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ABSTRACT

Sparse autoencoders have recently emerged as a promising tool for explaining the
internal mechanisms of large language models by disentangling complex activa-
tions into interpretable features. However, understanding the role and behavior of
individual SAE features remains challenging. Prior approaches primarily focus on
interpreting SAE features based on their activations or input correlations, which
provide limited insight into their influence on model outputs. In this work, we
investigate a specific subset of SAE features that directly control the generation
behavior of LLMs. We term these “generation features”, as they reliably trigger the
generation of specific tokens or semantically related token groups when activated,
regardless of input context. Using a systematic methodology based on causal inter-
vention, we identify and validate these features with significantly higher precision
than baseline methods. Through extensive experiments on the Gemma models,
we demonstrate that generation features reveal interesting phenomena about both
the LLM and SAE architectures. These findings deepen our understanding of
the generative mechanisms within LLMs and highlight the potential of SAEs for
controlled text generation and model interpretability. Our code is available at
https://anonymous.4open.science/r/control-vector-with-sae-AAFB.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language
understanding and generation (Brown et al., 2020; Touvron et al., 2023; Jiang et al., 2023; Bai et al.,
2023). However, their black-box nature poses significant challenges, such as hallucination, bias,
and factual inconsistency (Ji et al., 2023; Chang et al., 2024; Huang et al., 2023). A key reason for
these challenges lies in the way individual neurons within these models encode multiple, seemingly
unrelated concepts, a phenomenon known as superposition (Elhage et al., 2022). This entanglement
of features complicates efforts to isolate and manipulate specific generative behaviors.

Sparse Autoencoders (SAEs) have emerged as a promising tool to address this issue by disentangling
mixed representations (Bricken et al., 2023; Huben et al., 2024). SAEs map dense model activations
to sparse, interpretable latent spaces, revealing latent structures that explain LLM internals. However,
prior approaches mainly interpret SAE features by analyzing activations or input correlations, provid-
ing limited insights into their impact on model outputs. This gap hinders the practical utility of SAEs
for precise output control.

In this work, we investigate a specific subset of SAE features, which we term generation features.
These features act as control vectors within the LLM, reliably triggering the generation of specific
tokens or semantically related token groups when activated. Notably, their influence persists across
different input contexts, indicating that these features encode information that directly drives the
model’s generative behavior. We propose a novel causal intervention-based methodology for system-
atically identifying generation features. Our approach involves activating individual SAE features and
measuring their causal effects on token generation probabilities to pinpoint which feature consistently
controls specific outputs. Through rigorous experiments, we demonstrate that our method achieves
significantly higher precision in identifying these control vectors compared to baseline approaches,
such as logit lens-based methods.

Based on our method, our study reveals that generation features are concentrated in specific model
regions, particularly in deeper layers, aligning with the hierarchical organization of LLMs where
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LLMParis is the
capital of

Paris is the
capital of France LLMParis is the

capital of
Paris is the

capital of fish
GenerationPrompt GenerationPrompt

Intervene on the SAE feature responsible for generating token "fish"

Figure 1: Illustration of generation features, which refers to specific learned features in a sparse
autoencoder that contribute to the generation of certain tokens. On the left, the LLM generates the
correct token “France” in response to the prompt “Paris is the capital of.” On the right, an intervention
is performed on the SAE feature responsible for generating the token “fish,” which results in the
LLM producing “fish” instead of “France.” This highlights how specific features can influence the
model’s generation behavior in an expected way.

abstract and task-specific representations emerge. Additionally, we find that increased SAE sparsity
enhances feature disentanglement and interpretability, while wider SAEs identify more features but
at a lower relative density. Furthermore, by categorizing these features based on their generated
outputs, we uncover patterns across token types, such as punctuation, common words, named entities,
and programming-related tokens, providing insights into how LLMs organize generative knowledge
through sparse, interpretable components.

Our contribution: (1) We introduce the concept of generation features, specific SAE features
that reliably control token generation in LLMs. (2) We propose a novel causal intervention-based
methodology to identify and validate these features with high precision. (3) Our analysis reveals
that generation features are concentrated in specific model layers and are influenced by SAE design
choices such as sparsity and width. (4) We categorize generation features based on their generated
outputs, providing insights into the organization of generative knowledge in LLMs.

2 RELATED WORKS

Sparse Autoencoders and Feature Disentanglement. The phenomenon of superposition in neu-
ral networks, where individual neurons simultaneously encode multiple concepts (Elhage et al.,
2022), has driven the development of sparse autoencoders (SAEs) for language model interpretation.
Drawing from fundamental principles in sparse coding (Olshausen & Field, 1996), contemporary
research demonstrates SAEs’ capability to decompose complex representations in LLMs into in-
terpretable features (Bricken et al., 2023; Huben et al., 2024). Bricken et al. (2023) demonstrated
that stronger sparsity constraints lead to more monosemantic features, while Gao et al. (2025) in-
troduced frameworks for scaling SAEs without compromising interpretability. Current approaches,
however, predominantly analyze features through their activation patterns and input correlations,
inferring feature concepts from activation circumstances (Huben et al., 2024). Consequently, the
causal relationships between SAE neurons and model outputs remain insufficiently explored.

Controllable Text Generation. The field of controllable text generation has evolved along two
primary trajectories. The first approach emphasizes decoding-time interventions, employing auxiliary
networks to steer the generation process (Hu et al., 2017; Chen et al., 2019). The second operates
within the latent space, beginning with efforts to learn disentangled representations during training
(Hu et al., 2017; Chen et al., 2019) and progressing to recent methods for identifying and manipulating
existing representations in pretrained models through steering vectors (Subramani et al., 2022; Rimsky
et al., 2024). While these methods effectively control high-level generation aspects such as sentiment
and topic, they primarily rely on aggregate representations or model-wide interventions. Our research
advances this field by demonstrating that SAE-learned features naturally function as control vectors
without requiring additional training or contrastive techniques. Moreover, our focus on individual
SAE features’ causal effects enables more precise control at the token and semantic concept level,
leveraging the inherent disentanglement properties of these representations.

Causal Analysis in Neural Networks. Causal intervention frameworks (PEARL, 1995) have
emerged as powerful tools for understanding information flow in transformers (Vig et al., 2020) and
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mapping knowledge representations (Meng et al., 2022). Although these investigations establish
foundational methods for analyzing causal relationships in neural networks, they predominantly
address broad architectural components or aggregate representations. Our methodology extends
these foundations by applying causal abstraction techniques specifically to SAE features, capitalizing
on their disentangled nature. This synthesis enables the identification of robust causal connections
between individual features and specific outputs, overcoming the traditional challenges posed by
representational superposition.

3 PRELIMINARIES

3.1 SPARSE AUTOENCODER

An activation vector aj at layer j can be approximated as a linear combination of feature activations
and their corresponding directions:

aj ≈ b+
∑
i

fi(a
j)di, (1)

where b is a bias vector, fi(aj) represents the activation of feature i, and each di is a unit vector in
activation space representing the direction of feature i. To learn the feature activations fi and feature
directions di, we employ a sparse autoencoder. In this setup, the encoder maps the input activation a
to a sparse code of feature activations:

f(a) = σ(Wea+ be), (2)

where σ is a non-linear activation function, We is the encoder weight matrix, and be is the encoder
bias. The decoder reconstructs the input activation from the sparse code:

â = Wdf(a) + bd, (3)

where Wd is the decoder weight matrix whose columns di represent the feature directions, and bd
is the decoder bias. By training the autoencoder with a sparsity constraint on f(a), we encourage
the model to learn a set of meaningful features {di} that can effectively reconstruct a from a sparse
combination of feature activations.

3.2 CAUSAL INTERVENTION

In the context of neural networks, causal intervention involves modifying the internal activations to
assess their causal impact on the model’s output. Specifically, we intervene on the learned features
f(a) to observe how changes in feature activations affect the model’s predictions. Using Pearl’s
do-operator (PEARL, 1995), we define an intervention that sets the feature activations to specific
values:

do(fi(a) = f ′
i), (4)

where f ′
i is the intervened value of feature i. This allows us to study the causal effect of feature i on

the model’s output by comparing the predictions before and after the intervention.

4 METHODOLOGY

4.1 MODEL AND NOTATION

Let M be a language model parametrized by a weight set θ that takes a tokenized prompt x as input
and returns a probability distribution over the next token for all tokens in the vocabulary V of size
NV :

PM (Y = yi|x) = M(x; θ)i, ∀i ∈ {1, . . . , NV }. (5)

Let aj be the activation or hidden layer representation after layer j within the model M . For clarity,
we omit j in the following discussion.

3
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Replace intervention. A replace intervention substitutes the original activation a with the scaled
feature direction:

a′ = c · di + ϵ. (6)
where di is the direction of feature i, c indicates the strength of the intervention, and ϵ = N(0, 1) is
an error term included to find robust causal effects that are resistant against random perturbations.
This intervention completely replaces the activation with the feature of interest, allowing us to isolate
its effect.

4.2 CAUSAL INTERVENTION

We perform a causal intervention on a using Pearl’s do-operator:

do(a = a′). (7)

This intervention modifies the model M to M ′ with an intervened activation:

PM ′(Y |x) = PM (Y |x, do(a)). (8)

By comparing PM ′(Y |x) with the original PM (Y |x), we can assess the causal effect of the interven-
tion on the output.

4.3 DERIVATION FROM GENERAL CAUSAL THEOREM

Starting from the general definition of the Average Causal Effect (ACE) of generating token y given
feature d:

ACE(y, d) = Ex∼D[PM (Y = y|x, do(a′))]− Ex∼D[PM (Y = y|x)], (9)
where D is the data distribution. To make the method computationally feasible, we apply the
following simplifications:

Zero Baseline Assumption: we assume the following property:

Ex∼D[PM (Y = y|x)] ≈ 0, (10)

when y rarely occurs without intervention. This is a valid assumption for tokens that have low prior
probability in the model, which is common in large vocabularies.

Monte Carlo Estimation: We perform MC sampling as an estimation of the expectation.

Ex∼D[PM (Y = y|x, do(a′))] ≈ 1

N

N∑
i=1

PM (Y = y|xi, do(a
′)), (11)

where N is the number of samples drawn from D. Substituting and simplifying based on our
assumptions, we derive the empirical estimate:

ACE(y, d) ≈ 1

N

N∑
i=1

PM (Y = y|xi, do(a
′)). (12)

For a language model that generates tokens through sampling, we estimate the probability using
multiple samples:

ACE(y, d) ≈ 1

NM

N∑
i=1

M∑
j=1

I(ŷj = y|xi, do(a
′)), (13)

where M is the number of samples per input xi, ŷi,j is the j-th sampled token for input xi under
intervention, and I is the indicator function. This metric provides a practical measure to assess the
causal role of the feature d in generating token y.

4.4 IDENTIFYING GENERATION FEATURES

We introduce two methods for identifying generation features: the Single-Token Analysis and the
Multi-Token Analysis.

4
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4.4.1 SINGLE-TOKEN ANALYSIS

The Single-Token Analysis method aims to identify features that consistently trigger the generation of
a single, specific token. A feature d is considered a generation feature of token t if:

ACE(t, d) > τ, (14)

where τ is a threshold value.

Clarification on threshold τ : We set default τ to be 0.8 to ensure that the intervention significantly
increases the likelihood of generating token t. Specifically, if ACE(t, d) > 0.8, it implies that, on
average, the intervention causes the model to generate t more than 80% of the time, indicating a
strong causal relationship between feature d and token t.

In practice, evaluating ACE(y, d) for all tokens y ∈ V is computationally infeasible due to the large
vocabulary size. Therefore, we focus on identifying the most frequently generated token under
intervention:

y∗ = argmax
y

 1

NM

N∑
i=1

M∑
j=1

I(ŷj = y|xi, do(a
′))

 . (15)

We then check if ACE(y∗, d) > τ to determine if feature d is a generation feature for token y∗.

4.4.2 MULTI-TOKEN ANALYSIS

The Multi-Token Analysis method extends the Single-Token method by accounting for the possibility
that a generation feature may correspond to multiple tokens, where the tokens are similar in the
embedding space. Instead of looking for a single most frequent token, we analyze the generated
sequences to identify a set of closely related tokens that are often triggered by the intervention.

We first obtain the generated sequences of text using the same intervention method as in the Single-
Token Analysis method. Then, for each generated sequence, we extract the first token. For each
sequence, we obtain the embedding vector for the token. These tokens are clustered using a similarity
metric. Specifically, we obtain the connected components in the similarity graph formed by connecting
tokens based on whether the cosine similarity between their embeddings are greater than a threshold
θ. We set the threshold θ to be 0.5. Then, we define the representative set of tokens as the largest
connected component found for a feature. This will output a set of tokens and their relative count
given an activation. The count is the sum of the number of appearances of each token in the set.

The identified feature is considered a generation feature if the number of tokens in this set appears
with the frequency that is greater than a threshold. Let T be the largest cluster (set) of tokens
corresponding to feature d, the feature is considered a generation feature if

1

NM

N∑
i=1

M∑
j=1

I(ŷj ∈ T |xi, do(a
′)) > τ. (16)

In conclusion, we summarize the procedure for identifying generation features in Appendix C.

5 VALIDATION OF GENERATION FEATURE

5.1 EXPERIMENTAL SETUP

Our experiments utilized the google/gemma-2-2b (Team et al., 2024) model with SAEs from Gemma
Scope (Lieberum et al., 2024), employing the replace intervention method described in Section 4.
We focused our analysis on layers 19 through 24, which our preliminary studies indicated contained
a higher concentration of generation features. Unless otherwise specified, the SAEs used in our
experiments had a width of 16,384 and an average L0 norm closest to 100. For feature identification,
we employed a diverse set of 10 prompts (see Appendix E), generating 10 samples per prompt to
ensure robust evaluation. To assess the effectiveness of our approach, we compared our Single-Token
Analysis method against a baseline inspired by the logit lens technique (nostalgebraist, 2020).

5
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5.2 EVALUATION METRICS

Let F denote the set of identified generation features, where each feature f ∈ F has an associated
target token set tf (with |tf | = 1 for Single-Token Analysis). We define Dtrain as the set of prompts
used during feature identification and Dtest as an independent validation set. The specific prompts
used are detailed in Appendix E. We employ two primary metrics for evaluation:

Interventional Score. This metric evaluates the consistency of identified generation features using
an independent set of 10 validation prompts Dself . For each prompt and feature, we generate 10
samples under feature intervention with strength c. The interventional score for a feature f is defined
as:

IS(f) =
∑

x∈Dself

∑M
j=1 I(ŷj ∈ tf |x, do(a′))

M
, (17)

where M = 10 is the number of samples per input, ŷj is the j-th sampled token under intervention
do(a′), and I is the indicator function. The overall interventional score is averaged across features:

Interventional Score =
1

|F |
∑
f∈F

IS(f). (18)

Observational Score. This metric assesses generalizability using activation data from Neuronpedia
(Lin, 2023). It measures the likelihood that the model generates (one of) our identified target token(s)
if a generation feature is naturally activated. For each feature f , we analyze a set of high activations
Af from Neuronpedia. Each activation a ∈ Af corresponds to a token sequence xa and maximum
activating position pa. The observational score for feature f is:

OS(f) =

∑
a∈Af

I(ta ∈ tf )

|Af |
, (19)

where ta is the token at position pa + 1 in xa, and |Af | = 5 in our experiments. The overall
observational score averages across features:

Observational Score =
1

|F |
∑
f∈F

OS(f). (20)

Baseline method: Our baseline method is inspired by the logit lens (nostalgebraist, 2020). For each
feature f , we consider its corresponding decoder weight vector df in the sparse autoencoder. We
compute the dot product between df and the embedding vector et for each token t in the vocabulary
V . The token t∗ with the highest dot product is selected as the baseline’s predicted generation token:

t∗ = argmax
t∈V

(df · et). (21)

We rank features based on the highest dot product value maxt∈V (df · et). This baseline method is
directly comparable to our Single-Token Analysis method, as the baseline method identifies a single
generation token for the generation features it finds. The precision of the baseline method is computed
using the same interventional and observational procedures, substituting {t∗} for tf .

5.3 VALIDATION RESULTS

Tables 1 and 2 present our comprehensive validation results. Table 1 compares the performance of
Single-Token Analysis and Multi-Token Analysis methods across different intervention strengths and
thresholds for layers 19-24. Table 2 specifically contrasts our Single-Token Analysis method against
the baseline approach.

Observations: Table 1 shows that both the Single-Token Analysis and Multi-Token Analysis methods
consistently identify large numbers of generation features. The Multi-Token Analysis identifies
more features than the Single-Token Analysis method. Also, both methods demonstrate a similar
performance for interventional scores, with the Multi-Token Analysis showing a slightly lower score
on observational score, but a significant increase in the number of generation features.
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Strength Threshold Single-Token Analysis Multi-Token Analysis
# Features Int. Score Obs. Score # Features Int. Score Obs. Score

100
0.7 4308 0.868 0.609 6682 0.834 0.574
0.8 2903 0.916 0.671 4276 0.906 0.651
0.9 1506 0.953 0.720 2257 0.949 0.718

200
0.7 7748 0.863 0.537 11703 0.852 0.539
0.8 5165 0.915 0.608 7930 0.907 0.604
0.9 2707 0.953 0.681 4324 0.949 0.678

300
0.7 9554 0.853 0.496 14655 0.857 0.506
0.8 6317 0.904 0.561 10013 0.909 0.572
0.9 3257 0.948 0.642 5526 0.950 0.651

Table 1: Aggregated results for single-token and multi-token analysis from layer 19 to 24.

Str. Thres. # Feat. Ours Baseline
Int. Obs. Int. Obs.

100
0.7 4308 0.868 0.609 0.680 0.512
0.8 2903 0.916 0.671 0.731 0.568
0.9 1506 0.953 0.720 0.790 0.621

200
0.7 7748 0.863 0.537 0.530 0.414
0.8 5165 0.915 0.608 0.595 0.478
0.9 2707 0.953 0.681 0.683 0.565

300
0.7 9554 0.853 0.496 0.488 0.380
0.8 6317 0.904 0.561 0.560 0.445
0.9 3257 0.948 0.642 0.654 0.534

Table 2: Comparison of single-token analysis and
baseline. The results are from layers 19 through
24. Our method consistently achieves higher in-
terventional and observational scores.
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Figure 2: Layer-wise distribution of generation
features. (a) Variations with different intervention
strengths (fixed τ = 0.8); (b) Variations with
different thresholds (fixed c = 200).

Table 2 demonstrates that our Single-Token Analysis method achieves significantly higher inter-
ventional and observational scores than the baseline method across all intervention strengths and
thresholds, demonstrating the superiority of our causal intervention-based approach for identifying
generative neurons compared to a logit lens baseline.

6 GENERATION FEATURES STUDY

6.1 LOCATION OF GENERATION FEATURES

We analyzed the distribution of generation features across different model layers to understand their
formation patterns, motivated by recent work on layer specialization (Jin et al., 2025) and layer
functionality (Gromov et al., 2025; Zhang et al., 2024). Using the Single-Token Analysis method, we
examined feature distributions across layers in the gemma-2-2b model.

Figure 2 illustrates the layer-wise distribution under varying experimental conditions. Both inter-
vention strength and threshold variations reveal a consistent pattern: generation features become
increasingly prevalent in deeper layers, reaching peak concentration in the later layers before showing
a slight decline in the final layer. This pattern persists across different parameter settings, suggesting
a fundamental aspect of how these models organize generative capabilities.

The increasing density of generation features in later layers aligns with the hierarchical nature of
transformer architectures, where deeper layers typically process more abstract and task-specific
features. The slight decrease in the final layer may indicate a transition to output-specific processing,
where individual feature effects become more diffused.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 100 200 300 400
L0 Norm

400

600

800

1000

1200

Nu
m

be
r o

f G
en

er
at

io
n 

Fe
at

ur
es

 A
bo

ve
 T

hr
es

ho
ld Generation Features vs. L0 Norm

Layer 19
Layer 20
Layer 21
Layer 22
Layer 23
Layer 24

(a) Sparsity study; 2b

0 50 100 150 200 250
L0 Norm

400

600

800

1000

1200

1400

Nu
m

be
r o

f G
en

er
at

io
n 

Fe
at

ur
es

 A
bo

ve
 T

hr
es

ho
ld Generation Features vs. L0 Norm

Layer 31
Layer 32
Layer 33
Layer 34
Layer 35
Layer 36

(b) Sparsity study; 9b

19 20 21 22 23 24
Layer Depth

0

500

1000

1500

2000

2500

Nu
m

be
r o

f G
en

er
at

io
n 

Fe
at

ur
es

Generation Features vs. Depth
Width 16k
Width 65k

(c) Width study; Absolute

19 20 21 22 23 24
Layer Depth

0.00

0.01

0.02

0.03

0.04

0.05

Ra
tio

 o
f G

en
er

at
io

n 
Fe

at
ur

es

Generation Feature Ratio vs. Depth

Width 16k
Width 65k

(d) Width study; Ratio

Figure 3: Impact of SAE sparsity and width. (a) and (b) show generation feature count versus SAE
L0 norm for gemma-2-2b and gemma-2-9b, respectively. (c) and (d) compare generation features
across different SAE widths (absolute count of generation features and ratio of generation features).

6.2 IMPACT OF SAE SPARSITY

We investigated the relationship between SAE sparsity and generation feature formation through an
ablation study varying the average L0 norm. The average L0 norm, representing the average number
of non-zero activations in the SAE’s hidden layer, directly controls the sparsity level of the learned
representations. Prior research suggests that sparsity levels influence feature interpretability and
reconstruction quality (Bricken et al., 2023; Chanin et al., 2024), with higher sparsity often yielding
more interpretable features despite potential increases in reconstruction loss.

Our analysis focused on layers 19-24 of gemma-2-2b and layers 31-36 of gemma-2-9b, using SAEs
with width 16k, intervention strength c = 200, Single-Token Analysis and threshold τ = 0.8. As
shown in Figure 3a and 3b, for average L0 norms below 100, we observe a general trend where
lower average L0 norms (higher sparsity) correspond to more identified generation features. This
relationship becomes less clear beyond average L0 norm of 100, where the feature count shows some
variability and occasional increases, likely due to the complex interplay between sparsity and feature
representation.

The observed pattern in the low average L0 norm region may be attributed to the feature disentan-
glement effect of high sparsity, where features are forced to be more distinctive and specialized. In
contrast, the variable behavior at higher average L0 norms suggests that reduced sparsity constraints
allow for more complex feature interactions, potentially leading to both feature splitting (a single
concept starts to be represented by multiple features) and merging (multiple concepts become encoded
in a single feature) phenomena discussed in (Chanin et al., 2024).

6.3 IMPACT OF SAE WIDTH

We examined how SAE width influences generation feature formation by comparing results across
layers 19-24 in gemma-2-2b for widths of 16k and 65k. Figure 3c and 3d presents this comparison
using a fixed intervention strength of c = 200 with Single-Token Analysis and threshold τ = 0.8.

While the wider 65k SAE identifies more generation features in absolute terms, the ratio of generation
features to total width is actually lower compared to the 16k SAE. This suggests that simply increasing
SAE width does not proportionally increase the density of generation features. We leave the study of
the scaling and explanation of this phenomenon to future research.

6.4 CHARACTERISTICS OF GENERATION FEATURES

To better understand the nature of identified generation features, we conducted a comprehensive
analysis of their distribution and characteristics. Using LLM, we categorized all 1,202 unique
generation tokens (corresponding to 10,136 features) into six distinct categories. Table 3 presents
this categorization along with representative examples selected from the most frequent tokens within
each category, as detailed in Appendix D.2. We also provide the implementation of the categorization
in Appendix D.1.
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Category #Tokens #Features Example Tokens

Punctuation & Symbols 92 3,794 ".", ",", "(", "{", "-"
Common Words & Function Words 189 3,261 "of", "to", "the", "in", "and"
Numbers & Digits 15 256 "0", "1", "2", "4", "3"
Proper Nouns & Named Entities 52 136 "al", "R", "University", "arXiv", "com"
Programming & Code-Related 185 737 "://", "<tr>", "www", "x", "return"
Content Words 669 1,952 "item", "all", "much", "get", "about"

Table 3: Distribution of generation features across categories. Example tokens are selected from the
most frequent tokens in each category, as detailed in Appendix D.

Prompt Feature
(Layer, ID)

Original Continuation Intervention Result

The weather today
seems unusually bright
and

Layer 22,
ID 9836

sunny. I’m not sure if it’s be-
cause of the time of year...

black. The air is clear as a clear
day...

The 44th president of
USA is

Layer 25,
ID 2222

a man who has been in the lime-
light for a long time...

Trump. The 44th President is
the president of USA...

1+1= Layer 7,
ID 1139

2... 112 - 113 (20 points)...

Table 4: Examples of generation feature interventions. Target tokens to generate are “black”, “trump”,
and “1” from top to bottom. Intervention on one feature at one layer for one token effectively changes
the model behavior.

6.5 EXAMPLES OF GENERATION FEATURE INTERVENTION

To demonstrate the practical impact of generation features, we present several examples of how
targeted interventions can alter model outputs. Table 4 shows three representative cases where
activating specific generation features leads to consistent changes in the model’s continuation.

In each case, we observe that activating a specific generation feature (using replace intervention
with strength 200) consistently redirects the model’s output toward a particular token or concept,
regardless of the contextual appropriateness. For instance, in the weather example, activating feature
9836 in layer 22 consistently generates "black" instead of the more contextually appropriate "sunny".
This demonstrates how generation features can override context-based generation patterns.

7 CONCLUSION

In this work, we introduced a novel methodology for identifying and validating generation fea-
tures—specific sparse autoencoder (SAE) features that reliably control token generation in large
language models (LLMs). By systematically applying causal interventions on SAE activations, we
demonstrated that these features act as control vectors, consistently influencing the generation of
specific tokens or token groups across diverse contexts. Our experiments on the Gemma models
revealed that generation features are concentrated in deeper layers, aligning with the hierarchical
organization of transformer architectures. We further explored how SAE architectural choices,
such as width and sparsity, impact feature interpretability and density, finding that higher sparsity
enhances disentanglement while larger widths increase absolute feature counts but lower relative
density. Qualitative examples showcased the practical implications of generation features, illustrating
their capacity to override contextual outputs and directly control model behavior. These findings
provide new insights into the internal organization of LLMs, offering a systematic framework for
both understanding and precisely controlling their generative capabilities. While these findings offer
promising directions for controlling LLM behavior, they also raise important ethical considerations
(see Appendix B). Future work can extend this approach to larger models and explore its applications
for fine-grained, interpretable interventions in LLMs while maintaining output coherence and safety.
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A LIMITATIONS

Our analysis primarily focuses on the Gemma 2 2B model using the Gemma Scope SAE suite
(Lieberum et al., 2024), with preliminary experiments on Gemma 2 9B. The generalization of our
findings to other model architectures (e.g., LLaMA (Touvron et al., 2023), Mistral (Jiang et al., 2023))
or SAE architecture beyond JumpReLU (Rajamanoharan et al., 2024) used in Gemma Scope remains
to be verified.

B POTENTIAL RISKS

The ability to precisely control LLM outputs through generation features, while valuable for research
and legitimate applications, carries several potential risks:

• Adversarial Manipulation: Generation features could be exploited to override model
safeguards or inject unwanted content into model outputs.

• Bias Amplification: Targeted activation of certain features might amplify existing biases or
introduce new ones into model responses.

• Misuse in Misinformation: This technique could be used to force models to generate
specific narratives, potentially facilitating the spread of misinformation.

We encourage researchers to carefully consider these risks when building upon this work and to
implement appropriate safeguards in practical applications.

C ALGORITHM DETAILS

Algorithm 1 Algorithm for Identifying Generation Features (Replace Intervention)

Require: Model M , dataset D, feature directions {di}, intervention strength c, threshold τ
Ensure: Set of generation features G

1: Initialize: G← ∅
2: for each feature di ∈ {di} do ▷ Iterate through all feature directions.
3: for each sample x ∈ D do ▷ Iterate through all samples in the dataset.
4: a← Activation(M,x) ▷ Compute the original activation.
5: ϵ← SampleNoise() ▷ Sample noise from N(0, 1).
6: a′ ← c · di + ϵ ▷ Apply the replace intervention.
7: for j = 1 to M do ▷ Sample M tokens from the model.
8: Sample token ŷx,j ∼ PM (Y | x, do(a′))
9: end for ▷ Record the frequency of each token generated.

10: end for
11: Single-Token Analysis: ▷ Estimate ACE(y, di) for each token y using the collected samples.
12: y∗ ← argmaxy (ACE(y, di)) ▷ Find token with maximum ACE.
13: if ACE(y∗, di) > τ then
14: Add (di, y

∗) to G
15: end if
16: Multi-Token Analysis: ▷ Cluster generated tokens based on embedding similarities to find

set T .
17: if 1

NM

∑
x∈D

∑M
j=1 I(ŷx,j ∈ T | do(a′)) > τ then

18: Add (di, T ) to G
19: end if
20: end for
21: return G
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D DETAILED ANALYSIS OF GENERATION FEATURES

D.1 FEATURE CATEGORIZATION METHODOLOGY

We employed the DeepSeek-V2.5 model to categorize generation features using a systematic prompt-
based approach. The categorization prompt was structured as follows:

Please categorize the following tokens
into one of these categories:
1. Punctuation and Symbols
2. Common Words and Function Words
3. Numbers and Digits
4. Proper Nouns and Named Entities
5. Programming and Code-Related Tokens
6. Content Words

Example categorization:
Input tokens: ["!", "and", "1",
"John", "class", "book"]
Output:
!: 1
and: 2
1: 3
John: 4
class: 5
book: 6

D.2 TOP FEATURES BY CATEGORY

Token Feature Count

. 1,155
, 510
( 370
{ 240
- 227
" 109
/ 94
; 88
= 83
_ 73

Table 5: Top Punctuation &
Symbols

Token Feature Count

of 626
to 488
the 219
in 129
and 109
for 98
as 88
on 71
with 68
from 62

Table 6: Top Common Words &
Function Words

Token Feature Count

0 103
1 59
2 49
4 9
3 7
9 7
5 6
20 4
6 2
7 2

Table 7: Top Numbers & Digits
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Token Feature Count

al 14
R 9
University 8
arXiv 7
com 7
office 7
City 5
Dr 5
God 4
Microsoft 4

Table 8: Top Proper Nouns &
Named Entities

Token Feature Count

:// 48
<tr> 27
www 24
x 24
return 21
<tbody> 19
<td> 19
class 18
function 15
php 15

Table 9: Top Programming &
Code-Related Tokens

Token Feature Count

item 24
all 23
much 21
get 20
about 18
new 17
\ 16
true 16
public 14
said 13

Table 10: Top Content Words

E PROMPTS USED FOR EXPERIMENTS

E.1 PROMPTS FOR IDENTIFICATION

prompts:
- "<unk>␣<unk>␣<unk>␣<unk>"
- "He␣finally␣realized␣his"
- "The␣ancient␣library␣held"
- "Whispers␣echoed␣in␣the"
- "They␣raced␣against␣the"
- "Remembering␣the␣days␣when"
- "If␣only␣she␣had␣known"
- "In␣the␣future␣we␣will"
- "The␣door␣creaked␣open,␣revealing"
- "In␣the␣land␣of␣make-believe"

E.2 PROMPTS FOR VALIDATION

prompts:
- "The␣weather␣today␣seems␣unusually␣bright␣and"
- "She␣quickly␣realized␣that␣her␣favorite␣book␣was"
- "By␣the␣time␣the␣concert␣ended,␣the␣crowd"
- "The␣scientist's␣discovery␣led␣to␣a␣groundbreaking"
- "While␣hiking␣through␣the␣forest,␣I␣stumbled␣upon"
- "Despite␣the␣warnings,␣he␣decided␣to"
- "The␣software␣update␣introduced␣several␣new␣features␣that"
- "After␣years␣of␣research,␣the␣team␣concluded␣that"
- "As␣the␣plane␣ascended,␣the␣passengers␣could␣see"
- "He␣always␣wondered␣why␣the␣stars␣seemed␣to"
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