U Gy, i.e.,

ar41 = argmax froy(a), )
a€M UG,

which results in safely balancing exploration and exploitation to solve (1).

3 SAFE BO WITH RKHS NORM OVER-ESTIMATION

Algorithm 1 summarizes the proposed safe BO algorithm with the RKHS norm over-estimation.
In each iteration, we determine the next sample with which we conduct a new experiment. The



sample acquisition is described in Algorithm 2. First, we define the GP model given the current
set of samples. Then, we compute an over-estimation of the RKHS norm by querying Algorithm 3,
which we extensively explain in Section 3.1. Moreover, we compute the confidence intervals, the
set of safe samples S, the set of potential maximizers M;, and the set of potential expanders G,.
Finally, we return the most uncertain parameter within M; U G; and its corresponding uncertainty.
The acquisition function is reminiscent of SAFEOPT with the crux difference lying in the RKHS
norm B; (1. 2), where SAFEOPT guesses the RKHS norm a priori and maintains that guess. Hence,
we naturally recover SAFEOPT by replacing the query of Algorithm 3 with an oracle.

Algorithm 1 Proposed safe BO algorithm with RKHS norm over-estimation.
Require: %, A, Sy, 0, K,y m, o
1: Init: aq,y; samples corresponding to Sy, By = o0
2: fort=1,2,...do
a1 < Algorithm 2(k, A, S;_1,0, k,v,m, 0,t)
4: Yer1 < flagr1) + €41 > Conduct experiment
5: return Best safely evaluable parameter a € A

w

Algorithm 2 Sample acquisition.
Require: %k, A, S;_1,0,K,7,t, Bi_1,t,0

1: Compute 1; and o7 given aj.;, Y14 > (2), (3)

2: By < Algorithm 3(vy, k,m, A, k, By_1, a1.4, Y1.1, k)

3: Compute sets Q¢(a), Ct(a), and bounds u¢(a), £y (a) from samples ay.¢, y1.¢, and By > (4)

4: if t > 1 then compute S; (6) else S; < S > (6)

5: Compute w; = B0y and M, Gy > (7), (8)
: return arg max max

6: retu je%ItuaG,,Wt(a% aeszUatwt(a) >(9)

In the remainder of this section, we present the RKHS norm over-estimation to compute B; (Sec-
tion 3.1), provide theoretical guarantees for B; > || f||x, integrate the estimated RKHS norm into
existing confidence intervals and prove safety of Algorithm 1 (Section 3.2), and extend Algorithm 1
by introducing a notion of locality (Section 3.3).

3.1 RKHS norm over-estimation

The RKHS norm over-estimation used in Algorithm 2 is based on two pillars: (i) a recurrent neural
network (RNN) [11] that predicts the RKHS norm for each iteration, and (ii) random RKHS functions
that simulate the potential behavior of the unknown reward function f.

RNN We use an RNN to estimate the RKHS norm || f || based on the current samples a1.; and y.¢.
Specifically, for each iteration, we compute the RKHS norm of the GP mean function |||, and
the reciprocal integral of the posterior variance o7, which quantifies sampling density, and store
them as sequences. As the sampling density increases, the GP mean p; and its RKHS norm || g ||
approximate the reward function f and its RKHS norm || f || more closely. While the two sequences
serve as the input to the RNN, we also require labels to train it. To this end, we optimize artificial
RKHS functions g € Hj, whose known RKHS norms ||g||; serve as the labels for training the
RNN, using our proposed safe BO algorithm. We provide more details on the RNN in Appendix D,
including its architecture, the generation of training data, its performance, and its role while executing
the algorithm. We want to highlight that the RNN merely provides a heuristic lower bound on
the estimated RKHS norm and solely acts as an additional layer of conservatism (see (12) in
Appendix F.1); the hereafter introduced guarantees are independent from the estimation of the RNN.
The RNN could be replaced by different function approximators; we choose an RNN to exploit the
sequential nature of the inputs.

Random RKHS functions The second pillar is the computation of random RKHS functions
with which we obtain theoretical guarantees on the RKHS norm over-estimation. In essence, the
random RKHS functions p; € Hy, j € {1,...,m} capture the behavior of the unknown reward
function f, as shown in Figure 2. Ideally, we would create random RKHS functions that capture
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Figure 2: Random RKHS functions. The random RKHS functions approach the unknown reward
function with more samples. We generated the plots with the Matérn32 kernel with ¢ = 0.1. The
remaining hyperparameters were N = 500, @ = 1, and 0 = 1072, The reward function f has
1000 random center points and coefficients, which we scale to yield || f||x = 5. We sampled the
parameters ay.; C A from a uniform distribution.

the entire RKHS; however, this would require computing infinite sums. Hence, in implementation,
we follow a pre-RKHS approach as described in Appendix C.1 by [12] to create random RKHS

functions p; = Zi\[:l agk(-,z5), N > t. We require the random RKHS functions to interpolate
the given samples y;.; subject to o-sub-Gaussian noise. Thus, the interpolating property determines
the first g, coefficients. Moreover, we assume that the first center points x1.; are equal to the
parameters a.;. The remaining o, .5, %, .5 are i.i.d. samples from uniform distributions with
x € Aand a € [—@&, @), introducing the required stochasticity. Subsequently, the random RKHS
functions exhibit vastly different behavior for fewer samples and approach f for more samples (see
Figure 2), which will yield tighter RKHS norm over-estimations for an increasing sample density.

Algorithm 3 RKHS norm over-estimation
Require: v, x, m, A, k, B;_1, a1.t, Y1.t, k
1: By + RKHS norm estimation given a;.¢, y1.¢, k, A with RNN
2: Construct m random RKHS functions Hy, 3 p; ;: A — R, with ||p; ;||x given ai.¢, Y14
3: Sort functions by ascending RKHS norm {p; ; }
4: if By < ||pt,m||x then
T ¢ MaX,c(1,..m-1}7 subjectto
Sico (DY (A =""" <k A By < || pt,m—rll
By < |lptm—r|lk
5. if Bt < Bt—l then Bt — Bt—l
6: return By

Algorithm The RKHS norm over-estimation is summarized in Algorithm 3. First, we receive the
RKHS norm estimation from the RNN given the current set of samples. Second, we construct m
i.i.d. random RKHS functions with known RKHS norms. Based on the return of the RNN and the
RKHS norms of the random RKHS functions, we return By, which over-estimates || f||x with high
probability. The explicit form of B; becomes clear in Theorem 1.

Remark 1. Our design choices decrease the space that is covered by the random RKHS functions.
Nevertheless, the random RKHS functions in Figure 2 display a high degree of randomness, although
they lie in a sub-space of the pre-RKHS from which f is generated. This supports the design choices.
An alternative to the pre-RKHS approach is to work with orthonormal bases of RKHSs provided in
Theorem 4.38 by [13] for the squared-exponential kernel and by [14] for other translation-invariant
kernels.

Remark 2. Although we integrate the RKHS norm over-estimation into SAFEOPT, it applies equally
to any extension such as by [15, 16, 17]. Besides, the relevance of the RKHS norm goes beyond BO.
It appears in, e.g., statistics [18] or kernel-based function approximation [19].



3.2 Theoretical analysis

In the following, we present theoretical guarantees for the RKHS norm over-estimation and Algo-
rithm 1. First, we make an assumption on the inputs, the noise, and the kernel, akin to [20].

Assumption 1. The kernel k: R x R — R>q is symmetric, positive definite, and continuous.
Moreover, the action sequence {a;}5° is an R™-valued discrete time stochastic process and a; is
Fi_1-measurable ¥t > 1. The noise {€;}{2, is a real-valued stochastic process and for some o > 0
and all t > 1, € is () Fi-measurable and (ii) o-sub-Gaussian conditionally on F;_1.

Next, we connect the RKHS norms of the random RKHS functions and the reward function.

Assumption 2. For any iteration t > 1, given ay.t,y1.+, the RKHS norms of the random RKHS
functions ||p ;||x,j € {1,...,m}, and the RKHS norm of the reward function || f || are i.i.d. samples
from the same—potentially unknown—probability space.

We discuss Assumption 2 in Section 6 and in Appendix E. The following theorem is our main
theoretical contribution and proves B; > || f||x with high probability. Specifically, it shows that B; >
I /|l is probably approximately correct (PAC) [21].

Theorem 1 (RKHS norm over-estimation). Given Assumptions 1 and 2, for any iteration t >
L v,k € (0,1), and m € N such that (1 — )™ Y(1 + v(m — 1)) < &, consider B; returned by
Algorithm 3. With confidence at least 1 — k, we have By > || f || with probability at least 1 — ~.

Proof. (Idea) We formulate the RKHS norm over-estimation as a chance-constrained optimization
problem, which we solve using a sampling-and-discarding scenario approach. We obtain PAC bounds
by leveraging Theorem 2.1 by [22]. We provide a detailed proof in Appendix F.1. O

The following corollary lifts Theorem 1 to hold jointly for all iterations £ > 1.

Corollary 1 (Lifting Theorem 1 to all iterations). Under the assumptions of Theorem 1, receive By
from Algorithm 3 at all iterations t. Then, with confidence at least 1 — k, B; over-estimates the
ground truth RKHS norm || f || jointly for all iterations t > 1 with probability at least 1 — .

Proof. (Idea) First, we show that the discrete-time stochastic process {B; }7_,,T € N, containing the
PAC RKHS norms is a supermartingale. Then, we use a standard stopping time criterion construction
as in Theorem 1 by [23]. We provide a detailed proof in Appendix F.2. O

Next, we integrate the RKHS norm over-estimation into existing confidence intervals that contain the
reward function f with high probability.

Theorem 2 (Confidence intervals). Under the same assumptions as those of Corollary 1, let By
be returned by Algorithm 3 ¥t > 1 with k,y € (0,1). Moreover, define Qi(a) as in (4) with
any § € (0,1) and Cy == Cy_1NQ; with Cy = R. Then, with confidence at least 1 — k, f(a) € Ci(a)
holds jointly for all a € A and for all t > 1 with probability at least (1 — v)(1 — 6).

Proof. (Idea) We use classic confidence intervals by [10]. Then, we combine this result with the
PAC RKHS norm over-estimation from Corollary 1 by constructing a product probability space. We
provide a detailed proof in Appendix F.3. O

Finally, we prove safety of the proposed safe BO algorithm with RKHS norm over-estimation.

Theorem 3 (Safety). Under the same assumptions as those of Theorem 2, initialize Algorithm 1
with a safe set So # 0 : f(a) > h Va € Sy. Then, with confidence at least 1 — k, f(a;) > h jointly
Yt > 1 with probability at least (1 — v)(1 — &) when running Algorithm 1.

Proof. (Idea) The proof is similar to the proof of Theorem 1 by [7]. However, we replace the
Lipschitz continuity therein with an RKHS norm induced continuity from Proposition 3.1 by [24]
using the (semi)metric (5). Then, we combine the confidence intervals from Theorem 2 with the
definition of the safe set to prove that all @ € S are safe with high probability. We provide a detailed
proof in Appendix F.4. O
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Figure 3: Exemplary structure of the local cubes at iteration t = 2. Each sample a1, as is the center
of N = 3 local cubes of edge lengths A, 2A, and 3A, respectively. The global domain ¢ is depicted
in black while the local cubes cq, ..., cg are illustrated in blue.

3.3 Locality

Thus far, we proposed a safe BO algorithm with theoretical guarantees. At its heart lies the data-
driven computation of the RKHS norm, which is required to, e.g., compute the safe set (6). The
definition of the safe set implies that the algorithm explores in a neighborhood of already collected
samples. Thus, we may not achieve the high sampling density on the entire parameter space that we
would, following Figure 2, desire for a tight RKHS norm over-estimation. However, as we restrict
exploration to the safe subset S; of the parameter space A, estimating the RKHS norm on A \ S;
is superfluous. Actually, it is precisely in unsafe areas where we expect non-smooth behavior and,
hence, large RKHS norms.? Thus, considering even the true global RKHS norm may yield overly
conservative exploration, as also reported by [25]. Therefore, we use local RKHS norms—inspired
by local Lipschitz methods [26]—to execute safe BO on sub-domains while inheriting the theoretical
guarantees derived for Algorithm 1.

Algorithm 4 summarizes the proposed localized safe BO algorithm with the data-driven RKHS norm
over-estimation. We adopt an adaptive notion of locality by forming uniform local cubes around each
sample a € ay.;. Specifically, we define N local cubes of width (1,...,N) - A around each sample
with hyperparameter A > 0. Besides the local cubes, we preserve the global domain A and naturally
recover Algorithm 1 by setting N = 0. We introduce the notation C; := {0, ...,t- N} as the set of
integers labeling the local cubes and the global domain and use the integer ¢ € C; to refer to each
object. Figure 3 illustrates the structure of the local cubes. At each iteration ¢ and local cube ¢ € C;,
we compute the local RKHS norm and determine a candidate parameter with (9). We choose the
parameter for the next experiment as the most uncertain candidate parameter among all cubes.

Algorithm 4 Localized safe BO algorithm with PAC RKHS norm over-estimation

Require: %, A, Sy, 9, k,ym, o, A, N
1: Init: aq,y; samples corresponding to Sy, By = oo
2: fort=1,2,...do
3: Compute C; given t and N

4 for c € C; do > Iterate through sub-domains
5 Determine A. C A, a1.1,c C A¢, and y1.c C y1.¢ given c and A

6: At+1,¢, Wi,e(@iy1,c) < Algorithm 2

7 Gy S argmax,, ., . cec, wt,c(at+1,c)

8 Y1 < flass1) + €441 > Conduct experiments
9: return Best safely evaluable parameter

Besides exploration benefits, the localized approach significantly improves the scalability of dis-
cretized BO algorithms like SAFEOPT. These discretized BO algorithms suffer from the curse of
dimensionality since either the computational and memory complexities grow exponentially or we

?Let the reward be the distance to an equilibrium and consider the system ;11 = axy. The system is stable
at the equilibrium for, e.g., @ = 0.9999 but moves away exponentially from the equilibrium for, e.g., a = 1.0001.
Therefore, a small change in parameter a causes a significant change in the reward and thus a large local RKHS
norm.



must accept a coarser discretization; the latter implying exponentially growing distances between
the samples, in the worst case causing an empty safe set. The localized approach sequentially loops
through each local cube when acquiring the next sample. This enables separate discretization in each
local cube, which increases the discretization density and, therefore, simplifies exploration.

The following corollary formally states the inherited theoretical guarantees of Algorithm 4.

Corollary 2 (Localized safe BO). Choose any N € N, any A > 0, consider any t > 1, and
any ¢ € Cy. Define fo: Ac C A — R, fo(a) = f(a) for all a € A, and assume that f. € Hy,
i.e., ||fells < 0o. Moreover, let all assumptions of Theorems 1-3 and Corollary 1 hold for f.. Then,
the results from Theorems 1-3 and Corollary 1 directly apply for the local reward functions f. and
Algorithm 4.

Proof. Instead of deriving the mathematical statements only for the function f on the global do-
main A, they are derived for f. on A, for all ¢ € C; at any iteration ¢ > 1. Since Algorithm 4 only
samples from the corresponding safe sets, safety directly follows from Theorem 3. [

4 RELATED WORK

Next, we relate our safe BO algorithm with RKHS norm over-estimation to the state-of-the-art.

SAFEOPT [7] and its extensions [27, 16] require an upper bound on the RKHS norm of the unknown
reward function to prove safety with high probability. The impracticability of this assumption has
been addressed by [25] by proposing an algorithm similar to SAFEOPT, which instead relies on a
priori upper bounds on (i) the noise and (ii) the Lipschitz constant of the unknown reward function;
both of which are unknown and estimating the Lipschitz constant is similarly nontrivial as estimating
RKHS norms. [28] investigate BO with unknown hyperparameters by decreasing the length scale
and increasing the RKHS norm to construct an iteratively richer RKHS that will eventually contain
the ground truth. However, they do not provide safety nor guarantee when the RKHS contains the
function.

Only a few works tackle the RKHS norm estimation. [29] and [30] observe that the RKHS norm
of the approximating function under-estimates the RKHS norm of the ground truth. Nevertheless,
for safety guarantees, we require an over-estimation. Based on these works, [31] propose a simple
RKHS norm extrapolation, which empirically results in an upper bound, however, without statistical
guarantees and in a noise-free setting with equidistant samples. Moreover, [32] empirically estimates
a computable error bound by using the RKHS norm of the GP mean, similar to the idea presented in
Equation (10) by [33]. Both works do not provide any guarantees.

The only other work we are aware of that develops a safe BO algorithm capable of estimating the
RKHS norm with theoretical guarantees is [34]. In contrast, we prove safety guarantees for the
resulting safe BO algorithm (Theorem 3) instead of only providing statistical guarantees for the
RKHS norm over-estimation. Moreover, we obtain a tighter RKHS norm over-estimation by using
a sampling-and-discarding scenario approach instead of Hoeffding’s inequality. We compare the
tightness in Appendix G. Further, our algorithm is significantly more scalable by using an adaptive
notion of locality, allowing for separate discretization in each sub-domain. We elaborate on the
improved scalability through adaptive locality in Appendix H. Finally, we work under less restricting
and more interpretable assumptions as discussed in Appendix E.

S EXPERIMENTS

In this section, we first numerically investigate the scenario approach. Then, we evaluate Algorithm 4
and compare it with SAFEOPT. Specifically, we illustrate the impact of estimating the RKHS
norm instead of randomly guessing it in a one-dimensional toy experiment before comparing both
algorithms on challenging RL benchmarks. Finally, we demonstrate the practicability of our algorithm
by optimizing a controller for a real Furuta pendulum [35]. All experiments were conducted with
hyperparameters ¢ = 1072,§ = 1072,y = 1074,k = 1072,@ = 1, m = 1000, and N, =
max{500width(A.), ¢+ 10}. Moreover, we shift and normalize the domains to yield A = [0, 1]"
and use the Matérn32 kernel with £ = 0.1 unless stated otherwise.
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Figure 4: Numerical investigation of the RKHS norm over-estimation. For an increasing sample size,
we receive tighter bounds.

Our algorithm SAFEOPT: B; = 25 SAFEOPT: B; = 1

Figure 5: Toy example to compare Algorithm 4 with SAFEOPT. Algorithm 4 (left) explores the
domain and stays safe, while SAFEOPT is either too conservative (center) or samples unsafely (right).

Scenario approach To test Corollary 1, we create 200 RKHS functions with RKHS norms sampled
uniformly from [1, 10]. We sample the number of center points for each RKHS function uniformly
from [100, 1000], and scale the corresponding coefficients « to satisfy the pre-determined || f||. At
each iteration, we compute the over-estimations B; using Algorithm 3 for each RKHS function f
and append a new parameter sampled uniformly from .A. We present the numerical investigation in
Figure 4. As already discussed in Section 3.1, we see that the RKHS norm over-estimation gets tighter
for an increasing sample set, supporting the sensibility of the proposed RKHS norm over-estimation.
Crucially, in only two out of 200 cases did Algorithm 3 under-estimate the RKHS norm. As we
chose v = 107! and x = 1072, this is well within the guaranteed range specified in Corollary 1.
Moreover, we investigate the required computation time for the scenario approach in Appendix I and
conduct an ablation study in Appendix J.

Numerical experiments To illustrate the benefits of our algorithm compared to SAFEOPT, we
let both maximize a synthetic function f € H}, generated with 1000 random center points = and
coefficients « scaled to yield || f||x = 5, which we present in Figure 5. For SAFEOPT, we perform
two runs, one with an over-estimation (B; = 25, center) and one with an under-estimation (B; = 1,
right) of the RKHS norm. The former yields conservative exploration (crucially, it does not find
the optimum within the given number of iterations), while the latter incurs failures (red crosses). In
contrast, our algorithm (left) stays safe and finds the optimum. For Algorithm 4, we used N = 5
and A = 0.1. We provide ablation studies with different kernels and different locality parameters in
Appendices K and L, respectively.

RL benchmarks Next, we evaluate our algorithm and compare it to SAFEOPT in challenging
simulation benchmarks. In particular, we consider a sim-to-real setting, where no safety guarantees
are required during simulation. Thus, we train policies in simulation using the soft actor-critic (SAC)
algorithm [36, 37]. Those RL policies map from the states to the actions in R" for the cart pole
(n = 1), mountain car (n = 1), swimmer (n = 2), lunar lander (n = 2), half cheetah (n = 6), and
ant (n = 8) environments [38, 39]. Then, to imitate real-world experiments, we manipulate the
environments by, e.g., adding a wind disturbance for the lunar lander; see Appendix M for details.
Thus, the policies learned with SAC still provide a safe starting point but are not optimal anymore.
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Figure 6: RL benchmarks. We optimize SAC policies by learning an additive bias in a sim-to-real
inspired setting. Algorithm 4 exhibits better scalability, safety, and performance than SAFEOPT.
We plot the maximum scaled reward encountered over iterations and mark violations of h = 0 with
Crosses.
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Figure 7: Explored domain and rewards for the hardware experiment. Algorithm 4 safely optimizes
the controller for a Furuta pendulum.

As we now must guarantee safety, we optimize these initial policies by learning an additive bias
term b € R™ using Algorithm 4 and SAFEOPT. Figure 6 shows the rewards over iterations for the
different environments. Algorithm 4 stays safe and learns a bias that improves the reward for all
environments. For SAFEOPT, a small RKHS norm leads to frequent safety violations (black crosses),
which, e.g., correspond to the lunar lander crashing, whereas a large RKHS norm mostly yields
conservative exploration or premature stopping. Importantly, even SAFEOPT with a small RKHS
norm fails to explore noticeably in the half cheetah and ant environments, which is due to the coarse
discretization in high dimensions, whereas our method improves scalability by exploiting locality
and successfully improves the reward.

Hardware experiment Lastly, we demonstrate the applicability of Algorithm 4 to real-world
systems by optimizing the balancing controller of a Furuta pendulum [35]; see Appendix N for a
visualization of the setup. We consider a similar experimental setup as [40], where the reward function
corresponds to the control performance, and we tune the first two entries of a state-feedback controller.
We execute Algorithm 4 with £ = 0.2, N = 3, A = 0.15 and we have Sy = [0.239,0.424] ". After
30 iterations, we explored the domain to significantly improve the controller performance while only
conducting safe experiments, as shown in the video and in Figure 7. This demonstrates that our
algorithm is applicable to safety-critical real-world systems.
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6 LIMITATIONS

In this section, we discuss the limitations of our contributions, specifically Assumption 2. Assump-
tion 2 essentially states that f and p; ; are i.i.d. samples from the same—potentially unknown—
probability space. However, in the frequentist setting, f is a fixed sample generated by nature’s
probability space. Hence, even if we would be able to sample from the entire RKHS Hy, (see
Remark 1), in practice, we never have access to nature’s probability space and, thus, Assumption 2
implies a sampling oracle. Hence, by generating random RKHS functions, we approximate that
probability space and impose a prior on f. Therefore, we essentially are in the Bayesian setting.
However, mixing both frequentist and Bayesian methods is fairly common [41, 42]. Moreover,
assuming an a priori tight upper bound on || f|| [7] or assuming that the expected value of the RKHS
norms of the random RKHS functions over-estimates || f || [34] restricts nature’s function space and
also imposes prior knowledge on f. Also, we explain the mathematical meaning of Assumption 2 in
Appendix E and contrast it further to the assumptions made by [7] and [34]. In conclusion, we remove
the a priori guess on the RKHS norm by introducing Assumption 2, enabling us to incorporate data
into the RKHS norm bound. Hence, we can cover a rich set of functions and adjust the bounds as
we gather more data (see Figures 2 and 4), yielding reliable bounds in practice with random RKHS
functions from sup- or sub-RKHSs of the RKHS of the ground truth.

7 CONCLUSIONS

We presented a novel safe BO algorithm that learns an over-estimation of the RKHS norm from data,
including statistical guarantees. With that, it lifts the assumption of popular safe BO algorithms of
knowing a tight upper bound on the RKHS norm a priori. We further proved safety of the developed
safe BO algorithm with RKHS norm over-estimation. The proposed algorithm was extended with
an adaptive notion of locality and, thus, improved exploration and scalability. We demonstrated the
benefits of our algorithm compared to SAFEOPT in simulation and showed that it can successfully
handle real-world experiments. Although we integrated the RKHS norm over-estimation and the
locality into SAFEOPT, both can equally be integrated into any modification or extension thereof.
More importantly, we expect applications of the RKHS norm over-estimation to go beyond safe BO
and open avenues for more realistic guarantees in general kernel-based methods or for estimating
e.g., Lipschitz constants with theoretical guarantees. Future work includes proving optimality of
Algorithm 4, investigating regret bounds, and disentangling the constraints from the reward function.
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A DERIVATION OF THE CONFIDENCE INTERVALS (4)

In this section, we derive the confidence intervals that were initially presented in the dissertation by
[10]. These data-dependent bounds have gained increasing interest, see e.g., [12] or [25].

Writing Theorem 3.11 and Remark 3.13 by [10] using our notation yields
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B DERIVATION OF THE RKHS NORM FORMULA

In this section, we derive the general formula of the RKHS norm, i.e.,

I1FI1% = Zzai%k(xs,%)-

s=1t=1
Let f € Hy. Then, we can write

f= k(- z)
t=1
In Hilbert spaces, the norm is given by the square root of the inner product of the function. Hence,

Hf”i = <f7 f>k7

where (-, -);, denotes the inner product of two functions in the RKHS of kernel k. Therefore, we have
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where the last equality follows from the reproducing property of reproducing kernel Hilbert spaces.
The “center” points are the x4 (or x;) points in this sum.

C ADDITIONAL FIGURE FOR THE INTRODUCTORY EXAMPLE

Figure 8 shows the effect of conducting safe BO with a too conservative upper bound on the RKHS
norm.

20
=
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Figure 8: Safe BO corresponding to Figure 1. In this case, the guessed RKHS norm is five times
the true RKHS norm, i.e., the RKHS norm is conservatively over-estimated. The safe BO algorithm
cannot sample any parameter since none is safe with high probability. Hence, a conservative over-
estimation of the RKHS norm is undesirable.

D ESTIMATING RKHS NORMS WITH RNNS

We use a custom RNN to process data from two distinct input sequences: (i) from the RKHS norm
of the GP mean yi;; (ii) from the reciprocal integral of the GP posterior variance 2. From these
two sequences, the RNN extrapolates the unknown RKHS norm of the reward function || f||. For
generating the training data and training the RNN, we used a cluster with 60 GB RAM and 20 cores.

Architecture This model leverages two long-short-term memory RNN [11] branches with twenty
hidden layers, respectively. Moreover, each RNN branch contains two sigmoid and hyperbolic tangent
activation functions, respectively. We use this custom RNN setup to capture temporal dependencies
within each input stream independently before merging their representations to produce unified
predictions; see Figure 9 for a schematic diagramm of the RNN.

GP mean — > LSTM 1

RKHS norm
estimate

Concatenate ————>»| ReLU ——— >

GP variance — > LSTM 2

Figure 9: Schematic diagram of the used RNN.

Training data Before training the RNN to estimate unknown RKHS norms || f||x, we require
training data. We generate training data by optimizing 10% artificial RKHS functions g € Hj,
using Algorithm 4. To generate g and by executing Algorithm 4, we use the Matérn32 kernel
with lengthscale £ = 0.1. We run Algorithm 4 with § = 1072, k = 1072, v = 1071, A =
1071, and N = 3 for 50 iterations. To generate g, we first sample the number of center points
uniformly from [600, 1000] and sample the center points z uniformly from A = [0, 1]. Then, we
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sample ||g|/x € [0.5,30] from a uniform distribution and scale the random coefficients « to satisfy
the pre-determined ||g||x. When executing Algorithm 4, we generate training data from each local
object ¢ € C,. Hence, we require the corresponding RKHS norm ||g. || as the label, which is not
directly inferred from the center points = and coefficients « of the function g. Thus, we densely
discretize the function g. for any ¢ € C} and any iteration ¢, and compute a heuristic RKHS
norm ||g.||x using kernel interpolation; see e.g., [19] for the computation of the RKHS norm of the
interpolating function.

Performance The 103 functions g yield 280 x 102 training samples for the RNN. We train the
RNN with 100 epochs, a learning rate of 10~2, and the ADAM optimizer, which took around 10 min.
We additionally preserved 20% of validation data. The root mean squared error on the validation data
was approximately 5 x 1073,

Role of the RNN As mentioned in Section 3.1, the RNN merely provides an additional layer of
conservatism on the RKHS norm over-estimation and does not influence the provided theoretical
guarantees. However, it assists in accelerating Algorithm 4. In Algorithm 4, we first loop through all
local cubes C, and determine the most uncertain interesting parameter within each cube. Then, we
conduct an experiment with the most uncertain interesting parameter among all local cubes. Note that
we only require PAC bounds, i.e., guarantees on the RKHS norm over-estimation when conducting the
experiment and not while looping through each local cube. Therefore, to accelerate Algorithm 4, we
loop through the local cubes and determine the uncertainties using only the RKHS norm estimation of
the RNN since we do not conduct a safety-critical experiment yet. Then, when having determined the
most uncertain interesting parameter, we compute the PAC RKHS norm over-estimation and check
whether the parameter remains safe with high probability before conducting the experiment.

E FURTHER ELABORATION ON ASSUMPTION 2

Assumption 2 holds if the ground truth f and the random RKHS functions p, ; are i.i.d. samples from
the same—potentially unknown—probability space. In the following, we demystify the assumption
and contrast it to the assumption made in SAFEOPT, which is to assume that an upper bound on the
RKHS norm is available a priori.

In concrete terms, our assumption restricts the complexity of the ground truth by requiring

N
f= Z apk(zp, ).
p=1

Since we compute random RKHS functions of the form

N
pri = ask(rs,), t>1j€{l,...,m},
s=1

Assumption 2 holds if p; ; and f are i.i.d. samples from the same—potentially unknown—probability
space. We construct the random RKHS functions by deterministically fixing the first ¢ < N
coefficients «y;,; and center points z;.; by the interpolation property subject to o-sub-Gaussian
measurement noise. The remaining coefficients and center points are i.i.d. samples from some
probability space (2, F, v). Therefore, Assumption 2 holds if

N . . .
from interpolation property  if p € [1,]
= k . “ 10
/ ;ap (@p)s ap {i.i.d. samples from (Q, F,v) ifp € [t+ 1, N]. (10)

In our experiments, we sample o, € [—&,a] = [-1,1] and z;, € A = [0,1] from uniform
distributions, allowing for a worst-case RKHS norm of up to 500. In comparison, SAFEOPTrequires

f= Zapk(xpv s Hf”k = Zzapask(xpaxs) S B, (11)
p=1 p=1s=1
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where B is the a priori upper bound on the RKHS norm of the ground truth f.

Essentially, both assumptions, i.e., (10) and (11), restrict the complexity of the ground truth by
assuming sufficiently regular behavior. Regularity assumptions are necessary as considering arbitrarily
complex functions would not lead to any practical bounds. In practice, we need to approximate the
probability space (€2, F,v). Consequently, SAFEOPT needs to approximate the probability space
as well; the set of possible outcomes are the functions from that RKHS subject to the RKHS norm
condition || f||x < B. The probability distribution in this setting is nature’s probability distribution,
which is the classic frequentist setting. In contrast to SAFEOPT, our assumption captures larger
RKHS norms and systematically incorporates data instead of having a static a priori restriction on the
functions.

We mention throughout the paper how, why, and when SAFEOPT’s assumption breaks; more im-
portantly, when this a priori restriction of possible functions for the ground truth f leads to safety
violations. To make our assumption work in practice, we choose N and @ in (10) large enough to
cover a broad range of functions. Heuristically, it is sensible to restrict ourselves to a pre-RKHS
setting (i.e., N < o0) since the bounded norm property of || f||x < oo “implies that the coefficients «,
decay sufficiently fast as p increases” [15].

Contrasting Assumption 2 to Assumption 1 by [34] Assumption 2 essentially states that the
random RKHS functions and the reward function are i.i.d. samples from the same—potentially
unknown—probability space. In comparison, Assumption 1 in [34] requires that the RKHS norms of
the random RKHS functions over-estimate the RKHS norm of the reward function in expectation.
Hence, the connection between the random RKHS functions and the ground truth does not directly
become obvious since it is unclear under which conditions on the ground truth and the random RKHS
functions this assumption holds. In contrast, our assumption imposes a direct connection between the
random RKHS functions and the ground truth.

F PROOFS

In this section, we provide the proofs of our theoretical contributions, which we presented in
Section 3.2. For the reader’s convenience, we will restate the mathematical claims before providing
their proofs within each subsection.

F.1 Proof of Theorem 1

Theorem 1 (RKHS norm over-estimation). Given Assumptions 1 and 2, for any iteration t >
1, v,k € (0,1), and m € N such that (1 —v)™ (1 + v(m — 1)) < k, consider By returned by
Algorithm 3. With confidence at least 1 — k, we have By > || f||r with probability at least 1 — .

We prove the theorem by following a (sampling-and-discarding) scenario approach [22, 43].

Consider any iteration ¢ > 1 and write the RKHS norm over-estimation as a constrained optimization
problem

min B}
BieR>p,
subjectto By > ||flx- (12)

In this notation, B} corresponds to the optimization variable and B; to the value returned by the RNN.
We could similarly consider the optimization domain R>,. However, by lower-bounding B; with
the initial estimate obtained from the RNN, we introduce some conservatism. Clearly, Problem (12)
is not solvable since || f|| is unknown. Hence, we formulate the optimization problem using the
scenario approach [43] with m i.i.d. random RKHS functions p; ;:

min B;
Bt eRZB,
subjectto  Bf > ||prjlle Vi€ {l,...,m}. (13)

We can use a scenario approach (13) to tackle Problem (12) since the RKHS norms are i.i.d. random
variables from the same probability space [43]. Specifically, by solving (13), we obtain a solution

19



that satisfies all m constraints, which, in return, yields a PAC solution for Problem (12). However,
some of the random RKHS functions could be outliers with unreasonably high RKHS norms. To
trade feasibility (constraint satisfaction with respect to all random RKHS functions) for performance
(a smaller RKHS norm over-estimation), we follow a sampling-and-discarding scenario approach
[22]. To this end, we formulate the following scalar optimization problem:

min Bf
B:GRZBt
subjectto By > ||pille Vie{l,...,m—r} (14)

Bi <llpejlle Vi€{m—r+1,....m},
i.e., the optimal solution violates r constraints corresponding to the r largest random RKHS norms.

We continue to map our problem to a sampling-and-discarding scenario approach, specifically to
Theorem 2.1 by [22]. Consider the probability space (R>o, B(R>),P). The probability space
with m scenarios can be written as (RZ,, B(RZ,),P™), i.e., a classic product probability space,
equivalent to the setting in [44]. B -

Before using Theorem 2.1 by [22], we have to satisfy the following conditions:

(C1) The domain of the optimization problem is convex and closed.
(C2) The objective function is convex.
(C3) The feasible domain is convex and closed.

(C4) The optimization problem is feasible for m < oo with a feasibility domain with nonempty
interior and unique solution.

(C5) The optimal solution violates all  discarded constraints almost surely.

We continue the proof in three different cases.

Case I, B, < ||ptmllx A B: < B;—1 In this case, the RKHS norm estimation returned by the
RNN is smaller than the largest random RKHS norm and smaller than the previous PAC RKHS
norm over-estimation. Condition (C1) is satisfied since R g, is convex and closed for any B; € R.
Condition (C2) directly follows from having a linear objective function. Condition (C3) holds
since the feasible domain is [|| p¢,m—rlk, || 0t,m—r+1llk) € R>o, with 7 computed in Algorithm 3.
Moreover, Problem (14) is feasible for m < oo with a feasibility domain with nonempty interior and
unique solution (C4). In fact, the solution of (14) is

B:,m,r = maX{Hpt,M—T”kaBt}? (15)
explicitly denoting that the value depends on the number of scenarios m and the number of removed
constraints r < m.

*

We now prove claim (C5), i.e., that B under-estimates the RKHS norms corresponding to j =

t,m,r
m —1r+1,...,min (14) almost surely. To this end, note that the RKHS norms are sorted in an
ascending order and that ||p; ;||x # ||pe.illx, 7,5 € {1,...,m},i # j almost surely. Since B}, . =
max{||pe,m—rl|lk, B¢} wWith By < ||pt,m—r|[x by Algorithm 3 and ||pgm—r|lx < |lpejllx, Vi €
m —r+1,...,m} almost surely, the claim holds. Hence, we can use the result of Theorem 2.1 in
[22]:
P [(lpeilles - llpemlln) € RSo < P [l flle € Ryo: By = [1fll6] 21—
r m . .
>1- 1 —Ay)™m 16
> ; ( . )7 (1=7) (16)

Inequality (16) provides PAC bounds on the constraint satisfaction for any unknown random variable
from the same probability space. Therefore, it probabilistically quantifies the constraint satisfaction
of the optimal solution of (14) with respect to the unsolvable optimization problem (12), where we
upper-bound the unknown RKHS norm || f||5. Since Algorithm 3 requires

T

m ) m—i
Z(Jﬁ (I-m""<k
i=0
and sets By = max{||ptm— |k, Bt }, we have

P™ [(lpealle:- - lormlle) € RZg < Pl fllx € Roo: Be > [Iflle] = 1—9] 21 -5, (7
which concludes the proof for Case I.
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CaseIl, B, > ||pt.m ||k A By < By—1 In this case, the RKHS norm estimation returned by the RNN
is larger than the largest random RKHS norm and smaller than the previous PAC RKHS norm over-
estimation. Then, we recover the classic scenario approach, i.e., we satisfy all m constraints, which
can also be seen as a sampling-and-discarding scenario approach with » = 0 discarded constraints in
Problem (14). Conditions (C1)-(C4) are satisfied equivalently to Case I, and Condition (C5) holds
trivially since r = 0. The optimal solution of Problem (14) is given by

Bf 0= Bt
and Algorithm 3 returns B; as the PAC RKHS norm over-estimation.
Note that we choose 7, m, k such that (1 — )™ (1 + v(m — 1)) < & in Theorem 1. Since
0 1
> @)f(l —ymTt Yy <Zn> YL =)™
i=0 =0
1=y 1 +~(m—1)) (18)

)

—~ .

IN
=

we can directly obtain PAC bounds for the optimal solution of the sampling-and-discarding scenario
approach (14) with » = 0. Namely,

P™ [(lpealles - - llpemlle) € R : P{I£lk € Roo: Br = [[flle] > 1 1]
0

) - (18)
1= (’f)v’(lv)m 2 1-x,

i=0
which concludes the proof for Case II.

Case III, B; > B;_ 1 We now consider the case where the RKHS norm over-estimation at the
previous iteration was tighter than the over-estimation at the current iteration. In this case, we choose

By = min{Bt, Btfl}a
see Algorithm 3, with By = oo by convention. The reason behind this choice is that if the estimation

is PAC at iteration ¢ — 1, it is again PAC at iteration ¢. O

F.2 Proof of Corollary 1

Corollary 1 (Lifting Theorem 1 to all iterations). Under the hypotheses of Theorem 1, receive By
Jfrom Algorithm 3 at all iterations t. Then, with confidence at least 1 — Kk, B; over-estimates the
ground truth RKHS norm || f ||, jointly for all iterations t > 1 with probability at least 1 — .

Let {B;},, T € N be the discrete-time stochastic process containing the RKHS norm over-
estimations for each iteration ¢. Since we choose B; = min{B;_1, B;} in Algorithm 3, we have

B, <B,_1<..<B Vt>1. (19)

Moreover, let {F;}/_, be a filtration with §; = o(B,..., B;) the o-algebras. Then, we have
that B; € §; and due to (19), E[B;] < B; < oo.® Moreover,

E[Bi41|8: < B: < By Vt>1,

follows from (19), i.e., {B;}7_, is a supermartingale with respect to the filtration {F;}7_, [45,
Section 4.2]. Therefore, we can use a stopping-time construction for (super)martingales as done in
Theorem 1 by [23] and Theorem 1 by [20].

Let us define the bad event
1@15 = {w S QZ Bt < ||fHk}

*Note that the expected value is with respect to the probability space (R>q, B(R>0),P) (i.e., with respect to
the probability measure IP) since the random variable B; is defined on that probability space.
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as under-estimating the ground truth RKHS norm || f|| . Let 7’ be the first time when the bad event %;
happens, i.e.,

(w) = min{t > 1: w € %}
with min{()} = oo by convention. Since

U%’t:{wEQ:T’(w)<oo},

we have

PlUs>1%:] = Plr’ < o]

=P[B; < | fllg, 7 < o] (20)
<P[By < fllx]-
In Theorem 1, we proved that
P™ [(lpealles- - lpemlle) € RZg < P fllk € Rzo: Be > [fle] > 1=7] 21— 5.
for any (fixed) ¢ > 1. Therefore,
P™ [(lpealles - - - llpemllk) € REq : PIfllk € Roo: Be > [[fllk] < 7] = 1= k.

for any (fixed) ¢ > 1, which with (20) implies that the statement in Theorem 1 now holds holds jointly
for all ¢ > 1. That is, lifting the statement to hold jointly for all iterations is to upper-bound the
probability that the bad event %, happens, which we do in (20). This probability is upper-bounded
by the probability of under-estimating the RKHS norm. In words, with confidence at least 1 — «, the
RKHS norm over-estimation holds jointly for all iterations with probability at least 1 — ~, where the
confidence and probability are stated with respect to the probability measures P and P™, respectively.

O

F.3 Proof of Theorem 2

Theorem 2 (Confidence intervals). Under the same hypotheses as those of Corollary 1, let By
be returned by Algorithm 3 ¥t > 1 with k,y € (0,1). Moreover, define Q:(a) as in (4) with
any ¢ € (0,1) and Cy == Cy_1 N Q¢ with Cy = R. Then, with confidence at least 1 —k, f(a) € Ct(a)
holds jointly for all a € A and for all t > 1 with probability at least (1 — v)(1 — 6).

First, we define the following events (the complementary event is denoted by the superscript C):

¢;: Tt holds that f(a) € Cy(a) jointly for all « € A and for all ¢ > 1.
-1 <20%In <W> jointly for all ¢ > 1 and for

&;: Tt holds that ||€1:t||((Kt+oIt)*1+It)

any § € (0,1).
Q;: It holds that f(a) € Q¢(a) jointly for all a € A and for all ¢ > 1.
B,: It holds that B, > || f||x jointly for all t > 1.

The proof aims at providing a lower bound on the probability of occurrence of event ;. We start by
investigating the probability of the event £3; from which we can directly infer the probability of €.

The challenge in this proof is that state-of-the-art confidence intervals from e.g., [10] or [20] consider
the RKHS norm as a deterministic object and, therefore, only have the sub-Gaussian measurement
noise as the source of stochasticity. In contrast, we over-estimate the RKHS norm, thus making it
a random variable. Therefore, we have two sources of uncertainty that are defined on two distinct
probability spaces.

Uncertainty (i). From Corollary 1, we have that

PP [(loeallks - -5 lpemlli) € RSy : Py fllk € Rso: Be > [[fllx] >1—7] >1— k.
jointly for all ¢t > 1, i.e.,

P [(llpe.a

koo lpemlle) € REG - Py [By] > 1—7] >1—k.
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The bounds are derived with respect to the inner probability space (R>o, B(R>0),[P1) and the
outer product probability space (RZ,, B(RZ,), PT*). The inner probability measure P, quantifies
the uncertainty on the hypothesis that the RKHS norm over-estimation is correct, while the outer
probability measure P* quantifies the sampling-based uncertainty.*

We map the (inner) probability space to a simpler and more interpretable but for our needs equivalent
probability space. Instead of working on the sample space R>(, we work with the introduced
events B, and BY. Note that the event-based sample space and the o-algebra are instances from the
original sample space and o-algebra. The events show a more interpretable version of the original
probability space. However, since the events are equivalently represented within the old and new
settings, we preserve the original probability measure P; and obtain the probability space

({8, B}, 2022 p,),

with 2{3: 3} .— {0,8,8C, {B,8BC}}, i.e., the g-algebra is the power set of the sample space. In
this discrete o-algebra, the probability measure is given by the tabular mapping

Pi[{B, B} =1
P1[0] =
Pi[B]=1-~

Py [BC] =7,

where the first two results follow from the definition of valid probability measures, the third equality
follows from Corollary 1, while the final equality follows from the fact that Py [{9B, BC}] = P, [B] +
PP, [BC] since B and B are disjoint by construction.

Remark 3 (Source of Uncertainty (i)). The uncertainty arises from the randomness of the random
RKHS functions. As described in Section 3.1, the first t center points and coefficients are deterministic
and set given the collected data points by the interpolating property subject to o-sub-Gaussian noise.
The randomness is solely introduced by sampling the tail coefficients and tail center points from,
e.g., uniform distributions. Therefore, this uncertainty is purely epistemic.

Uncertainty (ii). From the works of [20] and [10], we have probabilistic confidence intervals
with a deterministic upper bound on the RKHS norm. Hence, the uncertainty arises solely from
the sub-Gaussian measurement noise, i.e., from the probability of the occurrence of event &;. We
form an equivalent event-based probability space transformation based on event &; as we did for
Uncertainty (i) instead of working on the original probability space. The event-based probability
space is given by

(&, EC), 21673 Py,

The o-algebra is again the power set of the sample space, i.c., 2(6+€} = {{&,EC}, &, EC, 0}.
We take the same probability measure as in the original probability space and write the probability
measure as the tabular mapping

Po[{&,E Y =1

Py[f] = 0
Pg[gt] =1- 6

Py[E°] =6

The fact that P3[€;] = 1 —4 is derived in Theorem 1 by [20] and Theorem 3.4 by [10]. The uncertainty
of this event is purely aleatoric. It arises from applying Markov’s inequality [45, Theorem 1.6.4.] to
probabilistically bound the norm of the accumulated measurement noise with respect to a positive
definite matrix.

Since we want to combine Uncertainties (i) and (i), we extend P3[£;] with the outer probability P7*.
That is, we include the sampling-based probability uncertainty on the training set of the random

*The random variable B is computed using a sampling-based approach by sampling m i.i.d. random RKHS
functions; see Theorem 1. Since the generation of this “training set” is random, the resulting hypothesis is
endowed with additional uncertainty, which requires us to introduce the outer layer of probability.
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RKHS functions into the uncertainty of the measurement noise of conducting experiments. This
extension is trivial and purely artificial since the generation of the random RKHS functions does not
influence the measurement noise. Therefore, we can state

P [(||pt’1 koo lpemlle) € REG : Po[&] > 1 — 6} =1

Constructing a product probability space. Uncertainty (i) is purely epistemic and Uncertainty (i)
is purely aleatoric and both uncertainties are independent from each other. Therefore, we can create a
product probability space between both individual probability spaces to quantify the uncertainty on
the confidence interval, i.e., on events £; and &, while treating the RKHS norm as a random variable.

First, we create a the unique product probability measure as described in, e.g., Theorem 1.7.1 by [45].
The unique probability measure of the product probability space is given by

P[(B+, &)] = P1[B4] - Pa[&],

where we denote by P|(, -)] the probability measure of the product probability space,” which maps a
tuple of orthogonal random variables to the probability of joint occurrence. Since

P{(B, &)] = P1[Bi] - Po[&4],
we have that
PI(B:, &)] = (1 =) (1 = 9).
Moreover, we embed the uncertainty of the hypothesis into the stochasticity of the sampling process of

the random RKHS functions by enveloping the inner probabilistic statement with the outer probability
given by the measure P{*. Hence, in conclusion, we can write

P [(lpealles - - -5 loemlle) € REy : P[(Be,&)] > (1=7)(1=68)] > (1-k)-1=1-k

Now, note that the ground truth f(a) lies within the confidence interval QQ;(a) if (i) the RKHS norm
over-estimation and (ii) the bound on the accumulated noise hold, i.e., if the event tuple (B, &;)
holds. Therefore, event ; is equivalent to event (B, £;) and we can write

PY [(loellis - lpemlle) € REg : PQ] > (1—4)(1 = 8)] > 1 — k.

In words, with confidence at least 1 — &, the hypothesis that the ground truth lies within the confidence
intervals with with the measurement noise and the RKHS norm as random variables holds with
probability at least (1 — )(1 — ¢). Finally, from Corollary 7.1 by [15], we have that

and, therefore,
PP [(loeallks - s lpemlli) € RZg P& > (1 —7)(1=0)] > 1 - &.

The confidence is stated with respect to probability measure P7* that comprises the stochasticity
of the random RKHS function generation, whereas the probability of the hypothesis is stated with
respect to the product probability measure P. O

F.4 Proof of Theorem 3

Theorem 3 (Safety). Under the same hypotheses as those of Theorem 2, initialize Algorithm 1 with a
safe set Sy # 0 : f(a) > h Va € Sy. Then, with confidence at least 1 — &, f(az) > h jointly V¢t > 1
with probability at least (1 — )(1 — &) when running Algorithm 1.

The proof is similar to the proofs of Theorem 1 and Lemma 11 by [7]. Specifically, we prove that we
remain safe with high probability when only sampling within the set of safe samples.

SAFEOPT-like algorithms start with an initial safe set and extend the safe set by (probabilistically)
lower-bounding the function values of inputs on the domain based on information of inputs that are
already classified as safe. This interpretation naturally requires a notion of continuity and regularity
to infer the behavior of inputs based on the behavior of neighboring inputs. Therefore, SAFEOPT and
many SAFEOPT-like algorithms require the Lipschitz constant as an additional parameter next to the
RKHS norm to execute the algorithm. In contrast, we present a Lipschitz-like continuity for RKHS
functions for which we use the (semi)metric (5).

>The product probability space is naturally given by the triple (B, BY) x (&, &), (BB} x(E0.E) ,IP).
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Lemma 1 (RKHS-induced continuity). [24, Proposition 3.1] Let all conditions in Theorem 3 hold
and let By be returned by Algorithm 3. Then, jointly for all a,a’ € A and for all t > 1, with
confidence at least 1 — K,

[f(a) = f(a')] < Bidy(a,d’)
with probability at least 1 — ~.°

Proof. With confidence 1 — x and probability 1 — ~,

|f(a) = f(a")] = |(f, k(a,-) = k(a’, )l [13, Definition 4.18]
< Hf”k\/k(a, a) —k(a’,a) — k(a,a’) + k(a’,a’) Cauchy-Schwarz inequality
= |fllkdx(a,a’) (Semi)metric (5)
< Bydy(a,ad’), Corollary 1

where (f, g);, denotes the inner product between two functions in the RKHS of kernel k. Note that
solely the last inequality introduces stochasticity and the previous steps hold deterministically. [

For each iteration ¢ > 1, we are only allowed to sample within the safe set .S; (6). The following
lemma exploits the definition of the safe set S; to prove that we can guarantee safety with high
probably for all iterations when only sampling within .S;.

Lemma 2. Under the same hypotheses of Theorem 3, with confidence at least 1 — k,
VYa € Sy, f(a) > h
Jjointly for all iterations t > 1 with probability of at least (1 — §)(1 — 7).

Proof. The lemma is akin to Lemma 11 by [7]. However, we replace the assumption of knowing
a true upper bound on the RKHS norm || f||;, with the PAC RKHS norm over-estimation received
by Algorithm 3. Furthermore, in contrast to [7], we do not require the Lipschitz constant and prove
safety with high probability by exploiting the RKHS norm induced continuity formulated in Lemma 1
instead.

First, similar to the proof of Theorem 2, we introduce the following events:
¥;: Tt holds that f(a) > h jointly for all @ € S; and for all ¢ > 1.
¢;: Itholds that f(a) € Ci(a) jointly for all @ € A and for all ¢ > 1.

& Itholds that [[ex.¢ | (x,+01,)-141,)-2 < 20%In <W> jointly for all ¢ > 1 and for

any 6 € (0,1).
B,: It holds that B; > || f|| jointly for all ¢ > 1.
£¢: Tt holds that | f(a) — f(a')| < Bidi(a,a’) jointly for all a € A and for all ¢ > 1.

First, we project the statement in Lemma 1 onto the product probability space before providing a
lower bound on the occurrence of the event >3;. From Lemma 1, we have that
PY [(lpealles - lpemlle) € REp : Pr[€] > 1—9] 21— k.

We now embed the inner probability from probability measure P; into the product probability
measure P. Note that event £; (on the probability space governed by the probability measure P;)
solely depends on the correctness of the RKHS norm over-estimation, i.e., on the occurrence of
event B;. Therefore, with respect to the product probability measure P, event £; is equivalent to the
union of the events (B, &) U (B, EC) since it solely depends on the correctness of the RKHS norm
over-estimation. Therefore, we can write

Py €] = P[(Be, &) U (Be, EC)] = P[(By, &)] + P[(By, EC)]
=(1-7A-0)+1-7)5
=1-7

i.e., we can write £; == (B, &) U (By, EC). Therefore, the probability that the continuity statement
from Lemma 1 holds is given by

PP [(lpealles - - lormlle) € RZg : P[€] > 1 —9] > (1 - k).

SThe confidence is stated with respect to the probability measure P7* whereas the probability is stated with
respect to the probability measure P;.
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Remark 4 (Introduced events and their role in the product probability space). We did not explicitly
introduce £, into the o-algebra of the product probability space, which is the power set of the sample
set (B, BY) x (&,EF). However, we showed that £, can be rewritten as (B, &) U (By, EC),
thus making it an explicit a member of the o-algebra of the product probability space. Clearly,
(B, &) U (B4, EF) = By, i.e., £ = By. This already became evident in the proof of Lemma I,
where the stochasticity of the continuity statement was solely introduced by the stochasticity on the
RKHS norm over-estimation.

We now move on to lower-bounding the probability of occurrence of event ¥, which clearly proves
the lemma. Equivalent to the proof of Lemma 11 in [7], we prove the lemma by induction.

Base case: In the first iteration, we set S; = Sy, see Algorithm 2. Hence, by assumption, for all
a € S1, f(a) > hholds deterministically.

Induction step: Assume for some ¢ > 2, f(a) > h, Va € S;_1. We show that f(a) > h, Ya € S;_1
implies f(a’) > h, Va' € S;. By the definition of the safe set (6), Va' € S, Ja € S;_; such that

h < 4;(a) — Bydg(a,a’)

holds deterministically. Moreover, we have shown in Theorem 2, that

P [(loeallks - - loemlls) € RZg :P[€] > (1 —=)(1=96)] >1 - &,
which implies that’
PP [(loeallks - loemlli) € RZg :Pf(a) > li(a)] > (1 =7)(1 = 8)] >1— k.
Therefore,
PP [(loeallis- -5 lptmllk) € RZy - P[h < fa) — Bedi(a,a’)] > (1 =) (1 =68)] > 1 — k.
Finally, observe that event ¢, implies event £; (see Remark 4). Therefore,
PP [(loealles - - lpemlli) € RZg PR < f(a)] = (1=~)(1=6)] >1—&
by Lemma 1.
O
Theorem 3 follows directly from Lemma 2. O

G RKHS NORM OVER-ESTIMATION TIGHTNESS COMPARED TO [34]

Figure 10 shows the tightness of the RKHS norm over-estimation by showing the ratio Bt/ |, over
the number of iterations. We see that the RKHS norm over-estimation using the scenario approach
(left sub-figure, our work) yields significantly tighter over-estimations than the work by [34], who
directly use Hoeffding’s inequality to obtain PAC bounds.

H ADAPTIVE NOTION OF LOCALITY

In Section 3.3, we explain the motivation behind exploiting locality to reduce conservatism and, thus,
improve exploration. Figure 11 shows a toy example in which working with the global RKHS norm
would result in unnecessarily conservative exploration in most parts of the domain. This is because
the sub-domain in the center has the largest slope and, thus, mainly contributes to increasing the
(global) RKHS norm, whereas the sub-domains on the right- and left-hand side have significantly
smaller slopes and local RKHS norms. These locally smaller RKHS norms naturally yield tighter
confidence intervals when defining them on these local sub-domains.

Now, we contrast our adaptive notion of locality to the locality introduced in [34]. As mentioned in
Section 3.3, we define sub-domains as local cubes around each sample a € a;.;. The size of these
local cubes and the number of local cubes around each sample are hyperparameters. In addition to
these sub-domains, we preserve the global domain.

"The implication follows from the fact that min Cy(a) =: £;(a).
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Our algorithm Tokmak et al. (2024)
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Figure 10: Tightness of the RKHS norm over-estimation of our algorithm (left) compared to [34]
(right) when computing m random RKHS functions.
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Figure 11: General idea of locality. We introduce a local interpretation of the RKHS norm and
local sub-domains to exploit local “smoothness” and, thus, work with smaller RKHS norms on
sub-domains with smaller slopes.

In contrast, [34] use (i) the global domain, (ii) the convex hull of the samples, (iii) some intermediate
domain between the convex hull and the global domain. A weakness of this approach is that it
requires at least two samples to start exploration since the convex hull of a singleton set is purposeless
in the considered setting. Furthermore, let So = {0, 1} be the set of initial safe samples on the
global domain A = [0, 1]. Then, the locality introduced by [34] would again be impractical since the
convex hull of samples is equal to the global domain, resulting in global exploration without a notion
of locality. This design choice introduces limitations on the initial samples, restricting practical
applicability.

In our paper, singleton safe sets and points far apart do not negatively influence the notion of locality.
Furthermore, we can additionally influence the size of the domain with the hyperparameter A. This
hyperparameter is a major difference from [34] and the main reason why our algorithm is significantly
more scalable than SAFEOPT. Consider, e.g., the six-dimensional half-cheetah environment, where
we set A = 0.05. In SAFEOPT, or in the unfavorable local setting of [34], we would revert to A = 1,
which would give a Euclidean distance of O(10~!) between the samples, whereas the distance in our
case can be reduced by a factor of 200. This improves scalability, thus allowing for exploration in
higher dimensions.

27



40

20 \—/ \

Time (s)

—o— e e —— ]
0 -+ —— m =500 m = 1000
—e—m = 2000 —e— m = 3000
T T T T T T T
0 50 100 150 200 250 300

Iteration

Figure 12: Computation time for the scenario approach with m random RKHS functions. The
computation time is independent of the iteration and, hence, the amount of collected data.
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Figure 13: Influence of the hyperparameters of the scenario approach.

I REQUIRED COMPUTATION TIME FOR THE SCENARIO APPROACH

We investigate the required computation time for the scenario approach. Additionally, we comment on
the influence on the total computation time when integrating the scenario approach in SAFEOPT-type
algorithms.

Figure 12 shows the computation time of the scenario approach over the number of iterations for
different m. The required time expectedly increases with the number of constraints m, whereas a
significant dependence of the computation time on the iteration cannot be observed. This is in huge
contrast to SAFEOPT. The computation time of SAFEOPT is investigated in Figure 2 by [46], where
a significant increase is observable with the number of iterations. Crucially, the influence of the
scenario approach on the total computation time is insignificant; especially because our algorithm,
akin to SAFEOPT, works in an episodic setting, where we do not have to meet real-time requirements.

J ABLATION STUDY FOR THE SCENARIO APPROACH

Figure 13 shows an ablation study of the hyperparameters v, m, r, and « for the scenario approach.
Left: The number of constraints r that we can discard grows linearly with the decrease of the
parameter v when keeping m and « constant. Center: The number of constraints r that we can
discard grows linearly with the number of total constraints m when keeping v and « constant. Right:
The confidence parameter « decreases exponentially with the number of total constraints m when
keeping v and r constant.
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K ABLATION STUDY USING ALGORITHM 4 WITH DIFFERENT
KERNELS
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Figure 14: Performance of our safe BO algorithm using different kernels. Even with a misspecified
kernel, our algorithm explores the domain safely.

In Figure 14, we perform an ablation study by conducting the numerical experiment from Section 5
using Algorithm 4 with different kernels. Hence, the kernel used in Algorithm 4 differs from the one
with which the reward function is created. Although we cannot provide any theoretical guarantees for
this setting, Figure 14 shows the successful deployment of our algorithm in a setting in which the
kernel is misspecified.

L. ABLATION STUDY USING ALGORITHM 4 WITH DIFFERENT
LOCALITY PARAMETERS

N=10,A=5-10"2

Figure 15: Performance of our safe BO algorithm using different locality parameters N and A.

In Figure 15, we perform an ablation study by conducting the numerical experiment from Section 5
using Algorithm 4 with different locality parameters N and A. The left sub-figure is created using
the original locality settings described in Section 5, i.e., it is identical to the left sub-figure in Figure 5.
The sub-figure in the center is created using more and smaller local cubes. Therefore, Algorithm 4
has more options for local cubes to iterate through, which (slightly) improves exploration behavior.
The right sub-figure results from executing Algorithm 4 without local cubes, i.e., by only iterating
through the global domain .A. Therefore, we naturally recover Algorithm 1. As expected and stated
in Section 3.3, we observe inferior exploration compared to the setting that actively exploits locality.

M SAFE RL POLICY OPTIMIZATION IN OPENAI GYM

In this section, we provide further details on the RL benchmark simulations. As discussed in Section 5,
we trained the SAC algorithm [36] in various OpenAl Gym environments [38], in particular, the
mountain car, the cart-pole system, the swimmer, the lunar lander, the half-cheetah, and the ant. We
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Figure 16: Hardware setup. The Furuta pendulum starts from a downward position (left) and is
swung upright. Then, we use a state-feedback controller to balance the pole (right).

then alter specific physical properties within each environment to imitate real-world experiments,
in which we utilize our proposed algorithm and SAFEOPT to optimize an action bias matching the
dimensionality of the action space. We next state the remaining hyperparameters and detail how
we alter the physical properties for the different environments. We conducted the experiments on a
cluster with 60 GB RAM and 20 cores.

Mountain Car (1ID) Weset N = 3, A = 10~!, and discretize the environment with 10 points.
For the imitated real experiments, we reduce the power of the car from 0.015 to 0.013. The target is
to reach the top of the mountain; any position before or behind the goal point at the end of an episode
was considered unsafe.

Cart Pole (ID) Weset N =3, A = 10!, and discretize the environment with 103 points. For the
imitated real experiments, we change the pole length from 0.6 to 0.8. The goal is to maintain the
pole in an upright position; dropping the pole was considered unsafe.

Swimmer 2D) Weset N = 5, A = 10~1, and discretize the environment with 5 x 102 points per
dimension. For the imitated real experiments, we change the lengths of the “torso” and “back” links
from 0.1 to 0.3. The goal is to achieve forward movement of the swimmer; any backward movement
was considered unsafe.

Lunar Lander 2D) Weset N = 5, A = 10~', and discretize the environment with 5 x 102 points
per dimension. For the imitated real experiments, we add wind of velocity 3 ms~!. The goal was for
the lander to descend and come to a complete rest; any instance of the lander tipping over or crashing
was considered unsafe.

Half Cheetah (6D) Weset N = 10, A = 5-10~2, and discretize the environment with 8 points per
dimension. For the imitated real experiments, we change the thickness of the back link from 0.046 to
0.066. The goal is to ensure forward movement without falling; any fall was considered unsafe.

Ant 8D) Weset N = 10, A = 5 x 1072, and discretize the environment with 5 points per

dimension. For the imitated real experiments, we change the thickness of the leg joint from 0.08 to
0.18. The goal is to ensure forward movement without falling; any fall was considered unsafe.

N HARDWARE EXPERIMENT

We conducted the hardware experiment on an Ubuntu laptop with 32 GB RAM and an Intel Core
17-12700H processor. Figure 16 shows the setup of the Furuta pendulum.
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