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ABSTRACT

Recent progress in pre-trained neural language models has significantly improved
the performance of many natural language processing (NLP) tasks. In this pa-
per we propose a new model architecture DeBERTa (Decoding-enhanced BERT
with disentangled attention) that improves the BERT and RoBERTa models using
two novel techniques. The first is the disentangled attention mechanism, where
each word is represented using two vectors that encode its content and position,
respectively, and the attention weights among words are computed using disen-
tangled matrices on their contents and relative positions, respectively. Second,
an enhanced mask decoder is used to incorporate absolute positions in the de-
coding layer to predict the masked tokens in model pre-training. In addition, a
new virtual adversarial training method is used for fine-tuning to improve models’
generalization. We show that these techniques significantly improve the efficiency
of model pre-training and the performance of both natural language understand
(NLU) and natural langauge generation (NLG) downstream tasks. Compared
to RoBERTa-Large, a DeBERTa model trained on half of the training data per-
forms consistently better on a wide range of NLP tasks, achieving improvements
on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs.
90.7%) and RACE by +3.6% (83.2% vs. 86.8%). Notably, we scale up DeBERTa
by training a larger version that consists of 48 Transform layers with 1.5 bil-
lion parameters. The significant performance boost makes the single DeBERTa
model surpass the human performance on the SuperGLUE benchmark (Wang et al.,
2019a) for the first time in terms of macro-average score (89.9 versus 89.8), and
the ensemble DeBERTa model sits atop the SuperGLUE leaderboard as of Jan-
uary 6, 2021, outperforming the human baseline by a decent margin (90.3 versus
89.8). The pre-trained DeBERTa models and the source code were released at:
https://github.com/microsoft/DeBERTa1.

1 INTRODUCTION

The Transformer has become the most effective neural network architecture for neural language
modeling. Unlike recurrent neural networks (RNNs) that process text in sequence, Transformers
apply self-attention to compute in parallel every word from the input text an attention weight that
gauges the influence each word has on another, thus allowing for much more parallelization than
RNNs for large-scale model training (Vaswani et al., 2017). Since 2018, we have seen the rise of a
set of large-scale Transformer-based Pre-trained Language Models (PLMs), such as GPT (Radford
et al., 2019; Brown et al., 2020), BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019c), XLNet
(Yang et al., 2019), UniLM (Dong et al., 2019), ELECTRA (Clark et al., 2020), T5 (Raffel et al.,
2020), ALUM (Liu et al., 2020), StructBERT (Wang et al., 2019c) and ERINE (Sun et al., 2019) .
These PLMs have been fine-tuned using task-specific labels and created new state of the art in many
downstream natural language processing (NLP) tasks (Liu et al., 2019b; Minaee et al., 2020; Jiang
et al., 2020; He et al., 2019a;b; Shen et al., 2020).

1Our code and models are also available at HuggingFace Transformers: https://github.com/
huggingface/transformers, https://huggingface.co/models?filter=deberta
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In this paper, we propose a new Transformer-based neural language model DeBERTa (Decoding-
enhanced BERT with disentangled attention), which improves previous state-of-the-art PLMs using
two novel techniques: a disentangled attention mechanism, and an enhanced mask decoder.

Disentangled attention. Unlike BERT where each word in the input layer is represented using
a vector which is the sum of its word (content) embedding and position embedding, each word in
DeBERTa is represented using two vectors that encode its content and position, respectively, and the
attention weights among words are computed using disentangled matrices based on their contents
and relative positions, respectively. This is motivated by the observation that the attention weight of a
word pair depends on not only their contents but their relative positions. For example, the dependency
between the words “deep” and “learning” is much stronger when they occur next to each other than
when they occur in different sentences.

Enhanced mask decoder. Like BERT, DeBERTa is pre-trained using masked language modeling
(MLM). MLM is a fill-in-the-blank task, where a model is taught to use the words surrounding a
mask token to predict what the masked word should be. DeBERTa uses the content and position
information of the context words for MLM. The disentangled attention mechanism already considers
the contents and relative positions of the context words, but not the absolute positions of these words,
which in many cases are crucial for the prediction. Consider the sentence “a new store opened beside
the new mall” with the italicized words “store” and “mall” masked for prediction. Although the local
contexts of the two words are similar, they play different syntactic roles in the sentence. (Here, the
subject of the sentence is “store” not “mall,” for example.) These syntactical nuances depend, to a
large degree, upon the words’ absolute positions in the sentence, and so it is important to account
for a word’s absolute position in the language modeling process. DeBERTa incorporates absolute
word position embeddings right before the softmax layer where the model decodes the masked words
based on the aggregated contextual embeddings of word contents and positions.

In addition, we propose a new virtual adversarial training method for fine-tuning PLMs to downstream
NLP tasks. The method is effective in improving models’ generalization.

We show through a comprehensive empirical study that these techniques substantially improve the
efficiency of pre-training and the performance of downstream tasks. In the NLU tasks, compared to
RoBERTa-Large, a DeBERTa model trained on half the training data performs consistently better
on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on
SQuAD v2.0 by +2.3%(88.4% vs. 90.7%), and RACE by +3.6% (83.2% vs. 86.8%). In the NLG
tasks, DeBERTa reduces the perplexity from 21.6 to 19.5 on the Wikitext-103 dataset. We further
scale up DeBERTa by pre-training a larger model that consists of 48 Transformer layers with 1.5
billion parameters. The single 1.5B-parameter DeBERTa model substantially outperforms T5 with 11
billion parameters on the SuperGLUE benchmark (Wang et al., 2019a) by 0.6%(89.3% vs. 89.9%),
and surpasses the human baseline (89.9 vs. 89.8) for the first time. The ensemble DeBERTa model
sits atop the SuperGLUE leaderboard as of January 6, 2021, outperforming the human baseline by a
decent margin (90.3 versus 89.8).

2 BACKGROUND

2.1 TRANSFORMER

A Transformer-based language model is composed of stacked Transformer blocks (Vaswani et al.,
2017). Each block contains a multi-head self-attention layer followed by a fully connected positional
feed-forward network. The standard self-attention mechanism lacks a natural way to encode word
position information. Thus, existing approaches add a positional bias to each input word embedding
so that each input word is represented by a vector whose value depends on its content and position.
The positional bias can be implemented using absolute position embedding (Vaswani et al., 2017;
Radford et al., 2019; Devlin et al., 2019) or relative position embedding (Huang et al., 2018; Yang
et al., 2019). It has been shown that relative position representations are more effective for natural
language understanding and generation tasks (Dai et al., 2019; Shaw et al., 2018). The proposed
disentangled attention mechanism differs from all existing approaches in that we represent each
input word using two separate vectors that encode a word’s content and position, respectively, and
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attention weights among words are computed using disentangled matrices on their contents and
relative positions, respectively.

2.2 MASKED LANGUAGE MODEL

Large-scale Transformer-based PLMs are typically pre-trained on large amounts of text to learn
contextual word representations using a self-supervision objective, known as Masked Language
Model (MLM) (Devlin et al., 2019). Specifically, given a sequence X “ txiu, we corrupt it into
X̃ by masking 15% of its tokens at random and then train a language model parameterized by θ to
reconstructX by predicting the masked tokens x̃ conditioned on X̃:

max
θ

log pθpX|X̃q “ max
θ

ÿ

iPC
log pθpx̃i “ xi|X̃q (1)

where C is the index set of the masked tokens in the sequence. The authors of BERT propose to keep
10% of the masked tokens unchanged, another 10% replaced with randomly picked tokens and the
rest replaced with the [MASK] token.

3 THE DEBERTA ARCHITECTURE

3.1 DISENTANGLED ATTENTION: A TWO-VECTOR APPROACH TO CONTENT AND POSITION
EMBEDDING

For a token at position i in a sequence, we represent it using two vectors, tHiu and tPi|ju, which
represent its content and relative position with the token at position j, respectively. The calculation of
the cross attention score between tokens i and j can be decomposed into four components as

Ai,j “ tHi,Pi|ju ˆ tHj ,Pj|iu
ᵀ

“HiH
ᵀ
j `HiP

ᵀ
j|i ` Pi|jH

ᵀ
j ` Pi|jP

ᵀ
j|i

(2)

That is, the attention weight of a word pair can be computed as a sum of four attention scores
using disentangled matrices on their contents and positions as content-to-content, content-to-position,
position-to-content, and position-to-position 2.

Existing approaches to relative position encoding use a separate embedding matrix to compute the
relative position bias in computing attention weights (Shaw et al., 2018; Huang et al., 2018). This
is equivalent to computing the attention weights using only the content-to-content and content-to-
position terms in equation 2. We argue that the position-to-content term is also important since the
attention weight of a word pair depends not only on their contents but on their relative positions,
which can only be fully modeled using both the content-to-position and position-to-content terms.
Since we use relative position embedding, the position-to-position term does not provide much
additional information and is removed from equation 2 in our implementation.

Taking single-head attention as an example, the standard self-attention operation (Vaswani et al.,
2017) can be formulated as:

Q “HWq,K “HWk,V “HWv,A “
QKᵀ
?
d

Ho “ softmaxpAqV

where H P RNˆd represents the input hidden vectors, Ho P R
Nˆd the output of self-attention,

Wq,Wk,Wv P R
dˆd the projection matrices,A P RNˆN the attention matrix, N the length of the

input sequence, and d the dimension of hidden states.

Denote k as the maximum relative distance, δpi, jq P r0, 2kq as the relative distance from token i to
token j, which is defined as:

δpi, jq “

#

0 for i´ j ď ´k
2k ´ 1 for i´ j ě k

i´ j ` k others.
(3)

2In this sense, our model shares some similarity to Tensor Product Representation (Smolensky, 1990; Schlag
et al., 2019; Chen et al., 2019) where a word is represented using a tensor product of its filler (content) vector
and its role (position) vector.

3



Published as a conference paper at ICLR 2021

We can represent the disentangled self-attention with relative position bias as equation 4,
where Qc,Kc and Vc are the projected content vectors generated using projection matrices
Wq,c,Wk,c,Wv,c P R

dˆd respectively, P P R2kˆd represents the relative position embedding
vectors shared across all layers (i.e., staying fixed during forward propagation), and Qr and Kr

are projected relative position vectors generated using projection matrices Wq,r,Wk,r P R
dˆd,

respectively.

Qc “HWq,c,Kc “HWk,c,Vc “HWv,c,Qr “ PWq,r,Kr “ PWk,r

Ãi,j “ QciK
c
j
ᵀ

looomooon

(a) content-to-content

` QciK
r
δpi,jq

ᵀ

looooomooooon

(b) content-to-position

` Kc
jQ

r
δpj,iq

ᵀ

looooomooooon

(c) position-to-content

Ho “ softmaxp
Ã
?
3d
qVc

(4)

Ãi,j is the element of attention matrix Ã, representing the attention score from token i to token
j. Qci is the i-th row of Qc. Kc

j is the j-th row of Kc. Kr
δpi,jq is the δpi, jq-th row of Kr with

regarding to relative distance δpi, jq. Qrδpj,iq is the δpj, iq-th row of Qr with regarding to relative
distance δpj, iq. Note that we use δpj, iq rather than δpi, jq here. This is because for a given position
i, position-to-content computes the attention weight of the key content at j with respect to the
query position at i, thus the relative distance is δpj, iq. The position-to-content term is calculated as
Kc
jQ

r
δpj,iq

ᵀ. The content-to-position term is calculated in a similar way.

Finally, we apply a scaling factor of 1?
3d

on Ã. The factor is important for stabilizing model
training (Vaswani et al., 2017), especially for large-scale PLMs.

Algorithm 1 Disentangled Attention

Input: Hidden stateH , relative distance embedding P , relative distance matrix δ. Content projec-
tion matrixWk,c,Wq,c,Wv,c, position projection matrixWk,r ,Wq,r.

1: Kc “HWk,c,Qc “HWq,c, Vc “HWv,c,Kr “ PWk,r ,Qr “ PWq,r

2: AcÑc “ QcKᵀ
c

3: for i “ 0, ..., N ´ 1 do
4: ÃcÑpri, :s “ Qcri, :sK

ᵀ
r

5: end for
6: for i “ 0, ..., N ´ 1 do
7: for j “ 0, ..., N ´ 1 do
8: AcÑpri, js “ ÃcÑpri, δri, jss
9: end for

10: end for
11: for j “ 0, ..., N ´ 1 do
12: ÃpÑcr:, js “Kcrj, :sQ

ᵀ
r

13: end for
14: for j “ 0, ..., N ´ 1 do
15: for i “ 0, ..., N ´ 1 do
16: ApÑcri, js “ ÃpÑcrδrj, is, js
17: end for
18: end for
19: Ã “ AcÑc `AcÑp `ApÑc
20: Ho “ softmaxp Ã?

3d
qVc

Output: Ho

3.1.1 EFFICIENT IMPLEMENTATION

For an input sequence of length N , it requires a space complexity of OpN2dq (Shaw et al., 2018;
Huang et al., 2018; Dai et al., 2019) to store the relative position embedding for each token. However,
taking content-to-position as an example, we note that since δpi, jq P r0, 2kq and the embeddings
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of all possible relative positions are always a subset of Kr P R
2kˆd, then we can reuse Kr in the

attention calculation for all the queries.

In our experiments, we set the maximum relative distance k to 512 for pre-training. The disentangled
attention weights can be computed efficiently using Algorithm 1. Let δ be the relative position matrix
according to equation 3, i.e., δri, js “ δpi, jq. Instead of allocating a different relative position
embedding matrix for each query, we multiply each query vectorQcri, :s byKᵀ

r P R
dˆ2k, as in line

3´ 5. Then, we extract the attention weight using the relative position matrix δ as the index, as in
line 6 ´ 10. To compute the position-to-content attention score, we calculate ÃpÑcr:, js, i.e., the
column vector of the attention matrix ÃpÑc, by multiplying each key vectorKcrj, :s byQᵀ

r , as in
line 11´ 13. Finally, we extract the corresponding attention score via the relative position matrix δ
as the index, as in line 14´ 18. In this way, we do not need to allocate memory to store a relative
position embedding for each query and thus reduce the space complexity to Opkdq (for storingKr

andQr).

3.2 ENHANCED MASK DECODER ACCOUNTS FOR ABSOLUTE WORD POSITIONS

DeBERTa is pretrained using MLM, where a model is trained to use the words surrounding a mask
token to predict what the masked word should be. DeBERTa uses the content and position information
of the context words for MLM. The disentangled attention mechanism already considers the contents
and relative positions of the context words, but not the absolute positions of these words, which in
many cases are crucial for the prediction.

Given a sentence “a new store opened beside the new mall” with the words “store” and “mall”
masked for prediction. Using only the local context (e.g., relative positions and surrounding words)
is insufficient for the model to distinguish store and mall in this sentence, since both follow the word
new with the same relative positions. To address this limitation, the model needs to take into account
absolute positions, as complement information to the relative positions. For example, the subject of
the sentence is “store” not “mall”. These syntactical nuances depend, to a large degree, upon the
words’ absolute positions in the sentence.

There are two methods of incorporating absolute positions. The BERT model incorporates absolute
positions in the input layer. In DeBERTa, we incorporate them right after all the Transformer layers
but before the softmax layer for masked token prediction, as shown in Figure 2. In this way, DeBERTa
captures the relative positions in all the Transformer layers and only uses absolute positions as
complementary information when decoding the masked words. Thus, we call DeBERTa’s decoding
component an Enhanced Mask Decoder (EMD). In the empirical study, we compare these two
methods of incorporating absolute positions and observe that EMD works much better. We conjecture
that the early incorporation of absolute positions used by BERT might undesirably hamper the model
from learning sufficient information of relative positions. In addition, EMD also enables us to
introduce other useful information, in addition to positions, for pre-training. We leave it to future
work.

4 SCALE INVARIANT FINE-TUNING

This section presents a new virtual adversarial training algorithm, Scale-invariant-Fine-Tuning (SiFT),
a variant to the algorithm described in Miyato et al. (2018); Jiang et al. (2020), for fine-tuning.

Virtual adversarial training is a regularization method for improving models’ generalization. It does
so by improving a model’s robustness to adversarial examples, which are created by making small
perturbations to the input. The model is regularized so that when given a task-specific example, the
model produces the same output distribution as it produces on an adversarial perturbation of that
example.

For NLP tasks, the perturbation is applied to the word embedding instead of the original word
sequence. However, the value ranges (norms) of the embedding vectors vary among different words
and models. The variance gets larger for bigger models with billions of parameters, leading to some
instability of adversarial training.

5



Published as a conference paper at ICLR 2021

Inspired by layer normalization (Ba et al., 2016), we propose the SiFT algorithm that improves the
training stability by applying the perturbations to the normalized word embeddings. Specifically,
when fine-tuning DeBERTa to a downstream NLP task in our experiments, SiFT first normalizes the
word embedding vectors into stochastic vectors, and then applies the perturbation to the normalized
embedding vectors. We find that the normalization substantially improves the performance of the
fine-tuned models. The improvement is more prominent for larger DeBERTa models. Note that we
only apply SiFT to DeBERTa1.5B on SuperGLUE tasks in our experiments and we will provide a
more comprehensive study of SiFT in our future work.

5 EXPERIMENT

This section reports DeBERTa results on various NLU tasks.

5.1 MAIN RESULTS ON NLU TASKS

Following previous studies of PLMs, we report results using large and base models.

5.1.1 PERFORMANCE ON LARGE MODELS

Model CoLA QQP MNLI-m/mm SST-2 STS-B QNLI RTE MRPC Avg.
Mcc Acc Acc Acc Corr Acc Acc Acc

BERTlarge 60.6 91.3 86.6/- 93.2 90.0 92.3 70.4 88.0 84.05
RoBERTalarge 68.0 92.2 90.2/90.2 96.4 92.4 93.9 86.6 90.9 88.82
XLNetlarge 69.0 92.3 90.8/90.8 97.0 92.5 94.9 85.9 90.8 89.15
ELECTRAlarge 69.1 92.4 90.9/- 96.9 92.6 95.0 88.0 90.8 89.46
DeBERTalarge 70.5 92.3 91.1/91.1 96.8 92.8 95.3 88.3 91.9 90.00

Table 1: Comparison results on the GLUE development set.

We pre-train our large models following the setting of BERT (Devlin et al., 2019), except that we use
the BPE vocabulary of Radford et al. (2019); Liu et al. (2019c). For training data, we use Wikipedia
(English Wikipedia dump3; 12GB), BookCorpus (Zhu et al., 2015) (6GB), OPENWEBTEXT (public
Reddit content (Gokaslan & Cohen, 2019); 38GB), and STORIES (a subset of CommonCrawl (Trinh
& Le, 2018); 31GB). The total data size after data deduplication (Shoeybi et al., 2019) is about 78G.
Refer to Appendix A.2 for a detailed description of the pre-training dataset.

We use 6 DGX-2 machines (96 V100 GPUs) to train the models. A single model trained with 2K
batch size and 1M steps takes about 20 days. Refer to Appendix A for the detailed hyperparamters.

We summarize the results on eight NLU tasks of GLUE (Wang et al., 2019b) in Table 1, where
DeBERTa is compared DeBERTa with previous Transform-based PLMs of similar structures (i.e. 24
layers with hidden size of 1024) including BERT, RoBERTa, XLNet, ALBERT and ELECTRA. Note
that RoBERTa, XLNet and ELECTRA are pre-trained on 160G training data while DeBERTa is pre-
trained on 78G training data. RoBERTa and XLNet are pre-trained for 500K steps with 8K samples
in a step, which amounts to four billion training samples. DeBERTa is pre-trained for one million
steps with 2K samples in each step. This amounts to two billion training samples, approximately
half of either RoBERTa or XLNet. Table 1 shows that compared to BERT and RoBERTa, DeBERTa
performs consistently better across all the tasks. Meanwhile, DeBERTa outperforms XLNet in six out
of eight tasks. Particularly, the improvements on MRPC (1.1% over XLNet and 1.0% over RoBERTa),
RTE (2.4% over XLNet and 1.7% over RoBERTa) and CoLA (1.5% over XLNet and 2.5% over
RoBERTa) are significant. DeBERTa also outperforms other SOTA PLMs, i.e., ELECTRAlarge and
XLNetlarge, in terms of average GLUE score.

Among all GLUE tasks, MNLI is most often used as an indicative task to monitor the research
progress of PLMs. DeBERTa significantly outperforms all existing PLMs of similar size on MNLI
and creates a new state of the art.

3https://dumps.wikimedia.org/enwiki/
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Model MNLI-m/mm SQuAD v1.1 SQuAD v2.0 RACE ReCoRD SWAG NER
Acc F1/EM F1/EM Acc F1/EM Acc F1

BERTlarge 86.6/- 90.9/84.1 81.8/79.0 72.0 - 86.6 92.8
ALBERTlarge 86.5/- 91.8/85.2 84.9/81.8 75.2 - - -
RoBERTalarge 90.2/90.2 94.6/88.9 89.4/86.5 83.2 90.6/90.0 89.9 93.4
XLNetlarge 90.8/90.8 95.1/89.7 90.6/87.9 85.4 - - -
Megatron336M 89.7/90.0 94.2/88.0 88.1/84.8 83.0 - - -
DeBERTalarge 91.1/91.1 95.5/90.1 90.7/88.0 86.8 91.4/91.0 90.8 93.8
ALBERTxxlarge 90.8/- 94.8/89.3 90.2/87.4 86.5 - - -
Megatron1.3B 90.9/91.0 94.9/89.1 90.2/87.1 87.3 - - -
Megatron3.9B 91.4/91.4 95.5/90.0 91.2/88.5 89.5 - - -

Table 2: Results on MNLI in/out-domain, SQuAD v1.1, SQuAD v2.0, RACE, ReCoRD, SWAG,
CoNLL 2003 NER development set. Note that missing results in literature are signified by “-”.

In addition to GLUE, DeBERTa is evaluated on three categories of NLU benchmarks: (1) Question
Answering: SQuAD v1.1 (Rajpurkar et al., 2016), SQuAD v2.0 (Rajpurkar et al., 2018), RACE (Lai
et al., 2017), ReCoRD (Zhang et al., 2018) and SWAG (Zellers et al., 2018); (2) Natural Language
Inference: MNLI (Williams et al., 2018); and (3) NER: CoNLL-2003. For comparison, we include
ALBERTxxlarge (Lan et al., 2019) 4 and Megatron (Shoeybi et al., 2019) with three different model
sizes, denoted as Megatron336M, Megatron1.3B and Megatron3.9B, respectively, which are trained using
the same dataset as RoBERTa. Note that Megatron336M has a similar model size as other models
mentioned above5.

We summarize the results in Table 2. Compared to the previous SOTA PLMs with a similar model
size (i.e., BERT, RoBERTa, XLNet, ALBERTlarge, and Megatron336M), DeBERTa shows superior
performance in all seven tasks. Taking the RACE benchmark as an example, DeBERTa significantly
outperforms XLNet by +1.4% (86.8% vs. 85.4%). Although Megatron1.3B is three times larger than
DeBERTa, DeBERTa outperforms it in three of the four benchmarks. We further report DeBERTa on
text generation tasks in Appendix A.4.

5.1.2 PERFORMANCE ON BASE MODELS

Our setting for base model pre-training is similar to that for large models. The base model structure
follows that of the BERT base model, i.e., L “ 12, H “ 768, A “ 12. We use 4 DGX-2 with 64
V100 GPUs to train the base model. It takes 10 days to finish a single pre-training of 1M training steps
with batch size 2048. We train DeBERTa using the same 78G dataset, and compare it to RoBERTa
and XLNet trained on 160G text data.

We summarize the base model results in Table 3. Across all three tasks, DeBERTa consistently
outperforms RoBERTa and XLNet by a larger margin than that in large models. For example, on
MNLI-m, DeBERTabase obtains +1.2% (88.8% vs. 87.6%) over RoBERTabase, and +2% (88.8% vs.
86.8%) over XLNetbase.

Model MNLI-m/mm (Acc) SQuAD v1.1 (F1/EM) SQuAD v2.0 (F1/EM)

RoBERTabase 87.6/- 91.5/84.6 83.7/80.5
XLNetbase 86.8/- -/- -/80.2
DeBERTabase 88.8/88.5 93.1/87.2 86.2/83.1

Table 3: Results on MNLI in/out-domain (m/mm), SQuAD v1.1 and v2.0 development set.

4The hidden dimension of ALBERTxxlarge is 4 times of DeBERTa and the computation cost is about 4 times
of DeBERTa.

5T5 (Raffel et al., 2020) has more parameters (11B). Raffel et al. (2020) only report the test results of T5
which are not comparable with other models.
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5.2 MODEL ANALYSIS

In this section, we first present an ablation study to quantify the relative contributions of different
components introduced in DeBERTa. Then, we study the convergence property to characterize the
model training efficiency. We run experiments for analysis using the base model setting: a model is
pre-trained using the Wikipedia + Bookcorpus dataset for 1M steps with batch size 256 in 7 days
on a DGX-2 machine with 16 V-100 GPUs. Due to space limit, we visualize the different attention
patterns of DeBERTa and RoBERTa in Appendix A.7.

5.2.1 ABLATION STUDY

To verify our experimental setting, we pre-train the RoBERTa base model from scratch. The re-pre-
trained RoBERTa model is denoted as RoBERTa-ReImpbase. To investigate the relative contributions
of different components in DeBERTa, we develop three variations:

• -EMD is the DeBERTa base model without EMD.
• -C2P is the DeBERTa base model without the content-to-position term ((c) in Eq. 4).
• -P2C is the DeBERTa base model without the position-to-content term ((b) in Eq. 4). As

XLNet also uses the relative position bias, this model is close to XLNet plus EMD.

Model MNLI-m/mm SQuAD v1.1 SQuAD v2.0 RACE
Acc F1/EM F1/EM Acc

BERTbase Devlin et al. (2019) 84.3/84.7 88.5/81.0 76.3/73.7 65.0
RoBERTabase Liu et al. (2019c) 84.7/- 90.6/- 79.7/- 65.6
XLNetbase Yang et al. (2019) 85.8/85.4 -/- 81.3/78.5 66.7
RoBERTa-ReImpbase 84.9/85.1 91.1/84.8 79.5/76.0 66.8
DeBERTabase 86.3/86.2 92.1/86.1 82.5/79.3 71.7
-EMD 86.1/86.1 91.8/85.8 81.3/78.0 70.3
-C2P 85.9/85.7 91.6/85.8 81.3/78.3 69.3
-P2C 86.0/85.8 91.7/85.7 80.8/77.6 69.6
-(EMD+C2P) 85.8/85.9 91.5/85.3 80.3/77.2 68.1
-(EMD+P2C) 85.8/85.8 91.3/85.1 80.2/77.1 68.5

Table 4: Ablation study of the DeBERTa base model.

Table 4 summarizes the results on four benchmark datasets. First, RoBERTa-ReImp performs
similarly to RoBERTa across all benchmark datasets, verfiying that our setting is reasonable. Second,
we see that removing any one component in DeBERTa results in a sheer performance drop. For
instance, removing EMD (-EMD) results in a loss of 1.4% (71.7% vs. 70.3%) on RACE, 0.3%
(92.1% vs. 91.8%) on SQuAD v1.1, 1.2% (82.5% vs. 81.3%) on SQuAD v2.0, 0.2% (86.3% vs.
86.1%) and 0.1% (86.2% vs. 86.1%) on MNLI-m/mm, respectively. Similarly, removing either
content-to-position or position-to-content leads to inferior performance in all the benchmarks. As
expected, removing two components results in even more substantial loss in performance.

5.3 SCALE UP TO 1.5 BILLION PARAMETERS

Larger pre-trained models have shown better generalization results (Raffel et al., 2020; Brown et al.,
2020; Shoeybi et al., 2019). Thus, we have built a larger version of DeBERTa with 1.5 billion
parameters, denoted as DeBERTa1.5B . The model consists of 48 layers with a hidden size of 1,536
and 24 attention heads 6. DeBERTa1.5B is trained on a pre-training dataset amounting to 160G,
similar to that in Liu et al. (2019c), with a new vocabulary of size 128K constructed using the dataset.

To train DeBERTa1.5B , we optimize the model architecture as follows. First, we share the projection
matrices of relative position embedding Wk,r,Wq,r with Wk,c,Wq,c, respectively, in all attention
layers to reduce the number of model parameters. Our ablation study in Table 13 on base models
shows that the projection matrix sharing reduces the model size while retaining the model performance.

6See Table 8 in Appendix for the model hyperparameters.

8



Published as a conference paper at ICLR 2021

Second, a convolution layer is added aside the first Transformer layer to induce n-gram knowledge of
sub-word encodings and their outputs are summed up before feeding to the next Transformer layer 7.

Table 5 reports the test results of SuperGLUE (Wang et al., 2019a) which is one of the most popular
NLU benchmarks. SuperGLUE consists of a wide of NLU tasks, including Question Answering
(Clark et al., 2019; Khashabi et al., 2018; Zhang et al., 2018), Natural Language Inference (Dagan
et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), Word Sense
Disambiguation (Pilehvar & Camacho-Collados, 2019), and Reasoning (Levesque et al., 2011;
Roemmele et al., 2011). Since its release in 2019, top research teams around the world have been
developing large-scale PLMs that have driven striking performance improvement on SuperGLUE.

The significant performance boost due to scaling DeBERTa to a larger model makes the single
DeBERTa1.5B surpass the human performance on SuperGLUE for the first time in terms of macro-
average score (89.9 versus 89.8) as of December 29, 2020, and the ensemble DeBERTa model
(DeBERTaEnsemble) sits atop the SuperGLUE benchmark rankings as of January 6, 2021, outper-
forming the human baseline by a decent margin (90.3 versus 89.8). Compared to T5, which consists
of 11 billion parameters, the 1.5-billion-parameter DeBERTa is much more energy efficient to train
and maintain, and it is easier to compress and deploy to apps of various settings.

Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Average
Acc F1/Acc Acc F1a/EM F1/EM Acc Acc Acc Score

RoBERTalarge 87.1 90.5/95.2 90.6 84.4/52.5 90.6/90.0 88.2 69.9 89.0 84.6
NEXHA-Plus 87.8 94.4/96.0 93.6 84.6/55.1 90.1/89.6 89.1 74.6 93.2 86.7
T511B 91.2 93.9/96.8 94.8 88.1/63.3 94.1/93.4 92.5 76.9 93.8 89.3
T511B+Meena 91.3 95.8/97.6 97.4 88.3/63.0 94.2/93.5 92.7 77.9 95.9 90.2
Human 89.0 95.8/98.9 100.0 81.8/51.9 91.7/91.3 93.6 80.0 100.0 89.8
DeBERTa1.5B+SiFT 90.4 94.9/97.2 96.8 88.2/63.7 94.5/94.1 93.2 76.4 95.9 89.9
DeBERTaEnsemble 90.4 95.7/97.6 98.4 88.2/63.7 94.5/94.1 93.2 77.5 95.9 90.3

Table 5: SuperGLUE test set results scored using the SuperGLUE evaluation server. All the results
are obtained from https://super.gluebenchmark.com on January 6, 2021.

6 CONCLUSIONS

This paper presents a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled
attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
disentangled attention mechanism, where each word is represented using two vectors that encode
its content and position, respectively, and the attention weights among words are computed using
disentangled matrices on their contents and relative positions, respectively. The second is an enhanced
mask decoder which incorporates absolute positions in the decoding layer to predict the masked
tokens in model pre-training. In addition, a new virtual adversarial training method is used for
fine-tuning to improve model’s generalization on downstream tasks.

We show through a comprehensive empirical study that these techniques significantly improve the
efficiency of model pre-training and the performance of downstream tasks. The DeBERTa model
with 1.5 billion parameters surpasses the human performance on the SuperGLUE benchmark for the
first time in terms of macro-average score.

DeBERTa surpassing human performance on SuperGLUE marks an important milestone toward
general AI. Despite its promising results on SuperGLUE, the model is by no means reaching the
human-level intelligence of NLU. Humans are extremely good at leveraging the knowledge learned
from different tasks to solve a new task with no or little task-specific demonstration. This is referred
to as compositional generalization, the ability to generalize to novel compositions (new tasks) of
familiar constituents (subtasks or basic problem-solving skills). Moving forward, it is worth exploring
how to make DeBERTa incorporate compositional structures in a more explicit manner, which could
allow combining neural and symbolic computation of natural language similar to what humans do.

7Please refer to Table 12 in Appendix A.6 for the ablation study of different model sizes, and Table 13 in
Appendix A.6 for the ablation study of new modifications.
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A APPENDIX

A.1 DATASET

Corpus Task #Train #Dev #Test #Label Metrics
General Language Understanding Evaluation (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

SuperGLUE
WSC Coreference 554k 104 146 2 Accuracy
BoolQ QA 9,427 3,270 3,245 2 Accuracy
COPA QA 400k 100 500 2 Accuracy
CB NLI 250 57 250 3 Accuracy/F1
RTE NLI 2.5k 276 3k 2 Accuracy
WiC WSD 2.5k 276 3k 2 Accuracy
ReCoRD MRC 101k 10k 10k - Exact Match (EM)/F1
MultiRC Multiple choice 5,100 953 1,800 - Exact Match (EM)/F1

Question Answering
SQuAD v1.1 MRC 87.6k 10.5k 9.5k - Exact Match (EM)/F1
SQuAD v2.0 MRC 130.3k 11.9k 8.9k - Exact Match (EM)/F1
RACE MRC 87,866 4,887 4,934 4 Accuracy
SWAG Multiple choice 73.5k 20k 20k 4 Accuracy

Token Classification
CoNLL 2003 NER 14,987 3,466 3,684 8 F1

Table 6: Summary information of the NLP application benchmarks.

‚ GLUE. The General Language Understanding Evaluation (GLUE) benchmark is a collection of
nine natural language understanding (NLU) tasks. As shown in Table 6, it includes question answer-
ing (Rajpurkar et al., 2016), linguistic acceptability (Warstadt et al., 2018), sentiment analysis (Socher
et al., 2013), text similarity (Cer et al., 2017), paraphrase detection (Dolan & Brockett, 2005), and
natural language inference (NLI) (Dagan et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009; Levesque et al., 2012; Williams et al., 2018). The diversity of the tasks
makes GLUE very suitable for evaluating the generalization and robustness of NLU models.

‚ SuperGLUE. SuperGLUE is an extension of the GLUE benchmark, but more difficult, which is
a collection of eight NLU tasks. It covers a various of tasks including question answering (Zhang
et al., 2018; Clark et al., 2019; Khashabi et al., 2018), natural language inference (Dagan et al.,
2006; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009; De Marneffe et al.,
2019), coreference resolution (Levesque et al., 2012) and word sense disambiguation (Pilehvar &
Camacho-Collados, 2019).

‚RACE is a large-scale machine reading comprehension dataset, collected from English examinations
in China, which are designed for middle school and high school students (Lai et al., 2017).

‚ SQuAD v1.1/v2.0 is the Stanford Question Answering Dataset (SQuAD) v1.1 and v2.0 (Rajpurkar
et al., 2016; 2018) are popular machine reading comprehension benchmarks. Their passages come
from approximately 500 Wikipedia articles and the questions and answers are obtained by crowd-
sourcing. The SQuAD v2.0 dataset includes unanswerable questions about the same paragraphs.
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‚ SWAG is a large-scale adversarial dataset for the task of grounded commonsense inference, which
unifies natural language inference and physically grounded reasoning (Zellers et al., 2018). SWAG
consists of 113k multiple choice questions about grounded situations.

‚ CoNLL 2003 is an English dataset consisting of text from a wide variety of sources. It has 4 types
of named entity.

A.2 PRE-TRAINING DATASET

For DeBERTa pre-training, we use Wikipedia (English Wikipedia dump8; 12GB), BookCorpus (Zhu
et al., 2015) 9 (6GB), OPENWEBTEXT (public Reddit content (Gokaslan & Cohen, 2019); 38GB)
and STORIES10 (a subset of CommonCrawl (Trinh & Le, 2018); 31GB). The total data size after
data deduplication(Shoeybi et al., 2019) is about 78GB. For pre-training, we also sample 5% training
data as the validation set to monitor the training process. Table 7 compares datasets used in different
pre-trained models.

Model Wiki+Book OpenWebText Stories CC-News Giga5 ClueWeb Common Crawl
16GB 38GB 31GB 76GB 16GB 19GB 110GB

BERT X
XLNet X X X X
RoBERTa X X X X
DeBERTa X X X
DeBERTa1.5B X X X X

Table 7: Comparison of the pre-training data.

A.3 IMPLEMENTATION DETAILS

Following RoBERTa (Liu et al., 2019c), we adopt dynamic data batching. We also include span
masking (Joshi et al., 2020) as an additional masking strategy with the span size up to three. We list
the detailed hyperparameters of pre-training in Table 8. For pre-training, we use Adam (Kingma &
Ba, 2014) as the optimizer with weight decay (Loshchilov & Hutter, 2018). For fine-tuning, even
though we can get better and robust results with RAdam(Liu et al., 2019a) on some tasks, e.g. CoLA,
RTE and RACE, we use Adam(Kingma & Ba, 2014) as the optimizer for a fair comparison. For
fine-tuning, we train each task with a hyper-parameter search procedure, each run takes about 1-2
hours on a DGX-2 node. All the hyper-parameters are presented in Table 9. The model selection is
based on the performance on the task-specific development sets.

Our code is implemented based on Huggingface Transformers11, FairSeq12 and Megatron (Shoeybi
et al., 2019)13.

A.3.1 PRE-TRAINING EFFICIENCY

To investigate the efficiency of model pre-training, we plot the performance of the fine-tuned model
on downstream tasks as a function of the number of pre-training steps. As shown in Figure 1, for
RoBERTa-ReImpbase and DeBERTabase, we dump a checkpoint every 150K pre-training steps, and
then fine-tune the checkpoint on two representative downstream tasks, MNLI and SQuAD v2.0, and
then report the accuracy and F1 score, respectively. As a reference, we also report the final model
performance of both the original RoBERTabase (Liu et al., 2019c) and XLNetbase (Yang et al., 2019).
The results show that DeBERTabase consistently outperforms RoBERTa-ReImpbase during the course
of pre-training.

8https://dumps.wikimedia.org/enwiki/
9https://github.com/butsugiri/homemade_bookcorpus

10https://github.com/tensorflow/models/tree/master/research/lm_commonsense
11https://github.com/huggingface/transformers
12https://github.com/pytorch/fairseq
13https://github.com/NVIDIA/Megatron-LM
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Hyper-parameter DeBERTa1.5B DeBERTalarge DeBERTabase DeBERTabase´ablation
Number of Layers 48 24 12 12
Hidden size 1536 1024 768 768
FNN inner hidden size 6144 4096 3072 3072
Attention Heads 24 16 12 12
Attention Head size 64 64 64 64
Dropout 0.1 0.1 0.1 0.1
Warmup Steps 10k 10k 10k 10k
Learning Rates 1.5e-4 2e-4 2e-4 1e-4
Batch Size 2k 2k 2k 256
Weight Decay 0.01 0.01 0.01 0.01
Max Steps 1M 1M 1M 1M
Learning Rate Decay Linear Linear Linear Linear
Adam ε 1e-6 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999
Gradient Clipping 1.0 1.0 1.0 1.0
Number of DGX-2 nodes 16 6 4 1
Training Time 30 days 20 days 10 days 7 days

Table 8: Hyper-parameters for pre-training DeBERTa.

Hyper-parameter DeBERTa1.5B DeBERTalarge DeBERTabase
Dropout of task layer {0,0.15,0.3} {0,0.1,0.15} {0,0.1,0.15}
Warmup Steps {50,100,500,1000} {50,100,500,1000} {50,100,500,1000}
Learning Rates {1e-6, 3e-6, 5e-6} {5e-6, 8e-6, 9e-6, 1e-5} {1.5e-5,2e-5, 3e-5, 4e-5}
Batch Size {16,32,64} {16,32,48,64} {16,32,48,64}
Weight Decay 0.01 0.01
Maximun Training Epochs 10 10 10
Learning Rate Decay Linear Linear Linear
Adam ε 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Gradient Clipping 1.0 1.0 1.0

Table 9: Hyper-parameters for fine-tuning DeBERTa on down-streaming tasks.

(a) Results on MNLI development (b) Results on SQuAD v2.0 development

Figure 1: Pre-training performance curve between DeBERTa and its counterparts on the MNLI and
SQuAD v2.0 development set.
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A.4 MAIN RESULTS ON GENERATION TASKS

In addition to NLU tasks, DeBERTa can also be extended to handle NLG tasks. To allow DeBERTa
operating like an auto-regressive model for text generation, we use a triangular matrix for self-
attention and set the upper triangular part of the self-attention mask to ´8, following Dong et al.
(2019).

We evaluate DeBERTa on the task of auto-regressive language model (ARLM) using Wikitext-
103 (Merity et al., 2016). To do so, we train a new version of DeBERTa, denoted as DeBERTa-MT.
It is jointly pre-trained using the MLM and ARLM tasks as in UniLM (Dong et al., 2019). The
pre-training hyper-parameters follows that of DeBERTabase except that we use fewer training steps
(200k). For comparison, we use RoBERTa as baseline, and include GPT-2 and Transformer-XL as
additional references. DeBERTa-AP is a variant of DeBERTa where absolute position embeddings
are incorporated in the input layer as RoBERTa. For a fair comparison, all these models are base
models pre-trained in a similar setting.

Model RoBERTa DeBERTa-AP DeBERTa DeBERTa-MT GPT-2 Transformer-XL

Dev PPL 21.6 20.7 20.5 19.5 - 23.1
Test PPL 21.6 20.0 19.9 19.5 37.50 24

Table 10: Language model results in perplexity (lower is better) on Wikitext-103 .

Table 10 summarizes the results on Wikitext-103. We see that DeBERTabase obtains lower perplexities
on both dev and test data, and joint training using MLM and ARLM reduces perplexity further.
That DeBERTa-AP is inferior to DeBERTa indicates that it is more effective to incorporate absolute
position embeddings of words in the decoding layer as the EMD in DeBERTa than in the input layer
as RoBERTa.

A.5 HANDLING LONG SEQUENCE INPUT

With relative position bias, we choose to truncate the maximum relative distance to k as in equation 3.
Thus in each layer, each token can attend directly to at most 2pk ´ 1q tokens and itself. By stacking
Transformer layers, each token in the l´th layer can attend to at most p2k ´ 1ql tokens implicitly.
Taking DeBERTalarge as an example, where k “ 512, L “ 24, in theory, the maximum sequence
length that can be handled is 24,528. This is a byproduct benefit of our design choice and we find it
beneficial for the RACE task. A comparison of long sequence effect on the RACE task is shown in
Table 11.

Sequence length Middle High Accuracy

512 88.8 85.0 86.3
768 88.7 86.3 86.8

Table 11: The effect of handling long sequence input for RACE task with DeBERTa

Long sequence handling is an active research area. There have been a lot of studies where the
Transformer architecture is extended for long sequence handling(Beltagy et al., 2020; Kitaev et al.,
2019; Child et al., 2019; Dai et al., 2019). One of our future research directions is to extend DeBERTa
to deal with extremely long sequences.

A.6 PERFORMANCE IMPROVEMENTS OF DIFFERENT MODEL SCALES

In this subsection, we study the effect of different model sizes applied to large models on GLUE.
Table 12 summarizes the results, showing that larger models can obtain a better result and SiFT also
improves the model performance consistently.
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Model CoLA QQP MNLI-m/mm SST-2 STS-B QNLI RTE MRPC Avg.
Mcc Acc Acc Acc Corr Acc Acc Acc

DeBERTalarge 70.5 92.3 91.1/91.1 96.8 92.8 95.3 88.3 91.9 90.00
DeBERTa900M 71.1 92.3 91.7/91.6 97.5 92.0 95.8 93.5 93.1 90.86
DeBERTa1.5B 72.0 92.7 91.7/91.9 97.2 92.9 96.0 93.9 92.0 91.17
DeBERTa1.5B+SiFT 73.5 93.0 92.0/92.1 97.5 93.2 96.5 96.5 93.2 91.93

Table 12: Comparison results of DeBERTa models with different sizes on the GLUE development set.

Model Parameters MNLI-m/mm SQuAD v1.1 SQuAD v2.0
Acc F1/EM F1/EM

RoBERTa-ReImpbase 120M 84.9/85.1 91.1/84.8 79.5/76.0
DeBERTabase 134M 86.3/86.2 92.1/86.1 82.5/79.3
+ ShareProjection 120M 86.3/86.3 92.2/86.2 82.3/79.5
+ Conv 122M 86.3/86.5 92.5/86.4 82.5/79.7
+ 128k Vocab 190M 86.7/86.9 93.1/86.8 83.0/80.1

Table 13: Ablation study of the additional modifications in DeBERTa1.5B and DeBERTa900M models.
Note that we progressively add each component on the top of DeBERTabase.

A.7 MODEL COMPLEXITY

With the disentangled attention mechanism, we introduce three additional sets of parameters
Wq,r,Wk,r P R

dˆd and P P R2kˆd. The total increase in model parameters is 2Lˆ d2 ` 2k ˆ d.
For the large model pd “ 1024, L “ 24, k “ 512q, this amounts to about 49M additional parameters,
an increase of 13%. For the base modelpd “ 768, L “ 12, k “ 512q, this amounts to 14M additional
parameters, an increase of 12%. However, by sharing the projection matrix between content and
position embedding, i.e. Wq,r “Wq,c,Wk,r “Wk,c, the number of parameters of DeBERTa is
the same as RoBERTa. Our experiment on base model shows that the results are almost the same, as
in Table 13.

The additional computational complexity is OpNkdq due to the calculation of the additional position-
to-content and content-to-position attention scores. Compared with BERT or RoBERTa, this increases
the computational cost by 30%. Compared with XLNet which also uses relative position embedding,
the increase of computational cost is about 15%. A further optimization by fusing the attention
computation kernel can significantly reduce this additional cost. For EMD, since the decoder in
pre-training only reconstructs the masked tokens, it does not introduce additional computational cost
for unmasked tokens. In the situation where 15% tokens are masked and we use only two decoder
layers, the additional cost is 0.15ˆ 2{L which results in an additional computational cost of only 3%
for base model(L “ 12) and 2% for large model(L “ 24) in EMD.

A.8 ADDITIONAL DETAILS OF ENHANCED MASK DECODER

The structure of EMD is shown in Figure 2b. There are two inputs for EMD, (i.e., I,H). H denotes
the hidden states from the previous Transformer layer, and I can be any necessary information for
decoding, e.g., H , absolute position embedding or output from previous EMD layer. n denotes n
stacked layers of EMD where the output of each EMD layer will be the input I for next EMD layer
and the output of last EMD layer will be fed to the language model head directly. The n layers can
share the same weight. In our experiment we share the same weight for n “ 2 layers to reduce the
number of parameters and use absolute position embedding as I of the first EMD layer. When I “ H
and n “ 1, EMD is the same as the BERT decoder layer. However, EMD is more general and flexible
as it can take various types of input information for decoding.

A.9 ATTENTION PATTERNS

To visualize how DeBERTa operates differently from RoBERTa, we present in Figure 3 the attention
patterns (taken in the last self-attention layers) of RoBERTa, DeBERTa and three DeBERTa variants.
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Figure 2: Comparison of the decoding layer.

Figure 3: Comparison of attention patterns of the last layer among DeBERTa, RoBERTa and DeBERTa
variants (i.e., DeBERTa without EMD, C2P and P2C respectively).

We observe two differences. First, RoBERTa has a clear diagonal line effect for a token attending to
itself. But this effect is not very visible in DeBERTa. This can be attributed to the use of EMD, in
which the absolute position embedding is added to the hidden state of content as the query vector,
as verified by the attention pattern of DeBERTa-EMD where the diagonal line effect is more visible
than that of the original DeBERTa. Second, we observe vertical strips in the attention patterns of
RoBERTa, which are mainly caused by high-frequent functional words or tokens (e.g., “a”, “the”, and
punctuation). For DeBERTa, the strip only appears in the first column, which represents the [CLS]
token. We conjecture that a dominant emphasis on [CLS] is desirable since the feature vector of
[CLS] is often used as a contextual representation of the entire input sequence in downstream tasks.
We also observe that the vertical strip effect is quite obvious in the patterns of the three DeBERTa
variants.

We present three additional examples to illustrate the different attention patterns of DeBERTa and
RoBERTa in Figures 4 and 5.
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(a)

(b)

(c)

Figure 4: Comparison on attention patterns of the last layer between DeBERTa and RoBERTa.
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(a)

(b)

(c)

Figure 5: Comparison on attention patterns of last layer between DeBERTa and its variants (i.e.
DeBERTa without EMD, C2P and P2C respectively).

A.10 ACCOUNT FOR THE VARIANCE IN FINE-TUNING

Accounting for the variance of different runs of fine-tuning, in our experiments, we always follow
Liu et al. (2019c) to report the results on downstream tasks by averaging over five runs with different
random initialization seeds, and perform significance test when comparing results. As the examples
shown in Table 14, DeBERTabase significantly outperforms RoBERTabase (p-value < 0.05).

Model MNLI-matched (Min/Max/Avg) SQuAD v1.1 (Min/Max/Avg) p-value
RoBERTabase 84.7/85.0/84.9 90.8/91.3/91.1 0.02
DeBERTabase 86.1/86.5/86.3 91.8/92.2/92.1 0.01

Table 14: Comparison of DeBERTa and RoBERTa on MNLI-matched and SQuAD v1.1.
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