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Abstract

This work resolves a long-standing open question of central importance to the
theory of active learning, closing a qualitative and quantitative gap in our under-
standing of active learning in the non-realizable case. We provide the first sharp
characterization of the optimal first-order query complexity of agnostic active
learning, and propose a new general active learning algorithm which achieves it.
Remarkably, the optimal query complexity admits a leading term which is always
strictly smaller than the sample complexity of passive supervised learning (by a
factor proportional to the best-in-class error rate). This was not previously known
to be possible. For comparison, in all previous general analyses, the leading term
exhibits an additional factor, such as the disagreement coefficient or related com-
plexity measures, and therefore only provides improvements over passive learning
in restricted cases. The present work completely removes such factors from the
leading term, implying that every concept class benefits from active learning in
the non-realizable case. Whether such benefits are possible has been the driving
question underlying the past two decades of research on the theory of agnostic
active learning. This work finally settles this fundamental question.

1 Introduction

Active learning is a well-known powerful variant of supervised learning, in which the learning
algorithm interactively participates in the process of labeling the training examples. In this setting,
there is a pool (or stream) of unlabeled examples, and the learning algorithm selects individual
examples and queries an oracle (typically a human labeler) to observe their labels. This happens
sequentially, so that the learner has observed previously-queried labels before deciding which example
to query next. The intended purpose of active learning is to reduce the overall number of labels
necessary for learning to a given accuracy, called the query complexity. We are therefore particularly
interested in using active learning in scenarios where its query complexity is significantly smaller
than the number of randomly-sampled training examples which would be needed to achieve the same
accuracy, called the sample complexity of passive supervised learning.

Active learning has not only been incredibly useful for many practical machine learning problems
(e.g., Cohn et al., 1996; Tong and Koller, 2001; Zhu et al., 2003; Olsson, 2009; Settles, 2012; Ren et al.,
2021; Mosqueira-Rey et al., 2023) but has also given rise to a rich and nuanced theoretical literature
(e.g., Dasgupta, 2005, 2011; Balcan et al., 2009; Hanneke, 2007b, 2014; Zhang and Chaudhuri,
2014; Hanneke and Yang, 2015; see Appendix A for a detailed survey). Moreover, the insights
and techniques discovered in this literature have had tremendous influence on other branches of the
learning theory literature (e.g., Awasthi et al., 2014; Foster et al., 2021; Hanneke, 2009b, 2016a,b,
2024; Zhivotovskiy and Hanneke, 2018; Simon, 2015; Balcan and Long, 2013; El-Yaniv and Wiener,
2010; Balcan et al., 2022).
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Within the literature on the theory of active learning, a central topic which has garnered by-far the
most interest is that of agnostic active learning: that is, the study of active learning algorithms capable
of providing performance guarantees even in noisy or otherwise non-realizable learning problems,
without assumptions on the form of the noise. This line of work was initiated by the groundbreaking
A2 algorithm (Agnostic Active) of Balcan, Beygelzimer, and Langford (2005, 2006, 2009) (with
its general analysis later given by Hanneke, 2007b) and concurrently a lower bound analysis of
Kääriäinen (2005, 2006) (later strengthened by Beygelzimer, Dasgupta, and Langford, 2009). These
results were later refined and extended in numerous ways. However, throughout this two-decades
long history, there has persisted a significant gap between the sharpest known upper and lower bounds
on the optimal query complexity. Moreover, this gap represents an important qualitative distinction:
while the lower bound is always smaller than the sample complexity of passive learning, the existing
upper bounds only reflect such improvements under further restrictive conditions (e.g., bounded
disagreement coefficient). Thus, the issue of resolving this gap is of central importance to this subject,
since it has implications for answering the question:

Does every concept class admit benefits from using active learning instead of passive learning?

The main contribution of the present work is to establish that this is indeed true, and in fact the known
lower bound is always attainable. To achieve this, we introduce new algorithmic principles for active
learning (the AVID principle), improving concentration of error estimates via adaptively isolating
regions where the error estimates have high variance and allocating more queries to such regions.

2 Background and Summary of the Main Result

Let C be any concept class1 (a set of functions X → {0, 1} on a set X called the instance space) and
denote by d = VC(C) the VC dimension of C (Vapnik and Chervonenkis, 1971; see Definition 4).
Let P be an (unknown) joint distribution on X × {0, 1}, and define the error rate of any classifier
h : X → {0, 1} as erP (h) := P ((x, y) : h(x) ̸= y). In the active learning problem, there is a
sequence (X1, Y1), . . . , (Xm, Ym) of i.i.d. samples from P , but the learner initially only observes
the Xi values (the unlabeled examples). It then has the capability to query any example Xi, which
reveals the corresponding true label Yi, in a sequential manner (i.e., it chooses its next query Xi′ after
observing the label Yi of its previous query point Xi). After a number of such queries, the learner
returns a classifier ĥ. The goal is to achieve a small excess error rate erP (ĥ) ≤ infh∈C erP (h) + ε
while making as few queries as possible. We are particularly interested in quantifying the number
of queries sufficient to achieve this, as a function of ε and the value of the best-in-class error rate
infh∈C erP (h), known as a first-order query complexity bound.

Specifically, for any ε, δ, β ∈ (0, 1), the optimal query complexity, QCa(ε, δ;β,C), is defined as the
minimal Q ∈ N for which there exists an active learner Aa such that (for a sufficiently large number
m of unlabeled examples), for every P with infh∈C erP (h) ≤ β, with probability at least 1− δ, Aa

makes at most Q queries and returns ĥ satisfying erP (ĥ) ≤ infh∈C erP (h) + ε. The main quantity
for comparison is the sample complexity of supervised passive learning. A passive learner Ap simply
trains on n labeled training examples (X1, Y1), . . . , (Xn, Yn) sampled i.i.d. from P to produce a
classifier ĥ. For ε, δ, β ∈ (0, 1), the optimal sample complexity of passive learning,Mp(ε, δ;β,C),
is defined as the minimal size n ∈ N of such a training sample for which there exists a passive learner
Ap such that, for every P with infh∈C erP (h) ≤ β, with probability at least 1 − δ, Ap returns ĥ

satisfying erP (ĥ) ≤ infh∈C erP (h) + ε. We remark that, in both the active and passive cases, these
definitions place no restrictions on the computational efficiency of the learning algorithms, but rather
focus on the data efficiency, which is our primary interest in this work (see Section G).

Since both the query complexity and sample complexity concern the number of labels sufficient
for learning, it is natural to compare QCa(ε, δ;β,C) withMp(ε, δ;β,C) to quantify the benefits of
active learning. Thus, the primary interest in the theory of agnostic active learning is quantifying how
much smaller QCa(ε, δ;β,C) is compared toMp(ε, δ;β,C). Since our interest is agnostic learning,
it is most interesting to focus on the regime where P is far-from-realizable: that is, where β is much
larger than ε. In this regime, it is well known from the works of Vapnik and Chervonenkis (1974);
Devroye and Lugosi (1995); Hanneke, Larsen, and Zhivotovskiy (2024b) that the optimal sample

1To focus on non-trivial cases, we suppose |C| ≥ 3. We also suppose X is equipped with a σ-algebra
specifying its measurable subsets, and we adopt the standard mild measure-theoretic restrictions on the σ-algebra
and the class C from empirical process theory: namely, the image-admissible Suslin property (Dudley, 1999).

2



complexity of passive learning satisfies Mp(ε, δ;β,C) = Θ
(

β
ε2

(
d+ log

(
1
δ

)))
. In comparison,

the known lower bound for active learning is QCa(ε, δ;β,C) = Ω
(

β2

ε2

(
d+ log

(
1
δ

)))
(Kääriäinen,

2006; Beygelzimer, Dasgupta, and Langford, 2009). Thus, the strongest improvement we might hope
from active learning is a factor of β (representing the best-in-class error rate).

However, in the prior literature, this β-factor improvement has only been demonstrated in upper
bounds under restrictions to C or P . Specifically, every general upper bound on QCa(ε, δ;β,C)
in the literature has the form c(β)dβ2

ε2 (ignoring logs), where c(β) is a (C, P )-dependent quantity.
For instance, one commonly appearing such quantity c(β) is the disagreement coefficient θ(β) of
Hanneke (2007b). We refer the reader to Appendix A for a detailed survey of such quantities c(β)
which have appeared in the literature. Importantly, for all such upper bounds in the literature, the
corresponding factor c(β) has the property that there exist simple classes C and distributions P for
which c(β) ≥ 1

β (see Hanneke and Yang, 2015; Hanneke, 2016b, 2024): for instance, even for linear

classifiers on R2 or singletons on N. Note that when c(β) ≥ 1
β , a query complexity c(β)dβ2

ε2 becomes

no smaller than d β
ε2 , the sample complexity of passive learning. Moreover, one can show that

avoiding such d β
ε2 query complexities would require new algorithmic techniques (see Appendix A).

Naturally, the question of refining such c(β) factors has been a subject of much interest for many
years. In particular, it has remained open whether such factors might even be avoided entirely, so that
the β-factor improvement might always be achievable. In a series of talks, I conjectured that the lower
bound Ω

(
β2

ε2

(
d+ log

(
1
δ

)))
is always sharp (in the far-from-realizable regime), and even offered a

sizable prize for a solution (along with lower-order terms) (e.g., Hanneke and Nowak, 2019).

Contributions of this Work: In the present work, we completely resolve this question. We prove
that (in the above regime) QCa(ε, δ;β,C) = Θ

(
β2

ε2

(
d+ log

(
1
δ

)))
. In other words, the β-factor

improvement is always achievable, the known lower bound is sharp, and there is no need for
restrictions on (C, P ) or additional factors c(β) as appear in all prior works.

Extending to the full range of β, the more-general form of the bound we prove also includes an
additive lower-order term to account for the small-β regime. In the simplest such bound (Theorem 1),
this lower-order term is simply Õ

(
d
ε

)
, so that the general form is QCa(ε, δ;β,C) = Õ

(
dβ2

ε2 + d
ε

)
(Theorem 3 and Appendix F refine this lower-order term for some classes). For comparison, the
general form of the passive sample complexity isMp(ε, δ;β,C) = Θ̃

(
d β
ε2 + d

ε

)
. We note that,

even in the nearly-realizable regime (β = Õ(ε)), it is known that d
ε is a lower bound on the query

complexity for many classes C (Dasgupta, 2005; Hanneke, 2014; see Appendix D of Hanneke and
Yang, 2015), so that this term is sometimes unavoidable, and hence the benefits of active learning
can wane in the nearly-realizable regime. Likewise, the lower bound dβ2

ε2 implies the benefits
can also diminish in the very-high-noise regime (β = Ω(1)). In contrast, as discussed above, in
the far-from-realizable regime (

√
ε ≤ β ≪ 1), the bound is of order dβ2

ε2 , reflecting a β-factor
improvement over the sample complexity of passive learning d β

ε2 . Additionally, the intermediate
regime of moderate-size β (i.e., ε ≪ β <

√
ε) also exhibits improvements over passive learning

for all C: in this regime, Mp(ε, δ;β,C) = Ω
(
d β
ε2

)
, whereas QCa(ε, δ;β,C) = Õ

(
d
ε

)
≪ d β

ε2 ,

reflecting an improvement by a factor Õ( ε
β ). Altogether, this result reveals a previously-unknown

and truly remarkable fact: QCa(ε, δ;β,C)≪Mp(ε, δ;β,C) in all regimes ε≪ β ≪ 1, or in other
words, in all regimes outside the nearly-realizable and very-high-noise cases, the following is true:

For every concept class C, the optimal query complexity of agnostic active learning is strictly smaller
than the optimal sample complexity of agnostic passive learning.

This result resolves an important long-standing open question central to the past two decades of
research on the theory of agnostic active learning.
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3 Main Results

Formally, the following theorem expresses the new upper bound, together with known lower bounds
for comparison (Kääriäinen, 2006; Beygelzimer, Dasgupta, and Langford, 2009; Hanneke, 2014;
Hanneke and Yang, 2015). A more-detailed version of the result appears in Theorem 5 (Appendix C).

Theorem 1. For every concept class C, letting d = VC(C), ∀ε, δ ∈ (0, 1/8), ∀β ∈ [0, 1],

QCa(ε, δ;β,C) = O

(
β2

ε2

(
d+ log

(
1

δ

)))
+ Õ

(
d

ε

)
and QCa(ε, δ;β,C) = Ω

(
β2

ε2

(
d+ log

(
1
δ

)))
. Moreover, for every d ∈ N there exists C with

VC(C) = d such that QCa(ε, δ;β,C) = Ω
(

β2

ε2

(
d+ log

(
1
δ

))
+ d

ε

)
.

We provide a new general active learning algorithm Aavid achieving this upper bound in Section 4.
Importantly, the algorithm does not need to know β (or anything else about P ) to achieve this
guarantee: i.e., it is completely adaptive to the value β. Moreover, the number of unlabeled examples
the algorithm requires is only Θ̃

(
d β
ε2 + d

ε

)
, of the same order as the sample complexity of passive

learning; it can also adaptively determine how many unlabeled examples to use without knowing β.

The AVID Principle: The main innovation underlying the algorithm, which enables it to achieve
this query complexity, represents a new principle for the design of active learning learning algorithms,
which we call Adaptive Variance Isolation by Disagreements (AVID). The algorithm adaptively
partitions the instance space X into regions, with the aim of isolating a region ∆ ⊆ X where it is
most challenging to learn, due to exceptionally high variance in the error estimation problem in
the ∆ region (where ∆ will be defined as a union of pairwise disagreement regions witnessing the
high variance, carefully selected to ensure PX(∆) = O(β)). It then allocates disproportionately
more queries to this challenging region ∆ compared to the (considerably-easier) remaining region
X \∆. This idea has interesting connections to techniques explored in other branches of the literature
(e.g., Hanneke, Larsen, and Zhivotovskiy, 2024b; Bousquet and Zhivotovskiy, 2021; Puchkin and
Zhivotovskiy, 2022), discussed in Appendix A.

3.1 Refinement of the Lower-order Term for Some Classes

The AVID principle already suffices to achieve the query complexity bound in Theorem 1. Moreover,
for most concept classes of interest, the query complexity bound in Theorem 1 is already optimal,
matching a lower bound (up to log factors in the lower-order term): e.g., linear classifiers in Rk,
k ≥ 2 (Dasgupta, 2005; Hanneke, 2014; Hanneke and Yang, 2015). However, while the lead term
β2

ε2

(
d+ log

(
1
δ

))
is already optimal for every concept class C, there do exist some special classes C

for which a further refinement of the lower-order term d
ε is possible (e.g., threshold classifiers 1[a,∞)

on R). As our second main result, we provide a refinement of the upper bound in Theorem 1 to
capture such special classes, thereby establishing a query complexity bound which is nearly optimal
for every concept class.

Since such refinements are only possible for some concept classes, the expression of this refinement
necessarily depends on an additional complexity measure of the class C. We prove that the optimal
lower-order term in the query complexity is well-captured by a quantity known as the star number of
C, introduced by Hanneke and Yang (2015). In particular, Hanneke and Yang (2015) showed that
the star number precisely characterizes the optimal query complexity in the realizable case (β = 0);
since this is a limiting case of agnostic learning, it is natural that this quantity plays a crucial role in
characterizing the optimal lower-order term. The formal definition is as follows.

Definition 2. For any concept class C, the star number s = s(C) is the supremum n ∈ N for which
∃x1, . . . , xn ∈ X and h0, h1, . . . , hn ∈ C such that ∀i, j ∈ {1, . . . , n}, hi(xj) ̸= h0(xj)⇔ i = j.

The star number essentially describes a scenario which is intuitively challenging for active learners in
the realizable case, wherein there is a set of instances xj and a default labeling h0(xj), but the target
concept is some hi which differs from h0 at just one instance xi, unknown to the learner (which

4



must therefore query nearly all of these xj instances, searching for the special point xi, in order to
identify the target concept hi). Hanneke and Yang (2015) provide numerous examples calculating
s for various concept classes. For instance, thresholds on R have s = 2 and decision stumps on
Rk have s = 2k. However, it is worth noting that s is typically large (or infinite) for most concept
classes of interest in learning theory (e.g., s = ∞ for linear classifiers on Rk, k ≥ 2). This fact is
important to the present work, since Hanneke and Yang (2015); Hanneke (2016b, 2024) have shown
that the c(β) factors (discussed in Section 2 above) appearing in all previous general upper bounds all
become no smaller than s ∧ 1

β in the worst case over distributions (subject to the β constraint). Thus,

all general upper bounds c(β)dβ2

ε2 from the prior literature become no smaller than d β
ε2 in the worst

case when s =∞. In a sense, this means Theorem 1 is actually most interesting in the (typical) case
of s =∞, since no previously known upper bounds offer any improvements over passive learning in
this case (without further restrictions to P ), in stark contrast to Theorem 1 which has no dependence
on s and provides improvements over passive learning in the lead term for every concept class.

Nonetheless, the special structure of classes with s < ∞ turns out to provide some additional
advantages for active learning, so that in order to state a general query complexity bound which is
optimal for every concept class C, we need to account for this structure, via a dependence on s in
the lower-order term. Specifically, by combining the AVID principle with existing principles for
active learning (namely, disagreement-based queries), we can take further advantage of the power
of active learning, thereby enabling a refinement of the lower-order term for classes with s < ∞.
The following result presents a new general query complexity bound reflecting such refinements,
together with a known lower bound for comparison (due to Kääriäinen, 2006; Beygelzimer, Dasgupta,
and Langford, 2009; Hanneke and Yang, 2015). The implication is that this new upper bound is
nearly optimal for every concept class C (including the lower-order term, up to a factor of d, which
we discuss below). A more-detailed version of the result appears in Theorem 5 of Appendix C
(and distribution-dependent variants are presented in Appendix F, replacing s with variants of the
disagreement coefficient).

Theorem 3. For every C, letting d = VC(C) and s = s(C), ∀ε, δ ∈ (0, 1/8), ∀β ∈ [0, 1],

QCa(ε, δ;β,C) = O

(
β2

ε2

(
d+ log

(
1

δ

)))
+ Õ

((
s ∧ 1

ε

)
d

)
,

and QCa(ε, δ;β,C) = Ω

(
β2

ε2

(
d+ log

(
1

δ

))
+ s ∧ 1

ε

)
.

We may note that the upper bound in Theorem 1 is an immediate implication of Theorem 3 (we
have stated Theorem 1 separately merely to emphasize that the improvements over passive learning
are available without any special properties of C such as finite star number). Theorem 3 provides a
refinement in the lower-order term compared to Theorem 1 when s < 1

ε . In particular, for s <∞,
the asymptotic dependence on ε in the lower-order term is log2

(
1
ε

)
. We leave open the question

of whether this can be further refined to log
(
1
ε

)
, which would match a known lower bound on this

dependence for all infinite classes (Kulkarni, Mitter, and Tsitsiklis, 1993; Hanneke and Yang, 2015).
The only significant difference between the upper and lower bounds in Theorem 3 is the factor of d in
the lower-order term. I conjecture this term can be further refined to Õ

(
s ∧ d

ε

)
, which is known to

be sharp for some classes (Hanneke and Yang, 2015), and would fully answer a question posed by
Hanneke and Nowak (2019). Beyond this, it is known that a gap between such lower-order terms in
general upper and lower bounds is unavoidable if the only dependence on C is via d and s. Specifically,
it follows from arguments in Appendix D of Hanneke and Yang (2015) that for some classes C this
term should be Θ̃

(
s ∧ d

ε

)
while for other classes C the term should be Θ̃

(
s ∧ 1

ε + d
)
. Thus, obtaining

matching (big-Θ) upper and lower bounds would require introducing a new complexity measure
reflecting the distinctions between these types of classes, which we leave as an open question.

4 Algorithm and Outline of the Analysis

We next present the algorithm achieving Theorems 1 and 3 and a sketch of its analysis (the complete
formal proof is given in Appendix E). Before stating the algorithm, we first introduce a few additional
definitions and convenient notational conventions.
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Error and disagreement regions: For any function h : X → {0, 1}, define its error region

ER(h) := {(x, y) ∈ X × {0, 1} : h(x) ̸= y}.

In particular, note that erP (h) = P (ER(h)). For any set V ⊆ C define the region of disagreement:
DIS(V ) := {x ∈ X : ∃f, g ∈ V, f(x) ̸= g(x)}. For any two functions f, g : X → {0, 1},
abbreviate by {f ̸= g} := {x ∈ X : f(x) ̸= g(x)} their pairwise disagreement region.

Overloaded set notation: For convenience, we adopt a convention of treating sets A ⊆ X as
notationally interchangeable with their labeled extension A× {0, 1} ⊆ X × {0, 1}. For instance, for
functions f, g, h : X → {0, 1}, we may write ER(h) ∩ {f ̸= g}, which, by the above convention, is
interpreted as ER(h)∩({f ̸= g}×{0, 1}). We also overload notation for set intersections to allow for
intersections of sets with sequences: that is, for any setZ , sequence S = {z1, . . . , zm} ∈ Zm, and set
A ⊆ Z , we define S∩A as the subsequence {zi : i ≤ m, zi ∈ A}, and likewise S \A := S∩(Z\A).
We also apply these conventions in combination: i.e., for a sequence S ∈ (X × {0, 1})m and a set
∆ ⊆ X , we define S ∩∆ := S ∩ (∆× {0, 1}) and S \∆ := S ∩ ((X \∆)× {0, 1}).

Empirical estimates: We will make use of empirical estimates of quantities such as erP (h)
and PX(f ̸= g). For any set Z and sequence S = {z1, . . . , zm} ∈ Zm, for any set A ⊆ Z ,
define the empirical measure: P̂S(A) := 1

m |S ∩ A| = 1
m

∑m
i=1 1[zi ∈ A]. Again, we also

apply these conventions in combination: i.e., for S ∈ (X × {0, 1})∗ and ∆ ⊆ X , we define
P̂S(∆) := P̂S(∆ × {0, 1}). For any sequence S ∈ (X × {0, 1})∗ and function h : X → {0, 1},
define its empirical error rate (or empirical risk): êrS(h) := P̂S(ER(h)).

Decision lists: We will often express decision-list aggregations of functions f, g : X → {0, 1}.
For instance, for any set ∆ ⊆ X , we may write h = f1X\∆ + g1∆ to express a function h with
h(x) = f(x) for x /∈ ∆ and h(x) = g(x) for x ∈ ∆.

4.1 The AVID Agnostic Algorithm: Adaptive Variance Isolation by Disagreements

We are now ready to describe the algorithm achieving the upper bounds in Theorems 1 and 3
(for full formality, some additional technical minutiae for the definition are given in Section C).
Fix any values ε, δ ∈ (0, 1) (the error and confidence parameters input to the learner). Fix
any distribution P (unknown to the learner) and let (X1, Y1), . . . , (Xm, Ym) be independent P -
distributed random variables (for any sufficiently large m, quantified explicitly in Theorem 5).
The algorithm is stated in Figure 1, expressed in terms of certain quantities and data subsets de-
fined as follows.2 Let C := 11

10 , N :=
⌈
logC

(
2
ε

)⌉
, and for each k ∈ N define εk := C1−k and

mk := Θ
(

1
εk

(
d log

(
1
εk

)
+ log

(
1
δ

)))
(see Section C for the precise constants). In Step 3, C ′

denotes an appropriate universal constant (see Section C). As defined in Figure 1, the algorithm
makes use of different portions of the data (S1

k , S2
k , S3

k,i, S
4
k) for different purposes, and to complete

the definition of the algorithm we next specify how these data subsets are defined in the algorithm.
We first split the initial 2M1 := 2

∑N+1

k=1 mk examples {(X1, Y1), . . . , (X2M1 , Y2M1)} into con-
secutive disjoint contiguous segments S1

1 , . . . , S
1
N+1, S

4
1 , . . . , S

4
N+1, with the segments S1

k and S4
k

being of size mk. The algorithm also allocates disjoint segments (S2
k , S3

k,i) of the remaining data
{(Xi, Yi) : 2M1 < i ≤ m}, but does so adaptively during its execution. Specifically, if and when the
algorithm reaches Step 2 with a value k, or reaches Step 9 (in which case let k = N+1), for the value
ik and the set ∆ik as defined at that time in the algorithm, it constructs a data subset S2

k , allocating
to S2

k the next m′
k consecutive examples which have not yet been allocated to any data subset S1

k′ ,
S2
k′ , S3

k′,i′ , S
4
k′ (i.e., fresh, previously-unused, examples), where, letting p̂k := 2P̂S4

k
(∆ik), we define

m′
k := Θ

(
p̂k

ε2k

(
d+ log

(
3+N−k

δ

)))
(see Section C for the precise constants). Similarly, if and when

the algorithm reaches Step 5 with some values of (k, i), it constructs a data subset S3
k,i, allocating to

S3
k,i the next mk consecutive examples which have not yet been allocated.

2For simplicity, we have expressed the algorithm as representing a set of surviving concepts Vk ⊆ C.
However, it should be clear from the definition that running the algorithm does not require explicitly storing Vk.
Rather, the various uses of this set can be implemented as constrained optimization problems (in Steps 4-6 and
ĥk), where the constraints are merely the inequalities which would define the sets Vk′ , k′ ≤ k, and Step 3 is
then replaced by simply adding one more constraint to the constraint set.
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Algorithm Aavid

Input: Error parameter ε, Confidence parameter δ, Unlabeled data X1, . . . , Xm

Output: Classifier ĥ
0. Initialize i = i1 = 0, ∆0 = ∅, V0 = C
1. For k = 1, . . . , N
2. Query all examples in S1

k ∩Dk−1 \∆ik and S2
k ∩∆ik

3. Vk ←
{
h ∈ Vk−1 : êr1,2

k (h) ≤ êr1,2
k (ĥk) +

εk
C′

}
4. If Vk = ∅ or êr1,2

k (ĥk) < minh∈Vk
êr1,2

k (h)− εk
4C′ , Then Return ĥ := ĥk

5. While maxf,g∈Vk
P̂S3

k,i
({f ̸= g} \∆i) > εk+2

6. (f, g)← argmax(f ′,g′)∈V 2
k
P̂S3

k,i
({f ′ ̸= g′} \∆i)

7. ∆i+1 ← ∆i ∪ {f ̸= g}, and update i← i+ 1
8. ik+1 ← i

9. Query all examples in S1
N+1 ∩DN \∆iN+1

and S2
N+1 ∩∆iN+1

and Return ĥ := ĥN+1

Figure 1: The AVID Agnostic algorithm. Notations N , Dk−1, εk, ĥk, S1
k , S2

k , S3
k,i, êr

1,2
k defined in the text.

To complete the definition of the algorithm, we define Dk−1, êr1,2
k , and ĥk, appearing in the algorithm,

as follows. For each value of k encountered in the ‘For’ loop, as well as for k = N + 1 in the case
the algorithm reaches Step 9, define (where Vk−1 and ∆ik are as defined in the algorithm):

Dk−1 := DIS(Vk−1),

∀h, êr1,2
k (h) := P̂S1

k
(ER(h) ∩Dk−1 \∆ik) + P̂S2

k
(ER(h) ∩∆ik), (1)

V (4)
k−1 := {f1{f=g}\∆ik

+ h11{f ̸=g}\∆ik
+ h21∆ik

: f, g ∈ Vk−1, h1, h2 ∈ C}, (2)

and ĥk := argmin
h∈V (4)

k−1

êr1,2
k (h). (3)

This completes the definition of the Aavid algorithm.

We remark that the examples in S3
k,i and S4

k are never queried in the algorithm, and thus the algorithm
(necessarily) only uses the unlabeled Xi values in these data subsets (to estimate certain marginal
PX probabilities), so in fact these can be regarded as unlabeled data subsets. Similarly, the algorithm
only queries a portion of S1

k and S2
k , and the remaining unqueried portions are in fact never used by

the algorithm. For notational simplicity, we do not make these facts explicit in the notation.

Description of the algorithm: We briefly summarize the behavior of the algorithm (with explana-
tions following in Section 4.2). As the algorithm iterates over rounds k of the ‘For’ loop, it maintains
a partition of the space into a region ∆ik and its complement X \∆ik . In each round, the algorithm
refines a set Vk of surviving concepts from C, aiming to prune out suboptimal concepts (Step 3).
There are two crucial aspects of this, both in how the estimates of erP (h) are defined, and in the
choice of function ĥk to which we compare. For the purpose of error estimation, in Step 2 it queries
a number of random examples in X \∆ik (or rather, the slightly smaller region Dk−1 \∆ik , since
examples in X \Dk−1 are uninformative for estimating error differences) and a number of random
examples in ∆ik . It uses the examples from each of the two regions to estimate the error rate of
each h in that region, and combines these two estimates into an overall error estimate êr1,2

k (h) as in
(1). It then prunes suboptimal concepts from Vk−1, removing all h ∈ Vk−1 having estimated error
êr1,2

k (h) > êr1,2
k (ĥk) +

εk
C′ . The reason êr1,2

k (h) estimates error rates in the two regions separately
is that, as it will turn out, we require a disproportionately larger number of samples to accurately
estimate the error rates in the region ∆ik compared to the complement X \∆ik : for the latter, we
use the samples in S1

k ∩Dk−1 \∆ik (queried in Step 2), where S1
k has a modest size mk = Θ̃

(
d
εk

)
,

while for the former we use the samples in S2
k ∩ ∆ik (also queried in Step 2), where S2

k has a

potentially larger size m′
k roughly Θ̃

(
PX (∆ik

)d

ε2k

)
. The other crucial aspect in Step 3 is how we define

the function ĥk to which we compare. For this, rather than (the seemingly-natural idea of) simply
comparing to the smallest êr1,2

k (h) among h ∈ Vk−1, we instead compare to an even smaller value:
the smallest êr1,2

k (h) among a more-complex class V (4)
k−1 defined in (2), comprised of decision list
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functions which use one concept h2 for predictions in ∆ik , and use (equivalently) a majority vote of
three concepts f, g, h1 for predictions in X \∆ik . ĥk is defined as a minimizer of êr1,2

k in V (4)
k−1, as in

(3). This use of a more-complex comparator function is critical for certain parts of the proof (namely,
keeping PX(∆ik) small). However, given that ĥk is chosen from a more-complex class, it becomes
possible that ĥk may be substantially better than all h ∈ Vk. In this event, the algorithm terminates
early and returns ĥk (Step 4). Otherwise, if it makes it past this early-stopping case, its next objective
is to define the region ∆ik+1

for use in the next iteration. This occurs in the ‘While’ loop (Steps 5-7).
On each round of this loop, it uses a fresh data set S3

k,i of size mk = Θ̃
(

d
εk

)
to check whether there

exist f, g ∈ Vk significantly distant from each other in the region X \∆i (Step 5). If so, it adds their
pairwise disagreement region {f ̸= g} to the ∆i region to define ∆i+1 and increments i (Step 7). It
repeats this until no such pair f, g exists, at which time it defines ik+1 = i (Step 8) and proceeds to
the next iteration of the ‘For’ loop. After N = O(log(1/ε)) such iterations, it returns ĥN+1 (Step 9).

We note that the algorithm’s returned classifier ĥ might not be an element of C (known as an improper
learner), but rather can be represented as a (shallow) decision list of concepts from C. This aspect is
quite important to certain parts of the proof, and we leave open the question of whether Theorems 1
and 3 are achievable by a proper learner (see Appendix G). We also remark that the Dk−1 set is only
needed for establishing Theorem 3: the algorithm achieves the query complexity bound in Theorem 1
even if we replace Dk−1 with the full space X everywhere.

4.2 Principles and Outline of the Proof
Next we explain the high-level principles underlying the design of the algorithm, highlighting the
two key innovations compared to previous approaches, which enable the improved query complexity
guarantee (namely, separating out the ∆ik regions, and the definition of ĥk).

Empirical localization: The principles underlying the design of the algorithm begin with a
familiar principle from statistical learning: empirical localization (Koltchinskii, 2006; Bartlett,
Bousquet, and Mendelson, 2005). Specifically, the uniform Bernstein inequality (Lemma 7)
implies that for an i.i.d. data set S, the sample complexity of uniform concentration of differ-
ences |(êrS(f)− êrS(g))− (erP (f)− erP (g))| becomes smaller when the diameter diam(C) =
supf,g∈C PX(f ̸= g) of the concept class is small, noting that PX(f ̸= g) bounds the variance
of loss differences 1[f(x) ̸= y] − 1[g(x) ̸= y]. Quantitatively, for any 0 < ε′ < diam(C),
Θ̃
(
ddiam(C)

(ε′)2

)
samples S suffice to guarantee |(êrS(f)− êrS(g))− (erP (f)− erP (g))| ≤ ε′. This

fact leads to a natural well-known algorithmic principle, wherein we can prune from C con-
cepts h having êrS(h) − minh′∈C êrS(h

′) > ε′ (as the above inequality implies these verifi-
ably have suboptimal error rates), leaving a subset V ′

1 of surviving concepts, while preserving
h⋆ ∈ V ′

1 , where h⋆ := argminh∈C erP (h). Moreover, if these surviving concepts V ′
1 have

diam(V ′
1) < diam(C), we get an improved concentration guarantee for êrS(f) − êrS(g) among

f, g ∈ V ′
1 from the uniform Bernstein inequality, which enables us to prune even more con-

cepts from V ′
1 , leaving a set V ′

2 of surviving concepts, and so on for V ′
3 , V

′
4 , . . .. Quantitatively,

we can combine this with a schedule of resolutions εk, so that as long as h⋆ ∈ V ′
k−1 and

diam(V ′
k−1) ≤ εk, an i.i.d. data set S1

k of size mk = Θ̃
(

d
εk

)
= Ω̃

(
d
diam(V ′

k−1)

ε2k

)
suffices to

guarantee
∣∣(êrS1

k
(f) − êrS1

k
(g)
)
−
(
erP (f) − erP (g)

)∣∣ ≤ εk
C′ , enabling us to further reduce to

a subset V ′
k =

{
h ∈ V ′

k−1 : êrS1
k
(h) ≤ minh′∈V ′

k−1
êrS1

k
(h′) + εk

C′

}
for which all h ∈ V ′

k have

erP (h) − erP (h
⋆) ≤ 2 εk

C′ , while preserving h⋆ ∈ V ′
k . Iterating this N = Θ

(
logC

(
1
ε

))
times

(recalling εk = C1−k) results in a subset V ′
N of concepts h with erP (h)− erP (h

⋆) ≤ ε.

Disagreement-based active learning: An additional observation, underlying many active learning
algorithms (disagreement-based methods), is that the above argument still holds while replacing
êrS1

k
(h) with P̂S1

k
(ER(h)∩D′

k−1), where D′
k−1 := DIS(V ′

k−1). To see this, note that ∀h, h′ ∈ V ′
k−1,

P̂S1
k
(ER(h)∩D′

k−1)−P̂S1
k
(ER(h′)∩D′

k−1) = êrS1
k
(h)−êrS1

k
(h′). Thus, we may equivalently define

V ′
k =

{
h ∈ V ′

k−1 : P̂S1
k
(ER(h) ∩D′

k−1) ≤ minh′∈V ′
k−1

P̂S1
k
(ER(h′) ∩D′

k−1) +
εk
C′

}
. Moreover,

as long as diam(V ′
k−1) ≤ εk, we have PX(D′

k−1) ≤ sεk (Hanneke and Yang, 2015). Since the
quantities in V ′

k only rely on the labels of examples in D′
k−1 ∩ S1

k , constructing V ′
k only requires
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a number of queries O(sεkmk) ∧mk. Summing over k, these queries total to at most the claimed
lower-order term in Theorem 3 (though note that even without this D′

k−1 refinement we still recover
the lower-order term from Theorem 1). So far, this is all essentially standard reasoning commonly
followed in the prior literature on active learning (e.g., Hanneke, 2009b, 2014; Koltchinskii, 2010).

Handling non-shrinking diameter: However, the above algorithmic principle breaks down if
we reach a k with diam(V ′

k−1) ̸= O(εk). This failure can easily occur in the agnostic setting,
where it is possible for the set V ′

k−1 above to contain multiple relatively-good functions f, g which
are nevertheless far from each other.3 This is the motivation for the first key innovation in Aavid:
namely, if we ever reach such a k, where the Vk set does not naturally have diam(Vk) ≤ εk+1 (as
tested in Step 5), the algorithm removes a portion of the space X to artificially reduce the diameter.
Specifically, it identifies a pair f, g ∈ Vk with PX(f ̸= g) > εk+1 (intuitively, an obstruction
to having low diameter) and separates out their pairwise disagreement region {f ̸= g} from the
region of focus of the algorithm (Steps 5-7).4 Having set aside this region, the algorithm continues,
focusing on the remaining set X \ {f ̸= g}. This step is repeated, and these set-aside regions
{f ̸= g} are altogether captured in the set ∆i (Step 7). Thus, we repeatedly find pairs f, g ∈ Vk

with PX({f ̸= g} \ ∆i) > εk+1 (Steps 5-6) and add {f ̸= g} to ∆i (Step 7) until the diameter
of Vk on X \ ∆i is reduced below εk+1. At that point, the algorithm proceeds to the next round
(k ← k + 1). On the next round k, since we have (artificially) ensured the diameter of Vk−1 is at
most εk in the region X \∆ik , the uniform Bernstein argument implies mk examples S1

k suffice to
guarantee every f, g ∈ Vk−1 have P̂S1

k
(ER(f) ∩Dk−1 \∆ik)− P̂S1

k
(ER(g) ∩Dk−1 \∆ik) within

± εk
2C′ of P (ER(f) \∆ik)− P (ER(g) \∆ik)

)
.

Error in the ∆ik region: There remains the issue of estimating error rates in the ∆ik isolated
region. For this, the algorithm uses a data set S2

k of size m′
k ≈ d

PX(∆ik
)

ε2k
, queries all examples in

S2
k∩∆ik , and uses these to estimate the error rates P (ER(h)∩∆ik) in the ∆ik region. By a refinement

of the uniform convergence bound of Talagrand (1994) accounting for an envelope set ∆ik (Lemma 8),
this number m′

k of examples suffices to ensure
∣∣∣P̂S2

k
(ER(h) ∩∆ik)− P (ER(h) ∩∆ik)

∣∣∣ ≤ εk
4C′ for

every h ∈ C. Combining this with the above error-differences estimates in the X \∆ik region, we can
guarantee that the functions f, g ∈ Vk−1 have

∣∣(êr1,2
k (f)− êr1,2

k (g)
)
− (erP (f)− erP (g))

∣∣ ≤ εk
C′ ,

recalling the definition of êr1,2
k from (1). Altogether, we conclude that, as long as h⋆ ∈ Vk−1,

a set V ′′
k :=

{
h ∈ Vk−1 : êr1,2

k (h) ≤ minh′∈Vk−1
êr1,2

k (h′) + εk
C′

}
would contain only functions h

satisfying erP (h)− erP (h
⋆) ≤ 2 εk

C′ while preserving h⋆ ∈ V ′′
k . The actual definition of Vk in Step 3

is only slightly different from this, for reasons we discuss next.

Bounding the size of ∆ik : Since the number of queries in S2
k∩∆ik is≈ dPX(∆ik)

2/ε2k, if we hope
to achieve a query complexity with lead term Õ

(
dβ2

ε2

)
it is crucial to guarantee PX(∆ik) = O(β).

This is the motivation for the second key innovation in Aavid: defining the update in Vk by comparison
to the function ĥk in (3), rather than the best h′ ∈ Vk−1. This turns out to be the most subtle part
of the argument, requiring precise choices in the design of the algorithm. The essential argument is
as follows. Suppose the algorithm reaches Step 6 for some (k, i), so that it will add {f ̸= g} to the
∆i region. We then want to argue that P (ER(h⋆) ∩ {f ̸= g} \∆i) = Ω(P ({f ̸= g} \∆i)): that
is, each time we add to ∆i, we chop off a portion of ER(h⋆) of size (under P ) proportional to the
increase in PX(∆i). Clearly if we can show this is always the case, we will inductively maintain
PX(∆i) = O(β), resulting in the claimed leading term in the query complexity. Now, to show this
indeed occurs, we first note that one of f, g must err on at least half of {f ̸= g} \ ∆ik ; w.l.o.g.
suppose it is f : that is, P (ER(f) ∩ {f ̸= g} \ ∆ik) ≥ 1

2PX({f ̸= g} \ ∆ik). Now consider
a function f⋆ = f1{f=g}\∆ik

+ h⋆1{f ̸=g}\∆ik
+ f1∆ik

which replaces f by h⋆ in the region

{f ̸= g} \∆ik . Note that, if h⋆ ∈ Vk−1, then f⋆ ∈ V (4)
k−1 defined in (2). Since ĥk has minimal êr1,2

k

3For instance, for C the class of intervals 1[a,b] on R, with PX = Uniform([0, 1]) and P (Y = 1|X) =
1[0,1/4]∪[3/4,1](X), the concepts 1[0,1/4] and 1[3/4,1] are both optimal among C, yet distance 1/2 apart.

4This reasoning is somewhat reminiscent of the motivation for the splitting approach to active learning
(Dasgupta, 2005), differing only in how we resolve the obstruction: whereas splitting would resolve it with
queries to eliminate one element from each obstructing pair, here we resolve it by subtracting the pairwise
disagreement region from the region of focus X \∆i (see Appendix A.2.3). This idea is also related to a technique
of Hanneke, Larsen, and Zhivotovskiy (2024b) for agnostic passive learning, discussed in Appendix A.3.
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among V (4)
k−1, and f ∈ Vk implies êr1,2

k (f) ≤ êr1,2
k (ĥk) +

εk
C′ , extending the above concentration of

êr1,2
k differences to functions in V (4)

k−1 (with appropriate adjustment of constants in mk, m′
k) implies

erP (f)− erP (f
⋆) ≤ 2 εk

C′ . Thus, since f⋆ and f only disagree on {f ̸= g} \∆ik , we have
1

2
PX({f ̸= g} \∆ik)− P (ER(h⋆) ∩ {f ̸= g} \∆ik)

≤ P (ER(f) ∩ {f ̸= g} \∆ik)− P (ER(h⋆) ∩ {f ̸= g} \∆ik) = erP (f)− erP (f
⋆) ≤ 2

εk
C ′ .

In other words, P (ER(h⋆) ∩ {f ̸= g} \∆ik) ≥ 1
2PX({f ̸= g} \∆ik)− 2 εk

C′ . This is almost what
we wanted, aside from having ∆ik in place of ∆i. We then argue P (ER(h⋆) ∩ {f ̸= g} \∆i) ≥
P (ER(h⋆) ∩ {f ̸= g} \∆ik) − PX({f ̸= g} \∆ik) + PX({f ̸= g} \∆i), which (by the above)
is at least PX({f ̸= g} \∆i) − 1

2PX({f ̸= g} \∆ik) − 2 εk
C′ . Since both f, g ∈ Vk−1, we know

PX({f ̸= g}\∆ik) ≤ εk, so that this lower-bound is at least PX({f ̸= g}\∆i)− εk
2 −2 εk

C′ . On the
other hand, for appropriate constants in mk, the condition in Step 5 allows us to upper-bound εk in
terms of PX({f ̸= g}\∆i): namely, PX({f ̸= g}\∆i) ≥ εk

c for c with C2 < c ≤ 3
2∧

C′

9 . Thus, we
have P (ER(h⋆)∩{f ̸= g}\∆i) ≥

(
1− c

2 − 2 c
C′

)
PX({f ̸= g}\∆i). Since each ∆ik is a union of

such (disjoint) {f ̸= g} \∆i regions (i < ik), β ≥ P (ER(h⋆) ∩∆ik) ≥
(
1− c

2 − 2 c
C′

)
PX(∆ik).

The early stopping case: The above argument for PX(∆ik) = O(β) hinges on having h⋆ ∈ Vk−1.
However, since ĥk is a more-complex function than h⋆, there is a chance that h⋆ /∈ Vk after Step 3. For
this reason, we have added the early stopping case in Step 4. By using slightly tighter concentration
inequalities than used to update Vk, this step effectively tests that ĥk is not so much better than all
concepts in Vk−1 that h⋆ might have been removed. Thus, if we make it past Step 4, we maintain
h⋆ ∈ Vk so that the above argument applies on the next round. On the other hand, in the event that
this test fails, we have effectively verified that ĥk is at least slightly better than all concepts in Vk−1

(including h⋆), and we can safely return ĥk in this case.

Overall behavior: The effective overall behavior of the algorithm is to isolate in the region ∆ik the
most-challenging part of the error estimation problem, due to the high variance (diameter) of the error
differences in that region. It then allocates a disproportionately larger number of queries S2

k ∩∆ik

to this region, toward estimating the error rates there. By comparing with the function ĥk (which
separately optimizes errors in pairwise difference regions {f ̸= g} \∆ik ) in the definition of Vk, we
can maintain that ∆ik never grows larger than O(β), so that the number of queries in S2

k ∩∆ik does
not grow excessively large. The remaining region X \∆ik enjoys the property that the set Vk−1 has
diameter ≤ εk, so that we can easily estimate error differences in this region by a uniform Bernstein
inequality. Altogether, after at most N = O

(
log
(
1
ε

))
rounds, this achieves the objective of ε excess

error rate, while using a number of queries as stated in the query complexity bound in Theorem 3.
The formal proof is given in Appendix E.

5 Conclusions and Summary of the Appendices
This work resolves a long-standing open question of central importance to the theory of active
learning, proving that every concept class benefits from active learning in the non-realizable case.
Quantitatively, we establish a new sharp upper bound on the optimal query complexity, with leading
term that is smaller than that of passive learning by a factor proportional to the best-in-class error rate.

The appendices include the formal proofs, along with additional contents. Appendix A presents
a thorough summary of related work and background on the theory of active learning, as well as
other works with techniques related to those used here. Appendix C presents remaining minutiae for
the definition of Aavid, along with a more-detailed version of Theorem 3, including formal claims
regarding the number of unlabeled examples. Appendix E presents the formal proof of Theorem 3.
Appendix F presents distribution-dependent refinements of Theorem 3, which replace the star number
s with certain P -dependent complexity measures: variants of the disagreement coefficient. We further
argue that the disagreement coefficient θP (ε), as originally defined by Hanneke (2007b), provably
cannot be attained as a replacement for s in the lower-order term (by any algorithm), while on the
other hand Aavid does achieve a lower-order term Õ(θP (β + ε)2d). We also present subregion-based
refinements of the algorithm and analysis, based on techniques of Zhang and Chaudhuri (2014).
Appendix G presents extensions (multiclass classification, stream-based active learning), along with
several open questions and future directions.
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A Survey of the Theory of Active Learning and Other Related Work

There is at this time quite an extensive literature on the theory of active learning. We refer the
interested reader to the surveys of Hanneke (2014), Dasgupta (2011), and the 2019 ICML tutorial of
Hanneke and Nowak (2019) for detailed discussions of classic works in this literature. In this section,
we present a brief survey of the subject, with particular emphasis on the parts most-closely related to
the present work.

A.1 A Brief Historical Overview

The literature on active learning has a long history, dating back at least to the classical works
on experiment design in statistics (Peirce, 1879; Fisher, 1935), wherein the analogous setting to
active learning is referred to as sequential design (e.g., Wald, 1947; DeGroot, 1962; Fedorov, 1972;
Atkinson and Donev, 1992; Efromovich, 2007; Zhang and Oles, 2000; Paninski, 2005; Lewi, Butera,
and Paninski, 2009; Bull, 2013; Naghshvar and Javidi, 2013; Chaudhuri, Kakade, Netrapalli, and
Sanghavi, 2015). Active learning has also been an important subject within the machine learning
literature from the very beginning (e.g., Popplestone, 1969; Simon and Lea, 1974; Buchanan, 1976;
Smith, Mitchell, Chestek, and Buchanan, 1977; Mitchell, 1979). Below we briefly mention some of
the background of the subject in the learning theory literature, before giving detailed background of
the literature on agnostic active learning.

Membership Queries: In the learning theory literature, the idea of active learning also appeared as
a natural variant of the problem of Exact learning with queries. Specifically, in this setting, supposing
there is an unknown target concept h⋆ ∈ C, the objective of the learner is to exactly identify h⋆. To
achieve this goal, the learner has access to an oracle (who knows h⋆), to which it may pose queries of
a given type. The most relevant such queries (to the present work) are membership queries: namely,
it may construct any x ∈ X and query for the value h⋆(x) (in later works in machine learning, this
is sometimes known as query synthesis). Early discussion of this framework and corresponding
algorithmic principles appear in the seminal work of Mitchell (1979). General analyses of the number
of queries necessary and sufficient to identify h⋆ (i.e., the query complexity of Exact learning) were
developed in the works of Angluin (1987); Hegedüs (1995); Hellerstein, Pillaipakkamnatt, Raghavan,
and Wilkins (1996); Nowak (2008, 2011); Hopkins, Kane, Lovett, and Mahajan (2020), and a related
average-case analysis was developed by Dasgupta (2004).

Closer to the setting considered in the present work, the idea of learning with membership queries
has also been extensively studied in the context of PAC learning in the realizable case. In that setting,
the learner observes i.i.d. samples (Xi, Yi) with unknown distribution P , under the assumption that
there exists an unknown target concept h⋆ ∈ C with erP (h

⋆) = 0. The learner is additionally
permitted to make membership queries for this concept h⋆, with the goal of producing a predictor ĥ
having erP (ĥ) ≤ ε with high probability 1− δ. While most of the literature on PAC learning with
membership queries has focused on the benefits of such queries for the computational complexity
of learning (e.g., Valiant, 1984; Baum, 1991; Jackson, 1997), the literature also contains several
works on the number of samples and queries for learning in this setting (e.g., Eisenberg and Rivest,
1990; Eisenberg, 1992; Seung, Opper, and Sompolinsky, 1992; Turán, 1993; Kulkarni, Mitter, and
Tsitsiklis, 1993; Diakonikolas, Kane, and Ma, 2024).

Modern Active Learning with Label Queries: While the early literature on PAC learning with
membership queries included several strong positive results (exhibiting advantages in both query
complexity and computational complexity compared to learning from i.i.d. samples alone), when
researchers implemented these algorithms and tried to use them for practical machine learning with a
human labeler as the oracle, they found that the instances x ∈ X queried by the learner often turned
out to be rather nonsensical, unnatural, or borderline cases between two labels (e.g., Baum and Lang,
1992). As such, human labelers were unable to provide useful answers to the queries, leading to
poor performance of the learning algorithm. To address this issue, researchers turned to studying
algorithms whose queries are restricted to only natural instances x ∈ X , which in most works (with
a few notable exceptions, e.g., Awasthi, Feldman, and Kanade, 2013) essentially means x in the
support of the marginal distribution PX : i.e., the types of examples that might occur naturally in the
population. To actualize this restriction, researchers proposed a simple variant of active learning
(which has become the standard framework in the literature, and is now essentially synonymous
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with the term active learning), in which there are i.i.d. samples (X1, Y1), . . . , (Xm, Ym) from an
unknown distribution P , but the learner initially only observes the unlabeled examples Xi, and can
query to observe individual labels Yi (in a sequential fashion, so that it observes the label Yi of its
previous query before selecting the next query Xi′ ) (Cohn, Atlas, and Ladner, 1994; Freund, Seung,
Shamir, and Tishby, 1997; Tong and Koller, 2001). Such queries can typically be answered by human
experts, being of the same type as used for data annotation in standard supervised machine learning.
In this scenario, the unlabeled examples Xi are typically assumed to be available in abundance, while
obtaining the labels Yi is considered comparably more expensive (relying on the effort of a human
expert), so that the primary objective is to minimize the number of label queries needed to achieve a
given accuracy of a learned predictor ĥ. This is the setting studied in the present work.

The theoretical literature on this subject has origins in early works discussing algorithmic principles
based on version spaces (Mitchell, 1979; Cohn, Atlas, and Ladner, 1994). Many of the early works
providing actual bounds on the query complexity focused on showing improvements over passive
learning for special scenarios, such as linear classifiers under distribution assumptions (e.g., Freund,
Seung, Shamir, and Tishby, 1997; Dasgupta, Kalai, and Monteleoni, 2005; Har-Peled, Roth, and
Zimak, 2007; Balcan, Beygelzimer, and Langford, 2006; Balcan, Broder, and Zhang, 2007; Balcan
and Long, 2013; Gonen, Sabato, and Shalev-Shwartz, 2013; Wang and Singh, 2016; Cavallanti,
Cesa-Bianchi, and Gentile, 2011; Dekel, Gentile, and Sridharan, 2012). This was followed by a
boom of general-case analyses, providing general theories analyzing the query complexity for any
concept class (e.g., Dasgupta, 2005; Hanneke, 2007a,b, 2009b,a, 2011, 2012, 2014; Dasgupta, Hsu,
and Monteleoni, 2007; Balcan, Hanneke, and Vaughan, 2010; Beygelzimer, Dasgupta, and Langford,
2009; Koltchinskii, 2010; Zhang and Chaudhuri, 2014; El-Yaniv and Wiener, 2012; Wiener, Hanneke,
and El-Yaniv, 2015; Hanneke and Yang, 2015; Hanneke, Karbasi, Moran, and Velegkas, 2024a),
some of which are discussed in more detail below.

Agnostic PAC Learning: The PAC learning framework has also been extended to allow non-
realizable distributions P , that is, removing the restriction that infh∈C erP (h) = 0. This framework
was abstractly formulated in the classic work of Vapnik and Chervonenkis (1974), with interest in the
computer science literature initiated by the works of Haussler (1992); Kearns, Schapire, and Sellie
(1994). Since such non-realizable distributions P might not allow for predictors ĥ with erP (ĥ) ≤ ε,
the objective in this framework changes to merely achieving a relatively low error rate compared
to the best error rate achievable by concepts in the class C. More precisely, we aim to produce a
predictor ĥ which, with probability at least 1− δ, satisfies erP (ĥ) ≤ infh∈C erP (h) + ε. The goal
is to achieve this objective, for every distribution P , without any restrictions. This framework is
termed agnostic PAC learning, to emphasize that we do not assume any special knowledge of P
when designing such a learning algorithm (Kearns, Schapire, and Sellie, 1994).

While an agnostic learning algorithm should achieve this objective for every distribution P , this need
not restrict the analysis of such learners to consider only the worst case over all P . In particular, in the
present work, we are primarily interested in analyzing the number of queries necessary and sufficient
for agnostic active learning, as a function of the best-in-class error rate infh∈C erP (h), known as a
first-order query complexity bound. Precisely, as introduced in Section 2, for every ε, δ, β ∈ (0, 1),
we denote by QCa(ε, δ;β,C) the minimax optimal first-order query complexity: that is, the minimal
Q ∈ N for which there exists an active learning algorithm Aa such that (for a sufficiently large number
m of unlabeled examples), for every distribution P with infh∈C erP (h) ≤ β, with probability at least
1− δ, Aa makes at most Q queries and returns a predictor ĥ satisfying erP (ĥ) ≤ infh∈C erP (h) + ε.
While, in principle, this definition of QCa(ε, δ;β,C) admits learners which explicitly depend on
knowledge of β, we will find that the optimal query complexity is achievable (up to constant factors
and lower-order terms) simultaneously for all β by an active learner which does not require knowledge
of β. Such a learner is said to be adaptive to β. In particular, such a learner is therefore an agnostic
PAC learner, and the β restriction only enters in its analysis.

The Passive Learning Baseline: Since the predictor ĥ produced by an active learning algorithm
is based on its queried subset of a given set of i.i.d. examples (Xi, Yi), the natural quantity for
comparison is the number of i.i.d. labeled examples necessary to obtain the same accuracy: i.e.,
the sample complexity of standard supervised learning, which in this literature is termed passive
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learning.5 Recall from Section 2 that we denote byMp(ε, δ;β,C) the minimax optimal sample
complexity of passive learning: i.e., the minimal n such that there exists a passive learning algorithm
Ap that, for every P with infh∈C erP (h) ≤ β, for S ∼ Pn and ĥn = Ap(S), guarantees with
probability at least 1− δ that erP (ĥn) ≤ infh∈C erP (h) + ε. Since we can always design an active
learner that simply queries the first n examples and runs a passive learner Ap, we clearly always have
QCa(ε, δ;β,C) ≤ Mp(ε, δ;β,C). Thus, the main question of interest is whether QCa(ε, δ;β,C)
is strictly smaller than Mp(ε, δ;β,C), and if so, by how much. Lower bounds of Vapnik and
Chervonenkis (1974); Devroye and Lugosi (1995) establish that

Mp(ε, δ;β,C) = Ω
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(
d+ log
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1

δ
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1

ε
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d+ log

(
1

δ
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recalling that d denotes the VC dimension of C (Vapnik and Chervonenkis, 1971; see Defi-
nition 4 of Appendix B). The classic analysis of Vapnik and Chervonenkis (1974) further es-
tablished this lower bound can nearly be achieved by the simple method of empirical risk
minimization, i.e., ĥn = argminh∈C êrS(h), providing an upper bound Mp(ε, δ;β,C) =
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1
δ

))
+ 1

ε

(
d log

(
1
ε

)
+ log

(
1
δ

)))
. This has since been refined in various

ways, such as via localized chaining arguments (e.g., Giné and Koltchinskii, 2006). Most re-
cently, Hanneke, Larsen, and Zhivotovskiy (2024b) proved an upper bound Mp(ε, δ;β,C) =

O
(

β
ε2

(
d+ log

(
1
δ

)))
+ Õ

(
1
ε

(
d+ log

(
1
δ

)))
, matching the lower bound (4) up to log factors in the

lower-order term (the problem of removing these remaining log factors remains open at this time).
The algorithm achieving this is improper, meaning its returned ĥn is not necessarily an element
of C, and Hanneke, Larsen, and Zhivotovskiy (2024b) in fact show that for some concept classes
C improperness is necessary to match the lower bound (4) in the lead term, as all proper learners
incur an extra log

(
1
β

)
factor. In the special case of β = 0 (the realizable case), the lower bound

(4) was shown to be achievable by Hanneke (2016a) (also necessarily via an improper learner), so
thatMp(ε, δ; 0,C) = Θ

(
1
ε

(
d+ log

(
1
δ

)))
. The lower bound (4) will therefore serve as a suitable

baseline for gauging whether the query complexity QCa(ε, δ;β,C) of active learning is smaller than
the sample complexityMp(ε, δ;β,C) of passive learning.

The Need for Distribution-dependent Analysis in Realizable Active Learning: Much of the
early work on active learning focused on the realizable case, i.e., the special case β = 0. In
this special case, it was quickly observed by Dasgupta (2004, 2005) that there are some concept
classes (e.g., thresholds 1[a,∞) on R) where active learning offers strong improvements over passive
learning, and other concept classes (e.g., intervals 1[a,b] on R) where the (distribution-free) minimax
query complexity QCa(ε, δ; 0,C) offers no significant improvements over passive learning. The
essential advantage in the former case arises from a kind of “binary search” behavior, where the
“uncertainty” is being sequentially reduced by a careful choice of queries. In contrast, the essential
challenge in the latter case is the problem of “searching in the dark” for a small-but-important
region: e.g., the optimal concept is 1 for a single unknown xi among some x1, . . . , x1/ε, and
PX = Uniform({x1, . . . , x1/ε}). It turns out this hard scenario is embedded in many concept classes
of interest, a fact which was formalized and quantified by Hanneke and Yang (2015) in the star number
complexity measure (Definition 2) discussed below. Such concept classes C naturally exhibit a lower
bound QCa(ε, δ; 0,C) = Ω

(
1
ε

)
. Even worse, consider a scenarios where the optimal concept can be

1 for any d points xi among x1, . . . , xd/(2ε), and PX = Uniform({x1, . . . , xd/(2ε)}). Hanneke and
Yang (2015) show this scenario has QCa(ε, δ; 0,C) = Ω

(
d
ε

)
, so that QCa(ε, δ; 0,C) has the same

joint dependence on (d, ε) as passive learningMp(ε, δ; 0,C) = Θ
(
1
ε

(
d+ log

(
1
δ

)))
, only offering

5Since the active learner also has access to the remaining (unqueried) i.i.d. unlabeled examples Xi, it is
also natural to compare to the related framework of semi-supervised learning, in which a learner has access
to some number n of i.i.d. labeled examples with distribution P and additionally some larger number m of
i.i.d. unlabeled examples with distribution PX (Chapelle, Scholkopf, and Zien, 2006). While, under some
favorable conditions, the labeled sample complexity n of semi-supervised learning can be smaller than that of
strictly-supervised passive learning (see Balcan and Blum, 2010), the lower bounds on the (distribution-free)
sample complexity of passive learning discussed in this work remain valid for the labeled sample complexity of
semi-supervised learning (regardless of how many unlabeled examples are available), so that for the purpose of
comparison in the present work, the distinction between supervised and semi-supervised passive learning as a
baseline is not important, and we will simply compare to passive supervised learning for simplicity.
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an improvement in the dependence on δ (where δ thus only affects the unlabeled sample complexity).
Moreover, as noted by Hanneke (2014), similar scenarios6 are embedded (with d = Θ(VC(C))) in
most concept classes C of interest in learning theory (e.g., linear classifiers in R3d, and axis-aligned
rectangles in R2d), so that such classes also exhibit no significant improvements over passive learning
in their (distribution-free minimax) realizable-case query complexity QCa(ε, δ; 0,C).
Motivated by the fact that such hard scenarios are embedded in many concept classes of interest,
Dasgupta (2005) suggested that, for such concept classes, the only viable way to understand the
potential advantages of active learning is to focus on distribution-dependent analysis, toward identi-
fying special scenarios where active learning algorithms offer improvements over passive learning,
by formulating appropriate assumptions on the distribution P . This narrative quickly caught on in
the literature, with a variety of distribution-dependent analyses and general P -dependent complexity
measures being proposed to analyze certain active learning strategies under various restrictions on
the realizable distribution P (Dasgupta, 2005; Hanneke, 2007a,b, 2014; Balcan, Broder, and Zhang,
2007; Balcan and Long, 2013; Zhang and Chaudhuri, 2014; El-Yaniv and Wiener, 2012; Wiener,
Hanneke, and El-Yaniv, 2015). We discuss several of these in detail below.

Active Learning in the Non-realizable Case: Given the above narrative, when approaching
the analysis of active learning in the non-realizable case (β > 0), it might at first seem perfectly
reasonable to expect that for many concept classes C the query complexity QCa(ε, δ;β,C) might
not be much smaller than the sample complexity of passive learningMp(ε, δ;β,C). As such, the
literature on agnostic active learning has largely focused on extending the distribution-dependent
analyses from the realizable case to the agnostic setting (e.g., Balcan, Beygelzimer, and Langford,
2006, 2009; Hanneke, 2007b,a, 2009b, 2011, 2014; Balcan and Hanneke, 2012; Zhang and Chaudhuri,
2014; Wiener, Hanneke, and El-Yaniv, 2015). These upper bounds conformed to the accepted
narrative, in that they offer improvements under some distributions, but for most classes C, in the
worst case over distributions P (with infh∈C erP (h) ≤ β) they essentially revert to the passive sample
complexityMp(ε, δ;β,C).
However, since this narrative was born from analysis of the realizable case, there was no actual
reason to believe it should remain valid in the non-realizable case. In particular, there remained an
intriguing possibility that there could perhaps be other advantages of active learning specific to the
non-realizable case: that is, beyond the “binary search” type advantages known from the realizable
case (as captured by the complexity measures proposed for realizable-case analysis). Some hints
that such additional advantages may exist appear in the works of Efromovich (2007) and Hanneke
and Yang (2015) studying certain special scenarios (noise models more-restrictive than the agnostic
setting), which found that active learning can also be useful for adaptively identifying noisy regions
(i.e., regions of X’s where P (Y |X) is close to 1

2 ) and allocating queries appropriately to compensate
for this noisiness without wasting excessive queries in less-noisy regions (as passive learning would).
This additional advantage, specific to the non-realizable case, offered quantitative advantages over
passive learning under the specific conditions studied in those works (e.g., Hanneke and Yang, 2015
showed improvements in query complexity under certain noise models, namely Tsybakov noise and
Benign noise, for all classes C, including those with the “searching in the dark” scenario embedded in
them). However, these works left open the question of whether such advantages can be observed also
in the more-challenging agnostic setting. The extension to the agnostic case is not at all clear, since
in this setting (unlike the special noise models in the works above) the source of non-realizability
is not only the noisiness of the P (Y |X) label distribution, but also model misspecification: i.e., it
is possible to have β > 0 even when P (Y |X) ∈ {0, 1}, if the Bayes classifier is not in C, in which

6The hard scenario embedded in these classes is slightly more structured. Namely, for any d ∈ N and infinite
X , partition X into disjoint infinite subsets X1, . . . ,Xd, and define Cd = {h : ∀i ≤ d,

∑
x∈Xi

h(x) ≤ 1},
which has VC(Cd) = d. For such classes Cd, Hanneke and Yang (2015) show that QCa(ε, δ; 0,Cd) = Ω

(
d
ε

)
(as

an aside, it is a straightforward exercise to show a matching upper bound for this class). For homogeneous linear
classifiers in R3d, we can construct the Xi sets as circles in disjoint subspaces: i.e., Xi is all (z1, . . . , z3d) ∈ R3d

s.t. all coordinates zj = 0 except z23(i−1)+1+z23(i−1)+2 = 1 and z3(i−1)+3 = 1 (to allow for non-homogeneous
linear classifiers on these circles, each controlled using 3 distinct weights in the 3d-dimensional linear classifier);
the classifiers with boundary tangent to these circles witness the d singleton problems in Cd. For axis-aligned
rectangles in R2d, we can construct the Xi sets as diagonal lines in disjoint 2-dimensional subspaces: i.e., Xi

is all (z1, . . . , z2d) ∈ R2d with all zj = 0 except z2(i−1)+1 ∈ [0, 1] and z2(i−1)+2 = 1 − z2(i−1)+1; as each
Xi can be classified by a 2-dimensional rectangle based on 2 distinct coordinates, the classifiers with a single
corner intersecting each of these diagonal lines then witness the d singleton problems in Cd.
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case the idea of adapting to “noisiness” of labels is no longer a useful framing of the problem. (The
present work finds the appropriate re-framing of this capability, replacing the notion of “noisiness” by
the variance of the excess-error estimation problem, and identifies algorithmic principles for isolating
such high-variance regions, constituting the AVID principle).

Quantifying the Query Complexity (Realizable Case): As discussed above, motivated by negative
results for distribution-free analysis in the realizable case, numerous works have studied the query
complexity of active learning under restrictions on the distribution P . These distribution-dependent
analyses are often expressed in terms of abstract P -dependent complexity measures intended to
capture favorable conditions for active learning, compared to passive learning. Quantitatively, in the
realizable case (β = 0), such P -dependent query complexity bounds are typically expressed in the
form cP (ε) · d · polylog

(
1
εδ

)
for some P -dependent complexity measure cP (ε). Examples of such

complexity measures include the splitting index (Dasgupta, 2005), disagreement coefficient (Hanneke,
2007b, 2009b, 2011), empirical extended teaching dimension (Hanneke, 2007a), and a subregion
variant of the disagreement coefficient (Zhang and Chaudhuri, 2014), among others (e.g., El-Yaniv
and Wiener, 2012; Hanneke, 2012, 2014; Wiener, Hanneke, and El-Yaniv, 2015; Hanneke and Yang,
2015). Some of these were accompanied by related minimax lower bounds holding for any fixed PX

marginal distribution (Dasgupta, 2005; Hanneke, 2007a; Balcan and Hanneke, 2012). We discuss
several of these P -dependent analyses and cP (ε) complexity measures in detail in Appendix A.2.

The works of Hanneke and Yang (2015); Hanneke (2016b, 2024) later showed that all of these
proposed complexity measures cP (ε) have worst-case values (i.e., supP cP (ε) over realizable P )
precisely equal a complexity measure s therein termed the star number of C (Definition 2), a quantity
which abstractly formalizes and quantifies the extent to which the aforementioned “searching in the
dark” scenario is embedded in a given concept class C. Thus, the star number unifies all of these
complexity measures in the case of distribution-free analysis. Moreover, Hanneke and Yang (2015)
also show the star number sharply characterizes the optimal distribution-free query complexity in the
realizable case: namely,

s ∧
(
1

ε
+ d

)
≲ QCa(ε, δ; 0,C) ≲

(
s ∧ d

ε

)
log

(
1

ε

)
(5)

(see Hanneke and Yang, 2015, for more-detailed bounds). Hanneke and Yang (2015) also show
the upper and lower bounds in (5) represent a nearly-sharp dependence on (d, s): that is, there
exist concept classes Cd,s and Cd,s of any given VC dimension d and star number s ≥ d for which
QCa(ε, δ; 0,Cd,s) = Θ

(
s ∧
(
1
ε + d

))
and QCa(ε, δ; 0,Cd,s) = Θ

(
s ∧ d

ε

)
. Thus, the bounds in (5)

are essentially unimprovable (up to a log factor) without introducing additional complexity measures
for the class C. In particular, this also means any upper bound on QCa(ε, δ; 0,C) depending on C
only via d and s can be no smaller than Ω

(
s ∧ d

ε

)
.

The bounds in (5) imply that QCa(ε, δ; 0,C) admits an improved dependence on ε compared to
Mp(ε, δ; 0,C) = Θ

(
1
ε

(
d+ log

(
1
δ

)))
if and only if s < ∞. While there exist some interesting

concept classes C with finite star number (e.g., threshold classifiers on R, decision stumps on
Rp), it turns out most concept classes of interest in learning theory have infinite (or very large)
star number (e.g., s = ∞ for linear classifiers on Rp, p ≥ 2). Thus, the general bounds in (5)
quantitatively reflect the fact (already observed in several cases by Dasgupta, 2004, 2005) that
we should typically not expect any significant benefits of active learning in the realizable case to
be reflected in the (distribution-free minimax) query complexity QCa(ε, δ; 0,C). Moreover, as
mentioned above, the concept classes Cd,s with s =∞ witnessing near-sharpness of the upper bound
in (5) are also embedded in many concept classes of interest in learning theory (see footnote 6),
further strengthening the lower bound to Ω

(
d
ε

)
for such classes, thus matching the sample complexity

Mp(ε, δ; 0,C) of passive learning in all dependencies (except δ).

Quantifying the Query Complexity (Agnostic Case): Turning to the agnostic case (β ≥ 0),
Kääriäinen (2006) established a general lower bound QCa(ε, δ;β,C) = Ω

(
β2

ε2 log
(
1
δ

))
, later

strengthened by Beygelzimer, Dasgupta, and Langford (2009) to

QCa(ε, δ;β,C) = Ω

(
β2

ε2

(
d+ log

(
1

δ

)))
. (6)
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Comparing this to the sample complexity of passive learning (discussed above), namely
Mp(ε, δ;β,C) = Θ

(
β
ε2

(
d+ log

(
1
δ

)))
+ Θ̃

(
1
ε

(
d+ log

(
1
δ

)))
, we see that in the regime β ≫

√
ε,

the best improvement we can hope for from active learning would be to replace the factor β with β2:
i.e., squaring the dependence on the best-in-class error rate infh∈C erP (h). In the regime β ≲

√
ε,

the realizable-case lower bound from (5) becomes relevant (the realizable case being a special case,
since clearly infh∈C erP = 0 satisfies the condition infh∈C erP (h) ≤ β), which may be thought of
as a lower-order additive term.

The work of Balcan, Beygelzimer, and Langford (2006) initiated the study of upper bounds on the
query complexity in the agnostic case, showing that the lower bound (6) can be matched in the
special cases of threshold classifiers (concepts 1[a,∞) on X = R), and (in the regime β ≲ ε/

√
d)

matched up to a factor d for homogeneous linear classifiers under PX uniform in an origin-centered
ball, extending these well-known examples from the realizable case. This analysis was generalized
to all concept classes by Hanneke (2007b), expressing a query complexity bound of the form
Õ
(
cP (β + ε)d

(
β2

ε2 + 1
))

, where the factor cP (β + ε) is based on a P -dependent complexity
measure θP (β + ε) therein termed the disagreement coefficient (Definition 25). In particular, the
bound of Hanneke (2007b) matches the lower bound of Kääriäinen (2006); Beygelzimer, Dasgupta,
and Langford (2009) up to logs only when θP (β + ε) = Õ(1). The latter holds for threshold
classifiers, and for other classes under restrictions on P , but in many other cases θP (β + ε) can
be as large as 1

β+ε due to the “searching in the dark” problem discussed above; in such cases, the
query complexity upper bound of Hanneke (2007b) is no smaller than the sample complexity of
passive learningMp(ε, δ;β,C). Numerous later works (some discussed in detail below) discovered
refinements and alternative P -dependent complexity measures used to express upper bounds on
the query complexity (Hanneke, 2007a; Dasgupta, Hsu, and Monteleoni, 2007; Hanneke, 2009b,
2011, 2014; Zhang and Chaudhuri, 2014; Wiener, Hanneke, and El-Yaniv, 2015). However, like
the bound of Hanneke (2007b), all of these results establish query complexity upper bounds of the
form Õ

(
cP (β + ε)d

(
β2

ε2 + 1
))

for some P -dependent complexity measure cP (β + ε), all of which
have the property that, in the “searching in the dark” type scenarios discussed above, the value
cP (β + ε) ≥ 1

β+ε , so that in such scenarios these upper bounds are all no smaller than the sample
complexity of passive learningMp(ε, δ;β,C).
As in the realizable case, these various analysis were later all unified under worst-case analysis
over P by the star number in the work of Hanneke and Yang (2015). Indeed, these complexity
measures cP (β + ε) are in fact the same family of complexity measures alluded to above for the
realizable case. As such, by the aforementioned result of Hanneke and Yang (2015), they all satisfy
supP cP (β+ ε) = s∧ 1

β+ε . Thus, the upper bounds established by these works, all being of the form

Õ
(
cP (β + ε)d

(
β2

ε2 + 1
))

, unify to a single upper bound of the form Õ
((

s ∧ 1
β+ε

)
d
(

β2

ε2 + 1
))

in
the worst case over distributions P (satisfying infh∈C erP (h) ≤ β). In particular, this also means they
all fail to imply any improvements over the sample complexity of passive learningMp(ε, δ;β,C) in
the worst case over such distributions P , for any concept class C with s =∞.7 This is significant,
since (as discussed above) most commonly-studied concept classes have s = ∞, including, for
instance, linear classifiers in Rp, p ≥ 2. On the other hand, the lower bound (6), of the form
Ω
(

β2

ε2

(
d+ log

(
1
δ

)))
, has no such factor s ∧ 1

β+ε . The natural question is therefore which of these
can be strengthened: the upper bound or lower bound.

The above gap has a qualitative significance. If the lower bound could be strengthened to match the
upper bound, it would mean that (as in the realizable case) there are classes where active learning
offers no advantage in its minimax query complexity compared to passive learning. On the other
hand, if the upper bound can be strengthened to match the lower bound, it would mean that (unlike the
realizable case) the query complexity of active learning is always smaller than the sample complexity
of passive learning in the agnostic setting: i.e., for every concept class. The problem of resolving
this gap has remained open until now. In the present work, we completely resolve this question,

7One can also show that this is not merely a result of loose analysis. The algorithms (prior to the present
work) can be made to behave similarly to passive learners (meaning they query almost indiscriminately) in some
scenarios constructed on large star sets, resulting in a number of queries β

ε2
.
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strengthening the upper bound to match the lower bound (6), thereby establishing that active learning
is always better than passive learning in the agnostic case, providing an improvement by squaring the
dependence on the best-in-class error rate in the leading term: i.e., replacing β with β2. Establishing
this upper bound requires a new principle for active learning, specific to the agnostic setting, which
we develop in this work (termed AVID, for Adaptive Variance Isolation by Disagreements).

Before proceeding with the presentation of our results, we first provide, in the next subsection, a
detailed survey of several of the prior works mentioned in the above brief historical summary.

A.2 Detailed Description of Relevant Techniques in the Prior Literature

In this subsection, we provide further details of relevant works in the literature. Due to the vastness
and diversity of the literature on the theory of active learning, we will not provide an exhaustive
survey here, instead focusing on the techniques and results most-relevant to the present work.

A.2.1 Disagreement-based Active Learning

By-far the most well-studied technique in the literature on the theory of active learning is disagreement-
based active learning. A disagreement-based active learner is given as input the sequence
X1, X2, . . . , Xm of unlabeled examples. It maintains (either explicitly or implicitly) a set V ⊆ C of
surviving concepts (known as a version space), with a guarantee that the best-in-class concept8 h⋆

is always retained in V . To choose its query points, it finds the next unlabeled example Xi in the
sequence for which ∃f, g ∈ V with f(Xi) ̸= g(Xi), and queries for the label Yi: or more succinctly,
it queries the next Xi ∈ DIS(V ), where

DIS(V ) := {x ∈ X : ∃f, g ∈ V, f(x) ̸= g(x)},

denotes the region of disagreement of V . It then updates the set V of surviving concepts based on
this new information (or, in some variants, it performs this update only periodically, rather than after
every query). This is abstractly summarized in the following outline (where Step 4 can be instantiated
in various ways, as discussed below).

Algorithm Outline: Disagreement-based Active Learning
Input: Unlabeled data X1, . . . , Xm

Output: Classifier ĥ
0. Initialize V = C
1. For i = 1, 2, . . . ,m
2. If Xi ∈ DIS(V )
3. Query for label Yi

4. Update V

5. Return any ĥ ∈ V

The idea is that, if we seek to return a concept ĥ ∈ V with small erP (ĥ) − erP (h
⋆), then for any

Xi /∈ DIS(V ), since all surviving concepts agree on the classification of Xi, the label Yi would
provide no information that would help with this goal, so we do not bother querying for this label:
that is, such a Yi cannot help to estimate the relative performances erP (f) − erP (g) of concepts
f, g ∈ V , since regardless of Yi, we have 1[f(Xi) ̸= Yi]− 1[g(Xi) ̸= Yi] = 0. In contrast, the next
Xi ∈ DIS(V ) in the sequence is a random sample from PX(·|DIS(V )), so that for any f, g ∈ V ,
1[f(Xi) ̸= Yi] − 1[g(Xi) ̸= Yi] is an unbiased estimate of the difference of error rates under the
conditional distribution P (·|DIS(V ) × {0, 1}), which (again since f, g agree outside DIS(V )) is
proportional to erP (f)− erP (g). By reasoning about uniform concentration of these estimates, we
can define an update rule for V in Step 4 that never removes the best-in-class concept h⋆ while
pruning sub-optimal concepts from V (where the resolution of this pruning improves as i grows).

In the realizable case, since we always have h⋆(Xi) = Yi, the updates to V in Step 4 can simply
remove all concepts incorrect on a queried example (Xi, Yi): that is, V ← {h ∈ V : h(Xi) = Yi}
(called the version space), which always retains h⋆ ∈ V . The algorithmic principle of disagreement-
based queries, and corresponding reasoning about correctness and potential advantages, was already

8The theory easily generalizes to cases where the infimum infh∈C erP (h) is not attained, in which case
define h⋆ ∈ C to have erP (h

⋆) sufficiently close to the infimum, e.g., as in (10) below.
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identified in the early work of Mitchell (1979) (for the membership queries model).9 The precise form
expressed above (sequentially checking unlabeled examples for disagreements) was first explicitly
studied by Cohn, Atlas, and Ladner (1994), and in their honor, this realizable-case technique is
referred to as CAL in the literature. As for its theoretical analysis, the original works of Mitchell
(1979); Cohn, Atlas, and Ladner (1994) include the observation that h⋆ is retained in V , and Cohn,
Atlas, and Ladner (1994) additionally include some discussion of generalization. However, the formal
analysis of the query complexity of this technique in the PAC framework only began with the later
work of Balcan, Beygelzimer, and Langford (2006) (bounding the query complexity for some specific
concept classes), and the general analysis of the technique (applicable to any concept class) began
with the works of Hanneke (2007b, 2009b, 2011); Dasgupta, Hsu, and Monteleoni (2007).

The idea of disagreement-based active learning was first extended to the agnostic setting (β ≥ 0) by
Balcan, Beygelzimer, and Langford (2006), with an instantiation of the above outline they called the
A2 algorithm (for Agnostic Active). The main idea in A2 is to instantiate the update to V in Step 4
using uniform concentration inequalities. In their original version, they specifically define UB(h)
and LB(h) as high-probability uniform upper and lower bounds on erP (·|DIS(V )×{0,1})(h) based on
the queries from DIS(V ) since the last update to V (where they only update V periodically in their
algorithm, so that the queried examples since the last update are i.i.d. samples from P (·|DIS(V )×
{0, 1})). They then define the update as V ← {h ∈ V : LB(h) ≤ minh′∈V UB(h′)}. The idea is
that they wish to remove a concept h from V if there is another concept h′ ∈ V whose upper bound
UB(h′) on its error rate is smaller than the lower bound LB(h) on the error rate of h. In particular,
since h, h′ agree on all x /∈ DIS(V ), we have

erP (h)− erP (h
′) ∝ erP (·|DIS(V )×{0,1})(h)− erP (·|DIS(V )×{0,1})(h

′) ≥ LB(h)−UB(h′),

and hence a concept h can be removed from V only if erP (h) − erP (h
′) > 0 for some h′ ∈ V ,

meaning that h is verifiably suboptimal, guaranteeing that the algorithm always retains h⋆ ∈ V .
Conversely, by querying the examples in DIS(V ), we are improving the concentration inequalities
UB(h), LB(h), so that suboptimal concepts are removed from V , which has two benefits: (1) we
are converging to a set of relatively low-error concepts (important for the final error guarantee), and
(2) by reducing V we are potentially also reducing DIS(V ), focusing the algorithm’s queries to
more-informative samples and decreasing the query complexity.

The original analysis of Balcan, Beygelzimer, and Langford (2006) included the above correctness
guarantee (i.e., the algorithm maintains h⋆ ∈ V ), along with a general guarantee that the A2 algorithm
returns an ĥ with erP (ĥ) ≤ erP (h

⋆) + ε, with a number of queries never significantly worse than
that of passive learning. Also, as a sort of proof of concept illustrating the potential benefits of A2 in a
simple example, they also quantified the query complexity advantages in the special case of threshold
classifiers (concepts 1[a,∞) on X = R), showing a bound Õ

(
β2

ε2 + 1
)

for that class (matching the
lower bound of Kääriäinen, 2006). They also studied the special case of learning homogeneous
linear classifiers under a uniform distribution in an origin-centered ball in Rd, focusing on the regime
β ≲ ε/

√
d, for which they showed the query complexity is Õ

(
d2 log

(
1
ε

)
log
(
1
δ

))
.

The first general analyses (i.e., applicable to any concept class) of the query complexity of active
learning in the agnostic setting were given in the works of Hanneke (2007b,a). In particular, Hanneke
(2007b) analyzed the A2 disagreement-based active learning algorithm, providing a general query
complexity bound expressed in terms of a new complexity measure therein termed the disagreement
coefficient. Specifically, for r > 0, denoting by BPX

(h⋆, r) = {h ∈ C : PX(x : h(x) ̸= h⋆(x)) ≤ r}
the h⋆-centered r-ball (under L1(PX)), the disagreement coefficient is defined as

θP (β + ε) := sup
r>β+ε

PX(DIS(BPX
(h⋆, r)))

r
∨ 1.

The intuitive interpretation of the relevance of this quantity is that, as the algorithm progresses, the set
V of surviving concepts will become closer and closer to h⋆ (up until a distance O(β + ε)), so that
the probability of querying decreases as PX(DIS(V )) ≤ PX(DIS(BPX

(h⋆, r))) for an appropriate r
decreasing as the number of queries grows.

Hanneke (2007b) proves that, for any C and P , for β = erP (h
⋆), the A2 algorithm succeeds after

a number of queries Õ
(
θP (β + ε)2d

(
β2

ε2 + 1
))

. This matches the lower bound (6) of Kääriäinen

9Mitchell (1979) also discusses some reasonable extensions of version spaces to the non-realizable case.
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(2006); Beygelzimer, Dasgupta, and Langford (2009) up to logs whenever θP (β + ε) = Õ(1). In
particular, Hanneke (2007b) bounds θP (β + ε) for a number of scenarios (C, P ), including showing
that this general query complexity upper bound recovers the examples of Balcan, Beygelzimer, and
Langford (2006): θP (β+ε) ≤ 2 for threshold classifiers, and θP (β+ε) = O(

√
d) for homogeneous

linear classifiers under a uniform distribution on an origin-centered sphere (thus also removing the
constraints on β, ε from the result of Balcan, Beygelzimer, and Langford, 2006). However, Hanneke
(2007b) also found θP (β + ε) can sometimes be as large as 1

β+ε , particularly for the “searching in
the dark” scenarios discussed above, in which case the query complexity bound is no smaller than the
sample complexity of passive learning.

Subsequently, Dasgupta, Hsu, and Monteleoni (2007) refined the dependence on θP (β + ε) in this
bound (analyzing a different disagreement-based algorithm), replacing θP (β + ε)2 with θP (β + ε).
Their technique also identifies a principle enabling more-practical implementation of disagreement-
based active learning, expressing the algorithm as a reduction to empirical risk minimization (ERM).
In general (even with A2), we can always maintain the set V implicitly (i.e., without storing this
large object V explicitly), by simply maintaining the set of constraints that define it, which then
enable us to perform the various operations (e.g., checking whether Xi ∈ DIS(V ), or computing
minh′∈V UB(h)) via constraint satisfaction or constrained optimization problems. The algorithm
of Dasgupta, Hsu, and Monteleoni (2007) takes this a step further, expressing such operations as
(effectively) unconstrained optimization problems, or in other words, calls to an ERM subroutine (i.e.,
an algorithm which returns a concept in C minimizing the number of mistakes on any given labeled
data set). Specifically, they store two labeled data sets Qi, Li, where Qi are the queried examples so
far (up to round i) and Li are the unqueried examples so far (with inferred labels). On round i, they
consider the concepts h1, h0 ∈ C of minimal êrQi−1(h) subject to êrLi−1(h) = 0 and h1(Xi) = 1,
h0(Xi) = 0, if they exist (noting that such concepts can each be obtained by a single call to an
ERM oracle with appropriately high weight, or repetition, of the Li−1 and (Xi, y) examples). If
êrQi−1(h

1) and êrQi−1(h
0) are of similar sizes, they query for Yi and add it to Qi−1 to get Qi (letting

Li = Li−1), and otherwise they take an inferred label ŷi = argminy êrQi−1(h
y) and add (Xi, ŷi) to

Li−1 to get Li (letting Qi = Qi−1). Note that this is equivalent to maintaining a set V of all concepts
h ∈ C having êrLi−1

(h) = 0 and êrQi−1
(h) of similar size to minh′ êrQi−1

(h′) among all h′ ∈ C
with êrLi−1

(h′) = 0, and querying Xi iff Xi ∈ DIS(V ). Thus, this algorithm can also be viewed as
a disagreement-based active learner (and this connection is made explicit in the analysis of Dasgupta,
Hsu, and Monteleoni, 2007). (Notably, subsequent works of Beygelzimer, Hsu, Langford, and Zhang,
2010; Hsu, 2010 even further simplified this technique by dropping the Li−1 constraints, obtaining
similar query complexity bounds).

The specific quantification of the “similar sizes” criterion for the difference of empirical error rates
comes from uniform Bernstein-style concentration inequalities (related to the uniform Bernstein
inequality stated in Lemma 7 of Appendix D below). In particular, letting Si−1 = {(Xj , Yj) : j < i},
among all pairs of concepts h, h′ ∈ C with êrLi−1

(h) = êrLi−1
(h′) = 0, since they agree on

examples in Li−1, we have

êrQi−1
(h)− êrQi−1

(h′) ∝ êrQi−1∪Li−1
(h)− êrQi−1∪Li−1

(h′) = êrSi−1
(h)− êrSi−1

(h′),

so that we can make use of concentration inequalities for estimating differences of error rates from
the i.i.d. data set Si−1 (e.g., as in Lemma 7). Reasoning inductively, if êrLi−1

(h⋆) = 0, such a
concentration inequality guarantees that among all h ∈ C with êrLi−1

(h) = 0, êrQi−1
(h⋆) can never

be too much larger than êrQi−1
(h), so that if the algorithm does not query Xi (meaning êrQi−1

(h1−ŷi)

is much larger than êrQi−1
(hŷi)), the corresponding label ŷi must be h⋆(Xi), so that adding (Xi, ŷi)

to Li retains that êrLi(h
⋆) = 0. Conversely, if êrQi−1(h

0) and êrQi−1(h
1) are of similar sizes, then

the algorithm has effectively verified that there exist concepts h, h′ ∈ C with erP (h) and erP (h
′)

rather close to erP (h
⋆) which nevertheless disagree on Xi (h(Xi) ̸= h′(Xi)), and querying for Yi

and adding (Xi, Yi) to Qi then strengthens the concentration of the êrQi
estimates, to help further

distinguish among such small-error concepts in subsequent rounds.

Dasgupta, Hsu, and Monteleoni (2007) analyzed the query complexity of this algorithm, showing that
it guarantees erP (ĥ) ≤ erP (h

⋆)+ε after a number of queries Õ
(
θP (β + ε)d

(
β2

ε2 + 1
))

. Compared
to the original analysis of Hanneke (2007b), this improves the bound in its dependence on θP (β + ε),
reducing from quadratic θP (β+ ε)2 to linear θP (β+ ε). Again, the conclusion is that the algorithm’s
query complexity matches the lower bound (6) of Kääriäinen (2006); Beygelzimer, Dasgupta, and
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Langford (2009) up to logs whenever θP (β + ε) = Õ(1); however, again, in scenarios (C, P ) with
θP (β + ε) = Ω

(
1

β+ε

)
, the bound offers no improvements over the sample complexity of passive

learning.

The above techniques, and corresponding analysis in terms of the disagreement coefficient, seeded
a vast literature, with many variations on the technique, analysis, and complexity measures, and
many examples of scenarios (C, P ) for which θP (β + ε) can be favorably bounded. This branch
of the literature is collectively referred to as disagreement-based active learning (see e.g., the
works of Hanneke, 2009b, 2011, 2012, 2014, 2016b; Balcan, Hanneke, and Vaughan, 2010; Hsu,
2010; El-Yaniv and Wiener, 2012; Friedman, 2009; Mahalanabis, 2011; Koltchinskii, 2010; Wang,
2011; Beygelzimer, Dasgupta, and Langford, 2009; Beygelzimer, Hsu, Langford, and Zhang, 2010;
Raginsky and Rakhlin, 2011; Ailon, Begleiter, and Ezra, 2014; Huang, Agarwal, Hsu, Langford, and
Schapire, 2015; Wiener, Hanneke, and El-Yaniv, 2015; Hanneke and Yang, 2010, 2015, 2019; Yan,
Chaudhuri, and Javidi, 2018, 2019; Gelbhart and El-Yaniv, 2019; Cortes, DeSalvo, Gentile, Mohri,
and Zhang, 2019a; Cortes, DeSalvo, Gentile, Mohri, and Zhang, 2019b,c, 2020; DeSalvo, Gentile,
and Thune, 2021; Shayestehmanesh, 2020; Puchkin and Zhivotovskiy, 2022). A detailed summary of
this line of work is presented in the survey of Hanneke (2014).

In the context of distribution-free analysis, Hanneke and Yang (2015) showed that supP θP (β+ ε) =
s ∧ 1

β+ε , where s is the star number of C (Definition 2), and where the sup is over realizable
distributions P (so that, in particular, they satisfy the condition erP (h

⋆) ≤ β). Thus, in terms of
their implications for the distribution-free query complexity QCa(ε, δ;β,C), these P -dependent
analyses of disagreement-based active learning simplify to a bound of the form QCa(ε, δ;β,C) =
Õ
((

s ∧ 1
β+ε

)
d
(

β2

ε2 + 1
))

. In particular, such bounds are capable of providing improvements in
distribution-free query complexity over the sample complexity of passive learningMp(ε, δ;β,C)
if and only if s <∞ (which, as discussed above, is a rather strong restriction). This contrasts with
Theorems 1, 3, which provide improvements for all concept classes C, regardless of whether s is
finite or infinite. (The role of s in Theorem 3 is merely in refining the lower-order term in the special
case that s <∞). In this sense, Theorems 1, 3 are most interesting for classes C with s =∞, since
no previous techniques provide improvements over passive learning for such classes.

We note that, while the AVID Agnostic algorithm (Figure 1) itself should not be regarded as a
disagreement-based active learner (as its primary advantage over passive learning is not based on the
restriction of queries to DIS(V )), elements of disagreement-based learning have been incorporated
into it for the purpose of the refined lower-order term in the upper bound in Theorem 3. Specifically,
the choice to query examples in S1

k ∩Dk−1 \∆ik in Step 2 (and similarly Step 9) restricts to queries
in Dk−1 = DIS(Vk−1). This restriction is directly responsible for the lower-order term in Theorem 3
being of the form Õ

((
s ∧ 1

ε

)
d
)

rather than Õ
(
d
ε

)
as in Theorem 1. On the other hand, for the

purpose of the lead term, this incorporation of disagreement-based queries is unnecessary, and indeed
Theorem 1 remains valid without this aspect of the algorithm: that is, in Steps 2 and 9, if we simply
query all of S1

k \∆ik , the algorithm still achieves the query complexity bound stated in Theorem 1
with its lower-order term Õ

(
d
ε

)
.

The argument leading to the refined lower-order term in Theorem 3 makes use of reasoning directly
rooted in the analysis of disagreement-based methods via the disagreement coefficient (Lemma 22),
and indeed we present P -dependent refinements of this lower-order term directly expressed in terms of
θP (β+ ε) in Appendix F.2. In particular, we show (Corollary 28) the lower-order term Õ

((
s ∧ 1

ε

)
d
)

can be replaced by Õ
(
θP (β + ε)2d

)
, yielding an overall P -dependent query complexity bound

O
(

β2

ε2

(
d+ log

(
1
δ

)))
+ Õ

(
θP (β + ε)2d

)
. we further argue, in Appendix F.1, that it is not possible

(by any algorithm) to reduce this lower-order term to Õ(θP (β + ε)d) or even Õ(θP (0)d), though we
do show that other intermediate forms of the term are achievable, such as Õ

(
θP (β + ε)d

(
β+ε
ε

))
.

A.2.2 Subregion-based (Margin-based) Active Learning

Shortly after the work of Balcan, Beygelzimer, and Langford (2006), which included an analysis
of homogeneous linear classifiers under a uniform distribution, Balcan, Broder, and Zhang (2007)
proposed a refinement of disagreement-based active learning specific to linear classifiers. Rather
than querying every example in the region of disagreement DIS(V ), they identified a subregion
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R ⊆ DIS(V ) which suffices for the purpose of estimating differences of error rates erP (f)− erP (g)
among f, g ∈ V . The key idea is to choose R so that any f, g ∈ V have PX({f ̸= g} \ R) small,
so that R captures most of the disagreements between concepts f, g ∈ V that are far apart. In
their case, since they were specifically focusing on homogeneous linear classifiers (i.e., concepts
hw(x) = 1[⟨w, x⟩ ≥ 0] on X = Rd) under PX uniform in an origin-centered ball, they could
describe this region R as a slab around the boundary of a current hypothesis hŵ: that is, R ={
x ∈ Rd : |⟨ŵ, x⟩| ≤ b

}
for an appropriate width b (which decreases over time as the algorithm

progresses). In other words, the algorithm queries examples Xi with low margin under the current
hypothesis ŵ. As such, this technique is referred to as margin-based active learning. They analyzed
this technique for the realizable case and under a specialized noise condition (Tsybakov noise), and
found it provides advantages over disagreement-based learning: in the realizable case, improving
the query complexity from d3/2 · polylog

(
1
εδ

)
to d · polylog

(
1
εδ

)
(matching the query complexities

achieved by earlier works Freund, Seung, Shamir, and Tishby, 1997; Dasgupta, Kalai, and Monteleoni,
2005; Dasgupta, 2005), while allowing for some robustness to non-realizable distributions P (albeit
not fully agnostic). The technique was later extended in various ways, including studying adaptivity
to certain noise parameters (Wang and Singh, 2016) and generalizing beyond the uniform distribution,
to general isotropic log-concave or s-concave distributions (Balcan and Long, 2013; Balcan and
Zhang, 2017).

This idea was extended to general concept classes C and distributions P , including the agnostic setting,
in the work of Zhang and Chaudhuri (2014). Again the idea is to identify a region R ⊆ DIS(V ) for
which concepts f, g ∈ V have only small disagreements outside R: PX({f ̸= g} \ R) ≤ η, for a
small η. Rather than an explicit region R (as in margin-based active learning), they simply choose
a subset of the unlabeled examples via a linear program, which they show (in the analysis) can be
related to an optimal choice of such a region. We discuss this technique in detail in Appendix F.3.

The implication of this refinement of disagreement-based learning is a P -dependent query complexity
bound, stated in terms of a subregion-based refinement of the disagreement coefficient, defined
as follows (adopting some simplifications from Hanneke, 2016b). As above, define the r-ball
BPX

(h⋆, r) = {h ∈ C : PX(x : h(x) ̸= h⋆(x)) ≤ r} for r > 0. Also, for η ≥ 0, define

ΦPX
(BPX

(h⋆, r), η) := inf

{
PX(R) : sup

h∈BPX
(h⋆,r)

PX({h ̸= f} \R) ≤ η,R ⊆ X , f :X → {0, 1}

}
,

where R and f are restricted to be measurable. Finally, for ε ≥ 0, define the subregion disagreement
coefficient (Definition 31) as

φP (ε, η) := sup
r>η+ε

ΦPX
(BPX

(h⋆, r), (r − η)/c)

r
∨ 1,

for an appropriate universal constant c > 1. The technique of Zhang and Chaudhuri (2014) provides
a P -dependent query complexity bound of the form Õ

(
φP (ε, 2β)d

(
β2

ε2 + 1
))

. In particular, it
follows from the definitions that φP (ε, 2β) ≤ θP (2β + ε) (see Appendix F.3), and Zhang and
Chaudhuri (2014) discuss some examples where the gap is large. Thus, this represents a refinement
of the query complexity bounds for disagreement-based active learning discussed above.

As a primary example where φP (ε, 2β)≪ θP (β + ε), consider again the scenario of homogeneous
linear classifiers on Rd under PX an isotropic log-concave distribution (as considered in the margin-
based active learning works of Balcan, Broder, and Zhang, 2007; Balcan and Long, 2013 discussed
above). In this scenario, Zhang and Chaudhuri (2014) show that φP (ε, 2β) = O

(
log
(

β
ε

))
(based on

concentration arguments from Balcan and Long, 2013). Thus, in this scenario, the query complexity
bound of Zhang and Chaudhuri (2014) is Õ

(
d
(

β2

ε2 + 1
))

. In contrast, Hanneke (2007b) showed

θP (β + ε) = Ω
(√

d ∧ 1
β+ε

)
for PX the uniform distribution on an origin-centered sphere (a special

case of isotropic log-concave), so that the query complexity bounds for disagreement-based active
learning are roughly d3/2

(
β2

ε2 + 1
)

, hence are suboptimal by a factor
√
d.

That said, in the context of distribution-free analysis, it is unclear whether there are advantages from
this subregion technique. Specifically, Hanneke (2016b) showed that supP φP (ε, 0) = s ∧ 1

ε (where
the sup is restricted to realizable distributions P ), which matches the worst-case value of θP (ε)
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(established by Hanneke and Yang, 2015). In (54) of Appendix F.3, we further extend this to φP (ε, η)
(using the fact that φP (ε, η) ≥ φP (η + ε, 0)), establishing that (for ε, η ≥ 0 with η + ε ≤ 1)

sup
P

φP (ε, η) = s ∧ 1

η + ε
,

where again the sup is restricted realizable distributions P . Thus, the implication of the P -
dependent query complexity bound of Zhang and Chaudhuri (2014) for bounding the distribution-
free query complexity QCa(ε, δ;β,C) is merely to recover the same query complexity bound
Õ
((

s ∧ 1
β+ε

)
d
(

β2

ε2 + 1
))

already known to hold for disagreement-based active learning. In partic-
ular, this means that the above query complexity bound of Zhang and Chaudhuri (2014) is capable
of providing improvements in the distribution-free query complexity of active learning, compared
to the sample complexityMp(ε, δ;β,C) of passive learning, if and only if s <∞ (again, a rather
strong restriction). Again, this contrasts with Theorems 1, 3, which provide improvements for all
concept classes C, regardless of s, with s merely influencing refinements in the lower-order term in
Theorem 3.

In Appendix F.3, we give a refinement of the AVID Agnostic algorithm, which adopts this subregion
technique (in combination with the AVID principle). We show this Subregion-AVID Agnostic
algorithm achieves a P -dependent refinement of the lower-order term compared to the original
AVID Agnostic algorithm. For instance, one implication of this refinement is replacing the term
Õ
((
s ∧ 1

ε

)
d
)

in Theorem 3 with Õ
(
φP (ε, 5β)

2d
)
, yielding a P -dependent query complexity bound

O
(

β2

ε2

(
d+ log

(
1
δ

)))
+ Õ

(
φP (ε, 5β)

2d
)
. It follows from an example in Appendix F.1 that the

above quadratic dependence φP (ε, 5β)
2 cannot be reduced to φP (ε, 5β) (or even φP (0, 0)) without

introducing additional factors, though we also establish intermediate forms of the term, such as
Õ
(
φP (ε, 5β)d

(
β+ε
ε

))
.

A.2.3 Other Topics and Techniques in the Theory of Active Learning

In addition to disagreement-based active learning and its subregion-based refinement, and query
complexity bounds for the agnostic setting, the active learning literature also contains numerous other
techniques and topics. Though these ideas are not directly used in the present work, we briefly survey
them here for completeness, and in some cases, to discuss connections to the results and techniques
of the present work. For brevity, we omit most of the formal definitions, algorithms, and precise
statements of the results, rather summarizing the essential ideas, and referring the interested reader to
the original works for the precise results and details (some of which are also surveyed by Hanneke,
2014 in detail).

The Splitting Index: The earliest general theory of active learning, providing query complexity
bounds applicable to any concept class and realizable-case distribution, was proposed by Dasgupta
(2005). That work proposes a (C, P )-dependent complexity measure called the splitting index
ρ ∈ [0, 1], based on the property that, for any γ > ε and any finite set of pairs (f, g) ∈ C2 with
PX(f ̸= g) > γ, there will likely be an unlabeled example Xi for which, regardless of whether Yi is
0 or 1, we are guaranteed that at least a ρ fraction of the pairs (f, g) will have at least one function
incorrect on (Xi, Yi) (see Dasgupta, 2005 for the precise definition). The idea is that ρ measures a
notion of progress, from querying such an Xi, toward reducing the diameter of the version space
below γ. The pairs (f, g) in the version space having PX(f ̸= g) > γ are the obstructions to reducing
the diameter of the version space. The above definition guarantees there will be an example Xi we
can query such that, regardless of which label Yi is returned, discarding all inconsistent concepts
from the version space results in a reduction in the set of such obstructing pairs, leaving at most a
1 − ρ fraction of them. If we start with an α-cover V of the concept class C of size roughly α−d

(with α < ε small enough to guarantee all queried labels agree with some h ∈ V ), we would require
at most O

(
d
ρ log

(
1
α

))
such queries to eliminate all obstructing pairs, and thus reduce the diameter of

the version space below γ. We can then decrease γ by a constant factor and repeat, until the diameter
is below ε, at which time we can return any surviving concept, yielding a query complexity roughly
O
(
d
ρ log

(
1
α

)
log
(
1
ε

))
.

The splitting index also provides a lower bound Ω
(
1
ρ

)
on the realizable-case query complexity (where,

in this case, ρ can be PX-dependent, but should be h⋆-independent; see Dasgupta, 2005; Balcan
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and Hanneke, 2012; Hanneke, 2014 for precise statements). This is particularly interesting due to
being PX-dependent, and yet still providing near-matching upper and lower bounds (in contrast, other
quantities such as the disagreement coefficient and subregion-based refinement only provide upper
bounds, and provably cannot yield general PX-dependent lower bounds). Since the above results
reveal the PX-dependent query complexity can be well-captured by the splitting index, whereas
Hanneke and Yang (2015) have shown the optimal distribution-free realizable-case query complexity
is characterized by the star number (Definition 2), it is also natural to study the relation between
these quantities. Toward this end, Hanneke and Yang (2015) have in fact shown that these quantities
are equivalent in the context of distribution-free analysis: namely, supP

⌊
1
ρ

⌋
= min

{
s,
⌊
1
ε

⌋}
.

The splitting index analysis also provides another interesting feature, which is perhaps missing from
other works on active learning in the realizable case: it quantifies a trade-off between the query
complexity and the number of unlabeled examples. This is reflected in the above (imprecise) definition
in the part that requires that such a ρ-splitting example Xi is likely to exist in the unlabeled data (this
is made precise in Dasgupta, 2005 by another parameter τ reflecting the probability of obtaining such
an example). Using a larger number of unlabeled examples can increase the likelihood of including
an example Xi that eliminates a larger fraction of pairs, so that the splitting index ρ can grow larger
(hence decreasing the query complexity) for larger unlabeled sample sizes. This improvement from
having larger unlabeled sample sizes is not reflected in other complexity measures proposed in the
literature, and in such cases the splitting-based query complexity bounds can be substantially smaller
than those based on these other complexities, such as the disagreement coefficient (see Hanneke,
2014 for explicit comparisons). It is worth noting that such trade-offs are not known to be possible in
the agnostic setting.

While the original work of Dasgupta (2005) was developed for the realizable case, subsequent works
have explored extensions to non-realizable settings under restrictions on the types of non-realizability.
Specifically, Balcan and Hanneke (2012); Hanneke (2014); Tosh and Hsu (2020) have extended
the theory to allow for so-called Massart noise, wherein it is assumed P (Y = h⋆(X)|X) − 1

2 is
everywhere positive and bounded away from 0. The extension of the splitting technique to that setting
merely requires that we only remove a concept from consideration upon having sufficiently many
errors on queried examples. The resulting query complexity bounds are then similar to the above.

To date, the splitting technique has not been extended to the agnostic setting in any meaningful
way (e.g., to obtain query complexity bounds which could not also be obtained by, say, running
disagreement-based active learning with an (ε/2)-cover of the concept class). The agnostic setting
presents significant challenges for this technique, due to the ρ-splitting examples Xi being possibly
in ER(h⋆) for the best-in-class concept h⋆, meaning such examples cannot be trusted as the sole
source of information for pruning suboptimal concepts; see the scenario in Appendix F.1 (which is
constructed therein for a different reason, but also illustrates this issue).

We may remark that the AVID principle, developed in the present work and employed in Aavid, has
certain aspects that are intriguingly reminiscent of the splitting technique of Dasgupta (2005). As
in splitting, Aavid aims to reduce the diameter of a set V of surviving concepts. Toward this end,
again as in splitting, it identifies obstructing pairs: f, g ∈ V with PX(f ̸= g) > εk, where εk is the
desired diameter guarantee at that stage. However, the main difference is in how such obstructions are
addressed in the algorithm. While the splitting technique would attempt to resolve this obstruction
by querying to eliminate at least one of f, g for many such obstructing pairs, Aavid instead simply
removes (isolates) the region {f ̸= g} from the space X (adding it to the ∆ region), and estimates
error rates separately in ∆ and X \∆. Thus, in this aspect, the algorithmic principle underlying Aavid

is considerably different from splitting. Nevertheless, this common focus on addressing pairs (f, g)
obstructing the reduction of the diameter presents an intriguing connection, which might potentially
warrant further exploration.

Empirical Teaching Dimension: Another approach to agnostic active learning, based on principles
seemingly distinct from disagreement-based methods, was proposed in the work of Hanneke (2007a).
The technique there is inspired by early work on Exact learning with membership queries in the
realizable case by Hegedüs (1995); Hellerstein, Pillaipakkamnatt, Raghavan, and Wilkins (1996),
which found interesting connections between active learning and the complexity of machine teaching
(Goldman and Kearns, 1995). Hanneke (2007a) extends those ideas to the PAC setting, starting with
an upper bound for the realizable case, based on a PX-dependent complexity measure τ(ε) therein
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termed the extended teaching dimension growth function: for an i.i.d.-PX data set S of size 1
ε , τ(ε)

(roughly) represents the minimal size of a subsample which induces the same version space (for any
fixed target concept h⋆). The main technique is to find sets of τ(ε) unlabeled examples for which
the labels are guaranteed to significantly reduce the number of concepts in (a finite cover of) the
version space. The work also presents a realizable-case lower bound based on a modified variant of
this complexity measure.

Hanneke (2007a) further extends the upper bound to the non-realizable case, establishing an upper
bound Õ

(
τ(β + ε)d

(
β2

ε2 + 1
))

. In particular, this matches the lower bound (6) of Kääriäinen

(2006); Beygelzimer, Dasgupta, and Langford (2009) up to logs when τ(β + ε) = Õ(1). Hanneke
(2007a) provides examples where τ(β + ε) is bounded, including the class of thresholds (concepts
1[a,∞) on X = R) and axis-aligned rectangles (of at least some volume) under restrictions on PX ;
however, as with the previously discussed complexity measures, τ(β + ε) can be as large as 1

β+ε for
the “searching in the dark” type scenarios discussed above, in which case the above query complexity
bound is no smaller than the sample complexity of passive learning. Indeed, as with the complexity
measures discussed above, results of Hanneke and Yang (2015) imply that, taking the worst case over
distributions, τ(ε) becomes equivalent to the star number (Definition 2): supPX

τ(ε) ≈ min
{
s, 1

ε

}
.

Variants of this τ(ε) complexity measure were later further analyzed (for several example scenarios,
and more-generally, in relation to the disagreement coefficient), under the name version space
compression set size, and (interestingly) have also been found useful for studying disagreement-based
active learning, by El-Yaniv and Wiener (2010, 2012); Wiener, Hanneke, and El-Yaniv (2015);
Hanneke and Yang (2015); Hanneke (2016b); Hanneke and Kontorovich (2021).

Restricted Noise Models: Besides the study of first-order agnostic query complexity guarantees
QCa(ε, δ;β,C) (the subject of the present work), the theory of active learning additionally includes
many works on query complexity guarantees holding under other conditions or parameterizations, or
in other words, under various noise models. Here we briefly survey some of this literature.

The most-similar noise model to that studied in the present work is the benign noise setting (Hanneke,
2009b), which differs from the agnostic setting only in that it makes the additional assumption that
infh∈C erP (h) = infh erP (h), where the infimum on the right hand side is over all measurable
functions h : X → {0, 1} (not necessarily in C). In other words, the benign noise setting assumes the
best-in-class error β = infh∈C erP (h) is also the Bayes risk of P : i.e., the error rate of the function
x 7→ 1

[
P (Y = 1|X = x) ≥ 1

2

]
. Since the distributions used to establish the lower bound (4) for

passive learning satisfy the benign noise condition, this still serves as a suitable comparison point
for the query complexity of active learning. Similarly, the distributions used to establish the lower
bound (6) for active learning also satisfy benign noise, and therefore the lower bound (6) also holds
in the benign noise setting. Notably, in the special case of benign noise, Hanneke and Yang (2015)
have shown a result analogous to the present work: the optimal first-order query complexity of active
learning is Õ

(
dβ2

ε2 +min
{
s, d

ε

})
. In particular, comparing to (4), this means, under the benign noise

assumption, the query complexity of active learning is always better than the sample complexity of
passive learning. That work posed the question of whether such improvements are also attainable in
the more-challenging agnostic setting, a question which the present work answers positively. Notably,
the above result for benign noise is even slightly sharper in the lower-order term, compared to our
Theorem 3 (which has ds rather than s); I conjecture this ds can also be reduced to s in the agnostic
setting. There are interesting connections or analogies between the algorithm used by Hanneke and
Yang (2015) and the AVID principle developed in the present work, and we discuss these connections
in Appendix A.3 below. However, one noteworthy point is that Aavid requires vastly fewer unlabeled
examples to obtain the query complexity guarantee, compared to the method of Hanneke and Yang
(2015), so that the present work also offers some benefits over the known techniques for the benign
noise setting as well.

A.3 Background of the AVID Principle

Having surveyed much of the related work on agnostic active learning above, we conclude our
discussion of related work by discussing previous works in the learning theory literature containing
ideas related to our main technique (the AVID principle).
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Arguably the main innovation involved in this work is the decomposition of the space X into regions
X \∆ik and ∆ik , and augmenting the predictor ĥk to be a (shallow) decision list of concepts from C.
One key inspiration for the main idea underlying the technique is rooted in the works of Bousquet
and Zhivotovskiy (2021); Puchkin and Zhivotovskiy (2022) on prediction with an abstention option
(evaluated with the Chow loss). Interestingly, this continues a long precedent of finding useful
connections and cross-inspirations between active learning and prediction with abstentions (Mitchell,
1979; El-Yaniv and Wiener, 2010, 2012; Zhang and Chaudhuri, 2014, e.g.,). Specifically, Bousquet
and Zhivotovskiy (2021); Puchkin and Zhivotovskiy (2022) consider methods exhibiting a kind
of transition time, in which they determine that, for some f, g ∈ C, abstaining in a the pairwise
disagreement region {x : f(x) ̸= g(x)}, and predicting with f in its complement, comes out to have
smaller Chow loss than the overall loss of the best h ∈ C. Some reasoning very much analogous to
this (and directly inspired by it) can be found in one of the base cases of the arguments in the present
paper (namely, concerning the “early stopping” case in the algorithm), in which we find that in the
case of early stopping (Step 4), we can find f, g ∈ Vk−1 and h1, h2 ∈ C, such that predicting with h1

in {f ̸= g} \∆ik (rather than abstaining), with f in {f = g} \∆ik , and with h2 in ∆ik , produces
a smaller overall error rate in compared to the best concept h⋆ ∈ C. Of course, the algorithm and
analysis here contain many additional pieces on top of this, but it is interesting that this connection to
learning with abstentions still remains present at the core (though it is noteworthy that this connection
is qualitatively different from the usual one, in that here we are not replacing abstentions with queries,
but rather that a part of the analysis inspires part of our analysis). We remark that this analysis of
learning with abstentions by Bousquet and Zhivotovskiy (2021); Puchkin and Zhivotovskiy (2022)
was also inspirational for an active learning method in the work of Zhu and Nowak (2022) (though
the aim in that work is different from the present work, and the setting is generally not comparable to
ours).

At a high level, we can view the technique as also analogous to an idea of Hanneke and Yang
(2015) developed for the benign noise model: namely, the restriction of the agnostic setting to
the case the Bayes classifier h⋆

Bayes(x) 7→ 1[P (Y = 1|X = x) ≥ 1/2] is in the concept class C.
Hanneke and Yang (2015) prove a query complexity bound for this special case which matches
Theorem 3 (and indeed, refines the lower-order term’s sd dependence to simply s). In that context,
since the h⋆

Bayes ∈ C, the only source of non-realizability is in the noisiness of the conditional label
distribution Y |X . Thus, if an active learner could repeatedly query a given Xt to receive multiple
conditionally independent samples of Yt given Xt, it could use the majority vote of these samples
to effectively de-noise the label of Xt, thereby identifying h⋆

Bayes(Xt). This strategy only fails if
P (Y = 1|X = Xt) is very close to 1

2 , in which case this de-noising would require too many queries
to be worthwhile, particularly since such noisy examples have very little effect on the excess error
rate erP (ĥ) − erP (h

⋆
Bayes). As such, if the active learner cannot identify the optimal label within

some number of queries, it should abandon the example Xt and move on. Of course, in the model
of active learning studied in this work, and in the work of Hanneke and Yang (2015), an active
learner cannot actually obtain multiple conditionally independent copies of the label Yt. However,
by appropriate discretization of the space X based on the structure of the concept class C, Hanneke
and Yang (2015) are able to approximate this idealized behavior. The resulting algorithm effectively
adapts to the noisiness of the labels of examples Xt within the equivalence classes induced by this
discretization, allocating more queries to the noisier (high-label-variance) regions (and abandoning
the regions it finds to be too noisy). In that sense, the high-level idea behind the AVID principle
is similar in nature. The goal is to isolate the regions where learning is more challenging, due to
higher variance in error difference estimation, and allocate disproportionately more queries to these
regions. Of course, in the agnostic case, this is made much more challenging, since the source of
non-realizabilityy is not merely label noise, but also model misspecification (i.e., h⋆

Bayes /∈ C) so that
de-noising the examples may sometimes have little benefit (e.g., it is even possible to have β > 0
while P (Y = 1|X) ∈ {0, 1}). As such, the AVID principle necessarily makes greater use of the
structure of the concept class to isolate such regions of high variance in error difference estimation.

It is worth mentioning that other works on active learning have also considered decomposing the
space X into subregions and learning separately in each region (e.g., Cortes, DeSalvo, Gentile, Mohri,
and Zhang, 2019a; Cortes, DeSalvo, Gentile, Mohri, and Zhang, 2019b, 2020). However, we note
that these works retain the above issue of having a query complexity of the form c(β)dβ2

ε2 for a
complexity measure c(β) (as discussed in Section 2) such that, in the worst case over distributions P
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(respecting the β constraint) the results become ultimately no smaller than the sample complexity of
passive learning.

The idea of decomposing a predictor into a decision list based on pairwise disagreement regions has
an even closer parallel in the recent work of Hanneke, Larsen, and Zhivotovskiy (2024b), which
removes a log factor from the lead term in the (first-order) sample complexity of passive learning,
thereby obtaining an optimal lead term of Θ

(
β
ε2

(
d+ log

(
1
δ

)))
. The overall approach in that work

is in many ways similar to the technique in the present work, though with some important differences
in the actual algorithms. In particular, since the interest in that work is merely removing a factor
log
(

1
β

)
, it essentially suffices for the algorithm to reduce the best-in-class error rate in a region

X \∆ down to β
log(1/β) (for PX(∆) = O(β)), so that a uniform Bernstein inequality for the error

rate of ERM implies the desired result in that region X \∆, and a uniform convergence analysis
of ERM under the conditional distribution given ∆ implies the desired result in the region ∆. In
contrast, our interest in the present work is a factor of β in the lead term, with a lower-order term of
size Õ

(
d
ε

)
, and to achieve this our algorithm aims to reduce (below ε) the diameter of a set Vk of

surviving concepts, in a region X \∆ (with PX(∆) = O(β)). We achieve this via uniform estimation
of error differences, using an appropriate number of samples from these two regions, while precisely
controlling the schedule of decreases of this diameter in the algorithm (in part by increasing the
∆ region as needed to maintain this schedule of diameter decreases). Nevertheless, the essential
inspiration and strategy behind these two algorithms are notably related, perhaps indicating that the
AVID principle might in fact be a widely useful idea.

B Additional Definitions and Notation

We provide additional definitions and notation required for the formal analysis. A fundamental quan-
tity in statistical learning theory is the VC dimension (Vapnik and Chervonenkis, 1971), which plays
an important role in characterizing the optimal query complexity (and optimal sample complexity of
passive learning). It is defined as follows.

Definition 4. For any concept class C, the VC dimension of C, denoted by VC(C), is defined
as the supremum n ∈ N ∪ {0} for which there exists a sequence {x1, . . . , xn} ∈ Xn such that
{(h(x1), . . . , h(xn)) : h ∈ C} = {0, 1}n (i.e., all 2n classifications are realizable by C).

For brevity, in all results, proofs, and discussion below (where C is clear from the context), we will
simply denote by d := VC(C). In all statements below, we suppose d <∞ (see Appendix G). Also
note that, by our assumption that |C| ≥ 3 (see footnote 1), we always have d ≥ 1.

Additional Notation and Conventions: For any distribution P on X × {0, 1}, denote by PX the
marginal distribution on X . Throughout, we refer to any sequence S ∈ (X × {0, 1})∗ as a data set.
For any x ∈ R, it will be convenient to define log(x) = ln(max{x, e}), and for x > 0 we define
log(x/0) = x/0 =∞ and 0 log(x/0) = 0. For a, b ∈ R∪{∞}, we use a∧ b or min{a, b} to denote
the minimum of a and b, and a∨b or max{a, b} to denote the maximum of a and b. We will make use
of standard big-O notation (O, Ω, Θ effectively hide universal constant factors, while Õ, Θ̃ effectively
hide log factors) to simplify theorem statements. The precise constant and log factors will always be
made explicit in the formal proofs. We also adopt a convention regarding conditional probabilities: all
claims involving conditional probabilities given a random variable should be interpreted as holding
almost surely (i.e., for a version of the conditional probability), such as when claiming that an event
holds with conditional probability at least 1− δ given a random variable X . We also continue the
notational conventions introduced in Section 4, such as ER(h), DIS(C′), {f ̸= g}, overloading
set notation to treat A ⊆ X as notationally interchangeable with its labeled extension A × {0, 1},
extending notation for set-intersection to allow intersections with sequences, and defining empirical
estimates P̂S(A) = |S ∩A|/|S|. See Section 4 for details of these conventions.

Measurability: We remark that, formally speaking, an active learning algorithm can be defined
simply as a measurable function A : (X × {0, 1})m × X → {0, 1}: that is, taking as input an
i.i.d. data set S = {(Xi, Yi)}i≤m and an independent test point X and evaluating to a prediction
A(S,X) ∈ {0, 1}. In this view, the number of queries is merely bookkeeping, keeping track
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of the dependences of this function on the labels Yi. For simplicity of presentation, we have
adopted the common colloquialism of referring to the function ĥ returned by A(S), which in this
view simply refers to the function A(S, ·), so that erP (ĥ) is simply the conditional expectation
E[1[A(S,X) ̸= Y ]|S]. The measurability of the algorithms A defined in this work follows from
measurability of the individual operations involved in their execution10 under the standard measure-
theoretic assumptions on (X ,C) specified in footnote 1. To simplify the presentation, we do not
explicitly discuss this in the proofs.

C The Query Complexity of the AVID Agnostic Algorithm

This section presents a detailed version of Theorem 3, bounding the query complexity of the AVID
Agnostic algorithm. Recall the definition of the algorithm and notation from Section 4. Before
stating the theorem, we first discuss a few additional technical aspects of the algorithm omitted
from the high-level description in Section 4, starting with an explicit specification of the quantities
involved. Let c0, c1 be universal constants, defined by Lemmas 7 and 8 of Appendix D. We define11

C = 11
10 , C ′′ =

(
200C3

8−5C3

)2
, and C ′ =

√
C′′

16 . For a given ε, δ ∈ (0, 1) (arguments to Aavid),

as in Section 4 we let N =
⌈
logC

(
2
ε

)⌉
, and for k ∈ N, let εk = C1−k, and we then define

mk :=
⌈
300C′′c0

εk

(
d log

(
C′′c0
εk

)
+ log

(
1
δ

))⌉
. The algorithm adaptively allocates data subsets S1

k ,

S2
k , S3

k,i, S
4
k during its execution, as described in Section 4.1. Recall that S1

k , S3
k,i, and S4

k are all
of size mk (for any k, i for which they exist). The data subset S2

k is of size m′
k, formally defined

as follows. For the value ik and the set ∆ik as defined in the algorithm at the time that S2
k is

allocated (either in Step 2 for some value of k, or in Step 9, in which case let k = N + 1), letting
p̂k := 2P̂S4

k
(∆ik), define m′

k :=
⌈
C′′c21p̂k

ε2k

(
d+ log

(
4(3+N−k)2

δ

))⌉
.

We remark that, for simplicity of presentation, we have described the algorithm without explicitly
discussing what happens if the algorithm runs out of unlabeled examples while allocating examples
to subsets S2

k , S3
k,i. In this event, the algorithm can simply halt and return an arbitrary predictor ĥ, as

the analysis will account for this event in the δ failure probability. To avoid excessive clutter, we do
not explicitly mention this case in the description of the algorithm or allocation of data subsets used
therein (i.e., we explicitly discuss this only in the analysis, and indeed only in the final part of the
proof; see the discussion at the start of Appendix E).

The following theorem provides a bound on the query complexity achieved by Aavid along with
a bound on the unlabeled data set size sufficient to achieve it. This result represents a detailed
version of the upper bound in Theorem 3 of Section 4 (in particular, Theorems 1 and 3 are immediate
implications of this result). The constant factors in the big-O will be made explicit in the formal
proof. The proof is given in Appendix E.

Theorem 5 (Query Complexity of AVID Agnostic). For any concept class C with VC(C) < ∞,
letting d = VC(C), for every distribution P on X ×{0, 1}, letting β = infh∈C erP (h), for any ε, δ ∈
(0, 1), if the algorithm Aavid is executed with parameters (ε, δ), with any number m ≥M(ε, δ;β) of

10The only part requiring some care in this regard is the definition of ĥk in (3), where formally we require that,
given Vk−1, ∆ik , m′

k, the function (S1
k, S

2
k, x) 7→ ĥk(x) should be a measurable function; such a measurable

function can be shown to exist assuming C (and therefore Vk−1) satisfies the conditions of footnote 1, following
straightforwardly from arguments of (Dudley, 1999).

11For simplicity of presentation, the constant C plays two major roles in the algorithm. First, it controls the
schedule of diameter guarantees εk in the algorithm. Second, it controls certain constant factors in uniform
concentration guarantees employed in the proof (Lemma 10). If we were to separate these roles, into C1 and
C2, respectively, the two values exhibit a trade-off. In particular, we can admit a schedule εk = C1−k

1 for any
choice of 1 < C1 < 2 by an appropriately large choice of C′′ (diverging as C1 → 2) and corresponding C2 > 1
sufficiently close to 1. The source of this 2 limitation is the multiplicative factor in Lemma 20 which, in the
limit as C′′ → ∞ and C2 → 1, becomes 2

2−C1
. We also remark that we have defined constants that enable the

cleanest presentation of the algorithm and analysis. We leave the issue of optimizing the constants to minimize
the query complexity for future work.
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i.i.d.-P examples, for a value M(ε, δ;β) (defined in Lemma 24) satisfying

M(ε, δ;β) = O

(
β + ε

ε2

(
d log

(
1

ε

)
+ log

(
1

δ

)))
= Õ

(
βd

ε2
+

d

ε

)
,

then with probability at least 1− δ, the returned predictor ĥ satisfies erP (ĥ) ≤ infh∈C erP (h) + ε
and the algorithm makes a number of queries at most Q(ε, δ;β) (defined in Lemma 23) satisfying

Q(ε, δ;β) = O

(
β2

ε2

(
d+ log

(
1

δ

))
+min

{
s log

(
1

ε

)
,
1

ε

}(
d log

(
1

ε

)
+ log

(
1

δ

)))
= Õ

(
β2d

ε2
+

(
s ∧ 1

ε

)
d

)
.

Remark on adaptivity to β: We emphasize that the algorithm does not need to know β in its
execution (i.e., it adaptively achieves the above query complexity bound for all β). A more subtle
point worth noting is that we can also run the algorithm without ourselves knowing β (to choose
m), since the guarantee on query complexity holds for any unlabeled sample size m ≥M(ε, δ;β).
For instance, if we run the algorithm with a β-independent number of unlabeled examples m =
Θ̃
(

1
ε2

(
d log

(
1
ε

)
+ log

(
1
δ

)))
, the query complexity bound Q(ε, δ;β) would remain valid as stated in

Theorem 5. Additionally, in the proof (see Lemma 24), we show that, in a sense, even the unlabeled
sample complexity M(ε, δ;β) is achieved adaptively, since the algorithm (with no knowledge of β)
only actually uses the first (at most) M(ε, δ;β) unlabeled examples in the sequence. This is itself an
interesting feature. In particular, if we consider an alternative setting where, rather than getting the
unlabeled data altogether at the start, the algorithm can adaptively sample new unlabeled examples
Xi ∼ PX one-at-a-time during execution (i.e., it has access to an unlabeled example oracle, which it
can use to construct the data subsets S1

k , S2
k , S3

k,i, S
4
k , during execution), the analysis establishes that

the algorithm will succeed while adaptively sampling at most M(ε, δ;β) unlabeled examples (and
querying at most Q(ε, δ;β) of them), all without knowing β (or anything else about P ).

D Concentration Inequalities

This section presents a number of useful concentration inequalities, essential to the analysis. We
begin with the classic multiplicative Chernoff bound (Chernoff, 1952; Bernstein, 1924). We will
find the following particular form to be useful; since this is slightly different from the more-typical
statements of Chernoff bounds, we include a brief explanation of how this result is derived from the
more-standard exponential form.
Lemma 6 (Multiplicative Chernoff bound). Fix any p ∈ [0, 1] and n ∈ N, and let B1, . . . , Bn be
i.i.d. Bernoulli(p) random variables. Let B̄ := 1

n

∑n
i=1 Bi. For any δ ∈ (0, 1), with probability at

least 1− δ, the following both hold:

p ≤ max

{
2B̄,

8

n
ln

(
2

δ

)}
,

B̄ ≤ max

{
2p,

6

n
ln

(
2

δ

)}
.

Proof. We include a brief explanation, based on more well-known exponential forms of the Chernoff
bound: namely, P(B̄ < (1/2)p) ≤ e−np/8 and P(B̄ > 2p) ≤ e−np/3 (see e.g., Zhang, 2023).

For the first inequality in the lemma, we note that it trivially holds if p < 8
n ln

(
2
δ

)
, and otherwise, if

p ≥ 8
n ln

(
2
δ

)
, then by the above exponential tail bound, we have P(B̄ < (1/2)p) ≤ e−np/8 ≤ δ

2 .
For the second claimed inequality, note that it trivially holds if 6

n ln
(
2
δ

)
≥ 1, so let us focus

on the case 6
n ln

(
2
δ

)
< 1. Note that for p′ ∈ [0, 1] and B′

1, . . . , B
′
n i.i.d. Bernoulli(p′), and

B̄′ = 1
n

∑n
i=1 B

′
i, for any x ∈ R the value of P(B̄′ > x) is non-decreasing in p′. Thus, letting

p′ = max
{
p, 3

n ln
(
2
δ

)}
≥ p, this monotonicity (together with the second exponential tail bound

above) implies P(B̄ > 2p′) ≤ P(B̄′ > 2p′) ≤ e−np′/3 ≤ δ
2 . The lemma then follows by the union

bound, so that both of these inequalities hold simultaneously with probability at least 1− δ. ■
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We will also rely heavily on uniform concentration inequalities. Toward stating these, we first
introduce additional useful notation.

VC dimension of collections of sets: As is standard in the literature, we overload the definition
of VC dimension (Vapnik and Chervonenkis, 1971) to also allow for collections of sets. Formally,
for any non-empty set Z and any non-empty A ⊆ 2Z (i.e., a collection of subsets of Z), the VC
dimension of A, denoted by VC(A), is the supremum n ∈ N ∪ {0} for which there exists Z ⊆ Z
with |Z| = n such that {Z ∩ A : A ∈ A} = 2Z (i.e., it is possible to pick out any subset of Z by
intersection with an appropriate A ∈ A). Equivalently, VC(A) is the VC dimension (Definition 4) of
the indicator functions {1A : A ∈ A}.

Uniform concentration term: For any non-empty set Z and any non-empty A ⊆ 2Z , for any
n ∈ N and δ ∈ (0, 1), define (for a universal constant c0 defined by Lemma 7 below)

ε(n, δ;A) := c0
n

(
VC(A) log

(
n

VC(A)

)
+ log

(
1

δ

))
. (7)

The following result represents a uniform variant of the classic Bernstein inequality (or Bennett
inequality) (Bernstein, 1924; Bennett, 1962). It can be derived from results proven by Vapnik and
Chervonenkis (1974) (see Hanneke and Kpotufe, 2022 for an explicit derivation, via a layered
application of Massart’s lemma and Bousquet’s inequality). We additionally include implications
providing a uniform variant of multiplicative Chernoff bounds, which are easily derived from the
stated uniform Bernstein inequality (taking B = ∅).
Lemma 7 (Uniform Bernstein and multiplicative Chernoff bounds). There is a finite universal
constant c0 > 1 for which the following holds. Fix any n ∈ N, δ ∈ (0, 1), any non-empty set Z ,
and any set A ⊆ 2Z with VC(A) < ∞.12 Define ε(n, δ;A) as in (7). Fix any distribution P on
Z and let Z = {Z1, . . . , Zn} ∼ Pn (i.i.d. P random variables). For any measurable set A ⊆ Z ,
define its empirical probability P̂Z(A) := 1

n

∑n
i=1 1[Zi ∈ A]. With probability at least 1− δ, every

A,B ∈ A ∪ {∅} satisfy the following (where A⊕B := (A \B) ∪ (B \A) denotes the symmetric
difference) ∣∣∣(P̂Z(A)− P̂Z(B))− (P (A)− P (B))

∣∣∣
≤
√
min{P (A⊕B), P̂Z(A⊕B)}ε(n, δ;A) + ε(n, δ;A).

Moreover, for any ε > 0 and α ∈ (0, 1) satisfying ε(n, δ;A) ≤ α2

4 ε, the above inequality immediately
yields the following implications: ∀A ∈ A,

P̂Z(A) ≥ ε =⇒ P (A) > (1− α)ε, or equivalently, P (A) ≤ (1− α)ε =⇒ P̂Z(A) < ε

P (A) ≥ ε =⇒ P̂Z(A) > (1− α)ε, or equivalently, P̂Z(A) ≤ (1− α)ε =⇒ P (A) < ε.

We also make use of a uniform concentration inequality which refines the classic uniform convergence

bound
√

1
n

(
VC(A) + log

(
1
δ

))
of Talagrand (1994) in the case that

⋃
A has small measure under P .

The lemma is well-known in the literature, and follows immediately from expectation bounds based
on chaining involving an envelope function (e.g., Theorem 2.14.1 of van der Vaart and Wellner, 1996)
together with Bousquet’s inequality (Bousquet, 2002) to achieve high probability. For completeness,
we provide a brief direct proof, by simply applying the uniform convergence bound of Talagrand
(1994) to the samples from the conditional distribution given a set D ⊇

⋃
A.

Lemma 8. There is a finite universal constant c1 ≥ 1 for which the following holds. Let A be as in
Lemma 7, and suppose D ⊆ Z is a measurable set such that ∀A ∈ A, A ⊆ D. Then for the same
quantities as Lemma 7, if P (D) ≥ 9

n ln
(
4
δ

)
, then with probability at least 1− δ, ∀A ∈ A

∣∣∣P̂Z(A)− P (A)
∣∣∣ ≤ c1

√
P (D)

n

(
VC(A) + log

(
1

δ

))
.

12We suppose standard mild measure-theoretic restrictions on A and the σ-algebra of Z , from empirical
process theory: namely, the image-admissible Suslin condition (Dudley, 1999).
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Proof. Note that the samples in Z ∩ D are conditionally i.i.d. P (·|D) given |Z ∩ D|. For each
A ∈ A, denote by P̂Z(A|D) := P̂Z∩D(A) (or 0 if |Z ∩D| = 0). Applying the uniform convergence
bound of Talagrand (1994) to the samples in Z ∩D under the conditional distribution given |Z ∩D|,
together with the law of total probability, yields that, with probability at least 1− δ

2 , ∀A ∈ A,∣∣∣P̂Z(A|D)− P (A|D)
∣∣∣ ≤ c′1

√
1

|Z ∩D|

(
VC(A) + log

(
2

δ

))
, (8)

for a finite universal constant c′1 ≥ 1. Moreover, by Bernstein’s inequality (see Theorem 2.10 of
Boucheron, Lugosi, and Massart, 2013), with probability at least 1− δ

2 ,∣∣∣P̂Z(D)− P (D)
∣∣∣ ≤√2P (D)

n
ln

(
4

δ

)
+

1

n
ln

(
4

δ

)
≤ 2

√
P (D)

n
ln

(
4

δ

)
, (9)

where the last inequality is due to the assumption that P (D) ≥ 9
n ln

(
4
δ

)
. By the union bound, these

two events occur simultaneously with probability at least 1− δ. Suppose this occurs. In particular, by
the assumption that P (D) ≥ 9

n ln
(
4
δ

)
, (9) further implies

1

n
|Z ∩D| = P̂Z(D) ≥ P (D)− 2

√
P (D)

n
ln

(
4

δ

)
≥ 1

3
P (D),

so that the right hand side of (8) is at most

c′1

√
3

nP (D)

(
VC(A) + log

(
2

δ

))
.

Combining this with (8) and (9) implies that ∀A ∈ A, since A ⊆ D,∣∣∣P̂Z(A)− P (A)
∣∣∣ = ∣∣∣P̂Z(D)P̂Z(A|D)− P (D)P (A|D)

∣∣∣
≤ P (D)

∣∣∣P̂Z(A|D)− P (A|D)
∣∣∣+ P̂Z(A|D)2

√
P (D)

n
ln

(
4

δ

)

≤ c′1

√
3P (D)

n

(
VC(A) + log

(
2

δ

))
+ 2

√
P (D)

n
ln

(
4

δ

)

≤ c1

√
P (D)

n

(
VC(A) + log

(
1

δ

))
,

where c1 := c′1
√
6 + 2

√
ln(4e) (recalling log(x) := ln(x ∨ e)). ■

E Proof of Theorem 5: Query Complexity of the AVID Agnostic Algorithm

The formal proof of Theorem 5, given at the end of this section, will be built up from a sequence of
lemmas, roughly following the outline presented in Section 4.2.

Throughout this section, we fix an arbitrary concept class C (with d := VC(C) <∞) and distribution
P on X × {0, 1}, let β = infh∈C erP (h), fix any ε, δ ∈ (0, 1) (where ε, δ are inputs to the AVID
algorithm), let (X1, Y1), (X2, Y2), . . . be independent P -distributed examples, and we let all values
(N , εk, mk, m′

k, etc.) be defined as in Appendix C, based on these values ε, δ, and the examples
(X1, Y1), (X2, Y2), . . .. Also let h⋆ ∈ C denote any concept with

erP (h
⋆) < inf

h∈C
erP (h) +

ε

104
. (10)

For full generality, we do not assume there exists a minimizer achieving the infimum on the right hand
side; rather, any choice of h⋆ satisfying this near-minimality property will suffice for our purposes in
the analysis below.
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To simplify the proof, we will establish the sequence of lemmas under a scenario where the algorithm
is executed with an inexhaustible source of examples (for the adaptive allocation of data subsets): i.e.,
an infinite sequence (X1, Y1), (X2, Y2), . . . of independent P -distributed examples. However, it will
follow from these lemmas that, with high probability, the algorithm only depends on a finite prefix
(X1, Y1), . . . , (Xm, Ym), for a sufficiently large m = M(ε, δ;β) as in Theorem 5 (see Lemma 24).
At the end of the section, when combining the lemmas into a formal proof of Theorem 5, we will
return to the standard setting where the algorithm has access only to such a finite prefix. In that
context, the event that the algorithm attempts to access any examples (Xt, Yt) with t > m will be
accounted for as part of the allowed δ-probability failure event, and thus (as mentioned in Appendix C)
in such a case the algorithm can simply halt and return an arbitrary predictor ĥ. As mentioned in the
remark following Theorem 5, the fact that the algorithm adaptively decides how many unlabeled
examples to use is itself an interesting feature, as it means the algorithm can be considered adaptive
to β even in its use of unlabeled examples.

Before proceeding with the proof, we first introduce some convenient notation regarding the values
of k and i encountered in the algorithm. If the algorithm returns in Step 9, denote by K := N + 1,
and otherwise, let K be the maximum value of k reached in the ‘For’ loop in the algorithm; we
argue in Lemma 10 below that the algorithm terminates eventually, with high probability, so that this
latter case coincides with the case of returning in Step 4, with K being the value of k on which this
occurs. Let K := {1, . . . ,K ∧N}: that is, the set of values of k encountered in the ‘For’ loop in
the algorithm. Also, for each k ∈ K, denote by Ik the values of i encountered by the algorithm on
round k; in particular, for k < K, Ik = {ik, . . . , ik+1}. In the case K = N + 1, for convenience
also denote by IN+1 := {iN+1}.
We begin with a lemma which motivates our choice of sample size mk for S1

k , S3
k,i, S

4
k . Recall

mk :=
⌈
300C′′c0

εk

(
d log

(
C′′c0
εk

)
+ log

(
1
δ

))⌉
. Also recall our convention (adopted throughout this

work) of treating sets D ⊆ X as notationally interchangeable with their labeled extension D×{0, 1},
such as in A ∩D or A \D for A ⊆ X × {0, 1}.
Lemma 9. Fix any set D ⊆ X and define a family of subsets of X × {0, 1}:

A =
{
((ER(f) ∩ {f = g}) ∪ (ER(h) ∩ {f ̸= g})) \D : f, g, h ∈ C

}
∪
{
({f ̸= g} × {0, 1}) \D : f, g ∈ C

}
∪
{
ER(h) \D : h ∈ C

}
.

For any n ∈ N and δ′ ∈ (0, 1), let ε(n, δ′;A) be defined as in (7). For each k ∈ {1, . . . , N + 1},
letting δk :=

δε2k+3

72 , it holds that

ε(mk, δk;A) <
εk
C ′′ . (11)

Proof. We begin by bounding VC(A), as needed to evaluate ε(mk, δk;A). Define the following
families of subsets of X × {0, 1}:

A0 := {ER(h) : h ∈ C} ∪ {∅,X × {0, 1}},
A1 := {{f ̸= g} × {0, 1} : f, g ∈ C} ∪ {X × {0, 1}},
A2 := {((A \ C) ∪ (B ∩ C)) \D : A,B ∈ A0, C ∈ A1}.

First note that A ⊆ A2. To see this, note that for any f, g, h ∈ C, taking A = ER(f), B = ER(h),
C = {f ̸= g}×{0, 1}, we have that ((ER(f)∩{f = g})∪(ER(h)∩{f ̸= g}))\D = ((A\C)∪(B∩
C)) \D ∈ A2. Similarly, for any f, g ∈ C, taking A = ∅, B = X × {0, 1}, C = {f ̸= g} × {0, 1}
reveals ({f ̸= g} × {0, 1}) \D = ((A \ C) ∪ (B ∩ C)) \D ∈ A2. Finally, for h, f ∈ C, taking
A = ER(h), B = ∅, C = {f ̸= f}×{0, 1} = ∅ reveals ER(h)\D = ((A\C)∪(B∩C))\D ∈ A2.

Next we bound VC(A2). It is immediate from the definition that VC({ER(h) : h ∈ C}) = d.
Moreover, this implies VC(A0) ≤ d + 2 (Vidyasagar, 2003, Lemma 4.11). Also note that A1 ⊆
{A ⊕ B : A,B ∈ A0}, where A ⊕ B := (A \ B) ∪ (B \ A) is the symmetric difference: that is,
trivially (X ×{0, 1})⊕∅ = X ×{0, 1}, and for any f, g ∈ C, {f ̸= g}×{0, 1} = ER(f)⊕ER(g).
Thus, any element of A2 can be expressed as a fixed function of four sets A,B,A′, B′ ∈ A0:
namely (A,B,A′, B′) 7→ ((A \ (A′⊕B′))∪ (B ∩ (A′⊕B′))) \D. Based on this fact, well-known
results about the effect of such combinations on the VC dimension imply VC(A2) = O(VC(A0)):
explicitly, Theorem 4.5 of Vidyasagar (2003) implies VC(A2) ≤ 25VC(A0) ≤ 25(d+ 2). By the
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assumption that |C| ≥ 3 (footnote 1) we know d ≥ 1, so that 25(d+ 2) ≤ 75d. Altogether, we have
VC(A) ≤ 75d.

With this in mind, we may note that (also using that d ≥ 1 and C ′′ ≥ 9C3)

mk ≥
300C ′′c0

εk

(
d log

(
C ′′c0
εk

)
+ log

(
1

δ

))
≥ 150C ′′c0

εk

(
d log

(
C ′′c0
εk

)
+ log

(
9C3

δεk

))
≥ 2C ′′c0

εk

(
VC(A) log

(
C ′′c0
εk

)
+ log

(
1

δk

))
. (12)

In particular, if VC(A) ≥ 1, then by Corollary 4.1 of Vidyasagar (2003), (12) implies

mk >
C ′′c0
εk

(
VC(A) log

(
mk

VC(A)

)
+ log

(
1

δk

))
. (13)

Moreover, if VC(A) = 0, then recalling we define 0 log(1/0) = 0, (12) trivially implies (13) in this
case as well. Thus, regardless of the value of VC(A), by definition of ε(mk, δk;A), the claim in (11)
follows from (13). ■

We continue the proof with a lemma conveniently summarizing several uniform concentration bounds
which are useful in various places throughout the rest of the proof. In particular, the lemma focuses on
concentration inequalities in the X \∆ik region of focus of the learning algorithm. It will therefore
be convenient to explicitly define the portion of the functions in V (4)

k−1 specific to this region: namely,
for every k ∈ {1, . . . ,K}, define13

V (3)
k−1 := {f1{f=g} + h1{f ̸=g} : f, g ∈ Vk−1, h ∈ C}.

Lemma 10. On an event E0 of probability at least 1− δ
4 , for every k ∈ {1, . . . ,K}, it holds that

∀h, h′ ∈ V (3)
k−1,

∣∣∣ (P̂S1
k
(ER(h) ∩Dk−1 \∆ik)− P̂S1

k
(ER(h′) ∩Dk−1 \∆ik)

)
− (P (ER(h) \∆ik)− P (ER(h′) \∆ik))

∣∣∣
<

√
PX({h ̸= h′} \∆ik)

εk
C ′′ +

εk
C ′′ , (14)

and for every k ∈ K and every i ∈ Ik, ∀f, g ∈ C,

P̂S3
k,i
({f ̸= g} \∆i) ≥ εk+2 =⇒ PX({f ̸= g} \∆i) > εk+3 (15)

P̂S3
k,i
({f ̸= g} \∆i) ≤ εk+2 =⇒ PX({f ̸= g} \∆i) < εk+1, (16)

and moreover, max Ik ≤ 1
εk+3

. In particular, the latter implies the algorithm eventually terminates
(in Step 9 if K = N + 1, or in Step 4 if K ≤ N ).

Proof. Consider any k ∈ {1, . . . , N + 1} having a non-zero probability of k ≤ K. Let δk be as
in Lemma 9. Recall that the data set S1

k is independent of all data involved in rounds k′ < k in the
algorithm, whereas the event k ≤ K and (in this event) the set ∆ik are entirely determined by data
involved in rounds k′ < k. Thus, even conditioned on the event that k ≤ K and and the set ∆ik ,
the data set S1

k remains conditionally i.i.d.-P . Therefore, letting Ak denote the set A as defined
in Lemma 9 with D = ∆ik , applying the uniform Bernstein inequality (Lemma 7 in Appendix D)
with this Ak under the conditional distribution given the event k ≤ K and the set ∆ik implies that,
with conditional probability at least 1 − δk given the event k ≤ K and the set ∆ik , it holds that
∀A,B ∈ Ak,∣∣∣(P̂S1

k
(A)−P̂S1

k
(B)

)
−
(
P (A)−P (B)

)∣∣∣ ≤√P (A⊕B)ε(mk, δk;Ak)+ ε(mk, δk;Ak). (17)

13Since this work focuses on binary classification, V (3)
k−1 can equivalently be stated as {Maj(f, g, h) : f, g ∈

Vk−1, h ∈ C}, where Maj(f, g, h)(x) = 1[f(x) + g(x) + h(x) ≥ 2] is the majority vote function. The
definition of V (3)

k−1 above expresses a more-general form, which, as we discuss in Section G, also extends to
multiclass classification.
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By the law of total probability, on an event E0,k of probability at least 1− δk, if k ≤ K (and thus
∆ik and Ak are defined) then (17) holds ∀A,B ∈ Ak.

In particular, on the event E0,k, supposing k ≤ K, if we consider any h, h′ ∈ V (3)
k−1, then for the sets

A = ER(h) \∆ik ∈ Ak and B = ER(h′) \∆ik ∈ Ak, we may note that the symmetric difference
A ⊕ B = (ER(h) ⊕ ER(h′)) \ ∆ik = ({h ̸= h′} × {0, 1}) \ ∆ik , so that together with (11) of
Lemma 9, (17) implies∣∣∣(P̂S1

k
(ER(h) \∆ik)− P̂S1

k
(ER(h′) \∆ik)

)
−
(
P (ER(h) \∆ik)− P (ER(h′) \∆ik)

)∣∣∣
<

√
PX({h ̸= h′} \∆ik)

εk
C ′′ +

εk
C ′′ . (18)

To arrive at the claim in (14), we merely note that for any f, g, f ′, g′ ∈ Vk−1 and h, h′ ∈ C,
letting DL(f, g, h) := f1{f=g} + h1{f ̸=g} and DL(f ′, g′, h′) := f ′1{f ′=g′} + h′1{f ′ ̸=g′}, for any
x ∈ X \Dk−1, we have g(x) = f(x) = f ′(x) = g′(x), so that DL(f, g, h)(x) = f(x) = f ′(x) =
DL(f ′, g′, h′)(x). Thus, any h, h′ ∈ V (3)

k−1 have h(x) = h′(x) for all x /∈ Dk−1, and therefore

P̂S1
k
(ER(h)∩Dk−1\∆ik)−P̂S1

k
(ER(h′)∩Dk−1\∆ik) = P̂S1

k
(ER(h)\∆ik)−P̂S1

k
(ER(h′)\∆ik),

so that (14) follows from (18). To unify the discussion below, for any k ∈ {1, . . . , N + 1} with
probability zero of k ≤ K, also denote by E0,k the event (of probability one) that k > K.

Turning now to the claims in (15) and (16), consider any (k, i) having non-zero probability that
k ∈ K and i ∈ Ik. Note that, since S3

k,i is a data set of size mk, allocated from the remaining unused
unlabeled data upon reaching Step 5 with values (k, i) (noting this can happen at most once in the
algorithm), the samples in S3

k,i are conditionally i.i.d.-P given k ∈ K and i ∈ Ik, and moreover, S3
k,i

is conditionally independent of ∆i given the events that k ∈ K and i ∈ Ik. In the event that k ∈ K
and i ∈ Ik, let Ak,i denote the set A as defined in Lemma 9 with D = ∆i. Recalling again our

definition of C = 11
10 and C ′′ ≥ 32C5

(
C

C−1

)2
, note that for α = 1− 1

C , (11) of Lemma 9 implies

ε(mk, δk;Ak,i) <
εk
C′′ <

α2

4 εk+2 < α2

4 εk+1. Therefore, applying Lemma 7 of Appendix D under
the conditional distribution given the events that k ∈ K and i ∈ Ik and the set ∆i, we have that with
conditional probability at least 1− δk, ∀f, g ∈ C, the set ({f ̸= g} \∆i)× {0, 1} ∈ Ak,i satisfies

P̂S3
k,i
({f ̸= g} \∆i) ≥ εk+2 =⇒ PX({f ̸= g} \∆i) > (1− α)εk+2 = εk+3

and
P̂S3

k,i
({f ̸= g} \∆i) ≤ εk+2 = (1− α)εk+1 =⇒ PX({f ̸= g} \∆i) < εk+1.

By the law of total probability, there is an event E0,k,i of probability at least 1 − δk, on which, if
k ∈ K and i ∈ Ik, then the above inequalities hold ∀f, g ∈ C. To unify cases, for any (k, i) with
k ≤ N and i ≤ 1/εk+3 having probability zero of satisfying k ∈ K and i ∈ Ik, also define E0,k,i as
the event (of probability one) that either k /∈ K or i /∈ Ik.

We have thus established (14) for all k ≤ K and (15 - 16) for all k ∈ K and i ∈ Ik with i ≤ 1/εk+3,
on the event E0 :=

(⋂
k≤N+1 E0,k

)
∩
⋂

k≤N

⋂
i≤1/εk+3

E0,k,i. By the union bound, E0 fails with
probability at most

N+1∑
k=1

δk +
∑

i≤1/εk+3

δk

 ≤ N+1∑
k=1

(
1 +

1

εk+3

)
δk ≤

N+1∑
k=1

2δk
εk+3

=

N+1∑
k=1

δ

36
εk+3 <

δ

4
,

where the equality follows from our definition of δk =
δε2k+3

72 (from Lemma 9) and the last inequality
follows from our choice of C = 11

10 .

Finally, we argue that, on the event E0, for any k ∈ K, the maximum value of i ∈ Ik satisfies
i ≤ 1/εk+3. We argue this by induction. Specifically, we will argue that, for any k ∈ K and
i ∈ Ik, PX(X \ ∆i) ≤ 1 − iεk+3. For the purpose of induction, suppose that for some k ∈ K,
we have PX(X \ ∆ik) ≤ 1 − ikεk+3 (which is trivially satisfied for k = 1, since ik = 0, which
can therefore serve as a base case for induction). Taking this ik as a base case for a further nested
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induction on i ∈ Ik (noting that ik is the minimum element of Ik), suppose that for some i ∈ Ik
we have PX(X \∆i) ≤ 1 − iεk+3. Since probabilities are non-negative, this necessarily implies
i ≤ 1/εk+3. Then note that, if i is not the maximal element of Ik, the algorithm augments ∆i

in Step 7, so that ∆i+1 = ∆i ∪ {f ̸= g} for (f, g) defined in Step 6. By the criterion in Step
5, we further know that P̂S3

k,i
({f ̸= g} \ ∆i) > εk+2. Since i ≤ 1/εk+3, the event E0 implies

(15) holds, which therefore implies PX(∆i+1 \ ∆i) = PX({f ̸= g} \ ∆i) > εk+3, so that
PX(X \∆i+1) = PX(X \∆i)− PX(∆i+1 \∆i) < 1− (i+ 1)εk+3, thus extending the inductive
hypothesis. By the principle of induction, this establishes that PX(X \∆i) ≤ 1− iεk+3 for every
i ∈ Ik. In particular, returning to the induction on k, in the event that this k is not the maximal
element of K, we have ik+1 ∈ Ik, so that PX(X \∆ik+1

) ≤ 1 − ik+1εk+3 ≤ 1 − ik+1ε(k+1)+3,
which therefore extends the inductive hypothesis for k. By the principle of induction, we have thus
established that every k ∈ K and i ∈ Ik satisfy PX(X \ ∆i) ≤ 1 − iεk+3. In particular, since
probabilities are non-negative, this immediately implies any such (k, i) satisfy i ≤ 1/εk+3, as
claimed. Thus, on the event E0, we have established all of the claimed inequalities: (14) for all
k ∈ {1, . . . ,K}, and (15 - 16) for all k ∈ K and i ∈ Ik, which further satisfy max Ik ≤ 1

εk+3
. ■

The following is an obvious implication of Lemma 10, which will be useful to state explicitly for
later reference.

Lemma 11. On the event E0, for every k ∈ K and i ∈ Ik, if the algorithm reaches Step 6 with these
values (k, i), then for f, g as defined there,

PX({f ̸= g} \∆i) > εk+3.

Moreover, on the event E0, every k ∈ {1, . . . ,K} with ∆ik ̸= ∅ satisfies PX(∆ik) > εk+2.

Proof. By the condition in Step 5, if the algorithm reaches Step 6 then P̂S3
k,i
({f ̸= g} \∆i) > εk+2.

By (15) of Lemma 10, on the event E0, this implies PX({f ̸= g} \∆i) > εk+3.

Turning now to the second claim, suppose again that E0 occurs, and first note that this claim is
trivially satisfied if ∆iK = ∅. To address the remaining case, suppose ∆iK ̸= ∅, and consider the
minimum value k′ ∈ {1, . . . ,K} for which ∆ik′ ̸= ∅. By definition we have ∆i1 = ∆0 = ∅, which
implies we must have k′ ≥ 2. By minimality of k′, we also know that the algorithm reaches Step 6 at
least once during round k = k′ − 1 of the ‘For’ loop, in particular with i = ik. Thus, letting (f, g) be
as defined in Step 6 for these values (k, i) = (k′ − 1, ik′−1), by the first claim in the lemma, we have
PX(∆ik′ ) ≥ PX(f ̸= g) = PX({f ̸= g} \∆ik′−1

) > εk′+2. Thus, since ∆ik′′ is non-decreasing
in k′′, and minimality of k′ implies all k′′ with ∆ik′′ ̸= ∅ have k′′ ≥ k′, we conclude that every
k′′ ∈ {1, . . . ,K} with ∆ik′′ ̸= ∅ satisfies PX(∆ik′′ ) ≥ PX(∆ik′ ) > εk′+2 ≥ εk′′+2. ■

Next we state a bound on the diameters of Vk−1 and V (3)
k−1, useful for Lemmas 15, 20, and 22.

Lemma 12. On the event E0, for every k ∈ {1, . . . ,K},

sup
f,g∈Vk−1

PX({f ̸= g} \∆ik) ≤ εk (19)

and sup
f,g∈V (3)

k−1

PX({f ̸= g} \∆ik) ≤ 3εk. (20)

Proof. Throughout this proof, we suppose the event E0 holds. The inequality (19) is trivially
satisfied for k = 1, recalling that V0 = C and ε1 = C0 = 1. For the remaining case, fix any
k′ ∈ {2, . . . ,K} and consider the round k = k′− 1 in the ‘For’ loop (noting that, by definition of K,
we have k = k′ − 1 ∈ K regardless of whether K = N + 1 or K ≤ N ). Since k + 1 = k′ ≤ K, we
know the algorithm reaches Step 8 in round k (i.e., it does not terminate early in Step 4 during round
k). In particular, this means the condition in Step 5 fails for the value i = ik+1 = max Ik: that is,
maxf,g∈Vk

P̂S3
k,i
({f ̸= g} \∆ik+1

) ≤ εk+2. By (16) of Lemma 10, this implies

sup
f,g∈Vk′−1

PX({f ̸= g} \∆ik′ ) = sup
f,g∈Vk

PX({f ̸= g} \∆ik+1
) < εk+1 = εk′ .

This completes the proof of (19) for every k ∈ {1, . . . ,K}.
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To show (20), let k ∈ {1, . . . ,K}, and for any f, g ∈ Vk−1 and h ∈ C, denote by DL(f, g, h) :=
f1{f=g} + h1{f ̸=g} ∈ V (3)

k−1. Note that for any f, g, f ′, g′ ∈ Vk−1, h, h′ ∈ C, and x ∈ X , if
g(x) = f(x) = f ′(x) = g′(x), then DL(f, g, h)(x) = DL(f ′, g′, h′)(x). Therefore,

PX({DL(f, g, h) ̸= DL(f ′, g′, h′)} \∆ik) ≤ PX(({f ̸= g} ∪ {f ′ ̸= g′} ∪ {f ̸= f ′}) \∆ik)

≤ PX({f ̸= g} \∆ik) + PX({f ′ ̸= g′} \∆ik) + PX({f ̸= f ′} \∆ik) ≤ 3εk,

where the last inequality is by (19). This completes the proof of the lemma. ■

The following Lemmas 13 and 14 concern concentration of empirical errors in the set S2
k∩∆ik , which

will be useful in establishing guarantees on the quality of ĥk (in Lemma 15) and of the functions in
Vk (in Lemmas 16 and 17) below. We first need to argue that the p̂k quantities approximate PX(∆ik),
which leads to the data sets S2

k being of appropriate size for concentration of empirical error rates.

Lemma 13. There is an event E1 of probability at least 1− δ
4 such that, on E0∩E1, ∀k ∈ {1, . . . ,K},

the quantity p̂k := 2P̂S4
k
(∆ik) (as defined above) satisfies

PX(∆ik) ≤ p̂k ≤ 4PX(∆ik). (21)

Proof. Consider any k ∈ {1, . . . , N + 1} having non-zero probability that k ≤ K. Note that the
execution of the algorithm does not depend on S4

k at any time prior to Step 2 of round k (or Step
9 if k = N + 1), supposing this step is even reached in the algorithm (i.e., k ≤ K). Thus, since
the event that k ≤ K and the set ∆ik are both completely determined by events occurring prior
to this first time the examples in S4

k are used by the algorithm, we have that S4
k is independent of

these. Thus, conditioned on the event that k ≤ K and on the random variable ∆ik , we have that
for the sequence of mk examples (Xt, Yt) comprising S4

k , the corresponding sequence of indicator
random variables 1[Xt ∈ ∆ik ] are conditionally independent Bernoulli(PX(∆ik)) random variables.
Therefore, applying a multiplicative Chernoff bound (Lemma 6 of Appendix D) under the conditional
distribution given the event k ≤ K and the random variable ∆ik , together with the law of total
probability, we have that on an event E1,k of probability at least 1− δεk

44 , if k ≤ K, then

PX(∆ik) ≤ max

{
2P̂S4

k
(∆ik),

8

mk
ln

(
88

δεk

)}
, (22)

P̂S4
k
(∆ik) ≤ max

{
2PX(∆ik),

6

mk
ln

(
88

δεk

)}
. (23)

For simplicity, for any k ∈ {1, . . . , N + 1} having probability zero of k ≤ K, simply define E1,k

as the event of probability one that k > K, so that the above claim also holds (vacuously) for such
values k. Define an event E1 =

⋂N+1

k=1 E1,k, and note that, by the union bound, E1 occurs with
probability at least 1−

∑N+1

k=1
δεk
44 ≥ 1− δ

4 .

We now argue these inequalities further imply the simpler inequalities stated in (21), on the
additional event E0. Suppose the event E0 ∩ E1 holds, and let k ∈ {1, . . . ,K}. If ∆ik = ∅, (21)
trivially holds since p̂k = 0 = PX(∆ik). To address the remaining case, suppose ∆ik ̸= ∅. By
the final claim in Lemma 11, we have PX(∆ik) > εk+2. Also note that, by definition of mk (and
recalling |C| ≥ 2, which implies d ≥ 1), we have 8

mk
ln
(

88
δεk

)
< εk+2. In particular, these imply

2PX(∆ik) > 2εk+2 > 6
mk

ln
(

88
δεk

)
, so that the right hand side of (23) equals 2PX(∆ik) and hence

p̂k ≤ 4PX(∆ik). Moreover, since 8
mk

ln
(

88
δεk

)
< εk+2 < PX(∆ik), the “max” on the right hand

side of (22) cannot be achieved by the second term (as it is smaller than the quantity on the left hand
side), so it must be achieved by the first term. Therefore, PX(∆ik) ≤ 2P̂S4

k
(∆ik) = p̂k. ■

Using Lemma 13 to bound the size of the data set S2
k (which is based on p̂k), we are now ready to

establish a concentration inequality for the error rates in the ∆ik region in the following lemma.

Lemma 14. There is an event E2 of probability at least 1− δ
4 such that, on the event E0 ∩ E1 ∩ E2,

∀k ∈ {1, . . . ,K},

sup
h∈C

∣∣∣P̂S2
k
(ER(h) ∩∆ik)− P (ER(h) ∩∆ik)

∣∣∣ ≤ εk√
C ′′

. (24)
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Proof. Consider any k ∈ {1, . . . , N + 1} having non-zero probability of k ≤ K. Supposing k ≤ K
occurs, define a collection of sets A′

k := {ER(h) ∩∆ik : h ∈ C}. Note that VC(A′
k) ≤ d (which

is immediate from the definition of VC dimension). We aim to apply Lemma 8 of Appendix D, a
refinement of the uniform convergence bound of Talagrand (1994), which accounts for an envelope
set D ⊇

⋃
A′

k; specifically, we instantiate the various sets and variables in Lemma 8 to be Z =
X × {0, 1}, n = m′

k, A = A′
k, envelope set D = ∆ik , data set Z = S2

k , and confidence parameter
δ/(4(3+N−k)2), and we apply the lemma under the conditional distribution given the event k ≤ K
and given the random variables ∆ik and m′

k. Since the event that k ≤ K, and the random variables
∆ik and m′

k, are all completely determined by examples allocated to data sets before allocating
examples to the data set S2

k , we may note that the m′
k examples comprising S2

k are conditionally
independent P -distributed random variables given the event that k ≤ K and given the random
variables ∆ik and m′

k. Thus, applying Lemma 8 of Appendix D under the conditional distribution
given the event that k ≤ K and given the random variables ∆ik and m′

k, together with the law of
total probability, we have that on an event E2,k of probability at least 1− δ

4(3+N−k)2 , if k ≤ K and

PX(∆ik) ≥ 9
m′

k
ln
(

16(3+N−k)2

δ

)
, then

sup
h∈C

∣∣∣P̂S2
k
(ER(h)∩∆ik)− P (ER(h)∩∆ik)

∣∣∣ ≤ c1

√
PX(∆ik)

m′
k

(
d+log

(
4(3+N−k)2

δ

))
. (25)

For simplicity, for any k ∈ {1, . . . , N + 1} having zero probability of k ≤ K, let E2,k denote the
event of probability one that k > K. Finally, define E2 =

⋂N+1

k=1 E2,k, and note that, by the union
bound, E2 holds with probability at least 1−

∑N+1

k=1
δ

4(3+N−k)2 ≥ 1− δ
4

∑∞
j=2

1
j2 ≥ 1− δ

4 .

Now suppose the event E0∩E1∩E2 occurs, and consider any k ∈ {1, . . . ,K}. If ∆ik = ∅ then (24)
holds trivially since the left hand side of (24) is then zero. To address the remaining case, suppose
∆ik ̸= ∅. By the final claim in Lemma 11, we have PX(∆ik) > εk+2. Moreover, by Lemma 13 we
have p̂k ≥ PX(∆ik). Recalling m′

k :=
⌈
C′′c21p̂k

ε2k

(
d+ log

(
4(3+N−k)2

δ

))⌉
, these imply

m′
k >

C ′′c21
C4εk+2

ln

(
4(3 +N − k)2

δ

)
>

9

εk+2
ln

(
16(3 +N − k)2

δ

)
,

where the last inequality follows from c1 ≥ 1 and C ′′ ≥ 18C4. Thus, 9
m′

k
ln
(

16(3+N−k)2

δ

)
<

εk+2 < PX(∆ik). By the definition of E2, it follows that (25) holds. Moreover, since p̂k ≥ PX(∆ik),

we have that m′
k ≥

C′′c21PX(∆ik
)

ε2k

(
d+ log

(
4(3+N−k)2

δ

))
, so that the right hand side of (25) is at

most εk√
C′′ , thus establishing (24). ■

Combining the concentration inequality from Lemma 14 with (14) of Lemma 10 together with
(20) of Lemma 12 yields a concentration inequality for the differences êr1,2

k (h) − êr1,2
k (h′) among

h, h′ ∈ Vk−1, recalling the definition from (1):

êr1,2
k (h) := P̂S1

k
(ER(h) ∩Dk−1 \∆ik) + P̂S2

k
(ER(h) ∩∆ik).

In fact, the implication is stronger than this, admitting functions h, h′ ∈ V (4)
k−1. In particular, for any

k ∈ {1, . . . ,K}, note that V (4)
k−1 in (2) can equivalently be defined as

V (4)
k−1 =

{
h11X\∆ik

+ h21∆ik
: h1 ∈ V (3)

k−1, h2 ∈ C
}
.

The following lemma provides a concentration inequality for êr1,2
k (h)− êr1,2

k (h′) among functions
h, h′ ∈ V (4)

k−1.

Lemma 15. On the event E0 ∩ E1 ∩ E2, for every k ∈ {1, . . . ,K} we have

sup
h,h′∈V (4)

k−1

∣∣(êr1,2
k (h)− êr1,2

k (h′)
)
− (erP (h)− erP (h

′))
∣∣ ≤ εk

4C ′ , (26)

recalling that C ′ :=
√
C′′

16 . Moreover, (26) implies

erP
(
ĥk

)
≤ inf

h∈V (4)
k−1

erP
(
h
)
+

εk
4C ′ . (27)
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Proof. Suppose the event E0 ∩ E1 ∩ E2 holds and consider any k ∈ {1, . . . ,K}. Note that for any
h = h11X\∆ik

+ h21∆ik
∈ V (4)

k−1 we have erP (h) = P (ER(h1) \∆ik) + P (ER(h2) ∩∆ik) and
êr1,2

k (h) = P̂S1
k
(ER(h1) ∩Dk−1 \∆ik) + P̂S2

k
(ER(h2) ∩∆ik).

Consider any h1, h
′
1 ∈ V (3)

k−1 and any h2, h
′
2 ∈ C, and let h = h11X\∆ik

+ h21∆ik
and h′ =

h′
11X\∆ik

+ h′
21∆ik

. By Lemma 14, we have ∀h′′
2 ∈ {h2, h

′
2},∣∣∣P̂S2

k
(ER(h′′

2) ∩∆ik)− P (ER(h′′
2) ∩∆ik)

∣∣∣ ≤ εk√
C ′′

.

Additionally, since (20) of Lemma 12 implies PX({h1 ̸= h′
1} \∆ik) ≤ 3εk, the inequality (14) of

Lemma 10 implies∣∣∣P̂S1
k
(ER(h1)∩Dk−1\∆ik)−P̂S1

k
(ER(h′

1)∩Dk−1\∆ik)− (P (ER(h1)\∆ik)−P (ER(h′
1)\∆ik))

∣∣∣
<

√
3ε2k
C ′′ +

εk
C ′′ ≤

2εk√
C ′′

, (28)

where the last inequality follows from C ′′ ≥ 14. Combining these with the triangle inequality
(namely, |((â+ b̂)− (â′ + b̂′))− ((a+ b)− (a′ + b′))| ≤ |(â− â′)− (a− a′)|+ |b̂− b|+ |b̂′ − b′|)
yields that ∣∣(êr1,2

k (h)− êr1,2
k (h′)

)
− (erP (h)− erP (h

′))
∣∣ < 4εk√

C ′′
=

εk
4C ′ .

To see that (26) implies (27), note that, by the definition of ĥk in (3), h = ĥk has minimal êr1,2
k (h)

among all h ∈ V (4)
k−1: that is, ∀h ∈ V (4)

k−1, êr1,2
k

(
ĥk

)
− êr1,2

k

(
h
)
≤ 0. Together with (26), this implies

that ∀h ∈ V (4)
k−1, erP

(
ĥk

)
− erP

(
h
)
≤ êr1,2

k

(
ĥk

)
− êr1,2

k

(
h
)
+ εk

4C′ ≤ εk
4C′ . ■

In particular, Lemma 15 immediately implies the following lemma concerning the quality of the
functions h in Vk.
Lemma 16. On the event E0 ∩ E1 ∩ E2, ∀k ∈ K, ∀h ∈ Vk−1, the following implications hold:

h ∈ Vk =⇒ erP
(
h
)
≤ erP

(
ĥk

)
+

5εk
4C ′ , (29)

erP
(
h
)
≤ erP

(
ĥk

)
+

3εk
4C ′ =⇒ h ∈ Vk. (30)

Proof. Suppose the event E0 ∩E1 ∩E2 occurs and consider any k ∈ K and h ∈ Vk−1. In particular,
note that we also have h ∈ V (4)

k−1, since letting f = g = h, we have h = f1{f=g}+h1{f ̸=g} ∈ V (3)
k−1,

and thus h = h1X\∆ik
+ h1∆ik

∈ V (4)
k−1.

If h ∈ Vk, then by definition of Vk in Step 3 we have êr1,2
k

(
h
)
− êr1,2

k

(
ĥk

)
≤ εk

C′ . Together with (26)
of Lemma 15, this implies erP

(
h
)
− erP

(
ĥk

)
≤ εk

C′ +
εk
4C′ =

5εk
4C′ , which establishes (29).

On the other hand, if erP
(
h
)
− erP

(
ĥk

)
≤ 3εk

4C′ , then (26) of Lemma 15 implies
êr1,2

k

(
h
)
− êr1,2

k

(
ĥk

)
≤ 3εk

4C′ +
εk
4C′ =

εk
C′ . Thus, any such h is retained in Vk, which establishes (30). ■

The main implication of Lemma 16 pertains to the early stopping case in Step 4, which we turn to
next. Recall h⋆ denotes an (arbitrary) concept in C with erP (h

⋆) < infh∈C erP (h) +
ε

104 . In the
following lemma, in addition to arguing that the predictor ĥ returned in Step 4 has low excess error
rate compared to h⋆ (in fact, negative), this lemma also reveals a second major role of this early
stopping case: it ensures that on all rounds k in which the algorithm does not terminate in Step 4, we
retain h⋆ ∈ Vk.
Lemma 17. On the event E0 ∩ E1 ∩ E2, the following implications hold for every k ∈ K:

• If Aavid does not return in Step 4 on round k, then h⋆ ∈ Vk.

• If Aavid returns in Step 4 on round k, then erP
(
ĥk

)
< erP

(
h⋆
)
.
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Proof. Suppose the event E0 ∩E1 ∩E2 occurs. We will prove the first claim by induction on k. As a
base case, we trivially have h⋆ ∈ C = V0. Now, for the purpose of induction, let k ∈ K be such that
h⋆ ∈ Vk−1. Also note (as discussed in the proof of Lemma 16) that this also implies h⋆ ∈ V (4)

k−1. If
h⋆ /∈ Vk, then by (30) of Lemma 16, we have erP

(
h⋆
)
− erP

(
ĥk

)
> 3εk

4C′ . In particular, this implies
that if Vk ̸= ∅, then together with (26) of Lemma 15, we have

min
h∈Vk

êr1,2
k

(
h
)
− êr1,2

k

(
ĥk

)
≥ min

h∈Vk−1

êr1,2
k

(
h
)
− êr1,2

k

(
ĥk

)
≥ inf

h∈Vk−1

erP
(
h
)
− erP

(
ĥk

)
− εk

4C ′

> erP
(
h⋆
)
− erP

(
ĥk

)
− ε

104
− εk

4C ′ >
3εk
4C ′ −

ε

104
− εk

4C ′ >
εk
4C ′ ,

where the last inequality follows from ε
104 < 2εN

104 ≤
εk
4C′ . Thus, either Vk = ∅ or minh∈Vk

êr1,2
k

(
h
)
−

êr1,2
k

(
ĥk

)
> εk

4C′ , so that either way the algorithm will return in Step 4 in this case. Therefore, if the
algorithm does not return in Step 4 on round k, it must be that h⋆ ∈ Vk. This completes the proof of
the first claim, by the principle of induction.

Finally, we turn to the second claim. Suppose, for some k ∈ K, the algorithm returns in Step
4 on round k. In particular, either k = 1, in which case h⋆ ∈ C = Vk−1, or k > 1, in which
case (since the algorithm did not return in Step 4 on round k − 1) the first claim in the lemma
implies h⋆ ∈ Vk−1. Again note that this also implies h⋆ ∈ V (4)

k−1. If h⋆ /∈ Vk, then (30) of
Lemma 16 implies erP

(
h⋆
)
> erP

(
ĥk

)
+ 3εk

4C′ . Otherwise, if h⋆ ∈ Vk, the condition in Step 4
implies êr1,2

k

(
h⋆
)
− êr1,2

k

(
ĥk

)
> εk

4C′ . Together with (26) of Lemma 15, this implies

erP
(
h⋆
)
− erP

(
ĥk

)
≥ êr1,2

k

(
h⋆
)
− êr1,2

k

(
ĥk

)
− εk

4C ′ > 0.

Thus, in either case, we have erP
(
h⋆
)
> erP

(
ĥk

)
, which establishes the second claim. ■

Lemmas 15, 16, and 17 together have a particularly nice implication, which, although not strictly
needed for the proof of Theorem 5, is worth noting (and will be useful in Appendix F). Specifically,
we have the following corollary.
Corollary 18. On the event E0 ∩ E1 ∩ E2, ∀k ∈ K,

Vk ⊆
{
h ∈ C : erP (h)− erP (h

⋆) ≤ 3εk
2C ′

}
.

Proof. Suppose the event E0 ∩ E1 ∩ E2 occurs and consider any k ∈ K. Since k − 1 < K,
Lemma 17 implies h⋆ ∈ Vk−1 in the case k ≥ 2, while the case k = 1 has h⋆ ∈ V0 by definition of
V0 = C. Together with (27) of Lemma 15, this implies erP

(
ĥk

)
≤ erP

(
h⋆
)
+ εk

4C′ . Combined with
(29) of Lemma 16, we have that every h ∈ Vk satisfies erP

(
h
)
≤ erP

(
ĥk

)
+ 5εk

4C′ ≤ erP
(
h⋆
)
+ 3εk

2C′ . ■

At this point, we may note that Lemmas 15 and 17 together completely address the error guarantee
for the ĥ returned by Aavid, on the event E0 ∩ E1 ∩ E2. as summarized in the following lemma.

Lemma 19. On the event E0 ∩ E1 ∩ E2, Aavid eventually terminates, and the function ĥ it returns
satisfies erP

(
ĥ
)
≤ infh∈C erP

(
h
)
+ ε.

Proof. Suppose the event E0 ∩ E1 ∩ E2 occurs. If the algorithm terminates in Step
4 in some round k ∈ K, by definition we have ĥ = ĥk, and thus Lemma 17 implies
erP
(
ĥ
)

< erP
(
h⋆
)

< infh∈C erP
(
h
)
+ ε

104 . On the other hand, if the algorithm does not
return in Step 4 on any round k ∈ K, then we have K = N + 1 (recalling Lemma 10
implies the algorithm eventually terminates), so that by definition ĥ = ĥN+1. Since in
this case Lemma 17 implies h⋆ ∈ VN (and hence h⋆ ∈ V (4)

N ), (27) of Lemma 15 implies
erP
(
ĥ
)
= erP

(
ĥN+1

)
≤ erP

(
h⋆
)
+ εN+1

4C′ < infh∈C erP
(
h
)
+ ε

104 + ε
8C′ < infh∈C erP

(
h
)
+ ε. ■

With the analysis of error guarantees complete, we turn now to establishing the bound Q(ε, δ;β) on
the number of queries, as claimed in Theorem 5. This will be comprised of two main parts. First, we
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argue that the set ∆ik never grows too large: specifically, recalling β := infh∈C erP (h), Lemma 20
will establish that PX(∆ik) = O(β), which in turn allows us to bound the number of queries in
S2
k ∩∆ik on each round (in the proof of Lemma 23). Second, in the proof of Lemma 22, we bound

PX(Dk−1 \∆ik) ≤ sεk, by reasoning in terms of the disagreement coefficient (Hanneke, 2007b),
relating the latter to the star number via a result of Hanneke and Yang (2015). This in turn allows us
to bound the number of queries in S1

k ∩Dk−1 \∆ik on each round (in the proof of Lemma 23).

We begin with the first of these parts, stated in the following lemma. We remark that this lemma plays
a special role in constraining the allowed values of the constant C, as the argument breaks down if C
is taken too large. On the other hand, the proof also reveals that it is possible to decrease the factor “5”
in this lemma to any value c > 2 by taking C > 1 appropriately close to 1 and by an appropriately
large choice of the constant C ′′ (and hence C ′). See footnote 11 for further discussion.
Lemma 20. On the event E0 ∩ E1 ∩ E2, for all k ∈ {1, . . . ,K} and i ∈ Ik,

PX(∆i) ≤ 5 inf
h∈C

P (ER(h) ∩∆i) ≤ 5β.

Proof. We will argue that, on E0 ∩ E1 ∩ E2, for any h0 ∈ C, each region ∆i+1 \∆i (defined in
Step 7) satisfies

P (ER(h0) ∩∆i+1 \∆i) >

(
1− C3

2
− 5C3

4C ′

)
PX(∆i+1 \∆i) =

1

5
PX(∆i+1 \∆i), (31)

so that each addition to ∆i “chops off” a piece of ER(h0) of measure proportional to the increase in
measure PX(∆i+1)−PX(∆i) = PX(∆i+1 \∆i). The claim in the lemma then follows immediately
from (31), since it holds trivially for i = 0 (recalling ∆0 = ∅), and if any k ∈ {1, . . . ,K} and i ∈ Ik
has i ≥ 1, then applying (31) inductively yields

P (ER(h0) ∩∆i) =

i−1∑
j=0

P (ER(h0) ∩∆j+1 \∆j) >

i−1∑
j=0

1

5
PX(∆j+1 \∆j) =

1

5
PX(∆i).

Taking the infimum over all h0 ∈ C then implies the lemma.

We proceed now with the formal proof of (31). Suppose the event E0 ∩ E1 ∩ E2 occurs, and for the
purpose of analyzing the increases ∆i+1 \∆i of the ∆i set (which only occur in Step 7), consider
any k ∈ K and any i ∈ Ik with i < max Ik (equivalently, the algorithm reaches Step 7 with this
(k, i)). Let (f, g) be as defined in Step 6 for this (k, i) so that ∆i+1 \∆i = {f ̸= g} \∆i.

Note that {f ̸= g} × {0, 1} = (ER(f) ∩ {f ̸= g}) ∪ (ER(g) ∩ {f ̸= g}), so that (lower-bounding
‘max’ by ‘average’)

max
f ′∈{f,g}

P (ER(f ′) ∩ {f ̸= g} \∆ik)

≥ 1

2
P (ER(f) ∩ {f ̸= g} \∆ik) +

1

2
P (ER(g) ∩ {f ̸= g} \∆ik) ≥

1

2
PX({f ̸= g} \∆ik),

where in fact the last inequality holds with equality (since, for {0, 1} labels, (ER(f) ∩ {f ̸= g}) and
(ER(g) ∩ {f ̸= g}) are disjoint). Thus, ∃f ′ ∈ {f, g} with

P (ER(f ′) ∩ {f ̸= g} \∆ik) ≥
1

2
PX({f ̸= g} \∆ik).

Let h′ = f ′1{f=g}\∆ik
+ h01{f ̸=g}\∆ik

+ f ′1∆ik
and note that h′ ∈ V (4)

k−1. Also recall that

êr1,2
k

(
ĥk

)
= minh∈V (4)

k−1
êr1,2

k

(
h
)
, and hence êr1,2

k

(
h′) ≥ êr1,2

k

(
ĥk

)
. Since we also have f ′ ∈ V (4)

k−1 (as
discussed in the proof of Lemma 16), Lemma 15 implies

erP
(
f ′)− erP

(
h′) ≤ êr1,2

k

(
f ′)− êr1,2

k

(
h′)+ εk

4C ′ ≤ êr1,2
k

(
f ′)− êr1,2

k

(
ĥk

)
+

εk
4C ′ ≤

5εk
4C ′ , (32)

where the last inequality is due to f ′ ∈ {f, g} ⊆ Vk, recalling the definition of Vk in Step 3.

Moreover, by definition of f ′ and h′, we have

erP
(
f ′)− erP

(
h′) = P (ER(f ′) ∩ {f ̸= g} \∆ik)− P (ER(h0) ∩ {f ̸= g} \∆ik)

≥ 1

2
PX({f ̸= g} \∆ik)− P (ER(h0) ∩ {f ̸= g} \∆ik).
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Equivalently: P (ER(h0) ∩ {f ̸= g} \ ∆ik) ≥ 1
2PX({f ̸= g} \ ∆ik) −

(
erP
(
f ′) − erP

(
h′)).

Combining this with (32), we conclude that

P (ER(h0) ∩ {f ̸= g} \∆ik) ≥
1

2
PX({f ̸= g} \∆ik)−

5εk
4C ′ . (33)

Also note that, since ∆i ⊇ ∆ik , we have

∆i+1 \∆i = {f ̸= g} \∆i = ({f ̸= g} \∆ik) \ ({f ̸= g} ∩∆i \∆ik) ,

so that

P (ER(h0) ∩∆i+1 \∆i) ≥ P (ER(h0) ∩ {f ̸= g} \∆ik)− PX({f ̸= g} ∩∆i \∆ik). (34)

Moreover, again since ∆i ⊇ ∆ik , we have

PX({f ̸= g} ∩∆i \∆ik) = PX({f ̸= g} \∆ik)− PX({f ̸= g} \∆i). (35)

Combining (34), (35), and (33) yields that

P (ER(h0) ∩∆i+1 \∆i)

≥ P (ER(h0) ∩ {f ̸= g} \∆ik)− PX({f ̸= g} \∆ik) + PX({f ̸= g} \∆i)

≥ PX({f ̸= g} \∆i)−
1

2
PX({f ̸= g} \∆ik)−

5εk
4C ′ . (36)

Lemma 12 and the fact that f, g ∈ Vk ⊆ Vk−1 imply PX({f ̸= g} \ ∆ik) ≤ εk, and Lemma 11
implies PX({f ̸= g} \∆i) > εk+3. Together, we have

PX({f ̸= g} \∆ik) < C3PX({f ̸= g} \∆i).

Additionally, again since PX({f ̸= g} \∆i) > εk+3, we have that 5εk
4C′ <

5C3

4C′ PX({f ̸= g} \∆i).
Combining these inequalities with (36), and recalling ∆i+1 \∆i = {f ̸= g} \∆i, yields that

P (ER(h0) ∩∆i+1 \∆i) >

(
1− C3

2
− 5C3

4C ′

)
PX(∆i+1 \∆i).

Recalling that C ′ =
√
C′′

16 = 25C3

16−10C3 , we have C3

2 + 5C3

4C′ = 4
5 , so that the right hand side above

equals 1
5PX(∆i+1 \∆i), which establishes (31). ■

Next we turn to the second part of the argument outlined above: bounding the number of queries
in the sets S1

k ∩Dk−1 \∆ik . We begin by stating a known fact, due to Hanneke and Yang (2015,
Theorem 10): namely, that the disagreement coefficient (Hanneke, 2007b) is upper bounded by the
star number (Hanneke and Yang, 2015) (indeed, Theorem 10 of Hanneke and Yang, 2015 shows the
relation is even sharp in the worst case over h and distributions P ′

X ).

Lemma 21 (Hanneke and Yang, 2015). For any measurable h : X → {0, 1}, any distribution P ′
X on

X , and any r > 0, defining the r-ball centered at h as BP ′
X
(h, r) :={h′∈C : P ′

X(h′ ̸= h) ≤ r}, it
holds that

P ′
X

(
DIS

(
BP ′

X
(h, r)

))
≤ sr.

Toward bounding the number of queries in the sets S1
k ∩Dk−1 \∆ik in the algorithm, the following

lemma establishes a bound on PX(Dk−1 \∆ik) by a straightforward application of Lemma 21 to
the conditional probabilities PX(Dk−1|X \∆ik), in combination with a diameter bound supplied by
(19) of Lemma 12.

Lemma 22. On the event E0 ∩ E1 ∩ E2, for every k ∈ {1, . . . ,K}, PX(Dk−1 \∆ik) ≤ sεk.

Proof. Suppose the event E0∩E1∩E2 holds and consider any k ∈ {1, . . . ,K}. If PX(X \∆ik) = 0,
we trivially have that PX(Dk−1 \ ∆ik) = 0 ≤ sεk. To address the remaining case, suppose
PX(X \∆ik) > 0, and denote by Pk := PX(·|X \∆ik). By (19) of Lemma 12 we have

sup
f,g∈Vk−1

Pk(f ̸= g) ≤ εk
PX(X \∆ik)

.
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In particular, since k − 1 < K, Lemma 17 implies h⋆ ∈ Vk−1 in the case k ≥ 2, while the case
k = 1 has h⋆ ∈ V0 by definition of V0 = C. Thus, the above inequality implies

Vk−1 ⊆ BPk

(
h⋆,

εk
PX(X \∆ik)

)
. (37)

Together with Lemma 21, this implies

Pk(Dk−1) = Pk(DIS(Vk−1)) ≤ Pk

(
DIS

(
BPk

(
h⋆,

εk
PX(X \∆ik)

)))
≤ s

εk
PX(X \∆ik)

. (38)

We therefore have that

PX(Dk−1 \∆ik) = Pk(Dk−1)PX(X \∆ik) ≤ sεk.

■

We are now ready to state a lemma bounding the total number of queries in the algorithm, by a
combination of Lemmas 13, 20, and 22 together with a multiplicative Chernoff bound argument. For
convenience, this lemma also supplies an upper bound on the sizes m′

k of the data sets S2
k , which will

be of further use when establishing the bound M(ε, δ;β) on the total number of unlabeled examples
sufficient for the execution of the algorithm (Lemma 24 below). Specifically, in the following lemma,
for any k ∈ {1, . . . , N + 1}, denote by

m′
k :=

25C ′′c21β

ε2k

(
d+ log

(
4(3 +N − k)2

δ

))
,

and M2 :=
700C ′′c21β

ε2

(
d+ log

(
4e4

δ

))
.

Lemma 23. There is an event E3 of probability at least 1 − δ
4 , such that on

⋂3
j=0 Ej , ∀k ∈

{1, . . . ,K}, the following claims hold: m′
k ≤ m′

k,∣∣S1
k ∩Dk−1 \∆ik

∣∣ ≤ 3sεkmk, (39)∣∣S2
k ∩∆ik

∣∣ ≤ 2PX(∆ik)m
′
k ≤ 10βm′

k. (40)

Moreover, we have
∑N+1

k=1 m
′
k ≤M2, and the total number of queries by Aavid is at most Q(ε, δ;β),

where

Q(ε, δ;β) := 10βM2 +min{M1, (3/2)sε(N + 1)mN+1}

= O

(
β2

ε2

(
d+ log

(
1

δ

))
+min

{
s log

(
1

ε

)
,
1

ε

}(
d log

(
1

ε

)
+ log

(
1

δ

)))
. (41)

Proof. By Lemma 13, on E0 ∩ E1 ∩ E2, ∀k ∈ {1, . . . ,K}, PX(∆ik) ≤ p̂k ≤ 4PX(∆ik). Recall
the definition of m′

k :=
⌈
C′′c21p̂k

ε2k

(
d+ log

(
4(3+N−k)2

δ

))⌉
. Thus, if ∆ik = ∅, we have p̂k = 0,

hence m′
k = 0, and the implication m′

k ≤ m′
k trivially follows. Otherwise, on E0 ∩ E1 ∩ E2, if

∆ik ̸= ∅, the final claim in Lemma 11 implies PX(∆ik) > εk+2, so that together m′
k is at most⌈

C ′′c214PX(∆ik)

ε2k

(
d+ log

(
4(3+N−k)2

δ

))⌉
≤ 5C ′′c21PX(∆ik)

ε2k

(
d+ log

(
4(3+N−k)2

δ

))
.

Since Lemma 20 implies PX(∆ik) ≤ 5β on E0 ∩ E1 ∩ E2, we conclude that m′
k ≤ m′

k.

We next turn to establishing (39). Consider any k ∈ {1, . . . , N + 1} having non-zero probability that
k ≤ K. Given that k ≤ K, note that Vk−1 and ∆ik have no dependence on S1

k , so that the samples
in S1

k are conditionally i.i.d.-P given the event that k ≤ K and given the random variables Vk−1

and ∆ik . Therefore, applying a multiplicative Chernoff bound (Lemma 6 of Appendix D) under
the conditional distribution given the event k ≤ K and the random variables Vk−1 and ∆ik , with
conditional probability at least 1− δ

8k(k+1) ,∣∣S1
k ∩Dk−1 \∆ik

∣∣ ≤ 2mkPX(Dk−1 \∆ik) + 6 ln

(
16k(k + 1)

δ

)
. (42)
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In particular, by the law of total probability, this implies that for every k ∈ {1, . . . , N + 1}, with
probability at least 1− δ

8k(k+1) , if k ≤ K then (42) holds. Letting E′
3 denote the event that (42) holds

for every k ∈ {1, . . . ,K}, by the union bound, E′
3 holds with probability at least 1− δ

8 . Combining
(42) with Lemma 22, we have that on the event E0 ∩ E1 ∩ E2 ∩ E′

3, ∀k ∈ {1, . . . ,K},∣∣S1
k ∩Dk−1 \∆ik

∣∣ ≤ 2sεkmk + 6 ln

(
16k(k + 1)

δ

)
≤ 3sεkmk,

where the rightmost inequality follows from recalling mk :=
⌈
300C′′c0

εk

(
d log

(
C′′c0
εk

)
+ log

(
1
δ

))⌉
,

which satisfies εkmk ≥ 6 ln
(

16k(k+1)
δ

)
. Thus, we have established (39).

We argue the left inequality in (40) similarly. Consider any k ∈ {1, . . . , N + 1} having non-zero
probability of k ≤ K. Given k ≤ K, note that ∆ik has no dependence on S2

k or m′
k, so that the

m′
k samples in S2

k are conditionally i.i.d.-P given the event k ≤ K and given the random variables
∆ik and m′

k. Therefore, applying a multiplicative Chernoff bound (Lemma 6 of Appendix D) under
the conditional distribution given the event k ≤ K and the random variables ∆ik and m′

k, with
conditional probability at least 1− δ

8(3+N−k)2 ,

∣∣S2
k ∩∆ik

∣∣ ≤ max

{
2PX(∆ik)m

′
k, 6 ln

(
16(3 +N − k)2

δ

)}
. (43)

By the law of total probability, we have that for every k ∈ {1, . . . , N + 1}, with probability at least
1 − δ

8(3+N−k)2 , if k ≤ K then (43) holds. Letting E′′
3 denote the event that (43) holds for every

k ∈ {1, . . . ,K}, by the union bound, E′′
3 holds with probability at least 1−

∑N+1

k=1
δ

8(3+N−k)2 ≥ 1− δ
8 .

Let E3 = E′
3 ∩ E′′

3 , and note that, by the union bound, E3 holds with probability at least 1− δ
4 . For

the remainder of the proof, let us suppose the event
⋂3

j=0 Ej occurs.

To arrive at the simpler claimed inequalities in (40), we follow a similar argument to the final part
of the proof of Lemma 14. Explicitly, we first note that for any k ∈ {1, . . . ,K}, if ∆ik = ∅, we
trivially have |S2

k ∩∆ik | = 0 = 2PX(∆ik)m
′
k ≤ 10βm′

k. On the other hand, if ∆ik ̸= ∅, the final
claim in Lemma 11 implies PX(∆ik) > εk+2, and combined with Lemma 13 this further implies
p̂k ≥ PX(∆ik) > εk+2. Therefore, in this case,

2PX(∆ik)m
′
k >

2C ′′c21
C4

(
d+ ln

(
4(3 +N − k)2

δ

))
≥ 6 ln

(
16(3 +N − k)2

δ

)
,

where the rightmost inequality follows from c1 ≥ 1 and C ′′ ≥ 6C4. Thus, the left inequality in (40)
follows from (43). The right inequality in (40) follows immediately from the fact (established above)
that m′

k ≤ m′
k, together with the fact (from Lemma 20) that PX(∆ik) ≤ 5β.

The remaining claims in the lemma follow from reasoning about convergence of the relevant series.
Specifically, recalling that εk = C1−k, N =

⌈
logC

(
2
ε

)⌉
, and C = 11

10 , we note that
∑N+1

k=1
1
ε2k

=
1

C2−1

(
C2(N+1) − 1

)
≤ 28

ε2 and

N+1∑
k=1

1

ε2k
ln(3 +N − k) = C2N

N∑
j=0

C−2j ln(2 + j) ≤ C2N · 10 ≤ 49

ε2
.

Recalling m′
k =

25C′′c21β

ε2k

(
d+ 2 ln(3 +N − k) + ln

(
4
δ

))
, we have

N+1∑
k=1

m′
k ≤

25C ′′c21β

ε2

(
28d+ 2 · 49 + 28 ln

(
4

δ

))
≤M2. (44)

To obtain the query bound Q(ε, δ;β) in (41), note that the total number of queries is precisely(
K∑

k=1

∣∣S2
k ∩∆ik

∣∣)+

(
K∑

k=1

∣∣S1
k ∩Dk−1 \∆ik

∣∣) . (45)
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By (40), the first term in (45) is upper bounded by 10β ·
∑N+1

k=1 m
′
k, and (44) implies this is at

most 10βM2. The second term in (45) is trivially upper bounded by M1 :=
∑N+1

k=1 mk. Moreover,
noting that εkmk is increasing in k, (39) implies the second term in (45) is also upper bounded by
3sεN+1 ·mN+1 · (N + 1) ≤ (3/2)sε(N + 1)mN+1. Together with the definition of Q(ε, δ;β) from
(41), we have that the total number of queries (45) is at most Q(ε, δ;β).

The bound on the asymptotic form of Q(ε, δ;β) in (41) follows immediately from the definitions.
Specifically, by definition of M2, we have 10βM2 = O

(
β2

ε2

(
d+ log

(
1
δ

)))
. Moreover, since

εN+1 ≥ ε
2C , we have (3/2)sε(N + 1)mN+1 = O

(
s log

(
1
ε

) (
d log

(
1
ε

)
+ log

(
1
δ

)))
, while (since each

k ≤ N + 1 has εk ≥ ε
2C ), M1 =

∑N+1

k=1 mk ≤
∑N+1

k=1
301C′′c0

εk

(
d log

(
2CC′′c0

ε

)
+ log

(
1
δ

))
=

O
(
1
ε

(
d log

(
1
ε

)
+ log

(
1
δ

)))
by evaluating the geometric series. ■

As a final step before composing these lemmas into a proof of Theorem 5, we state an explicit bound
on the number of unlabeled examples used by the algorithm. Much of this analysis is already implied
by the above lemmas: namely, by definition, the number of examples allocated to data sets S1

k and S4
k

is precisely 2M1 = 2
∑N+1

k=1 mk, and Lemma 23 implies the number of examples allocated to data
sets S2

k is at most M2. What remains is to bound the number of examples allocated to the data sets
S3
k,i, which hinges on bounding the number of iterations of the ‘While’ loop for each k. We have

already noted, in Lemma 10, that max Ik ≤ 1
εk+3

on the event E0, which already suffices to establish

a coarse bound Õ
(

d
ε2

)
. However, we will need a slight refinement to obtain the claimed upper bound,

which will follow from a combination of Lemmas 11 and 20.
Lemma 24. On the event

⋂3
j=0 Ej , the total number of examples allocated to data sets S1

k , S4
k

(k ≤ N + 1), S2
k (k ≤ K), and S3

k,i (k ∈ K, i ∈ Ik) is at most

M(ε, δ;β) := 3M1 +M2 +
100C4βmN

ε
= O

(
β + ε

ε2

(
d log

(
1

ε

)
+ log

(
1

δ

)))
.

Proof. Suppose the event
⋂3

j=0 Ej occurs. By definition, the number of examples allocated to data
sets S1

k and S4
k is mk each, for k ∈ {1, . . . , N + 1}, so that the total number of such examples is∑N+1

k=1 2mk = 2M1. Also, by the first claim in Lemma 23, the number m′
k of examples allocated

to each S2
k data set (for k ∈ {1, . . . ,K}) satisfies m′

k ≤ m′
k. Moreover, Lemma 23 also establishes

that
∑N+1

k=1 m
′
k ≤M2. Together, we have that the total number of examples allocated to data sets S2

k

is
∑K

k=1 m
′
k ≤M2. Thus, to complete the proof of Lemma 24, it suffices to bound the total number

of examples allocated to data sets S3
k,i (k ∈ K, i ∈ Ik).

Toward this end, recall that for each k ∈ K, each S3
k,i is of size mk, and is allocated if and when the

algorithm reaches Step 5 with values (k, i). Thus, if k = K (which, by the final claim in Lemma 10,
occurs only if the algorithm returns in Step 4 in round k), then no examples are allocated to any
S3
k,i sets in round k, whereas if k < K, then the number of S3

k,i data sets allocated during round
k is precisely the number of distinct values of i encountered in round k: that is, |Ik|. Moreover,
note that since each time through the ‘While’ loop increments i, each k ∈ K with k < K has
|Ik| = ik+1 − ik + 1. It follows that the total number of examples allocated to data sets S3

k,i in the
algorithm is precisely

∑
k∈K:k<K mk(ik+1 − ik + 1).

Next we upper bound ik+1 − ik for each k ∈ K with k < K. Specifically, for any such k, note
that ∆ik+1

\ ∆ik =
⋃ik+1−1

i=ik
(∆i+1 \∆i), and by definition the sets ∆i+1 \ ∆i are disjoint over

i. Moreover, by Lemma 11 and the definition of ∆i+1 in Step 7, any i ∈ {ik, . . . , ik+1 − 1} has
PX(∆i+1 \∆i) > εk+3. Therefore,

PX(∆ik+1
\∆ik) =

ik+1−1∑
i=ik

PX(∆i+1 \∆i) ≥ (ik+1 − ik)εk+3.

On the other hand, by Lemma 20, PX(∆ik+1
\ ∆ik) ≤ PX(∆ik+1

) ≤ 5β. Combining these

inequalities, we conclude that (ik+1 − ik) ≤ 5C3β
εk

. Combined with the facts that mk ≤ mN and
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∑
k∈K:k<K mk ≤M1, altogether we have

∑
k∈K:k<K

mk(ik+1 − ik + 1) ≤M1 +mN

N∑
k=1

5C3β

εk
≤M1 +

100C4βmN

ε
,

where the last inequality follows by evaluating the geometric series and recalling εN ≥ ε
2C . This

completes the proof that the total number of examples allocated to data sets S1
k , S3

k,i, S
2
k , S4

k is
at most M(ε, δ;β). The claimed asymptotic form of M(ε, δ;β) follows immediately from the
definitions of the quantities involved: namely, by definition, 3M1 = Θ

(
1
ε

(
d log

(
1
ε

)
+ log

(
1
δ

)))
,

M2 = Θ
(

β
ε2

(
d+ log

(
1
δ

)))
, and (since εN ≥ ε

2C ) 100C4βmN

ε = Θ
(

β
ε2

(
d log

(
1
ε

)
+ log

(
1
δ

)))
. ■

We are now ready to combine the above lemmas into a complete proof of Theorem 5.

Proof of Theorem 5. By the union bound, the event
⋂3

j=0 Ej has probability at least 1 − δ. By
Lemma 24, on

⋂3
j=0 Ej , Aavid uses at most M(ε, δ;β) (as defined in the lemma) of the examples in

the sequence; in particular, this means that if we were to run the algorithm with a finite sequence
(X1, Y1), . . . , (Xm, Ym), for any m ≥ M(ε, δ;β), then on the event

⋂3
j=0 Ej , the behavior of the

algorithm (e.g., queries, returned ĥ) is identical to the idealized setting the above lemmas were
established under (where there is an unlimited supply of examples), and hence the claims in the
above lemmas remain valid. Thus, for any sample size m ≥M(ε, δ;β), on the event

⋂3
j=0 Ej , by

Lemma 19 we have erP (ĥ) ≤ infh∈C erP (h) + ε, and by Lemma 23 the total number of queries is at
most Q(ε, δ;β) as defined therein. ■

A remark on intersecting with Dk−1 in ∆ik: We remark that Theorem 5 remains valid if
we restrict either (or both) h1, h2 to be in Vk−1 in the definition (2) of V (4)

k−1. The entire proof
remains valid (applying the same change to V (3)

k−1), with the only exception being the first inequality
in Lemma 20, which should then replace C by Vk−1. This change is of no consequence to the
second inequality in the lemma since the proof of Lemma 17 in fact implies that h⋆ ∈ Vk−1

holds simultaneously (on E0 ∩ E1 ∩ E2) for all functions h⋆ ∈ C satisfying (10) (and hence
infh∈Vk−1

erP (h) = β). Moreover, with this restriction to require h2 ∈ Vk−1 in V (4)
k−1, we can

extend the intersection with Dk−1 to the ∆ik region: that is, instead of querying all of S2
k ∩ ∆ik

(in Step 2) or S2
N+1 ∩∆iN+1

(in Step 9), we can instead merely query the subset S2
k ∩Dk−1 ∩∆ik

(in Step 2) or S2
N+1 ∩ DN ∩ ∆iN+1

(in Step 9). With this change, we must then also modify the
definition of êr1,2

k (h) in (1) to êr1,2
k (h) := P̂S1

k
(ER(h)∩Dk−1 \∆ik) + P̂S2

k
(ER(h)∩Dk−1 ∩∆ik).

The argument in Lemma 15 extends to this modified definition of êr1,2
k (h), since (as in the proof

of (14) in Lemma 10) we are only interested in error differences, which, for h, h′ ∈ Vk−1, satisfy
P̂S2

k
(ER(h)∩Dk−1∩∆ik)−P̂S2

k
(ER(h′)∩Dk−1∩∆ik) = P̂S2

k
(ER(h)∩∆ik)−P̂S2

k
(ER(h′)∩∆ik).

Indeed, with additional modifications to the proof, we can then even slightly refine the query
complexity analysis, since if we replace the sets ER(h) ∩ ∆ik with ER(h) ∩ Dk−1 ∩ ∆ik in
Lemma 14, the envelope set in the application of Lemma 8 in the proof of Lemma 14 can be chosen as
Dk−1∩∆ik , so that we can refine the definition of p̂k to 2P̂S4

k
(Dk−1∩∆ik)+O(εk). However, since

these changes concern only the leading term β2

ε2

(
d+ log

(
1
δ

))
in Theorem 5, which is already optimal

(perfectly matching the lower bounds of Kääriäinen, 2006; Beygelzimer, Dasgupta, and Langford,
2009), they are completely inconsequential to the theorem. We have therefore stated the algorithm
without these modifications, for simplicity. However, this modified variant would be interesting in
the context of P -dependent analysis, where it can lead to refinements to the leading term in the upper
bound under certain favorable distributions. We leave the investigation of such refinements as an
interesting direction for future work (focusing our P -dependent analysis in Appendix F on refining
the lower-order term).
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F Distribution-Dependent Analysis

In addition to analysis based on the star number (Hanneke and Yang, 2015), the active learning
literature includes a variety of distribution-dependent complexity measures which have been used
to analyze the query complexity in various contexts (see Appendix A). In this section, we will
add to this line of work a distribution-dependent analysis of Aavid which replaces the star number
s in Theorem 3 by a (never-larger) distribution-dependent quantity (Theorem 27), which can be
further upper-bounded in terms of a simpler and more-familiar quantity: namely, a quadratic θ2

dependence in the disagreement coefficient (Hanneke, 2007b; Definition 25 below). We also show (in
Appendix F.1) that it is not possible (by any algorithm) to obtain a lower-order term which replaces
the star number in Theorem 3 with the disagreement coefficient θ itself, so that the aforementioned
θ2 quadratic dependence generally cannot be reduced to linear (without introducing other factors).
We will also present (in Appendix F.3) a slight refinement of Aavid, which replaces the region
of disagreement Dk−1 by a carefully-chosen subregion, following the technique of Zhang and
Chaudhuri (2014); Balcan, Broder, and Zhang (2007), which yields a corresponding refinement of the
distribution-dependent query complexity bound. For instance, in the case of learning homogeneous
linear classifiers under a uniform (or isotropic log-concave) distribution, this recovers a known query
complexity bound Õ

(
dβ2

ε2 + d
)

(and indeed, improves log factors in the lead term compared to prior
works).

The Disagreement Coefficient: In the context of agnostic active learning, the most commonly-used
P -dependent complexity measure is the disagreement coefficient, introduced by Hanneke (2007b),
defined as follows.

Definition 25. For any concept class C and distribution PX on X , for any measurable function
f : X → {0, 1}, for any ε ≥ 0, the disagreement coefficient, denoted by θPX ,f (ε), is defined as

θPX ,f (ε) := sup
r>ε

PX(DIS(BPX
(f, r)))

r
∨ 1,

where BPX
(f, r) := {h ∈ C : PX(h ̸= f) ≤ r} denotes the r-ball centered at f , and DIS(C′) :=

{x ∈ X : ∃h, h′ ∈ C′, h(x) ̸= h′(x)} denotes the region of disagreement (as in Section 4). For any
distribution P on X × {0, 1} and ε > 0, for h⋆ as in (10),14 define θP (ε) := θPX ,h⋆(ε).

There are many works establishing bounds on the disagreement coefficient for commonly-studied
classes C under various restrictions on the distribution P (see Hanneke, 2014, for a detailed summary).
As discussed in Appendix A, the disagreement coefficient commonly appears in analyses of the query
complexity of disagreement-based active learning methods (e.g., Hanneke, 2007b, 2009b, 2011,
2014; Dasgupta, Hsu, and Monteleoni, 2007). Since the lower-order term in Theorem 3 arises from
the analysis of queries in the region of disagreement DIS(Vk−1) of Vk−1, one might naturally wonder
whether we can replace s with θP (ε) in the upper bound in Theorem 3. Hanneke and Yang (2015)
have shown that supP θP (ε) = s ∧ 1

ε for ε ∈ (0, 1], which implies that if we could replace s by
θP (ε) it would indeed represent a distribution-dependent refinement of the upper bound in Theorem 3.
However, it turns out this is not possible (by any algorithm) for some classes C, as we demonstrate
by an example in Appendix F.1. Following this, in Appendix F.2, we find that it is possible to
achieve a lower-order term Õ(dθP (β + ε)2), and indeed this is achieved by Aavid. This quadratic
dependence unfortunately means the upper bound is sometimes loose (i.e., sometimes larger than
that in Theorem 3). However, as an intermediate step, we also establish a query complexity bound
(Theorem 27) expressed in terms of a modified disagreement coefficient which is never larger than
the s-dependent query complexity bound in Theorem 3 (though which is more difficult to evaluate
due to a more-involved definition).

14When h⋆ is not uniquely defined, in principle we can define θP (ε) as the infimum value among all choices
of such h⋆. It is also possible to define h⋆ as an ε-independent fixed function, even when erP (h) does not have
a minimizer in C, by choosing it as an element of the L1(PX)-closure of C having erP (h

⋆) = infh∈C erP (h):
see (Hanneke, 2012) for a proof that such an h⋆ always exists when VC(C) < ∞. In particular, with such an
h⋆, the limiting value θP (0) := θPX ,h⋆(0) is also well-defined.
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F.1 Impossibility of Replacing s with θP (ε)

In this section, we present an example demonstrating that no algorithm can achieve a P -dependent
query complexity bound which replaces s by θP (ε) in Theorem 3.

An Example: Consider the following concept class (see Hanneke, 2007b, for a related construction).
Let X = Z (the integers) and define a concept class

Cts := {1{−t}∪[t,∞) : t ∈ N}.

In other words, each h ∈ Cts defines a threshold classifier on the positive integers and a singleton
classifier on the negative integers, and the position −t of the singleton point mirrors the position t of
the threshold boundary point.

Fix any ε, β ∈ (0, 1/3), denote by n = 1−2β
2ε , and for simplicity suppose n ∈ N. Define a marginal

distribution PX on X as follows: ∀x ∈ {1, . . . , n}, PX({x}) = 2β
n and PX({−x}) = 2ε. Note that

this completely specifies PX . Now define a family of probability distributions P1, . . . , Pn: for each
t ∈ {1, . . . , n}, Pt has marginal distribution PX on X and conditional distribution ∀x ∈ X

Pt(Y = 1|X = x) =


1, if x = −t
0, if x ∈ {−1, . . . ,−n} \ {−t}
1
2 , otherwise

.

In particular, note that each Pt satisfies infh∈Cts
erPt

(h) = β and h⋆ is uniquely equal 1{−t}∪[t,∞).15

Upper-bounding θPt(ε): For any Pt, we will argue θPt
(ε) ≤ θPX ,h⋆(0) = O( 1β ). For any r > 0,

if h ∈ BPX
(h⋆, r), then letting kh := |{h ̸= h⋆} ∩ {1, . . . , n}|, since each x ∈ {1, . . . , n} has

PX({x}) = 2β
n , we must have kh ≤ kr :=

⌊
rn
2β

⌋
. Since h and h⋆ both implement threshold functions

in this region {1, . . . , n}, the kh elements in {h ̸= h⋆} ∩ {1, . . . , n} are a contiguous segment:
either {t, . . . , t+ kh − 1} or {t− kh, . . . , t− 1}. In either case, we have {h ̸= h⋆} ∩ {1, . . . , n} ⊆
{t − kr, . . . , t + kr − 1} ∩ {1, . . . , n}. Moreover, since h = 1{−t′}∪[t′,∞) for some t′ ∈ N, this
further implies {h ̸= h⋆} ∩ {−1, . . . ,−n} ⊆ {−(t− kr), . . . ,−(t+ kr)} ∩ {−1, . . . ,−n}. Since
DIS(BPX

(h⋆, r)) is just the union of these {h ̸= h⋆} regions among all h ∈ BPX
(h⋆, r), we have

DIS(BPX
(h⋆, r)) ∩ {−n, . . . ,−1, 1, . . . , n}

⊆ ({−(t− kr), . . . ,−(t+ kr)} ∩ {−1, . . . ,−n}) ∪ ({t− kr, . . . , t+ kr − 1} ∩ {1, . . . , n})

=⇒ PX(DIS(BPX
(h⋆, r))) ≤ (2kr + 1)2ε+ 2kr

2β

n
≤ r(1− 2β)

β
+ 2ε+ 2r.

We also note that any r < 2ε has BPX
(h⋆, r) = {h⋆}. Altogether,

θPt
(ε) ≤ θPX ,h⋆(0) ≤ sup

r≥2ε

r((1− 2β)/β) + 2ε+ 2r

r
=

1− 2β

β
+ 3 = O

(
1

β

)
.

Lower-bounding the query complexity: On the other hand, we will argue that the query complex-
ity is Ω( 1ε ) under the assumption P ∈ {P1, . . . , Pn}. Note that every h : X → {0, 1} has the same
value of Pt(ER(h) \ {−1, . . . ,−n}) = β. Together with the definition of Pt in {−1, . . . ,−n}, this
implies any h : X → {0, 1}with {h ̸= h⋆}∩{−1, . . . ,−n} ≠ ∅ has erPt

(h)−erPt
(h⋆) ≥ 2ε. Thus,

the problem of learning, to an excess error ε (under the assumption that P ∈ {Pt : t ∈ {1, . . . , n}})
is equivalent to the problem of identifying the value t ∈ {1, . . . , n} for which the distribution P = Pt:
that is, if an algorithm returns ĥ with erPt

(ĥ)− erPt
(h⋆) ≤ ε, the unique x ∈ {1, . . . , n} for which

ĥ(−x) = 1 satisfies x = t. Moreover, in the active learning problem defined by these distribu-
tions, for every x /∈ {−1, . . . ,−n}, the conditional distribution Pt(Y = 1|X = x) of responses to
queries for examples at x is invariant to t, so that such queries reveal no information about which

15Indeed, these distributions Pt even satisfy the stronger benign noise property: i.e., infh∈Cts erPt(h) =
Bayes risk (a setting studied by Hanneke, 2009b; Hanneke and Yang, 2015). Thus, the argument in this section
further implies the impossibility of using θP (ε) in the lower-order term under benign noise.
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t has P = Pt, and hence without loss of generality we can restrict to active learning algorithms
that do not query outside {−1, . . . ,−n}. The unlabeled examples also reveal no such information,
since all Pt have the same marginal distribution PX . Altogether, the active learning problem for
this set of distributions is information-theoretically no easier (in terms of query complexity) than
the problem of actively identifying a singleton classifier on {−1, . . . ,−n} in the realizable case
under marginal Uniform({−1, . . . ,−n}).16 It is well known that the minimax query complexity of
this latter problem (with confidence parameter δ = 1/3) is Ω(n) = Ω( 1ε ) (Dasgupta, 2004, 2005;
Hanneke, 2014; Hanneke and Yang, 2015), which therefore serves as a lower bound on the minimax
query complexity for P ∈ {Pt : t ∈ {1, . . . , n}}: that is, for every active learning algorithm, there
exists P ∈ {Pt : t ∈ {1, . . . , n}} for which, with probability at least δ, it either makes Ω( 1ε ) queries
or returns ĥ with erP (ĥ) > infh∈Cts erP (h) + ε.

Conclusion that θPt(ε) is not achievable in the lower-order term: From the above arguments,
we can conclude that for the class Cts, it is not possible to replace s by θP (ε) (or indeed θP (0)) in
the upper bound of Theorem 3 to obtain a P -dependent refinement of the upper bound. Formally,
for every active learning algorithm guaranteeing that, for every P with infh∈Cts

erP (h) ≤ β, with
probability at least 2/3 (i.e., δ = 1/3), it returns ĥ with erP (ĥ) ≤ infh∈Cts erP (h) + ε, there exists a
distribution P satisfying this for which θP (ε) ≤ 1−2β

β + 3 = O( 1β ), yet with probability at least 1/3,
the algorithm makes a number of queries Ω( 1ε ). We have argued this conclusion for any choices of
ε, β ∈ (0, 1/3) (with n ∈ N for simplicity). In particular, for ε ≪ β ≪

√
ε (e.g., β ≈ ε2/3), such

a distribution P has β2

ε2 + θP (ε) =
β2

ε2 + O( 1β )≪
1
ε , so that replacing s with θP (ε) in Theorem 3

cannot yield a valid query complexity bound (holding for all P ) for any active learning algorithm.
Indeed, we have established that this conclusion also holds for θP (0) (as defined in footnote 14).

We will see in Corollary 28 of Appendix F.2 that Aavid does achieve an upper-bound Õ
(
dθP (β + ε)2

)
on the lower-order term: a quadratic dependence on the disagreement coefficient. This conclusion is
compatible with the above scenario, since β2

ε2 + 1
β2 = Ω

(
1
ε

)
for the full range of β, ε.

F.2 Replacing s with θP (β + ε)2

Appendix F.1 implies the disagreement coefficient θP (ε), as defined in Definition 25, cannot be
used as a P -dependent substitute for the star number s in Theorem 3 (at least, not with a linear
dependence). In this section, we will argue that the AVID Agnostic algorithm Aavid does achieve a
P -dependent lower-order term which is at most quadratic in the disagreement coefficient: namely,
Õ(dθP (β + ε)2). We will argue this by first establishing a P -dependent refinement of Theorem 5
based on a modified disagreement coefficient (Definition 26) which is never larger than the star
number. While this quantity itself is often more-difficult to calculate, compared to the original
disagreement coefficient θP (ε), fortunately it is always upper bounded by O

(
β2

ε2 + θP (β + ε)2
)

.
In particular, this means that for any P with θP (0) <∞, the asymptotic dependence on ε, δ in the
lower-order term in Theorem 3 can be reduced to polylog

(
1
εδ

)
.

Specifically, the modified disagreement coefficient we consider can be expressed as the value
θP∆,h⋆(ε) produced under a restriction of PX to a subregion X \ ∆ of size at least 1 − O(β).
Toward stating the definition, we first extend Definition 25 to allow for general measures µ: that is, for
any measure µ on X and measurable f : X → {0, 1}, define Bµ(f, r) := {h ∈ C : µ(h ̸= f) ≤ r},

16Formally, for any active learning algorithm A, under distributions P ∈ {Pt : t ∈ {1, . . . , n}}, we
can convert A into an active learner A′ for realizable-case singletons under Uniform({−1, . . . ,−n}) with
at most the query complexity of A under such distributions P . Specifically, given any number m of i.i.d.
unlabeled examples X1, . . . , Xm ∼ Uniform({−1, . . . ,−n}), define independent random variables (also
independent of X1, . . . , Xm) B1, . . . , Bm ∼ Bernoulli(2β), X ′

1, . . . , X
′
m ∼ Uniform({1, . . . , n}), and

Y ′
1 , . . . , Y

′
m ∼ Bernoulli( 1

2
). For each i ≤ m, let X ′′

i = Xi if Bi = 0 and X ′′
i = X ′

i if Bi = 1. Then A′ runs
A with unlabeled data X ′′

1 , . . . , X
′′
m; whenever A queries an X ′′

i with Bi = 0, A′ queries for the label Yi of Xi

and gives this as a response to the query, and whenever A queries an X ′′
i with Bi = 1, A′ gives Y ′

i as a response
to the query. Note that the corresponding data sequence and responses observed by A are indeed identical
to running A under P = Pt, where −t is the singleton location for the realizable-case singleton problem
Pt(·|{−1, . . . ,−n}). Thus, the query complexity of A′ identifying the t for the realizable-case singletons
distribution Pt(·|{−1, . . . ,−n}) is at most that of A identifying this t when P = Pt.
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and for ε ≥ 0 define θµ,f (ε) := supr>ε
µ(DIS(Bµ(f,r)))

r ∨1. We then consider the following definition:
a region-excluded disagreement coefficient.
Definition 26. For any distribution P on X × {0, 1} and any measurable ∆ ⊆ X , define a measure
A 7→ P∆(A) := PX(A \∆). For any ε, τ ≥ 0, for h⋆ ∈ C as in (10) (under P ),17 define

θP (ε; τ) := sup
∆⊆X :PX (∆)≤τ

θP∆,h⋆(ε).

We can equivalently define θP (ε; τ) as the disagreement coefficient under a worst-case conditional
distribution PX(·|X \∆): that is,

θP (ε; τ) = sup
∆⊆X :PX (∆)≤τ

θPX(·|X\∆),h⋆(ε/PX(X \∆)), (46)

where we define θPX(·|X\∆),h⋆(ε/PX(X \∆)) = 1 in the case PX(X \∆) = 0 (which coincides with
the value θP∆,h⋆(ε) for such ∆).

We may note that θP (ε; τ) indeed provides a refinement of the star number, in that it is never larger.
Specifically, since Hanneke and Yang (2015) have shown

sup
PX

sup
h∈C

θPX ,h(ε) = s ∧ 1

ε
(47)

for every ε ∈ (0, 1], the expression in (46) of θP (ε; τ) as the disagreement coefficient under condi-
tional distributions immediately implies

θP (ε; τ) ≤ s ∧ 1

ε
. (48)

Thus, replacing s in Theorem 3 by θP (ε; τ) would indeed yield a (never-larger) P -dependent
refinement.

We give examples below (Appendix F.2.1) of calculating and upper-bounding θP (ε; τ) under various
scenarios (C, P ). We remark that, due to the supremum over regions ∆, the quantity θP (ε; τ) is often
much more involved to calculate or bound compared to the original disagreement coefficient θP (ε) in
Definition 25. We might therefore think of θP (ε; τ) as a kind of intermediate complexity measure,
which is useful in that it provides a P -dependent refinement of s, while also admitting general upper
bounds which are more accessible than directly calculating θP (ε; τ). Concretely, there are at least
weak relations between θP (ε; τ) and the more-familiar disagreement coefficient from Definition 25:
namely, θP (ε) ≤ θP (ε; τ) and

θP (ε; τ) ≤ sup
r>ε

PX(DIS(BPX
(h⋆, τ + r)))

r
∨ 1

≤ θP (τ + ε)

(
τ + ε

ε

)
≤ θP (τ + ε)2 +

(
τ + ε

ε

)2
. (49)

These upper bounds on θP (ε; τ) are noteworthy since θP (τ + ε) is typically significantly easier
to calculate compared to directly calculating θP (ε; τ) (and there are already many works deriving
bounds on θP (τ + ε) for various scenarios; see Hanneke, 2014).

The quantity θP (ε; τ) is particularly well-suited for the analysis of Aavid, since the algorithm
explicitly maintains low diameter of Vk under a region-excluded measure A 7→ PX(A \ ∆ik).
Specifically, Lemma 12 implies Vk−1 ⊆ BP∆ik

(h⋆, εk), while Lemma 20 implies PX(∆ik) ≤ 5β,
so that PX(Dk−1 \∆ik) ≤ θP (εk; 5β)εk, and hence the number of queries in S1

k ∩Dk−1 \∆ik is
O(θP (εk; 5β)εkmk) = Õ(θP (ε; 5β)d). Formally, this leads to the following result, which simply
replaces s with θP (ε; 5β) in the lower-order term compared to Theorem 5. Due to (48), the query
complexity bound in this result is never larger than that of Theorem 5 (and below we discuss scenarios
where it is strictly smaller). We remark that, based on the comment preceding Lemma 20, the factor
“5” in θP (ε; 5β) in this theorem can be reduced to any value c > 2 by appropriately adjusting the
constants C, C ′′ in the algorithm.

17The remarks concerning the choice of h⋆ in footnote 14 also apply here, noting that the lemmas concerning
h⋆ in Appendix E actually apply simultaneously to all functions h⋆ ∈ C satisfying (10).
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Theorem 27 (Distribution-dependent Query Complexity of AVID Agnostic). For any concept
class C with VC(C) < ∞, letting d = VC(C), for every distribution P on X × {0, 1}, letting
β = infh∈C erP (h), for any ε, δ ∈ (0, 1), if the algorithm Aavid is executed with parameters (ε, δ),
with any number m ≥ M(ε, δ;β) of i.i.d.-P examples (for M(ε, δ;β) as in Theorem 5, defined
in Lemma 24), then with probability at least 1 − δ, the returned predictor ĥ satisfies erP (ĥ) ≤
infh∈C erP (h) + ε and the algorithm makes a number of queries at most Q(ε, δ;P ) satisfying

Q(ε, δ;P ) = O

(
β2

ε2

(
d+ log

(
1

δ

))
+min

{
θP (ε; 5β) log

(
1

ε

)
,
1

ε

}(
d log

(
1

ε

)
+ log

(
1

δ

)))
= Õ

(
d
β2

ε2
+ dθP (ε; 5β)

)
.

Proof. The result follows identically to Theorem 5, with only one minor change: replacing s with
2CθP (ε; 5β) in Lemma 22. Note that this one change will suffice, since every subsequent appearance
of s in the proof is due to its appearance in Lemma 22, and hence changing s to 2CθP (ε; 5β) in this
lemma allows us to make the same change in every subsequent appearance of s in the proof.

To see why Lemma 22 remains valid with this change, first note that its proof establishes that, on the
event E0 ∩ E1 ∩ E2, in the non-trivial case of PX(X \∆ik) ̸= 0, (38) holds. Rather than relaxing
the third expression in (38) using the star number, we can instead relax it using θP (ε; 5β): that is, for
Pk as defined in that context, (38) implies

PX(Dk−1\∆ik) = Pk(Dk−1)PX(X \∆ik) ≤ Pk

(
DIS

(
BPk

(
h⋆,

εk
PX(X \∆ik)

)))
PX(X \∆ik)

= P∆ik

(
DIS

(
BP∆ik

(h⋆, εk)
))
≤ θP (ε/(2C); 5β)εk,

where the last inequality follows from Definition 26, the fact that εk > ε
2C , and the fact (from

Lemma 20) that PX(∆ik) ≤ 5β. We then note that (as in Corollary 7.2 of Hanneke, 2014) for any
∆ ⊆ X ,

θP∆,h⋆(ε/(2C)) = sup
r>ε

P∆(DIS(BP∆(h
⋆, r/(2C))))

r/(2C)
∨ 1 ≤ 2C sup

r>ε

P∆(DIS(BP∆(h
⋆, r)))

r
∨ 1,

and therefore θP (ε/(2C); 5β) ≤ 2CθP (ε; 5β). Altogether, we have that Lemma 22 remains valid
while replacing s with 2CθP (ε; 5β). ■

We emphasize that Aavid does not need to know the value θP (ε; 5β) (or anything else about P ) to
achieve this query complexity: that is, it is adaptive to the value of θP (ε; 5β).

Together with (49), the above result further implies a (sometimes loose) relaxation, in which the
lower-order term has a quadratic dependence on θP (β + ε), as formally stated in the following
corollary (compare this with Appendix F.1, which showed it is impossible to generally reduce this
θP (β + ε)2 term to a linear term θP (β + ε) or even θP (0)).
Corollary 28. The query complexity bound Q(ε, δ;P ) in Theorem 27 (achieved by Aavid) satisfies

Q(ε, δ;P ) = O

(
β2

ε2

(
d+log

(
1

δ

)))
+ Õ

(
min

{
dθP (β+ε)

(
β + ε

ε

)
,
d

ε

})
= O

(
β2

ε2

(
d+log

(
1

δ

)))
+ Õ

(
min

{
dθP (β+ε)2,

d

ε

})
.

Proof. Due to the first two inequalities in (49), and θP (5β + ε) ≤ θP (β + ε), the second term in the
expression of Q(ε, δ;P ) in Theorem 27 is at most

O

(
min

{
θP (β + ε) log

(
1

ε

)(
β + ε

ε

)
,
1

ε

}(
d log

(
1

ε

)
+ log

(
1

δ

)))
. (50)

Relaxing d log
(
1
ε

)
+ log

(
1
δ

)
≤ log

(
1
ε

) (
d+ log

(
1
δ

))
and noting that

θP (β + ε) log2
(
1

ε

)(
β + ε

ε

)
≤ θP (β + ε)2 log4

(
1

ε

)
+

(
β + ε

ε

)2

,
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and
(

β+ε
ε

)2
≤ 4β2

ε2 + 4, the quantity (50) is at most

O

(
β2

ε2

(
d+ log

(
1

δ

))
+min

{
θP (β + ε)2 log4

(
1

ε

)
,
1

ε
log

(
1

ε

)}(
d+ log

(
1

δ

)))
.

Adding this to the first term in the expression of Q(ε, δ;P ), the result follows. ■

In particular, Corollary 28 implies that, whenever θP (0) <∞, the dependence on β, ε in the query
complexity bound in Theorem 27 is of order β2

ε2 + polylog
(
1
ε

)
. For instance, see (Hanneke, 2014,

Chapter 7) for some general conditions on (C, P ) under which this occurs. We remark that the first
bound in Corollary 28 is at least never larger than the upper bound in Theorem 1, since we always
have θP (β + ε)

(
β+ε
ε

)
≤ 1

ε ; however, we note that this is not the case for the second upper bound in
Corollary 28. Beyond these basic observations, there exist scenarios (C, P ) where both upper bounds
in Corollary 28 are loose compared to Theorem 27, to such an extent that they are sometimes even
larger than the s-dependent bound in Theorem 5 (see Example 6 below). It is for this reason that we
have chosen to express Theorem 27 in terms of the more-complicated quantity θP (ε; τ), to provide a
starting point for P -dependent analysis that is at least never worse than Theorem 5.

F.2.1 Examples

We next present some examples illustrating the values of the lower-order terms in Theorem 27 and
Corollary 28 by bounding the quantities θP (ε; τ) and θP (β + ε)2. Specifically, Example 1 achieves
this via the relation to s, Example 2 provides a simple scenario with s =∞ where it is possible to
directly bound θP (ε; τ), Example 3 expresses a bound on θP (β + ε) which is known in the literature,
but when combined with Corollary 28 provides an improved P -dependent query complexity bound
compared to previous works. Example 5 revisits the example from Appendix F.1 to illustrate that
θP (ε; 5β) provides a valid lower-order term for this example. In Appendix F.4, we will present
additional examples of P -dependent query complexity bounds, for some classes with VC(C) =∞,
via PX-dependent covering numbers.

Example 1 (Thresholds). Due to (48), any C with finite star number s admits a bounded θP (ε; τ). A
simple example of this is threshold classifiers: namely, X = R and C = {1[t,∞) : t ∈ R}. This class
has s = 2 (Hanneke and Yang, 2015), and hence θP (ε; τ) ≤ 2 for any P .

Example 2 (Linear classifiers under 1-sparse distributions). To illustrate a simple example where
θP (ε; τ) = O(1) while s = ∞, consider the class C of linear classifiers in X = Rp, p ≥ 2: that
is, C = {x 7→ 1⟨w,x⟩+b≥0 : w ∈ Rp, b ∈ R}. This class has s = ∞ (Hanneke and Yang, 2015).
However, if we consider PX as a distribution supported entirely on one axis (e.g., Uniform([0, 1]×
{0}p−1)), then it is a simple exercise to show that θP (ε; τ) ≤ 2: the concepts in BP∆

(h⋆, r) are
those that disagree with h⋆ on at most r measure (under P∆) either to the left or right of where the
h⋆ separator intersects the axis, so that DIS(BP∆

(h⋆, r)) is simply the union of these two (at most)
r-measure regions, hence has P∆ measure at most 2r.

While the above examples merely recover known results, the following example derives a previously-
unknown P -dependent query complexity bound, which significantly improves over the best
previously-known bound for this scenario.

Example 3 (Rectangles). Consider the case X = Rp, p ≥ 1, and C = {1[a1,b1]×···×[ap,bp] : a1 ≤
b1, . . . , ap ≤ bp}: the class of axis-aligned rectangles (Mitchell, 1979). This class is known to have
s =∞ (Hanneke and Yang, 2015). Consider PX = Uniform([0, 1]p) (the example trivially extends
to any product distribution PX with marginals on each axis having continuous CDFs) and any P with
well-defined h⋆ ∈ argminh∈C erP (h) satisfying PX({x : h⋆(x) = 1}) =: λ > 0. The optimal first-
order query complexity under these conditions is not yet precisely known. However, Wiener, Hanneke,
and El-Yaniv (2015) have shown that θP (β + ε) = O

(
d
λ log(d) ∧ 1

β+ε

)
for this scenario, and based

on this, the best known query complexity upper bound is of the form Õ
(
min

{
d2

λ
(β+ε)2

ε2 , dβ+ε
ε2

})
.

We can derive a bound which improves over this, as follows. We first recall that Theorem 1 provides
a query complexity bound Õ

(
dβ2

ε2 + d
ε

)
, which already improves over the query complexity bound
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of Wiener, Hanneke, and El-Yaniv (2015) in all regimes with ε≪ β ≪ 1 (for every λ). However, we
can further refine the lower-order term by introducing a dependence on λ. Specifically, the first bound
in Corollary 28 provides a query complexity bound Õ

(
dβ2

ε2 + d2(β+ε)
λε

)
, which offers a refinement

over Theorem 1 whenever λ≫ d(β + ε). Moreover, the second bound in Corollary 28 provides a
query complexity bound Õ

(
dβ2

ε2 + d3

λ2

)
. In particular, for λ = Θ(1) and β = Õ(

√
ε), this yields

a query complexity bound poly(d)polylog
(

1
εδ

)
, which was only available in the bound of Wiener,

Hanneke, and El-Yaniv (2015) in the more-restrictive regime β = Õ(ε). We leave open the question
of identifying the optimal query complexity for this scenario. In particular, one concrete technical
question toward that end would be to determine whether, for λ > 2τ , θP (ε; τ) = Õ

(
d
λ

)
.

Example 4 (Linear Classifiers). Consider the commonly-studied concept class of linear classifiers,
defined as: X = Rd−1 (d ≥ 3) and C = {hw,b : w ∈ Rd−1, b ∈ R}, where hw,b(x) = 1[⟨w, x⟩+b ≥
0]. This is perhaps the most well-studied concept class in the active learning literature. Its VC
dimension satisfies VC(C) = d (Vapnik and Chervonenkis, 1974), and while its star number satisfies
s = ∞ (Hanneke and Yang, 2015), the disagreement coefficient has been shown to be bounded
or sublinear under various distributional conditions (Hanneke, 2007b, 2014; Balcan, Hanneke,
and Vaughan, 2010; Friedman, 2009; Mahalanabis, 2011; Wiener, Hanneke, and El-Yaniv, 2015).
These results compose directly with Corollary 28 to yield previously-unknown bounds on the query
complexity under these same conditions. For instance, if PX is a mixture of a finite number t of
multivariate Gaussian distributions with full-rank diagonal covariance matrices, then Wiener, Hanneke,
and El-Yaniv (2015) provide a bound θP (r) ≤ cd,t log

d−2
(
1
r

)
for a (d, t)-dependent constant cd,t.

Plugging into Corollary 28 (or rather, the explicit bounds in the proof thereof) yields a novel query
complexity bound of order β2

ε2

(
d+ log

(
1
δ

))
+ c2d,t log

2(d−2)
(

1
β+ε

)
log4

(
1
ε

) (
d+ log

(
1
δ

))
. More

generally, if PX admits a density with respect to the Lebesgue measure on Rd−1, then (taking h⋆

as in footnote 14) Hanneke (2014) argues that θP (r) = o
(
1
r

)
(where the specific form of this

function θP (r) varies depending on P ). Recalling that (as ε → 0) the lower-order term becomes
relevant only in the regime β ≪

√
ε, combining this with Corollary 28 yields a query complexity

bound which often provides refinements over Theorem 1. In particular, under sufficient regularity
conditions on PX (see the proof of Hanneke, 2014) to ensure this o

(
1
r

)
function further satisfies

θP (r) log
2
(
1
r

)
= o

(
1
r

)
, the resulting asymptotic dependence on (ε, β) is of the form β2

ε2 + o
(
1
ε

)
.

Moreover, if additionally the density of PX is bounded and has finite-diameter support, and if the
hyperplane boundary corresponding to h⋆ passes through a continuity point of this density in its
support, then Hanneke (2014) argues θP (r) = O(1), so that Corollary 28 yields a query complexity
bound with asymptotic dependence on (ε, β) of the form β2

ε2 + log4
(
1
ε

)
. Moreover, under the

further restrictions (density bounded away from 0, compactness of the support), Friedman (2009);
Mahalanabis (2011) argue θP (r) is asymptotically bounded by O(d) (for the precise statement, see
the original works, or discussion thereof by Hanneke, 2014).

Example 5 (Coupled thresholds and singletons). Let us revisit the example from Appendix F.1,
for which we argued that θP (ε) cannot itself be used to replace the star number in Theorem 3 (for
any algorithm). We will here explain how the region-excluded disagreement coefficient θP (ε; 5β)
explicitly corrects for the issue with θP (ε) in this example. Specifically, consider again X =
Z, and C = Cts := {1{−t}∪[t,∞) : t ∈ N}, the class of coupled thresholds and singletons.
Let ε, β ∈ (0, 1/3), let n = 1−2β

2ε (and assume n ∈ N), and consider again the distributions
Pt, t ∈ {1, . . . , n}, as defined in Appendix F.1: that is, all Pt have marginal PX on X , where
for x ∈ {1, . . . , n}, PX({x}) = 2β

n , PX({−x}) = 2ε, and for x ∈ {−1, . . . ,−n}, Pt(Y =

1|X = x) = 1[x = −t], while every x /∈ {−1, . . . ,−n} has Pt(Y = 1|X = x) = 1
2 . Note

that, for ∆ = [0,∞), we have PX(∆) = 2β. Moreover, for h⋆ as defined under Pt, we have
BP∆

(h⋆, 4ε) = Cts (since only the disagreements on the singleton part are measured by P∆).
This implies DIS(BP∆(h

⋆, 4ε)) = Z \ {0}, so that P∆(DIS(BP∆(h
⋆, 4ε))) = 1 − 2β. Therefore,

θP (ε; 5β) ≥ θP (ε; 2β) ≥
P∆(DIS(BP∆

(h⋆,4ε)))

4ε = 1−2β
4ε . Since we always have θP (ε; 5β) ≤ 1

ε , we
conclude that θP (ε; 5β) = Θ

(
1
ε

)
. As argued in Appendix F.1, the minimax optimal query complexity

(constraining to P ∈ {Pt : t{1, . . . , n}}) is Ω
(
1
ε

)
, so that, unlike θP (ε), the quantity θP (ε; 5β) is an

appropriate replacement for s in Theorem 3. Of course, Theorem 27 shows this replacement is always
valid, so the point here is merely to illustrate how the exclusion of the ∆ region in the definition of
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θP (ε; 5β) is precisely the right type of correction, compared to θP (ε), for this example, as it explicitly
removes the issue underlying the failure of θP (ε): namely, the fact that the threshold portion of the
concepts 1{−t′}∪[t′,∞) is irrelevant to the learning problem inherent in the Pt distributions. It is

also worth noting that the first upper bound θP (ε; 5β) ≤ θP (5β + ε)
(

5β+ε
ε

)
from (49) also yields

a value Θ
(
1
ε

)
(since this upper bound is never larger than 1

ε ). However, the second upper bound

θP (5β+ε)2+
(

5β+ε
ε

)2
can be significantly looser for this example, in most regimes of ε, β (namely,

β ̸= Θ(
√
ε)).

F.2.2 The Error Disagreement Coefficient

It is also possible to derive Corollary 28 via another intermediate P -dependent variant of the
disagreement coefficient: namely, the error disagreement coefficient, defined as follows.
Definition 29. For any probability distribution P on X × {0, 1}, for any ε ≥ 0, define

θerP (ε) := sup
r>ε

PX(DIS(CP (r)))

r
∨ 1,

where CP (r) := {h ∈ C : erP (h)− infh′∈C erP (h
′) ≤ r} is known as the r-minimal set.

Similarly to θP (ε; τ), the quantity θerP (ε) has direct relations to the original disagreement coefficient
from Definition 25. Specifically, for h⋆ as in (10),18 since BPX

(h⋆, r/2) ⊆ CP (r) ⊆ BPX
(h⋆, 2(β +

r)) for any r > ε, we immediately have

1

2
θP (ε/2) ≤ θerP (ε) ≤ 2θP (2(β + ε))

(
β + ε

ε

)
≤ θP (2(β + ε))2 + 4

(
β + ε

ε

)2

. (51)

By definition, we always have θerP (ε) ≤ 1
ε . However, unlike θP (ε; τ) in (48), the quantity θerP (ε) is

not always upper-bounded by the star number s (see Example 6 below), so that we need be careful
when replacing s by θerP (ε) in Theorem 3.

It is also worth noting that θerP (ε) is often not as easy to use for studying specific scenarios, compared
to θP (ε), due to the dependence on the conditional distribution Y |X (whereas θP (ε) depends only
on PX and h⋆). Nonetheless, below we will state a query complexity bound in terms of θerP (ε)
(Theorem 30) which is sometimes smaller than that in Theorem 27 (as we illustrate in examples
below), and moreover (together with (51)) provides another route to proving the query complexity
bound in Corollary 28.

The quantity θerP (ε) essentially arises naturally in many existing analyses of disagreement-based
active learning (e.g., Hanneke, 2009b, 2011, 2014; Koltchinskii, 2010; Foster, Rakhlin, Simchi-Levi,
and Xu, 2021), wherein certain algorithms are shown to makes queries in a subset of DIS(CP (ε

′))
for an appropriate ε′ ≥ ε (decreasing as the algorithm runs). In those contexts, it is traditional
to upper bound PX(DIS(CP (ε

′))) by θP (r(ε
′))r(ε′), where r(ε′) ≥ suph∈CP (ε′) PX(h ̸= h⋆): for

instance, r(ε′) = 2(β + ε′) suffices in the agnostic setting. However, one can alternatively upper
bound PX(DIS(CP (ε

′))) by θerP (ε′)ε′. Such arguments are also valid in the context of Aavid, since
Corollary 18 implies PX(Dk−1) ≤ PX(DIS(CP (εk))) ≤ θerP (εk)εk, so that the number of queries in
S1
k ∩Dk−1 in round k is of order θerP (εk)εkmk = Õ(θerP (εk)d), which will lead to a lower-order term

Õ(θerP (ε)d). Together with reasoning similar to the proof of Theorem 27, this implies the following.
Theorem 30. Under the same conditions as Theorem 27, with probability at least 1− δ the predictor
ĥ returned by Aavid satisfies erP (ĥ) ≤ infh∈C erP (h) + ε and the algorithm makes a number of
queries at most Q(ε, δ;P ) satisfying

Q(ε, δ;P ) = O

(
β2

ε2

(
d+ log

(
1

δ

))
+min

{
θerP (ε) log

(
1

ε

)
,
1

ε

}(
d log

(
1

ε

)
+ log

(
1

δ

)))
= Õ

(
d
β2

ε2
+ dθerP (ε)

)
.

18The relation sharpens to θP (ε) ≤ θerP (ε) ≤ θP (2β + ε)
(
2β+ε

ε

)
if we take h⋆ ∈ argminh∈C erP (h),

supposing this exists (or otherwise, taking h⋆ as discussed in footnote 14).
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Since θerP (ε) ≤ 1
ε , the query complexity bound in Theorem 30 is never larger than that in Theorem 1.

However, unlike Theorem 27, since the quantity θerP (ε) is not always upper-bounded by the star
number s, the query complexity bound in Theorem 30 is sometimes larger than that in Theorem 3
(see Example 6 below). That said, the quantities θerP (ε) and θP (ε; 5β) are generally incomparable
(see Examples 6 and 7), so that either bound may be useful depending on the scenario being studied.
Moreover, in light of (51), Theorem 30 is also useful for providing another route to establishing
Corollary 28, which is therefore an immediate corollary of either Theorem 27 or Theorem 30.

As mentioned, depending on (C, P ), the quantitative difference between θerP (ε) and θP (ε; 5β) can be
better or worse. We illustrate this in the following two examples.

Example 6 (θerP (ε) ≫ s ≥ θP (ε; 5β)). As mentioned, for some scenarios, θerP (ε) can be quite
large, even larger than the star number s, so that the bound in Theorem 30 becomes even worse
than the P -independent bound in Theorem 3 (in contrast to Theorem 27, which is never worse than
Theorem 3). For instance, consider a singletons class: X = {1, . . . , 2

β }, C = {1{t} : t ∈ X}, where

β ∈ (0, 1/2) satisfies 2
β ∈ N for simplicity. Let PX = Uniform(X ), P (Y = 1|X = x) = β

2(1−β)

for all x ∈ X . Note that every h ∈ C has erP (h) = β. Moreover, s = |X | − 1 = 2−β
β . However,

consider 0 < ε ≪ β. Since CP (ε) = C and DIS(C) = X , we have θerP (ε) = 1
ε = Θ

(
sβ
ε

)
. For

instance, for β = ε2/3, the bound in Theorem 3 is (ignoring logs) of order β2

ε2 + 1
β = 2

ε2/3
≪ 1

ε =

θerP (ε). In light of (51), this example also witnesses a scenario where both of the query complexity
bounds in Corollary 28 are worse than the s-dependent bound in Theorem 3; more directly, in this
example, we have θP (β + ε)

(
β+ε
ε

)
= 1

ε ≫ s. In contrast, for any r < β
2 and ∆ ⊂ X , we

have DIS(BP∆(h
⋆, r)) ∈ {∅,∆} (depending whether the x with h⋆(x) = 1 is in ∆ or not), so that

P∆(DIS(BP∆
(h⋆, r))) = 0; this immediately implies θP (ε; τ) ≤ 2

β (indeed, by careful reasoning,

we can observe that any τ ≥ β
2 has θP (ε; τ) = 2

β − 1 = s). More generally, by (48), the bound in
Theorem 27 is never worse than that in Theorem 3.

On the other hand, there are scenarios (C, P ) where the opposite occurs, so that in general neither
quantity θP (ε; 5β) nor θerP (ε) dominates the other. This is illustrated in the following example.

Example 7 (θP (ε; 5β) ≫ θerP (ε)). Consider again the class from Appendix F.1 (and Example 5):
that is, X = Z and C = Cts := {1{−t}∪[t,∞) : t ∈ N}. Let ε, β ∈ (0, 1/3) with ε≪ β, and define
P with marginal PX on X as defined in Appendix F.1: that is, n = 1−2β

2ε , and for x ∈ {1, . . . , n},
PX({x}) = 2β

n , PX({−x}) = 2ε. However, rather than the distributions Pt described there, consider
the family P ′

t , t ∈ {1, . . . , n}, with P ′
t (Y = 1|X = x) = β + (1 − 2β)1{−t}∪[t,∞)(x) for every

x ∈ X . These distributions represent a scenario with uniform classification noise. For P = P ′
t for

any t ∈ {1, . . . , n}, letting h⋆ = 1{−t}∪[t,∞), it is easy to see that erP (h⋆) = infh∈C erP (h) = β.
Moreover, θerP (ε) = θP (ε/(1− 2β)) ≤ θP (0) ≤ 1−2β

β +3, where the last inequality was established

in Appendix F.1. In contrast, we argued in Example 5 that θP (ε; 5β) ≥ 1−2β
4ε ≫ 1−2β

β + 3 ≥ θerP (ε).
Thus, in this scenario, θP (ε; 5β) is larger than θerP (ε).

A natural question is whether the gaps between θP (ε; 5β) and θerP (ε) in Examples 6 and 7 can
also arise in cases where the smaller of the two corresponding query complexity bounds (either
Theorem 27 or 30) is actually nearly-sharp (in a minimax analysis over a family of distributions).
This is straightforward to obtain, by defining a family of possible distributions P each obtained as a
uniform mixture of one of the above two scenarios and the simple 2-point construction of Kääriäinen
(2006) giving rise to the β2

ε2 lower bound. For brevity, we omit the details of this.

The fact that Theorem 27 at least provides a starting point for P -dependent analysis which is never
worse than the P -independent bound in Theorem 3 is a desirable feature. In contrast, the bound in
Theorem 30 is sometimes better and sometimes worse than that in Theorem 3, so that one should be
careful when using Theorem 30. Nonetheless, as illustrated in Example 7, there are at least some
scenarios where θerP (ε) may be useful for describing favorable scenarios (particularly concerning the
Y |X conditional distribution).
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F.3 Querying in Subregions of the Region of Disagreement

In the active learning literature, one technique for going beyond disagreement-based queries is to
query examples in a carefully selected subregion R ⊆ DIS(V ) of the region of disagreement of
the set V of surviving concepts. This idea originates in the work of Balcan, Broder, and Zhang
(2007) on margin-based active learning of homogeneous linear classifiers under certain marginals
PX in realizable and Tsybakov-noise scenarios, and was extended to a technique for general concept
classes and the agnostic case by Zhang and Chaudhuri (2014) (see Appendix A for further discussion
of the history). For instance, the most well-known case of this technique providing improvements
over disagreement-based queries (see Example 8 below) is homogeneous linear classifiers under a
uniform distribution on a sphere (alternatively, any isotropic log-concave distribution), where the
query complexity of this technique is Õ

(
d (β+ε)2

ε2

)
(Zhang and Chaudhuri, 2014) (minimax optimal

up to log factors), compared to disagreement-based active learning for which the best known bound
is Õ

(
d3/2 · (β+ε)2

ε2

)
(Dasgupta, Hsu, and Monteleoni, 2007).

In this section, we show this technique is also compatible with the AVID principle, and propose a
refinement of the AVID Agnostic algorithm which replaces Dk−1 = DIS(Vk−1) in Steps 2 and 9
with a well-chosen subregion Rk−1 ⊆ Dk−1. We argue that this change does not affect the validity of
Theorem 5, and admits refined P -dependent query complexity bounds compared to those presented
in Appendix F.2. In particular, this shows that the AVID principle can recover the optimal query
complexity of homogeneous linear classifiers under the uniform distribution, and generally any
isotropic log-concave distribution (indeed, with improved log factors compared to prior works).

The basic argument (building from the original ideas of Balcan, Broder, and Zhang, 2007, and Zhang
and Chaudhuri, 2014) is that, rather than querying all examples in S1

k ∩Dk−1 \∆ik in Step 2 of
Aavid, the algorithm identifies a subset of these examples Qk ⊆ S1

k ∩Dk−1 \∆ik which suffices for
the purpose of updating Vk in Step 3. Specifically, we aim to identify a subset Qk ⊆ S1

k ∩Dk−1 \∆ik
for which, for any h, h′ ∈ Vk−1,∣∣∣P̂S1

k
({h ̸= h′} ∩Qk)− P̂S1

k
({h ̸= h′} ∩Dk−1 \∆ik)

∣∣∣ ≤ εk
3C ′′ .

In other words, most of the significant disagreements in X \ ∆ik among concepts in Vk−1 are
captured in the Qk set. In particular, this retains the guarantees of Lemmas 15 and 16 with only minor
adjustments to the constants in the bounds (accounting for the potential εk

8C′ probability disagreements
that are lost).

Formally, consider the algorithm Asub
avid stated in Figure 2, where the Qk data subset is defined below.

The values C,C ′, C ′′, N,mk and data subsets S1
k , S4

k are all as defined in Aavid. The data subsets
S2
k , S3

k,i are defined analogously to Aavid except allocated in the corresponding steps of Asub
avid: that

is, if and when the algorithm reaches Step 2 with a value k, or reaches Step 9 (in which case let
k = N + 1), then for the value ik and the set ∆ik as defined at that time in the algorithm, letting
p̂k := 2P̂S4

k
(∆ik), the algorithm allocates to S2

k the next m′
k :=

⌈
C′′c21p̂k

ε2k

(
d+ log

(
4(3+N−k)2

δ

))⌉
consecutive examples not previously allocated to any data subset, and likewise, if and when the
algorithm reaches Step 5 with values (k, i), it allocates to S3

k,i the next mk consecutive examples
which have not yet been allocated to any data subset.

We define the Qk data subset via a technique analogous to the work of Zhang and Chaud-
huri (2014), specified via a discrete linear program with a finite number of constraints im-
posed by the set of realizable classifications of S1

k . Let tk =
∑k−1

k′=1 mk′ , and recall S1
k :=

{(Xtk+1, Ytk+1), . . . , (Xtk+mk
, Ytk+mk

)}. The algorithm inductively constructs sets Vk ⊆ C in
Step 3 (analogous to the Vk sets in Aavid). For any given k ∈ {1, . . . , N + 1}, denote by

Vk−1(S
1
k) := {(h(Xtk+1), . . . , h(Xtk+mk

)) : h ∈ Vk−1} ⊆ {0, 1}mk ,

the set of Vk−1-realizable classifications of S1
k . For the set ∆ik (which is defined inductively based

on previous rounds of the algorithm, analogously to the set ∆ik in Aavid), consider the following
integer linear program with binary variables19 ζ1,0, ζ1,1, q1, . . . , ζmk,0, ζmk,1, qmk

.

19For simplicity, in this work, we present a technique based on an integer linear program, to arrive at a
deterministic querying strategy. It is straightforward to extend the result to allow for non-integer solutions
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Algorithm Asub
avid

Input: Error parameter ε, Confidence parameter δ, Unlabeled data X1, . . . , Xm

Output: Classifier ĥ
0. Initialize i = i1 = 0, ∆0 = ∅, V0 = C
1. For k = 1, . . . , N
2. Query all examples in Qk and S2

k ∩∆ik

3. Vk ←
{
h ∈ Vk−1 : êr1,2

k (h) ≤ êr1,2
k (ĥk) +

εk
C′

}
4. If Vk = ∅ or êr1,2

k (ĥk) < minh∈Vk
êr1,2

k (h)− εk
4C′ , Then Return ĥ := ĥk

5. While maxf,g∈Vk
P̂S3

k,i
({f ̸= g} \∆i) > εk+2

6. (f, g)← argmax(f ′,g′)∈V 2
k
P̂S3

k,i
({f ′ ̸= g′} \∆i)

7. ∆i+1 ← ∆i ∪ {f ̸= g}, and update i← i+ 1
8. ik+1 ← i

9. Query all examples in QN+1 and S2
N+1 ∩∆iN+1

and Return ĥ := ĥN+1

Figure 2: The Subregion-AVID Agnostic algorithm.

LPk:

minimize
mk∑
t=1

qt

subject to ∀(y1, . . . , ymk
) ∈ Vk−1(S

1
k),

1

mk

mk∑
t=1

ζt,1−yt1[Xtk+t /∈ ∆ik ] ≤
εk
6C ′′

∀t ∈ {1, . . . ,mk}, ζt,0 + ζt,1 + qt = 1

ζ1,0, ζ1,1, q1, . . . , ζmk,0, ζmk,1, qmk
∈ {0, 1}

In particular, note that the solution only depends on the unlabeled examples Xtk+1, . . . , Xtk+mk
,

and thus the algorithm may use the solution of this optimization problem when determining an
appropriate set Qk of queries in Steps 2 and 9. Denote by qk1 , . . . , q

k
mk

the respective values of the
q1, . . . , qmk

variables at the solution found by LPk. Then define Qk as a subsequence of S1
k:

Qk := {(Xtk+t, Ytk+t) : 1 ≤ t ≤ mk, q
k
t = 1}.

Let us generalize the definition of P̂S1
k

to involve intersections with the subsequence Qk: for any set

A ⊆ X ×{0, 1}, P̂S1
k
(A∩Qk) :=

1
mk

∑mk

t=1 q
k
t · 1[(Xtk+t, Ytk+t) ∈ A], and P̂S1

k
(ER(f) \Qk) :=

1
mk

∑mk

t=1(1−qkt ) ·1[(Xtk+t, Ytk+t) ∈ A]. As usual, we also overload this notation for A ⊆ X , such
as sets {f ̸= g}, interpreting such sets A as synonymous with their labeled extension A× {0, 1}.

The algorithm also relies on the following modifications to the definition of êr1,2
k :

∀h, êr1,2
k (h) := P̂S1

k
(ER(h) ∩Qk) + P̂S2

k
(ER(h) ∩∆ik). (52)

The definitions of V (4)
k−1 and ĥk are then defined as in (2) and (3) based on the set Vk−1 defined

in Asub
avid and the modified definition of êr1,2

k in (52). This completes the specification of the Asub
avid

algorithm.

We state a query complexity guarantee for this algorithm, phrased in terms of a variant of a subregion
disagreement coefficient. As in Appendix F.2, we first present the known definition from the literature,
which serves both as a starting point for the modified version and as a more-accessible quantity
useful for upper-bounding the new quantity. Specifically, the following definition (a refinement of the
disagreement coefficient from Definition 25) was proposed by Zhang and Chaudhuri (2014) (see also
Hanneke, 2016b).20

ζt,0, ζt,1 ∈ [0, 1] to the LP, resulting in a randomized querying strategy (see Zhang and Chaudhuri, 2014). This
makes no significant difference to the query complexity bound (see Hanneke, 2016b, for a related discussion),
but may be more attractive from a computational perspective.

20The variant stated here is phrased slightly differently, to simplify the definition. In particular, φP (ε, 0) is
equivalent to a quantity φ01

c (ε) studied by Hanneke (2016b), which is only slightly different than the original
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Definition 31. For any measure µ on X , any V ⊆ C, and any η ≥ 0, define

Φµ(V, η) := inf

{
µ(R) : sup

g∈V
µ({g ̸= f} \R) ≤ η, measurable R ⊆ X and f :X → {0, 1}

}
.

For any distribution PX on X and any measurable h : X → {0, 1}, for any ε, α ≥ 0, define

φPX ,h(ε, α) := sup
r>α+ε

ΦPX
(BPX

(h, r), (r − α)/(36CC ′′))

r
∨ 1.

In particular, for any distribution P on X × {0, 1}, letting h⋆ be as in (10) (or see footnote 14),
define φP (ε, α) := φPX ,h⋆(ε, α).

The quantity ΦPX
(V, η) identifies the smallest PX(R) among regions R ⊆ X for which functions

g ∈ V do not disagree much outside the region R (i.e., they have at most η disagreement with a fixed
function f on X \R). In particular, we can upper bound ΦPX

(V, η) by taking R = DIS(V ) and any
f ∈ V , which satisfies supg∈V PX({g ̸= f} \ R) = 0 ≤ η, so that ΦPX

(V, η) ≤ PX(DIS(V )). It
immediately follows that the quantity φPX ,h(ε, α) is never larger than the disagreement coefficient:

φPX ,h(ε, α) ≤ θPX ,h(α+ ε). (53)
Indeed, there are several known examples of scenarios (C, PX, h

⋆) where φP (ε, α) is substantially
smaller than θP (α+ε) (Zhang and Chaudhuri, 2014). One example (discussed formally in Example 8
below) is the class C of homogeneous linear classifiers in Rd under PX a uniform distribution on an
origin-centered sphere, where θP (0) = Θ

(√
d
)

and φP (ε, α) = O
(
log
(
α+ε
ε

))
(Hanneke, 2007b;

Balcan, Broder, and Zhang, 2007; Zhang and Chaudhuri, 2014).

By (53) and (47), we also always have φP (ε, α) ≤ s ∧ 1
α+ε for any ε, α ≥ 0 with α + ε ≤ 1.

Indeed, as with θP (ε) in (47), this inequality turns out to be sharp in the worst case. Specifically,
Hanneke (2016b) has shown that supPX

suph∈C φPX ,h(ε, 0) = s ∧ 1
ε for ε ∈ (0, 1]. Additionally, by

definition we have φPX ,h(ε, α) ≥ φPX ,h(α+ ε, 0). Since (53) implies φPX ,h(ε, α) ≤ θPX ,h(α+ ε), it
immediately follows from combining this result of Hanneke (2016b) with (47) that for any ε, α ≥ 0
with α+ ε ≤ 1,

sup
PX

sup
h∈C

φPX ,h(ε, α) = s ∧ 1

α+ ε
. (54)

Due to (53) and the example in Appendix F.1, we know it is not possible to replace s with
φP (ε, α) in Theorem 3 for any α ≥ 0 (for any algorithm). However, similarly to the modifica-
tion θP (ε; τ) of θP (ε) presented in Appendix F.2, we can modify Definition 31 appropriately to
provide a quantity suitable for developing a query complexity bound for Asub

avid. Specifically, as
in Definition 26, let us first generalize the definition of φPX ,h(ε, α) to general measures µ: that
is, for any measure µ on X and measurable function h : X → {0, 1}, for any ε, α ≥ 0, define
φµ,h(ε, α) := supr>α+ε

Φµ(Bµ(h,r),(r−α)/(36CC′′))
r ∨ 1. Then consider the following definition,

representing a region-excluded subregion disagreement coefficient.
Definition 32. For any distribution P on X × {0, 1} and any measurable ∆ ⊆ X , define a measure
A 7→ P∆(A) := PX(A \∆). For any ε > 0 and α, τ ≥ 0, for h⋆ ∈ C as in (10) (or see footnotes 14,
17), define

φP (ε, α; τ) := sup
∆⊆X :PX (∆)≤τ

φP∆,h⋆(ε, α).

As was the case for θP (ε; τ), we can equivalently define φP (ε, α; τ) as the subregion disagreement
coefficient under a worst-case conditional distribution PX(·|X \∆): that is,

φP (ε, α; τ) = sup
∆⊆X :PX (∆)≤τ

φPX(·|X\∆),h⋆(ε/PX(X \∆), α/PX(X \∆)), (55)

where we define φPX(·|X\∆),h⋆(ε/PX(X \∆), α/PX(X \∆)) = 1 in the case PX(X \∆) = 0 (which
coincides with the value φP∆,h⋆(ε, α) for such ∆). In particular, combining this equivalent definition
with (54) yields that

φP (ε, α; τ) ≤ s ∧ 1

α+ ε
∨ 1. (56)

quantity studied by Zhang and Chaudhuri (2014) in that it considers binary functions rather than fractional
values in [0, 1]. Hanneke (2016b) has shown this change to binary values makes little quantitative difference
compared to the quantity of Zhang and Chaudhuri (2014).
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Thus, replacing s in Theorem 3 by φP (ε, α; τ) would yield a (never-larger) P -dependent refinement.

As with θP (ε; τ), the quantity φP (ε, α; τ) itself may often be challenging to calculate. Fortunately,
again as with θP (ε; τ), it can be upper-bounded by expressions that are more-easily calculated
(though at the expense of some slack, so that they are no longer upper-bounded by s). We might
therefore think of φP (ε, α; τ) as an intermediate complexity measure (analogous to θP (ε; τ)), which
is useful in providing a starting point for a P -dependent refinement of s which is never larger than
s, and which admits general upper bounds which are more accessible than directly calculating
φP (ε, α; τ). Specifically, it follows immediately from Definition 32 that we always have a lower
bound φP (ε, α) ≤ φP (ε, α; τ), and an upper bound

φP (ε, α; τ) ≤ sup
r>α+ε

ΦPX
(BPX

(h⋆, τ + r), (r − α)/(36CC ′′))

r
∨ 1

≤ φP (ε, α+ τ)

(
α+ τ + ε

α+ ε

)
≤ φP (ε, α+ τ)2 +

(
α+ τ + ε

α+ ε

)2

. (57)

Making use of the quantity φP (ε, α; τ) to analyze Asub
avid analogously to the analysis of Aavid based

on θP (ε; τ) in Theorem 27, we arrive at the following theorem.
Theorem 33 (Distribution-dependent Query Complexity of Subregion AVID Agnostic). For any
concept class C with VC(C) < ∞, letting d = VC(C), for every distribution P on X × {0, 1},
letting β = infh∈C erP (h), for any ε, δ ∈ (0, 1), if the algorithm Asub

avid is executed with parameters
(ε, δ), with any number m ≥M(ε, δ;β) of i.i.d.-P examples (for M(ε, δ;β) as in Theorem 5, defined
in Lemma 24), then with probability at least 1 − δ, the returned predictor ĥ satisfies erP (ĥ) ≤
infh∈C erP (h) + ε and the algorithm makes a number of queries at most Q(ε, δ;P ) satisfying

Q(ε, δ;P ) = O

(
β2

ε2

(
d+log

(
1

δ

))
+min

{
φP (ε, 0; 5β) log

(
1

ε

)
,
1

ε

}(
d log

(
1

ε

)
+log

(
1

δ

)))
= Õ

(
d
β2

ε2
+ dφP (ε, 0; 5β)

)
.

Proof Sketch. The proof of this theorem follows nearly identically to the proof of Theorem 5. We
will merely highlight the changes compared to the original proof. Specifically, throughout the proof,
we first replace all definitions from Aavid with the corresponding definitions from Asub

avid (e.g., ∆i,
ik, ĥk, Vk, Dk−1 = DIS(Vk−1), S2

k , S3
k,i, K, K, etc.) so that all definitions in the proof refer to the

respective quantities in the Asub
avid algorithm. Since the only definitional change in Asub

avid compared to
Aavid is in the use of Qk rather than S1

k ∩Dk−1 \∆ik , to provide the ε error guarantee it will suffice
to argue that the inequality (14) of Lemma 10 remains valid (only slightly larger) with this change:
namely, on the event E0,

∀h, h′ ∈ V (3)
k−1,

∣∣∣ (P̂S1
k
(ER(h) ∩Qk)− P̂S1

k
(ER(h′) ∩Qk)

)
− (P (ER(h) \∆ik)− P (ER(h′) \∆ik))

∣∣∣
<

√
PX({h ̸= h′} \∆ik)

εk
C ′′ +

2εk
C ′′ . (58)

Note that this is only larger than the bound in (14) by an additive εk
C′′ (which we will argue below is

inconsequential to the proof). As was true of (14), we argue that (58) in fact follows immediately
from (18), as follows. Consider the values ζk1,0, ζ

k
1,1, q

k
1 , . . . , ζ

k
mk,0

, ζkmk,1
, qkmk

at the solution of the
LPk optimization. Due to the first constraint in LPk, we know every f ∈ Vk−1 has

1

mk

mk∑
t=1

ζkt,1−f(Xtk+t)
1[Xtk+t /∈ ∆ik ] ≤

εk
6C ′′ .

Moreover, due to the second constraint in LPk, for every f, g ∈ Vk−1, any Xtk+t ∈ {f ̸= g} has
ζkt,1−f(Xtk+t)

+ ζkt,1−g(Xtk+t)
+ qkt = 1, so that qkt = 0 =⇒ ζkt,1−f(Xtk+t)

+ ζkt,1−g(Xtk+t)
= 1.

Together, we have

P̂S1
k
(({f ̸= g} \∆ik) \Qk) ≤

1

mk

mk∑
t=1

(
ζkt,1−f(Xtk+t)

+ ζkt,1−g(Xtk+t)

)
1[Xtk+t /∈ ∆ik ] ≤

εk
3C ′′ .

64



Recall that every h ∈ V (3)
k−1 is of the form h = DL(f ′, g′, h′) := f ′1{f ′=g′} + h′1{f ′ ̸=g′} for some

f ′, g′ ∈ Vk−1 and h′ ∈ C. Consider any two such functions h, h′ ∈ V (3)
k−1, where h = DL(f1, g1, h1)

and h′ = DL(f2, g2, h2) for f1, g1, f2, g2 ∈ Vk−1 and h1, h2 ∈ C. Note that
{h ̸= h′} ⊆ {f1 ̸= f2} ∪ {g1 ̸= g2} ∪ {f1 ̸= g1}.

Therefore, the union bound implies

P̂S1
k
(({h ̸= h′} \∆ik) \Qk)

≤ P̂S1
k
(({f1 ̸= f2} \∆ik) \Qk) + P̂S1

k
(({g1 ̸= g2} \∆ik) \Qk) + P̂S1

k
(({f1 ̸= g1} \∆ik) \Qk)

≤ εk
C ′′ .

Also note that, due to the indicator 1[Xtk+t /∈ ∆ik ] in the first constraint of LPk, at the solution to
LPk, every Xtk+t /∈ ∆ik has qkt = 0, so that any h ∈ V (3)

k−1 has ER(h)∩Qk = (ER(h)\∆ik)∩Qk.
Altogether, we have that every h, h′ ∈ V (3)

k−1 satisfy∣∣∣(P̂S1
k
(ER(h) ∩Qk)− P̂S1

k
(ER(h′) ∩Qk)

)
−
(
P̂S1

k
(ER(h) \∆ik)− P̂S1

k
(ER(h′) \∆ik)

)∣∣∣
=
∣∣∣P̂S1

k
((ER(h′) \∆ik) \Qk)− P̂S1

k
((ER(h) \∆ik) \Qk)

∣∣∣
≤ P̂S1

k
(({h ̸= h′} \∆ik) \Qk) ≤

εk
C ′′ . (59)

Together with (18) we arrive at the claimed inequality (58).

In the context of the rest of the proof of Theorem 5, the only place (14) is used is in (28) in the proof of
Lemma 15. In that context, substituting (58) yields the same conclusion: namely, for h1, h

′
1 ∈ V (3)

k−1,
since (20) of Lemma 12 implies PX({h1 ̸= h′

1} \∆ik) ≤ 3εk, (58) implies∣∣∣P̂S1
k
(ER(h1) ∩Qk)− P̂S1

k
(ER(h′

1) ∩Qk)− (P (ER(h1) \∆ik)− P (ER(h′
1) \∆ik))

∣∣∣
≤
√

3ε2k
C ′′ +

2εk
C ′′ ≤

2εk√
C ′′

,

where the last inequality follows from C ′′ ≥ 100. Therefore, the conclusion of Lemma 15 remains
valid (with the modified definition of êr1,2

k from (52)). The rest of the proof of the error bound
(Lemma 19), and unlabeled sample size M(ε, δ;β) (Lemma 24), and size of PX(∆ik) (Lemma 20)
follow verbatim from this fact.

It remains only to establish the claimed bound Q(ε, δ;P ) on the number of queries. In the context of
the proof of Theorem 5, this effectively means replacing (39) of Lemma 23 with a bound on |Qk|
based on φP (ε, 0; 5β), on an event E′

3 of probability at least 1 − δ
8 (which replaces the event E′

3
defined in the proof of Lemma 23).

Toward this end, consider any k ∈ {1, . . . , N + 1} having non-zero probability of k ≤ K. Given the
event that k ≤ K and the random variables Vk−1 and ∆ik , fix a measurable function hk : X → {0, 1}
and a measurable set Rk ⊆ X (dependent on Vk−1 and ∆ik but not on S1

k) such that

sup
g∈Vk−1

PX(({g ̸= hk} \Rk) \∆ik) ≤
εk

18C ′′ (60)

and PX(Rk \∆ik) ≤ ΦP∆ik

(
Vk−1,

εk
18C ′′

)
+

εk
2
. (61)

Such a pair (hk, Rk) is guaranteed to exist by the definition of Φµ(·, ·) in Definition 31.

We aim to argue that the constraints in LPk are satisfied by taking ζt,hk(Xtk+t) = 1[Xtk+t /∈ Rk]

and qt = 1[Xtk+t ∈ Rk], via a uniform multiplicative Chernoff bound (Lemma 7 of Appendix D).
Toward this end, define a collection Ãk of subsets of X :

Ãk := {({g ̸= hk} \Rk) \∆ik : g ∈ Vk−1}.

Note that VC(Ãk) ≤ d. Let δ̃k := δεk+3

144 . We bound ε(mk, δ̃k; Ãk) by reasoning similar to the proof
of Lemma 9. Specifically, we have

mk ≥
150C ′′c0

εk

(
d log

(
C ′′c0
εk

)
+ log

(
C ′′c0
δεk

))
>

108C ′′c0
εk

(
d log

(
54C ′′c0

εk

)
+ log

(
1

δ̃k

))
,
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where the last inequality is by c0 ≥ 1, C ′′ > 144C3, and (C ′′)150/108 > 54C ′′. By Corollary 4.1 of
Vidyasagar (2003), this implies

mk >
54C ′′c0

εk

(
d log

(mk

d

)
+ log

(
1

δ̃k

))
,

so that
ε
(
mk, δ̃k; Ãk

)
<

εk
54C ′′ . (62)

Letting α = 2
3 , we therefore have ε

(
mk, δ̃k; Ãk

)
< α2

4
εk
6C′′ . Together with (60) and Lemma 7 of

Appendix D, we have that with conditional probability at least 1− δ̃k given the event that k ≤ K and
the random variables Vk−1, Rk, and ∆ik ,

sup
g∈Vk−1

P̂S1
k
(({g ̸= hk} \Rk) \∆ik) <

εk
6C ′′ . (63)

By the law of total probability, there is an event E′
3,k of probability at least 1− δ̃k such that, on E′

3,k,
if k ≤ K, then (63) holds. To unify notation, for any k ∈ {1, . . . , N + 1} having probability zero
of k ≤ K, define E′

3,k as the event (of probability one) that k > K, so that this conclusion also
vacuously holds for such values k.

In particular, for any k ∈ {1, . . . , N + 1}, suppose the events E′
3,k and k ≤ K occur. For each

t ∈ {1, . . . ,mk}, let ζ ′t,0 = 1[hk(Xtk+t) = 0]1[Xtk+t /∈ (Rk \ ∆ik)], ζ
′
t,1 = 1[hk(Xtk+t) =

1]1[Xtk+t /∈ (Rk \∆ik)], q
′
t = 1[Xtk+t ∈ Rk \∆ik ]. Note that these values satisfy the second and

third constraints on ζt,0, ζt,1, qt in LPk. Moreover, (63) implies that ∀g ∈ Vk−1,

1

mk

mk∑
t=1

ζ ′t,1−g(Xtk+t)
1[Xtk+t /∈ ∆ik ] = P̂S1

k
(({g ̸= hk} \Rk) \∆ik) <

εk
6C ′′ ,

so that the first constraint in LPk is also satisfied by this choice of ζt,0, ζt,1, qt. Since the values
ζkt,0, ζ

k
t,1, q

k
t at the solution of LPk minimize

∑mk

t=1 qt among all choices of ζt,0, ζt,1, qt satisfying the
constraints, we conclude that the above values of q′t satisfy

|Qk| =
mk∑
t=1

qkt ≤
mk∑
t=1

q′t = mkP̂S1
k
(Rk \∆ik). (64)

Next we upper bound the right hand side of (64) via a multiplicative Chernoff bound (Lemma 6 of
Appendix D). Consider again any k ∈ {1, . . . , N + 1} having non-zero probability of k ≤ K. Given
the event k ≤ K and the random variables Rk and ∆k−1, Lemma 6 of Appendix D implies that, with
conditional probability at least 1− δ̃k,

P̂S1
k
(Rk \∆ik) ≤ max

{
2PX(Rk \∆ik),

6

mk
ln

(
2

δ̃k

)}
≤ max{2PX(Rk \∆ik), εk} , (65)

where the last inequality follows from (62) and straightforward reasoning about numerical constant
factors. By the law of total probability, there is an event E′′

3,k of probability at least 1− δ̃k on which,
if k ≤ K, then (65) holds. To unify notation, for any k ∈ {1, . . . , N + 1} having probability zero of
k ≤ K, also define E′′

3,k as the event (of probability one) that k > K, so that this conclusion also
vacuously holds for such values k.

Define E′
3 =

⋂N+1

k=1 E
′
3,k ∩ E′′

3,k. By the union bound, the event E′
3 fails with probability at most

N+1∑
k=1

2δ̃k =

N+1∑
k=1

δεk+3

72
<

δ

8
,

where the last inequality follows from our choice of C = 11
10 .

Altogether, on the event E′
3, for every k ∈ {1, . . . ,K}, (64), (65), and (61) together imply

|Qk| ≤ 2mkΦP∆ik

(
Vk−1,

εk
18C ′′

)
+mkεk. (66)
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It remains to relate the right hand side of (66) to the quantity φP (ε, 0; 5β). For the remainder of
the proof, suppose the event E0 ∩ E1 ∩ E2 ∩ E3 holds (with E′

3 in the definition of E3 from the
proof of Lemma 23 replaced by the above definition of E′

3). Consider any k ∈ {1, . . . ,K}. Recall
that Lemma 17 implies h⋆ ∈ Vk−1, which together with Lemma 12 implies Vk−1 ⊆ BP∆ik

(h⋆, εk).
Thus, since the definition of Φµ(·, ·) is non-decreasing in its first argument, we have

ΦP∆ik

(
Vk−1,

εk
18C ′′

)
≤ ΦP∆ik

(
BP∆ik

(h⋆, εk),
εk

18C ′′

)
.

Also recall that Lemma 20 implies PX(∆ik) ≤ 5β, so that ∆ik is among the sets ∆ considered in the
supremum in the definition of φP (εk, 0; 5β). Additionally, note that εk ≥ εN+1 >

ε
2C . It follows that

ΦP∆ik

(
BP∆ik

(h⋆, εk),
εk

18C ′′

)
=

ΦP∆ik

(
BP∆ik

(h⋆, εk),
εk

18C′′

)
εk

εk

≤ sup
r>ε/2C

ΦP∆ik

(
BP∆ik

(h⋆, r), r
18C′′

)
r

εk = sup
r>ε

ΦP∆ik

(
BP∆ik

(
h⋆, r

2C

)
, r
36CC′′

)
r/(2C)

εk

≤ 2C sup
r>ε

ΦP∆ik

(
BP∆ik

(h⋆, r) , r
36CC′′

)
r

εk ≤ 2CφP (ε, 0; 5β)εk.

Altogether, we have that every k ∈ {1, . . . ,K} satisfies

|Qk| ≤ (4CφP (ε, 0; 5β) + 1)mkεk ≤ (4C + 1)φP (ε, 0; 5β)mkεk.

Substituting |Qk| in place of |S1
k ∩ Dk−1 \ ∆ik | in the proof of Lemma 23, and using the above

bound on |Qk| in place of (39), we arrive at a bound Q(ε, δ;P ) on the total number of queries

Q(ε, δ;P ) := 10βM2 +min

{
M1,

4C + 1

2
φP (ε, 0; 5β)ε(N + 1)mN+1

}
= O

(
β2

ε2

(
d+ log

(
1

δ

))
+min

{
φP (ε, 0; 5β) log

(
1

ε

)
,
1

ε

}(
d log

(
1

ε

)
+ log

(
1

δ

)))
.

■

As with Aavid, the algorithm Asub
avid does not need to know the value φP (ε, 0; 5β) (or anything else

about P ) to achieve this query complexity: that is, it is adaptive to the value φP (ε, 0; 5β).

Together with (57), Theorem 33 further implies a (sometimes loose) relaxation in terms of φP (ε, 5β),
which is often easier to evaluate for given scenarios (C, P ). This is stated formally in the following
corollary. As mentioned above, the example in Appendix F.1 shows that it is not generally possible to
reduce the φP (ε, 5β)

2 dependence to a linear φP (ε, 5β) (or even any φP (0, α)).

Corollary 34. The query complexity bound Q(ε, δ;P ) in Theorem 33 (achieved by Asub
avid) satisfies

Q(ε, δ;P ) = O

(
β2

ε2

(
d+ log

(
1

δ

)))
+ Õ

(
min

{
dφP (ε, 5β)

(
β + ε

ε

)
,
d

ε

})
= O

(
β2

ε2

(
d+ log

(
1

δ

)))
+ Õ

(
min

{
dφP (ε, 5β)

2,
d

ε

})
.

Proof. Due to the first two inequalities in (57), the second term in the expression of Q(ε, δ;P ) in
Theorem 27 is at most

O

(
min

{
φP (ε, 5β) log

(
1

ε

)(
β + ε

ε

)
,
1

ε

}(
d log

(
1

ε

)
+ log

(
1

δ

)))
. (67)

Relaxing d log
(
1
ε

)
+ log

(
1
δ

)
≤ log

(
1
ε

) (
d+ log

(
1
δ

))
and noting that

φP (ε, 5β) log
2

(
1

ε

)(
β + ε

ε

)
≤ φP (ε, 5β)

2 log4
(
1

ε

)
+

(
β + ε

ε

)2

,
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and
(

β+ε
ε

)2
≤ 4β2

ε2 + 4, the quantity (67) is at most

O

(
β2

ε2

(
d+ log

(
1

δ

))
+min

{
φP (ε, 5β)

2 log4
(
1

ε

)
,
1

ε
log

(
1

ε

)}(
d+ log

(
1

δ

)))
.

Adding this to the first term in the expression of Q(ε, δ;P ), the result follows. ■

An immediate consequence of Corollary 34 is that, whenever supα∈[0,5] φP (ε, α) = polylog
(
1
ε

)
,

the dependence on β, ε in the query complexity bound in Theorem 33 is of order β2

ε2 + polylog
(
1
ε

)
.

As was true of Corollary 28, (56) implies the first upper bound in Corollary 34 is never larger than
the upper bound in Theorem 1; however, this is not always the case for the second upper bound in
Corollary 34. Moreover, unlike Theorem 33, both upper bounds in Corollary 34 can sometimes be
loose compared to the s-dependent bound in Theorem 5 (e.g., Example 6 in Appendix F.2.2). For
this reason, as with Theorem 27, Theorem 33 is useful despite having a quantity φP (ε, 0; 5β) that is
more challenging to calculate, as it provides a starting point for P -dependent analysis that is at least
never worse than Theorem 5.

To illustrate a well-known scenario where the technique presented in this subsection provides
improvements over the basic Aavid algorithm, consider the following example.

Example 8 (Homogeneous linear classifiers, uniform distribution). As an implication of Corollary 34,
we find that Asub

avid recovers a near-optimal query complexity bound for learning homogeneous linear
classifiers under any marginal PX that is isotropic log-concave. Let d ≥ 2. For any x,w ∈ Rd, denote
by hw(x) = 1[⟨w, x⟩ ≥ 0]. In this scenario, we suppose X = Rd, C = {hw : w ∈ Rd, ∥w∥ = 1}
(for which VC(C) = d), and PX is any isotropic log-concave distribution (Balcan and Long, 2013)
(for instance, PX = Uniform({x : ∥x∥ = 1}) is one such distribution). In other words, C is
the class of linear classifiers whose hyperplane decision boundary passes through the origin. This
scenario has a long history of interest in the active learning literature (see Section A), featuring
prominently (with PX a uniform distribution) in the original A2 paper of Balcan, Beygelzimer, and
Langford (2005, 2006, 2009), which studied the case β ≲ ε/

√
d and showed a query complexity

bound Õ
(
d2 log

(
1
ε

)
log
(
1
δ

))
in this regime. Later works refined this, via subregion-based techniques.

Building on the works of Balcan, Broder, and Zhang (2007); Balcan and Long (2013) (which studied
more-restrictive noise models), Zhang and Chaudhuri (2014) obtain a query complexity bound
Õ
(
dβ2

ε2 + d
)

. Here we argue this query complexity bound can be recovered from Corollary 34
(indeed, with improvements by log factors in the lead term). Specifically, Zhang and Chaudhuri
(2014) show (based on results of Balcan and Long, 2013) that φP (ε, 5β) = O

(
log
(

β
ε

))
. Plugging

into Corollary 34 (rather, the expression obtained in the proof thereof), we obtain a query complexity
bound

O

(
β2

ε2

(
d+ log

(
1

δ

))
+ log2

(
β

ε

)
log4

(
1

ε

)(
d+ log

(
1

δ

)))
.

Compared to the result of Zhang and Chaudhuri (2014), this improves the lead term by a fac-
tor log2

(
β
ε

)
(though at the expense of additional log factors in the lower-order term). We

also note that this query complexity bound represents a refinement of what would be obtained
from Corollary 28, since even for the special case of PX uniform on an origin-centered sphere,
θP (β + ε) = Θ

(√
d ∧ 1

β+ε

)
(Hanneke, 2007b).

F.4 Classes with Infinite VC Dimension via Covering Numbers

As one final remark about P -dependent query complexity bounds, we note that it is also possible
to derive interesting query complexity improvements over passive learning even for classes with
VC(C) = ∞ under conditions on P commonly studied in the nonparametric passive learning
literature: namely, bounded covering numbers.

Denote by N (ε,C,L1(PX)) the minimal size of a proper ε-cover: that is, the size of the smallest
C′ ⊆ C for which suph∈C minh′∈C′ PX(h ̸= h′) ≤ ε. Being able to construct such a cover from
unlabeled examples requires some additional structure beyond finite covering numbers under PX (e.g.,

68



finite expected empirical covering numbers suffices; see e.g., van der Vaart and Wellner, 1996). Let
us suppose such conditions are satisfied by (C, PX), so that (since an active learner can be assumed to
have access to an abundant supply of unlabeled examples) we may assume we have access to a valid
(ε/2)-proper-cover Cε/2 under L1(PX) of size O(N (ε/2,C,L1(PX))). Constructing this cover Cε/2

does not affect the query complexity, since it only requires the use of unlabeled examples.

We can then run Aavid using Cε/2 in place of C. Since VC(Cε/2) = O(log(N (ε/2,C,L1(PX)))),
and infh∈Cε/2

erP (h) ≤ infh∈C erP (h) +
ε
2 =: β + ε

2 , we thereby obtain from Theorem 1 a PX-
dependent query complexity bound

O

(
β2

ε2
log(N (ε/2,C,L1(PX))/δ)

)
+ Õ

(
1

ε
log(N (ε/2,C,L1(PX)))

)
.

This result can then be composed with bounds on the covering numbersN (ε/2,C,L1(PX)) of various
classes C under various conditions on PX known from the literature. For instance, this provides an
improved query complexity for boundary fragment classes (a class defined by smoothness conditions
on the decision boundaries of concepts in C) under near-uniform distributions PX on [0, 1]k+1

compared to the results established by Wang (2011) (see Wang, 2011; Tsybakov, 2004 for the precise
definitions and covering numbers).

G Extensions and Future Directions

We conclude with some extensions and several interesting open questions and future directions.

Extension to Multiclass Classification: We can easily generalize the result to hold for multiclass
classification: that is, where Y is a general label space, C is a family of measurable functions h : X →
Y , P is a distribution on X × Y , and we still define erP (h) := P ((x, y) : h(x) ̸= y) = P (ER(h)).
The exact same upper bound extends to this setting if we replace d with max{VC(A), dG} where A
is as in Lemma 9 (replacing {0, 1} with Y there) and dG denotes the graph dimension of C (Natarajan,
1989). The star number s is still defined as in Definition 2 (see Hanneke, 2024). The proof holds
with only superficial modifications to rely solely on VC(A) (for the X \ ∆ik concentration) and
dG (for concentration in ∆ik ). We further note that this dimension max{VC(A), dG} is at most
O(dN (C) log(|Y|)), where dN (C) is the Natarajan dimension of C (Natarajan, 1989); this follows
by a similar argument as used to bound VC(A) in the proof of Lemma 9, using a generalization of
Sauer’s lemma for the multiclass setting proven by Haussler and Long (1995).

For a bounded number of labels |Y|, this again leads to essentially optimal query complexity, as a
lower bound Ω

(
dN (C)β2

ε2

)
based on the Natarajan dimension dN (C) can be shown (similarly to the

lower bound for binary classification).

However, for unbounded label spaces (|Y| =∞) the learnability and optimal sample complexity of
passive learning in the realizable case are known to depend on a dimension called the DS dimension
(Brukhim, Carmon, Dinur, Moran, and Yehudayoff, 2022; Daniely and Shalev-Shwartz, 2014) which
is between the Natarajan dimension and graph dimension. This raises an important question: What is
the optimal query complexity for multiclass agnostic active learning?

Extension to Stream-based Active Learning: For simplicity, we have defined the learning model
as so-called pool-based active learning, in that the learning algorithm was given the entire sequence
X1, . . . , Xm of unlabeled examples as input, and can query any example, in any order. However, it is
also common to consider an alternative protocol called stream-based active learning (or selective
sampling): namely, where the active learner observes the unlabeled examples Xt one-at-a-time in
sequence, and for each, decides whether or not to query, and can never revisit that decision later. In
the literature on stream-based active learning, it is common to express the guarantees of the active
learning in two parts: (1) a bound on the error guarantee expressed as a function of the number m of
unlabeled examples processed, and (2) a bound on the number of queries it makes among the first m
examples (e.g., Dasgupta, Hsu, and Monteleoni, 2007).

We note that Aavid can easily be re-expressed as a stream-based active learner. Specifically, rather
than limiting the ‘For’ loop in Step 1 to N = O

(
log
(
1
ε

))
rounds, we can simply let the algorithm

run until it has allocated as many unlabeled examples m as we wish. Rather than allocating all of the
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S1
k , S4

k data subsets at the start, we can simply allocate these sets if and when the algorithm reaches
the kth iteration of the ‘For’ loop, at which point the algorithm collects the next mk examples to
allocate to S1

k , querying each of these examples Xt iff Xt ∈ Dk−1 \∆ik . Likewise, it then collects
the next mk examples to allocate to S4

k (without making any queries), to calculate the value m′
k

(where, in this case, we should suitably replace the value 3 +N − k in the log term in m′
k to remove

the dependence on ε: for instance, replacing it with k+ 2 would suffice for the present discussion). It
then collects the next m′

k examples to allocate to the data subset S2
k , querying each of these examples

Xt iff Xt ∈ ∆ik . It then moves on to execute Steps 3-4. Similarly, upon each time it reaches Step 5,
it simply collects the next mk unlabeled examples to construct S3

k,i (without making any queries),
which then enables it to execute Steps 5-7. We can execute this until any number m of unlabeled
examples have been processed, and define the predictor at such a time as the ĥk for the last iteration
k for which Step 2 was able to completely execute. If the algorithm ever satisfies the early stopping
criterion in Step 4 for some iteration k, we can simply take ĥk as its final predictor. We can then
derive the corresponding excess error bound and query bound from the above analysis of the query
complexity and unlabeled sample complexity: namely, with probability at least 1− δ, the predictor ĥ
produced after m unlabeled examples satisfies

erP
(
ĥ
)
− inf

h∈C
erP
(
h
)
= O

(√
β

(
d log

(m
d

)
+ log

(
1

δ

))
+

1

m

(
d log

(m
d

)
+ log

(
1

δ

)))
and its number of queries is bounded by

O

(
βm+min

{
s log

(m
d

)(
d log

(m
d

)
+ log

(
1

δ

))
,

√
m

β

(
d log

(m
d

)
+ log

(
1

δ

))
,m

})

= O(βm) + Õ

(
min

{
sd,

√
md

β
,m

})
.

Here the βm term is where the improvements over passive learning provided by the AVID principle are
reflected in the query bound (as the above excess error bound is nearly as small as the best achievable
excess error guarantees for passive learning with m labeled examples; Vapnik and Chervonenkis,
1974; Devroye and Lugosi, 1995; Hanneke, Larsen, and Zhivotovskiy, 2024b). In particular, the above
guarantees compare favorably to previous analyses of stream-based active learning (e.g., Dasgupta,
Hsu, and Monteleoni, 2007) in the regime of moderate-size β, where, for the same excess error
guarantee, the bounds on the number of queries include a term such as Õ(θP (β)βm), which becomes
of order

(
s ∧ 1

β

)
βm in the worst case over P , and hence is no better than m when s = ∞. In

contrast, in this regime of moderate-size β, where the βm term dominates, we obtain a factor β
improvement in the number of queries.

We also remark that the analysis above also supplies an “anytime” guarantee, where the algorithm
can simply be executed indefinitely, and the above excess error bound and query bound hold simulta-
neously for every m (where, again, if the algorithm ever satisfies the condition in Step 4, its predictor
should simply be defined as the corresponding ĥk forevermore, and it need not query any further
examples in the sequence).

The Optimal Lower-Order Term: As discussed above, while the leading term in Theorem 3
is exacty optimal (perfectly matching a lower bound), the lower-order term in the upper bound
in Theorem 3 presents a small gap (in the dependence on d) compared to the best known lower
bound (Hanneke and Yang, 2015). As discussed, some aspects of this gap (concerning 1

ε + d vs
d
ε ) cannot be improved if the dependence on C is only expressed via d and s: that is, without
introducing new complexity measures. We leave open the question of formulating such an always-
sharp complexity measure, that is, the question: What is the optimal form of the query complexity
Θ(QCa(ε, δ;β,C)) for all classes C? However, aside from this gap, there is a gap which might
be improvable even in expressions of the bound purely in terms of d and s: namely, the term
sd in the upper bound. I conjecture this can be reduced to simply s: that is, QCa(ε, δ;β,C) =

O
(

β2

ε2

(
d+ log

(
1
δ

)))
+ Õ

(
min

{
s, d

ε

})
for every concept class C.
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Proper Learning: As noted above, the Aavid algorithm is an improper learner, meaning its returned
predictor ĥ might not be an element of the concept class C (rather, it is a shallow decision list built
from concepts in C). It is an interesting open question to determine whether there exist proper active
learners achieving the query complexity bound in either Theorem 1 or 3 for every concept class
C. It follows from Corollary 18 that, in the return case in Step 9, it would suffice to return ĥ equal
any element of VN . Thus, the main challenge in obtaining a proper learner is in the early-stopping
case in Step 4. In this return case, we have effectively verified that erP

(
ĥk) is better than erP

(
h⋆
)

(Lemma 17). However, the resolution of the error estimates êr1,2
k at this stage might not yet be

sufficient to find an h ∈ Vk−1 nearly as good. Indeed, for this reason, any such early return case in an
active learning algorithm may be problematic for proper learning.

On the other hand, we remark that, for all previous known separations between proper and improper
sample complexities, the respective proofs break down if the learner is given access to the marginal
distribution PX or a sufficiently large unlabeled data set (Bousquet, Hanneke, Moran, and Zhiv-
otovskiy, 2020; Hanneke, Larsen, and Zhivotovskiy, 2024b; Daniely and Shalev-Shwartz, 2014;
Montasser, Hanneke, and Srebro, 2019; Asilis, Devic, Sharan, and Teng, 2025a; Asilis, Høgsgaard,
and Velegkas, 2025b). Since, for the purpose of merely bounding the query complexity, we may
suppose an active learner has access to a large unlabeled data set, this hints that such improvements
might indeed be achievable by proper active learners, or otherwise, a novel technique is needed for
establishing such a separation between proper and improper active learning.

Computational Efficiency: The focus of this work has been solely on the information-theoretic
query complexity of agnostic active learning, without any computational or resource constraints
beyond the number of queries and unlabeled examples. However, computational considerations
are of course also important to consider. To actually achieve the agnostic learning guarantee of ε
excess error is typically thought to be computationally intractable for many concept classes, without
distribution restrictions. Nonetheless, it would be interesting to determine whether, at least at some
level, the improvements in the leading term reflected in Theorems 1 and 3 might also be reflected in a
computationally efficient method, for some classes C (e.g., linear classifiers) under some restrictions
on the distribution P which enable computational tractability yet for which such query complexity
bounds are not captured by prior results (e.g., by θP (ε)).

Beyond this, a classical approach to obtaining computationally efficient algorithms in practice is
to introduce convex relaxations of the various optimization problems involved in a given algorithm.
In the literature on passive learning, the theory of error bounds for empirical risk minimization has
been extended to allow for convex relaxations of the 0-1 loss, called a surrogate loss, while still
guaranteeing bounds on the excess error rate under appropriate assumptions on P relating excess
surrogate risks to excess error rates (Bartlett, Jordan, and McAuliffe, 2006; Zhang, 2004). Prior work
on disagreement-based active learning has been found to compose well with this theory of surrogate
losses. Specifically, Hanneke and Yang (2019); Hanneke (2014) express disagreement-based active
learning algorithms, in which the optimization problems defining the query criterion and the learner’s
final predictor are relaxed to convex programs expressed in terms of any given surrogate loss. For
such algorithms, they derive query complexity bounds (based on the disagreement coefficient θP (ε))
holding under the same conditions studied by the passive learning works (Bartlett, Jordan, and
McAuliffe, 2006; Zhang, 2004). It is thus a natural question to determine whether such a theory can
be made to work for the algorithmic principles underlying Aavid (i.e., the AVID principle), leading
to an algorithm only requiring computationally tractable convex optimization problems based on a
given surrogate loss, and expressing query complexity improvements over passive learning (of the
type found in Theorems 1 and 3) under these same conditions on P relating excess surrogate risks to
the excess error rates. This approach is made challenging in the context of Aavid, due to its use of
improper predictors ĥk, and even more-so due to the maximization in Steps 5 and 6 (whereas convex
surrogate losses would typically only allow tractability of minimization problems).

As a step toward such a technique, an interesting intermediate question is whether Theorems 1 and
3 can be achieved by an active learning algorithm expressed as a reduction to an empirical risk
minimization (ERM) oracle: that is, where the access to the concept class C is restricted to solving
optimization problems of the form argminh∈C êrS(h) for data sets S (or possibly a weighted ERM).
This would be particularly interesting if these data sets S are only constructed from subsets of the
labeled examples (Xt, Yt) queried by the algorithm (perhaps plus one additional example (Xt, y)
with an artificial label y, which may be needed when deciding whether to query Xt). Previous works
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by Beygelzimer, Hsu, Langford, and Zhang (2010); Hsu (2010) have expressed disagreement-based
active learning algorithms as reductions to such ERM oracles. It is therefore a natural question to
consider whether the AVID principle can also be implemented based only on such oracles (and such
an implementation could also be an important step toward enabling the above composition with the
theory of surrogate losses).

Unlabeled Sample Complexity: Theorem 5 reveals that, to achieve the stated query complexity
bound with Aavid, it suffices to have access to a number of unlabeled examples M(ε, δ;β) =

O
(

β+ε
ε2

(
d log

(
1
ε

)
+ log

(
1
δ

)))
. In comparison, we can obtain an obvious lower bound on the

number of unlabeled examples necessary to achieve any query complexity bound by a lower bound
on the sample complexity of fully-supervised passive learning (Devroye and Lugosi, 1995): i.e.,
Ω
(

β+ε
ε2

(
d+ log

(
1
δ

)))
. Thus, the upper bound M(ε, δ;β) in Theorem 5 can be improved by at

most a log
(
1
ε

)
factor. This naturally raises the question: Is it possible to achieve a near-optimal

query complexity Θ(QCa(ε, δ;β,C)) with an algorithm which uses a number of unlabeled examples
O
(

β+ε
ε2

(
d+ log

(
1
δ

)))
? Such a result would then be optimal simultaneously in both the number of

queries and the number of unlabeled examples. To date, this is not even known to be achievable
by fully-supervised passive learning, the best known upper bound having an additive Õ

(
d
ε

)
term

(Hanneke, Larsen, and Zhivotovskiy, 2024b). Thus, for now, a more-approachable question would
be whether it is possible to match the query complexity bound in Theorem 3 using a number of
unlabeled examples suboptimal only in log factors in the lower-order term, that is: Is there an
algorithm achieving a query complexity upper bound O

(
β2

ε2

(
d+ log

(
1
δ

)))
+ Õ

((
s ∧ 1

ε

)
d
)

which

uses a number of unlabeled examples at most O
(

β
ε2

(
d+ log

(
1
δ

)))
+ Õ

(
d
ε

)
? As an intermediate

step, it would already be interesting to determine whether this many unlabeled examples suffices to
achieve the query complexity bound in Theorem 1.

Tsybakov Noise: Beyond the above directions, there are a number of further extensions of this
work that seem ripe for exploration. One natural direction is extending the techniques in this work to
the case of Tsybakov noise (Mammen and Tsybakov, 1999; Tsybakov, 2004; Massart and Nédélec,
2006). The optimal query complexity under Tsybakov noise was already identified by Hanneke
and Yang (2015) (aside from similar gaps to the d

ε vs 1
ε + d issue discussed above, which require

introducing a new complexity measure to resolve). However, the algorithmic techniques in the
present work are significantly simpler, and moreover, have the potential to dramatically reduce the
number of unlabeled examples required for learning, compared to the technique of Hanneke and Yang
(2015). I conjecture that the AVID principle is capable of yielding near-optimal query complexity
guarantees under Tsybakov noise (with a number of unlabeled examples of the same order as the
sample complexity of supervised learning, up to log factors); however, obtaining such guarantees
may require a more-sophisticated usage of the principle, such as by the creation of multiple different
regions ∆, coinciding with different levels of variance of excess error estimates. Indeed, an analogous
tiered allocation of queries was key to the original analysis of the query complexity under Tsybakov
noise by Hanneke and Yang (2015).
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paper’s contributions and scope?
Answer: [Yes]
Justification: The paper formally proves (appropriate formalizations of) the claims made in
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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are not attained by the paper.

2. Limitations
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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the experiments?

Answer: [NA]

Justification: This is a purely theoretical work, and as such does not include an experimental
component relying on computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and fully conform to the
guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a purely theoretical work, and as such is not likely to have broader
societal impacts.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a purely theoretical work, and as such there is no associated data or
model being released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not make use of such assets. All relevant literature is properly
cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work in this paper does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The work in this paper does not involve human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

78

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not involved in any aspect of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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