
TRUE: Re-evaluating Factual Consistency Evaluation

Anonymous ACL submission

Abstract
Grounded text generation systems often gen-001
erate text that contains factual inconsisten-002
cies, hindering their real-world applicability.003
Automatically evaluating such inconsistencies004
may help to alleviate this limitation by ac-005
celerating evaluation cycles, filtering inconsis-006
tent outputs and annotating large-scale train-007
ing data. While attracting increasing attention,008
such evaluation metrics are usually developed009
and evaluated in silo for a single task or dataset.010
Moreover, previous meta-evaluation protocols011
focused on system-level correlations with hu-012
man annotations, which leave the example-013
level accuracy of such metrics unclear. In014
this work, we introduce TRUE: a compre-015
hensive study of factual consistency metrics016
on a standardized collection of existing texts017
from diverse tasks, manually annotated for018
factual consistency. Our standardization en-019
ables an example-level meta-evaluation proto-020
col that is more actionable and interpretable021
than previously reported correlations, yielding022
clearer quality measures. Across diverse state-023
of-the-art metrics and 11 datasets we find that024
large-scale NLI and question generation-and-025
answering-based approaches achieve strong026
and complementary results, and recommend027
them as a starting point for future evaluations.1028

1 Introduction029

A core issue in deploying text generation mod-030

els for real-world applications is that they often031

generate factually inconsistent text with respect to032

the input they are conditioned on, or even com-033

pletely “hallucinate” (Lee et al., 2018; Rohrbach034

et al., 2018; Maynez et al., 2020; Zhao et al., 2020)035

as exemplified in Table 1.036

To tackle such inconsistencies, one would like037

to detect them automatically by predicting whether038

a generated text is factually consistent with respect039

to a grounding text (also referred to as the “knowl-040

edge”, or the “input”). Such capabilities attract041

1Our code will be made publicly available.

Summarization (Wang et al., 2020)

Input
Phyllis schlafly, a leading figure in the
us conservative movement, has died at
her home in missouri, aged 92...

Summary Us conservative activist phyllis schlafly
has died at the age of 87.

Fact Verification (Thorne et al., 2018)

Evidence
Ronald Bilius “Ron” Weasley is a
character in J. K. Rowling’s Harry
Potter fictional series.

Claim Ron Weasley is a President.

Paraphrasing (Zhang et al., 2019)

Input
The tracks were produced by Tommy
Lee, and feature Michael Beinhorn
on drums.

Paraphrase
The tracks were produced by Michael
Beinhorn and have Tommy Lee on
drums.

Knowledge-Grounded Dialogue (Honovich et al., 2021)

Knowledge

The first flip trick called a kickflip,
originally called a "magic flip," was
invented by professional skateboarder
Rodney Mullen.

Response
I remember the first one was called
magic flip. It was called a magic flip
and was invented in the 60’s.

Table 1: Factual inconsistencies (in red) from various
tasks which are part of the TRUE study. The corre-
sponding parts in the input/grounding are in blue.

increasing attention (Zhou et al., 2021) as they en- 042

able both better evaluation and better generation 043

models via filtering training data (Gehrmann et al., 044

2021) or annotation of training data for controlled 045

generation (Rashkin et al., 2021b). 046

While automatically evaluating factual consis- 047

tency is an active line of work, there is no sin- 048

gle agreed-upon meta-evaluation protocol for mea- 049

suring the quality of such methods, and labeling 050

schemes vary in their granularity. Works are usu- 051

ally done in silo, introducing new datasets and 052

methods that target a specific task or domain, such 053

as summarization (Falke et al., 2019; Kryscinski 054

et al., 2020; Wang et al., 2020; Scialom et al., 2021; 055

Deutsch et al., 2021; Xie et al., 2021) or dialogue 056
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(Dziri et al., 2021; Honovich et al., 2021; Nie et al.,057

2021; Qin et al., 2021). Comparing the robustness058

of such methods across tasks and datasets is there-059

fore difficult, impeding progress on this subject.060

This work presents a comprehensive study focus-061

ing on factuality evaluation, covering various met-062

rics, tasks and datasets. To allow this, we consoli-063

date 11 existing datasets annotated for factual con-064

sistency into a unified format, including pairs of a065

target text and a grounding source, with a binary an-066

notation of whether the target text is factually con-067

sistent w.r.t its source. These datasets2 cover sum-068

marization, knowledge-grounded dialogue, para-069

phrasing and fact verification. The proposed stan-070

dardization enables us to properly compare factual-071

ity evaluation methods in a robust manner across072

these various tasks and domains.073

Previous works on factuality assessment have074

mainly focused on measuring system-level corre-075

lations of the proposed metrics with human judge-076

ments (Pagnoni et al., 2021). Yet, these correlations077

are not useful for estimating the performance of078

a measured metric when making binary decisions,079

decoupled from specific system implementations.080

We aim to measure how well a method detects in-081

consistent texts (recall) and how often it falsely dis-082

regards consistent texts (precision), which can be083

easily computed using the aforementioned binary084

labeling scheme. Therefore, as a meta-evaluation085

protocol we report the Area Under the ROC Curve086

(ROC AUC) with respect to inconsistent example087

detection for each evaluation metric and dataset.088

Our thorough evaluation of 12 metrics draws a089

clearer picture on the state of evaluating factuality.090

We show that Natural Language Inference (NLI)091

approaches, as well as Question Generation and092

Answering (QG-QA) approaches achieve signif-093

icantly better3 results on a wide variety of tasks094

and datasets. We also show that NLI and QG-QA095

are complementary: combining the two yields even096

better results and hints that there is room for further097

improvement. Finally, we perform both quantita-098

tive and qualitative analysis of our results, find-099

ing that all approaches struggle with long inputs,100

labeling issues and personal statements – paving101

interesting avenues for future work.102

To summarize, our contributions are as follows:103

(1) We argue that work on factuality evaluation104

2We focus on English text-to-text tasks, and leave data-to-
text (Parikh et al., 2020; Reiter and Thomson, 2020), multilin-
gual and multimodal tasks to future work.

3We conduct significance testing, see section 4.

should be unified and generalized across tasks, and 105

standardize 11 published datasets into a single la- 106

beling scheme to corroborate this. (2) We propose 107

a meta-evaluation protocol that allows more ac- 108

tionable and interpretable quality measures than 109

previously reported correlations. (3) We perform 110

a meta-evaluation of 12 diverse metrics in this uni- 111

fied perspective, showing that large-scale NLI and 112

QG-QA-based approaches achieve strong and com- 113

plementary results across tasks. (4) We analyze our 114

results both qualitatively and quantitatively, point- 115

ing at challenges like long inputs and personal state- 116

ments to be addressed in future work. 117

2 Standardizing Factual Consistency 118

In this section we elaborate on our re-evaluation 119

setup. We first formally define what factual con- 120

sistency refers to in this work. We then detail the 121

datasets we consider and how we standardize them. 122

Finally, we discuss the meta-evaluation protocol 123

we propose for measuring the performance of eval- 124

uation methods on the standardized datasets. 125

2.1 Definitions and Terminology 126

We define a text to be factually consistent w.r.t 127

its grounding text if all the factual information it 128

conveys is consistent with the factual information 129

conveyed by the grounding text.4 While some pre- 130

vious works distinguished between inconsistent er- 131

roneous text to inconsistent correct text (Maynez 132

et al., 2020), we take a strict approach, requiring 133

the text to be faithful to its grounding text, re- 134

gardless of the “correctness” w.r.t the “real world”. 135

In other words, we consider only the information 136

present in the input text, not external knowledge, 137

to assess faithfulness. This enables a more well- 138

defined task, since determining the truthfulness of 139

a fact w.r.t a general “real world” is subjective and 140

depends on the knowledge, values and beliefs of 141

the subject (Heidegger, 2001). This definition fol- 142

lows similar strictness in Textual Entailment, Ques- 143

tion Answering, Summarization and other tasks 144

where comprehension is based on a given ground- 145

ing text, irrespective of contradiction with other 146

world knowledge. This is also in line with recent 147

work on evaluating attribution in text generation 148

(Rashkin et al., 2021a), where humans are required 149

to judge whether a generated text is true according 150

to a grounding text. We use the terms consistent, 151

4We exclude personal and social statements, such as opin-
ions and chit chat from the scope of factual information.
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Task # Examples Open Test Cons.
Summarization
- FRANK (Pagnoni et al., 2021) 671 + 33.2%
- SummEval (Fabbri et al., 2021) 1,600 - 81.6%
- MNBM (Maynez et al., 2020) 2,500 - 10.2%
- QAGS-CNNDM (Wang et al., 2020) 235 - 48.1%
- QAGS-XSum (Wang et al., 2020) 239 - 48.5%
Dialogue
- BEGIN (Dziri et al., 2021) 836 + 33.7%
- Q2 (Honovich et al., 2021) 1,088 - 57.7%
- DialFact (Gupta et al., 2021) 8,689 + 38.5%
Fact Verification
- FEVER (Thorne et al., 2018) 18,209 - 35.1%
- VitaminC (Schuster et al., 2021) 63,054 + 49.9%
Paraphrasing
- PAWS (Zhang et al., 2019) 8,000 + 44.2%

Table 2: Statistics for the datasets incorporated in
TRUE. Cons. is the ratio of consistent examples.

grounded, faithful and factual interchangeably.152

2.2 Standardization Process153

We include 11 datasets that contain human anno-154

tations w.r.t factual consistency in diverse tasks155

(Table 2). Other than the importance of cover-156

ing a wide variety of error types, this also allevi-157

ates issues of rating quality which may vary across158

datasets (Denton et al., 2021).159

To allow a unified evaluation framework we con-160

vert all annotations to binary labels that correspond161

to whether the entire target text is factual w.r.t the162

given grounding text or not. We note that a fine-163

grained annotation scheme, i.e., a typology of er-164

rors, was proposed for factual consistency (Pagnoni165

et al., 2021). While useful, most existing datasets166

do not include such labels. Moreover, while Ma-167

chine Translation (MT) evaluation also showed168

value in fine-grained annotations (Freitag et al.,169

2021), it was proposed after years of improving170

MT to the level where coarse-grained annotation is171

insufficient. We argue that current grounded gen-172

eration models are still at early stages w.r.t factual173

consistency, and that binary labeling is more benefi-174

cial now as it enables easier standardization across175

tasks and domains, with the goal of bringing re-176

searchers to collaborate on a shared methodology.177

Binary annotation also corresponds to practical ap-178

plications where filtering out unfaithful predictions179

is desired, and is in-line with the recommendations180

for human evaluation of attribution in text genera-181

tion by Rashkin et al. (2021a).182

We next detail the 11 datasets included in TRUE.183

2.2.1 Abstractive Summarization184

FRANK Pagnoni et al. (2021) proposed a ty-185

pology of factual errors, grounded in frame se-186

mantics (Fillmore, 1976; Palmer et al., 2005)187

and linguistic discourse theory (Brown and Yule,188

1983). Based on this typology, they collected an-189

notations for model-generated summaries on the190

CNN/DailyMail (CNN/DM; Hermann et al., 2015) 191

and XSum (Narayan et al., 2018) datasets, resulting 192

in 2250 annotated system outputs. Each summary 193

sentence was annotated by three annotators. We 194

take the majority vote for each sentence to get a 195

sentence-level label and consider a summary as 196

consistent if all sentences are consistent. 197

SummEval SummEval (Fabbri et al., 2020) is 198

a comprehensive study of evaluation metrics for 199

text summarization. The authors collected human 200

judgments for 16 model outputs on 100 articles 201

taken from the CNN/DM dataset, using both ex- 202

tractive and abstractive models. Annotators were 203

asked to rate summaries on a Likert scale from 1 204

to 5, over 4 dimensions: consistency, coherence, 205

fluency and relevance. Each summary was scored 206

by 5 crowd-workers and 3 expert annotators. We 207

label summaries as consistent only if all the expert 208

annotators gave a consistency score of 5. 209

MNBM Maynez et al. (2020) annotated system 210

outputs for the XSum dataset (Narayan et al., 2018). 211

They sampled 500 articles and annotated sum- 212

maries generated by four different systems, as well 213

as the gold summaries. Annotators were asked to 214

assess whether the summary includes hallucina- 215

tions. Judgments from three different annotators 216

were collected for each document-summary pair. 217

To convert to a binary-label format, we use the bi- 218

nary consistency decision of whether a summary 219

contains no hallucinations, and assign a label by 220

taking the majority vote of the three annotators. 221

QAGS Wang et al. (2020) collected judgments 222

of factual consistency on generated summaries for 223

CNN/DM and XSum. Annotators were presented 224

with the summaries one sentence at a time, along 225

with the article, and determined whether each sen- 226

tence is factually consistent w.r.t the article. Each 227

sentence was annotated by 3 annotators, using the 228

majority vote as the final score. To convert to 229

binary-label format, we consider a summary con- 230

sistent only if all its sentences are consistent. 231

2.2.2 Dialogue Generation 232

BEGIN (Dziri et al., 2021) is a dataset for eval- 233

uating groundedness in knowledge-grounded dia- 234

logue systems, in which system outputs should be 235

consistent with a grounding knowledge provided to 236

the dialogue agent. BEGIN frames the task as NLI 237

(Bowman et al., 2015), adopting the entailment 238

and contradiction labels, and splitting the neutral 239
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label into three sub-categories: hallucination, off-240

topic responses and generic responses. Dialogue241

responses were generated by fine-tuning two sys-242

tems on the Wizard of Wikipedia (WOW) dataset243

(Dinan et al., 2019), in which responses should be244

grounded in a span of text from Wikipedia. The245

generated responses were split into sentences, and246

each sentence was annotated separately. To convert247

to a binary-label format, we treat entailed sentences248

as consistent and all others as inconsistent.249

Q2 Honovich et al. (2021) annotated 1,088 gen-250

erated dialogue responses for binary factual consis-251

tency w.r.t the knowledge paragraph provided to the252

dialogue model, for two dialogue models trained253

on WOW. Responses were annotated using binary254

labels by 3 of the paper authors, one annotator per255

response. We use Q2’s labels without changes.256

DialFact Gupta et al. (2021) introduced the task257

of fact-verification in dialogue and constructed a258

dataset of conversational claims paired with pieces259

of evidence from Wikipedia. They define three260

tasks: (1) detecting whether a response contains261

verifiable content (2) retrieving relevant evidence262

and (3) predicting whether a response is supported263

by the evidence, refuted by the evidence or if there264

is not enough information to determine. We use265

the verifiable (i.e., factual, rather than personal)266

responses annotated for the third task, treating sup-267

ported annotations as consistent and the rest as268

inconsistent. In cases where several evidence were269

marked as required for verification, we concatenate270

all evidence sentences to be the grounding text.271

2.2.3 Fact Verification272

FEVER Thorne et al. (2018) introduced FEVER273

(Fact Extraction and VERification), a dataset for274

fact verification against textual sources. FEVER275

was constructed by extracting information from276

Wikipedia, generating claims from it using anno-277

tators, then classifying whether each claim is sup-278

ported or refuted by Wikipedia. Claims can also be279

labeled with NotEnoughInfo, meaning that there is280

not enough information in Wikipedia to either ver-281

ify or refute the claim. Given a claim, the task de-282

fined by FEVER is to first extract evidence, then to283

determine whether it supports or refutes the claim.284

In a slightly different framing, the latter stage in285

FEVER is to determine whether the claim is factu-286

ally consistent or not w.r.t the evidence, which is287

aligned with what we measure in TRUE. We use288

the development set of the NLI version of FEVER289

(Nie et al., 2019, 2020), treating supported claims 290

as consistent and the rest as inconsistent. 291

VitaminC Schuster et al. (2021) derived a large- 292

scale fact verification dataset from factual revisions 293

to Wikipedia pages. Each example includes an 294

evidence text from Wikipedia and a fact, with an 295

annotation of whether the fact is supported, refuted 296

or neutral w.r.t the evidence. The authors collected 297

factual revisions to Wikipedia articles (pairs of “be- 298

fore” and “after” sentences), and asked annotators 299

to write two facts for each pair: one that is sup- 300

ported by the first sentence and refuted by the sec- 301

ond, and vice versa. When no explicit contradiction 302

was present, the annotators wrote facts that are neu- 303

tral w.r.t the evidence. Additional examples were 304

created by revising examples from FEVER. We 305

treat examples that include supported facts as con- 306

sistent, and refuted or neutral facts as inconsistent. 307

2.2.4 Paraphrase Detection 308

PAWS Zhang et al. (2019) constructed a dataset 309

for paraphrase identification with 108,463 para- 310

phrase and non-paraphrase pairs with high lexical 311

overlap, generated by controlled word swapping 312

and back-translation, followed by judgments from 313

human raters. Source sentences were drawn from 314

Wikipedia and the Quora Question Pairs (QQP) 315

corpus. We only use the examples with Wikipedia 316

source sentences and view the binary paraphrase 317

labels as consistency labels. We note that the defi- 318

nition of paraphrase is not equivalent to the defini- 319

tion of factual consistency, as a subset of a source 320

text is not a paraphrase but may still be factually 321

consistent with the source. However, PAWS was 322

constructed such that non-paraphrases usually have 323

contradicting meanings and is therefore relevant. 324

2.3 Meta-Evaluation 325

Previous work on evaluating factuality focused 326

on measuring correlation with human judgements 327

(Pagnoni et al., 2021). However, such numbers are 328

not very informative when one is interested in eval- 329

uating the absolute performance of inconsistency 330

detection methods that perform a binary decision 331

w.r.t each input. 332

To conduct a more fine-grained evaluation at the 333

single example level, we report the Receiver Oper- 334

ating Characteristic Area Under the Curve (ROC 335

AUC) w.r.t binary detection of inconsistent exam- 336

ples.5 The ROC curve is created by plotting the 337

5This is equivalent to AUC w.r.t consistency detection.

4



true positive rate (TPR, a.k.a. the recall) against338

the false positive rate (FPR, a.k.a. the fallout) at339

different possible thresholds for each tested metric.340

Measuring ROC AUC evaluates the different met-341

rics without setting a specific decision threshold.342

For datasets with existing development/test split,343

we also tune a threshold for the binary con-344

sistency/inconsistency decision on the develop-345

ment set and report the test set accuracy using346

this threshold. We tune the thresholds by opti-347

mizing the geometric mean of TPR and 1-FPR:348 √
TPR ∗ (1− FPR).349

3 Evaluation Metrics350

We compare various standard as well as state-of-351

the-art approaches that measure factual consistency.352

This comparison should draw a clear picture of cur-353

rent research on this subject and directions for fu-354

ture work. For example, we expect that robust met-355

rics should perform well across tasks and datasets.356

We next describe the different metrics tested as part357

of this study. We note that for all reference-based358

metrics, the grounding text serves as the reference.359

For metrics where the scores are not in the [0,1]360

range, we normalize scores to be in that range.361

3.1 N-Gram Based Metrics362

Standard N-Gram matching metrics such as363

BLEU (Papineni et al., 2002) ROUGE (Lin, 2004)364

and token-level F1 were shown to have weak cor-365

relation with factual consistency (Maynez et al.,366

2020; Honovich et al., 2021), with no exception on367

TRUE. For completeness, we report their perfor-368

mance in Table 9 in the appendix.369

3.2 Model-Based Metrics370

BERTScore (Zhang et al., 2020) aggregates sim-371

ilarity scores between the BERT contextual embed-372

ding of tokens in candidate and reference sentences.373

We report results for the BERTScore-precision vari-374

ant as it showed better results in preliminary experi-375

ments. We use BERTScore version 0.3.11. with the376

DeBERTa-xl-MNLI model (He et al., 2021; Nangia377

et al., 2017), which is the recommended model as378

of the time of writing this paper.6379

BLEURT (Sellam et al., 2020a,b) is a learned380

metric based on BERT (Devlin et al., 2019) for381

evaluating text generation. BLEURT includes ad-382

ditional pretraining on synthetic data followed by383

6https://github.com/Tiiiger/bert_score

fine-tuning on human judgements to train a model 384

that scores system outputs. We use the recom- 385

mended BLEURT-20 checkpoint (Pu et al., 2021).7 386

FactCC (Kryscinski et al., 2020) is a BERT- 387

based metric trained to verify factual consistency 388

of summaries. Training data was synthetically gen- 389

erated by applying rule-based transformations to 390

generate consistent and inconsistent summaries. 391

BARTScore (Yuan et al., 2021) evaluates text us- 392

ing probabilities from force-decoding with a BART 393

model (Lewis et al., 2020). We use the version fine- 394

tuned on the ParaBank2 dataset (Hu et al., 2019). 395

3.3 Natural Language Inference Metrics 396

ANLI The task of Textual Entailment (Dagan 397

et al., 2006) or Natural Language Inference (NLI; 398

Bowman et al., 2015) is to determine, given two 399

sentences, a hypothesis and a premise, whether the 400

hypothesis in entailed by the premise, contradicts it, 401

or is neutral w.r.t it. The resemblance of NLI to fac- 402

tual consistency evaluation has led to utilizing NLI 403

models for measuring factual consistency (Thorne 404

et al., 2018; Maynez et al., 2020; Dziri et al., 2021). 405

We trained an NLI model by fine-tuning T5-11B 406

(Raffel et al., 2020) on the Adversarial NLI (ANLI; 407

Nie et al., 2020) dataset. As suggested by Maynez 408

et al. (2020), we compute the entailment probabil- 409

ity with the grounding text as the premise and the 410

generated text as the hypothesis and use it as the 411

example-level factual consistency score.8 412

SUMMAC (Summary Consistency; Laban et al., 413

2021) is focused on evaluating factual consistency 414

in summarization. They use NLI for detecting in- 415

consistencies by splitting the document and sum- 416

mary into sentences and performing NLI on all doc- 417

ument/summary sentence pairs, where the premise 418

is a document sentence and the hypothesis is a 419

summary sentence. They aggregate the NLI scores 420

for all pairs by either taking the maximum score 421

per summary sentence and averaging (SCZS) or 422

by training a convolutional neural network to ag- 423

gregate the scores (SCConv). We use the publicly 424

available implementation9 and report results for 425

SCZS as it performed better in our experiments. 426

7https://github.com/google-research/
bleurt/blob/master/checkpoints.md

8More implementation details on the NLI model are avail-
able in Section B in the appendix.

9https://github.com/tingofurro/summac
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Ensemble Q2 ANLI SCZS F1 BLEURT QuestEval FactCC BARTscore BERTscore

FRANK 91.2 87.8 89.4 89.1 76.1 82.8 84.0 76.4 86.1 84.3
SummEval 82.9 78.8 80.5 81.7 61.4 66.7 70.1 75.9 73.5 77.2
MNBM 76.6 68.7 77.9** 71.3 46.2 64.5 65.3 59.4 60.9 62.8
QAGS-C 87.7 83.5 82.1 80.9 63.8 71.6 64.2 76.4 80.9 69.1
QAGS-X 84.8 70.9 83.8 78.1 51.1 57.2 56.3 64.9 53.8 49.5
BEGIN 86.2 79.7 82.6 82.0 86.4 86.4 84.1 64.4 86.3 87.9
Q2 82.8 80.9* 72.7 77.4 65.9 72.4 72.2 63.7 64.9 70.0
DialFact 90.4 86.1** 77.7 84.1 72.3 73.1 77.3 55.3 65.6 64.2
PAWS 91.2 89.7** 86.4 88.2 51.1 68.3 69.2 64.0 77.5 77.5
FEVER 94.7 88.4 93.2** 93.2 51.8 59.5 72.6 61.9 64.1 63.3
VitaminC 96.1 81.4 88.3** 97.9 61.4 61.8 66.5 56.3 63.2 62.5
Avg. w/o VitC, FEVER 86.0 80.7 81.5 81.4 63.8 71.4 71.4 66.7 72.2 71.4

Table 3: ROC AUC results for the different metrics on the TRUE development set. We exclude VitaminC and
FEVER from the average calculation as SCZS was trained on VitaminC that includes examples from FEVER.
The highest score in each row (excluding the Ensemble) is in bold and the aforementioned SC results are in
strikethrough. Statistically significant results are indicated using * and ** for p < 0.05 and p < 0.01 respectively.

3.4 QG-QA Based Metrics427

Durmus et al. (2020) and Wang et al. (2020) pro-428

posed to use Question Generation (QG) and Ques-429

tion Answering (QA) models to automatically eval-430

uate factual consistency in abstractive summariza-431

tion, showing promising results. Honovich et al.432

(2021) employed a similar approach for evaluating433

knowledge-grounded dialogue generation.434

The steps of the QG-QA approach are as follows:435

(1) Questions are automatically generated for spans436

in the generated text, such that the answer to a ques-437

tion is its respective input span. (2) The generated438

questions are answered using a QA model on the439

grounding text, resulting in an answer span or a440

“no-answer” output. (3) For each question, the two441

answer spans from the grounding and the generated442

text are compared to get a score. (4) The scores for443

all questions are aggregated into a final score.444

Q2 (Honovich et al., 2021) is a QG-QA method445

that employs an NLI model to compare the two446

answers for each question, where the grounding447

text answer is the premise and the generated text448

answer is the hypothesis. We report results for a449

re-implementation of Q2 using T5-11B as the back-450

bone for the QG, QA and NLI models. While Hon-451

ovich et al. (2021) validate each generated question452

by answering it using a QA model and compar-453

ing to the original extracted answer candidate us-454

ing exact match, we relax this and instead use F1455

token-overlap with a predefined threshold.10456

QuestEval (Scialom et al., 2021) is a QG-QA457

method that measures both factual consistency and458

relevance (by reversing the roles of the generated459

and grounding texts). The authors trained a model460

that weights each generated question according to461

10More implementation details are available in Section B
in the appendix.

the relevance of its answer to appear in the gen- 462

erated text. Their results showed high correlation 463

with human judgments in comparison to prior work 464

on the SummEval benchmark (Fabbri et al., 2021). 465

We use the publicly available version.11 466

4 Results 467

We report the ROC AUC12 of various metrics on 468

the standardized datasets in Table 3. The ROC 469

curves can be found in Figure 2 in the appendix. 470

As all metrics operate in a “zero-shot” manner on 471

all datasets (except for SUMMAC on VitaminC and 472

FEVER) and no threshold tuning is required, we 473

report results on the development sets.13 SCZS was 474

trained on VitaminC which includes examples from 475

FEVER, so we exclude those datasets from the av- 476

erage AUC calculation for a more fair comparison. 477

The results show that the NLI-based models 478

(ANLI, SCZS) outperformed the other approaches 479

on 6 datasets, with average AUC of 81.5 and 81.4 480

for ANLI and SCZS, respectively. Q2 outperform 481

the other approaches on 4 datasets, with an average 482

AUC of 80.7. The next best method, BARTScore, 483

had lower average AUC of 72.2. All other ap- 484

proaches scored 72 or lower on average across all 485

datasets (excluding FEVER and VitaminC). 486

One outlier is BEGIN, which is the only 487

dataset where simple metrics like F1 token overlap 488

achieved scores higher than 80. We measured the 489

average overlap between the grounding and target 490

texts per dataset, and found that BEGIN exhibits a 491

high difference between grounded and ungrounded 492

texts in comparison to other datasets (Table 8 in 493

appendix A), which explains this. 494

11https://github.com/ThomasScialom/
QuestEval

12Multiplied by 100 for better readability.
13AUC and accuracy for the test sets are provided in Tables

10 and 11 in the appendix.
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We follow Laban et al. (2021) and perform495

significance testing through bootstrap resampling496

(Efron, 1982), comparing the best method to the497

second-best method on each dataset. We perform498

interval comparison at p = 0.05 and p = 0.01 and499

find significantly best results on 6 datasets, 3 from500

Q2 and 3 from ANLI.501

Given that no single method outperformed the502

rest on all datasets, we hypothesize that the NLI and503

QG-QA based metrics are complementary. We test504

this by averaging the Q2, ANLI and SCZS scores505

per example14 (Ensemble in Table 3). Indeed, av-506

eraging the three methods yields better results on507

most datasets and on average, with an increase of508

4.5 in ROC AUC from the best single-metric result.509

Our results show that a single metric can do510

well across all tasks and datasets, with all 3 best511

metrics scoring higher than 70 on all 11 datasets.512

This corroborates our hypothesis that evaluating513

factual consistency can be unified, and we hope514

such unified perspective will be adopted in future515

work to accelerate progress on the subject.516

5 Analysis517

Input Length. As QA and NLI models may518

struggle with long inputs (Kočiský et al., 2018;519

Pang et al., 2021; Yin et al., 2021; Shaham et al.,520

2022), metrics based on them may fail when han-521

dling long text. To study the effect of input length522

on the metrics performance, we unify all datasets15523

and split examples into 6 bins according to the524

grounding length.16 We focus on the grounding525

as the target texts are usually short (see Table 6526

in Appendix A). We measure AUC of the best 3527

metrics according to their overall score for each528

length bin, sampling 1,000 examples per bin.529

The results are shown in Figure 1. We find that530

there is a consistent degradation for texts longer531

than 200 tokens for all metrics, including SCZS532

which is designed to better handle long text. We533

find it surprising that the ANLI-based model and534

Q2 still do relatively well on the longest bin as they535

are required to perform end-to-end QA and NLI on536

texts with more than 500 tokens.537

14Pairwise ensembles are reported in the appendix, Table 9.
15Excluding VitaminC as it is much larger than other

datasets and might therefore distort results. Statistics regard-
ing the grounding and target text lengths per dataset is in
Appendix A.

16We measure length in tokens (before subword splitting)
as different metrics use different subword tokenizations.

Figure 1: ROC AUC when splitting TRUE’s data ac-
cording to the grounding length.

Model Size. Model-based metrics are expected 538

to benefit from increasing model size. To quantify 539

this we study the effect of using smaller models 540

for the ANLI, BLEURT and BERTScore metrics. 541

We compare the average ROC AUC of larger and 542

smaller model variants for each metric. We find an 543

advantage of 4.7, 3.7 and 1.3 average ROC AUC 544

for the larger ANLI, BLEURT and BERTScore 545

variants respectively, showing that larger models 546

are important for evaluating factuality. The full 547

results are in Table 7 in the appendix. 548

Qualitative Analysis. We conduct manual error 549

analysis to point at weaknesses of the different 550

metrics and present challenges posed by the task. 551

We analyze 80 examples that were misclassified by 552

all three best metrics, as well as 100 examples that 553

were correctly classified by one or two of the three. 554

Out of the analyzed examples, many seem to 555

have a wrong label. This is especially true for 556

cases in which all best metrics failed, with annota- 557

tion errors in 35/80 cases. For the cases where one 558

or two metrics failed, we found annotation errors in 559

27/100 cases. To verify that the high annotation er- 560

ror rate is indeed a result of inspecting the “hardest” 561

examples, we uniformly sample additional 100 ex- 562

amples, finding that only 10 had annotation errors. 563

This is in line with the findings of Freitag et al. 564

(2021), who showed that in some cases, metrics 565

may be better than non-expert annotators. 566

Despite showing impressive results, the best- 567

performing metrics fail to detect subtle inconsisten- 568

cies, as presented in Table 4. This was the case for 569

21/180 analyzed examples. Metrics that aggregate 570

scores across parts of a target text, such as Q2 or 571

SCZS, might assign a high score for texts in which 572

all but a small part is consistent. End-to-end NLI 573

should predict “contradiction” even when only a 574

small part of the text contradicts the grounding, but 575

it may fail to do so. Applying a strict approach 576
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Grounding Generated Text Explanation
The word "philately" is the English version of
the French word "philatélie", coined by Georges
Herpin in 1864.

The word philately is actually a french
word coined by george herpin.

The word philately is an English word based on
a French word, but not French. All best metrics
misclassified this.

French police have interviewed presidential can-
didate francois fillon and his wife penelope
over claims she was paid for fake work. They
provided information that would help find the
"truth", mr fillon said. . .

French presidential candidate francois fil-
lon has said he and his wife penelope have
been questioned by police over claims she
worked illegally.

Most details are correct and the hallucination is
subtle. In the case of Q2, most of the generated
questions have the same answer based on the
grounding and the generated text, therefore the
overall score was high.

Stamp collecting is generally accepted as one
of the areas that make up the wider subject of
philately, which is the study of stamps.

I’ve never heard of stamps, but I do know
that the word "philately" refers to the study
of stamps.

The personal statement “I’ve never heard of
stamps” is not factual and should not be evalu-
ated.

Evidence suggests that cognitive behavioral
therapy and a gradual increase in activity suited
to individual capacity can be beneficial in some
cases.

It has been suggested that cognitive be-
havioral therapy and gradual increase in
exercise could help in some cases so I’m
going to try that for now.

Similar to the previous examples - SummaC and
ANLI falsely marked the text as inconsistent,
probably due to the personal statement.

Table 4: Examples for the error analysis. The first two rows show cases of challenging inconsistencies, while the
last two show dialogue responses containing non-factual personal statements.

in the aggregation step, like taking the minimum577

instead of the average, could potentially remedy578

this – with the price of having more false-negatives.579

Other errors are caused by domain-specific chal-580

lenges, such as handling personal statements in581

dialogues. As shown in Table 4, such statements582

may be falsely classified as ungrounded. This was583

the case for 10/62 analyzed dialogue responses. A584

possible way to alleviate this would be to automati-585

cally exclude non-factual parts from the evaluation.586

6 Related Work587

Adding to the related work mentioned throughout588

the paper, works on unified evaluation of text gen-589

eration across tasks include GEM (Gehrmann et al.,590

2021), where the focus is on evaluating system out-591

puts and not the factuality evaluation methods as in592

TRUE. BEAMetrics (Scialom and Hill, 2021) pro-593

poses meta-evaluation protocols across tasks, but594

does not focus on factuality. When discussing fac-595

tuality (“correctness”) they measure correlations,596

which are not sufficient as mentioned in Section597

2.3. Other works on meta-evaluation of factuality598

across datasets include GO-FIGURE (Gabriel et al.,599

2021) FRANK (Pagnoni et al., 2021) and SummaC600

(Laban et al., 2021), however they all focus solely601

on summarization. To the best of our knowledge,602

our work is the first to generalize the discussion603

on evaluating factuality across tasks and datasets604

outside of summarization, and the first to show605

that large-scale QG-QA and NLI are highly com-606

plementary – setting stronger baselines for future607

work than previously published.608

7 Discussion and Future Work609

We discuss the main takeaways of the TRUE study,610

pointing at actionable insights for future work.611

First, as QG-QA and NLI-based methods show bet- 612

ter performance than other approaches, especially 613

when combined together, we recommend model de- 614

velopers to use those methods for evaluation when 615

factuality is a priority. As for metric developers, 616

we recommend using those methods as baselines 617

when proposing new metrics. 618

We also suggest reporting ROC AUC rather than 619

correlations, as it is more interpretable and action- 620

able. Our proposed binary annotation scheme al- 621

lows to easily test new metrics across tasks and 622

datasets, which would be useful for future work. 623

Finally, we encourage data curators to use the 624

binary annotation scheme, which is inline with the 625

recommendations of Rashkin et al. (2021a). Hav- 626

ing said that, we do not rule out more detailed label- 627

ing schemes – but rather ask to provide a protocol 628

for converting such labels into the more general 629

binary format. We hope that future work will also 630

address the challenges of long input text and per- 631

sonal statements in dialogue evaluation, which we 632

point out in our analysis. 633

8 Conclusions 634

We presented TRUE, a meta-evaluation study for 635

factual consistency. We standardized various 636

datasets from diverse tasks into a unified labeling 637

scheme to perform a thorough analysis of auto- 638

matic evaluation methods, showing that NLI and 639

QG-QA based approaches perform well across mul- 640

tiple tasks and datasets. We further show these 641

methods are highly complementary – hinting at ad- 642

ditional headroom for improvement while pointing 643

on current limitations. We hope our results and 644

methodology will encourage a more unified per- 645

spective in future work to foster progress towards 646

more factual NLP applications. 647
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A Additional Data Statistics1047

Tables 5 and 6 presents statistics regarding the1048

length of the grounding text and the generated text1049

for TRUE’s datasets, respectively.1050

Dataset Min len. Max len. Median len. Avg len.
FRANK 102 1005 550 548
SummEval 100 540 367 359
MNBM 8 10315 287 383
QAGS-CNNDM 73 360 325 318
QAGS-XSUM 218 520 339 351
BEGIN 7 64 23 23
Q2 6 71 21 23
DialFact 4 174 22 26
PAWS 5 37 21.0 21
FEVER 8 286 44 59
VitaminC 1 265 26 28

Table 5: Grounding length statistics for TRUE.

Dataset Min len. Max len. Median len. Avg len.
FRANK 2 126 40 41
SummEval 5 133 61 63
MNBM 2 52 19 19
QAGS-CNNDM 23 85 47 49
QAGS-XSUM 9 31 18 18
BEGIN 5 40 13 14
Q2 7 44 15 16
DialFact 4 69 16 17
PAWS 5 37 21 21
FEVER 2 36 8 8
VitaminC 1 103 12 13

Table 6: Generated text length statistics for TRUE.

Model Avg. ROC AUC
ANLI-T5-11B 81.5 (+4.7)
ANLI-T5-Large 76.8
BLEURT-20 71.4 (+3.7)
BLEURT-20-D6 67.7
BERTScore P - deberta-xl-mnli 71.4 (+1.3)
BERTScore P - roberta-large 70.1

Table 7: Ablation study comparing the average
ROC AUC results for models with different sizes.
“BERTScore P” stands for BERTScore Precision.

B Implementation Details1051

We train all models using the t5x library.171052

QG-QA For our reimplementation of Q2 (Hon-1053

ovich et al., 2021) we use T5-11B as the pretrained1054

model for QG, QA and NLI, while Honovich et al.1055

(2021) used T5-Base, ALBERT (Lan et al., 2019),1056

and RoBERTa (Liu et al., 2019) for the QG, QA1057

and NLI models, respectively. We use a maximum1058

length of 2048 tokens for the input. We set the F11059

token overlap threshold to 0.54 by tuning it on a1060

held-out dataset. We use beam search with a beam1061

size of 4 to generate multiple questions, and use the1062

first question that passes the validation threshold.1063

17https://github.com/google-research/t5x

NLI We fine-tune a T5-11B model on ANLI (Nie 1064

et al., 2020) for 25K steps with a learning rate of 1065

10−4 and a batch size of 32. During inference we 1066

use a maximum input length of 2048 tokens. 1067

C Ablation Study 1068

Table 7 presents the results of an ablation study 1069

testing the effect of model size for different model- 1070

based metrics. 1071

D ROC Curves 1072

Figure 2 presents the ROC curves for the dif- 1073

ferent datasets studied in TRUE, using the best- 1074

performing metrics. 1075
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Dataset Pos ROUGE_L Neg ROUGE_L ROUGE_L diff Pos F1 Neg F1 F1 diff
FRANK 0.105 0.060 0.045 0.165 0.103 0.062
SummEval 0.181 0.141 0.041 0.282 0.244 0.038
MNBM 0.044 0.047 0.003 0.079 0.084 0.006
QAGS-CNNDM 0.215 0.170 0.045 0.281 0.249 0.031
QAGS-XSUM 0.051 0.050 0.002 0.082 0.080 0.002
BEGIN 0.465 0.159 0.306 0.553 0.207 0.346
Q2 0.228 0.169 0.059 0.368 0.264 0.104
DialFact 0.302 0.200 0.102 0.394 0.249 0.144
PAWS 0.832 0.734 0.098 0.938 0.934 0.003
FEVER 0.174 0.179 0.005 0.276 0.258 0.018
VitaminC 0.314 0.270 0.044 0.362 0.290 0.072

Table 8: Average overlap between the generated text and the grounding, measured using ROUGE-L and simple
F1 token-overlap, taking the grounding to be the reference text. The “Pos” columns contain the statistics for the
grounded text, while the “Neg” columns contain the statistics for the ungrounded text.

Figure 2: ROC curves for the best performing methods.
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ANLI+Q2 ANLI+SCZS Q2+SCZS SCConv ROUGE-L BLEU4
FRANK 89.6 91.1 90.4 88.9 80.1 78.0
SummEval 80.7 83.0 82.0 79.8 68.8 60.2
MNBM 75.6 77.1 74.6 67.2 47.5 49.3
QAGS-C 86.0 84.7 86.4 79.6 67.1 63.9
QAGS-X 81.8 85.1 79.3 76.1 52.9 48.6
BEGIN 85.7 82.1 85.7 81.6 86.4 84.6
Q2 83.0 76.9 83.9 77.5 66.8 64.3
DialFact 89.4 84.5 90.2 81.2 71.2 72.5
PAWS 90.5 89.7 91.4 88.2 82.2 77.3
FEVER 94.0 94.6 93.9 86.7 49.9 51.1
VitaminC 90.3 96.4 96.5 97.5 59.9 59.6
Avg. w/o VitC, FEVER 84.7 83.8 84.9 80.0 69.2 66.5

Table 9: ROC AUC results for metrics that were not reported in Table 3.

Ensemble Q2 ANLI SCZS BLEURT QuestEval FactCC BARTscore BERTscore

FRANK 90.8 87.8 89.2 88.6 83.2 86.4 73.9 88.3 86.0
BEGIN 85.9 78.0 82.8 84.2 82.2 81.4 65.0 83.7 86.0
DialFact 88.6 85.0 75.9 82.1 72.2 76.3 55.1 65.5 64.3
PAWS 92.4 90.1 87.3 89.7 67.1 70.1 65.1 77.3 76.4
VitaminC 96.7 83.4 89.6 98.4 63.0 67.8 56.8 64.1 63.5
Avg. w/o VitC 89.4 85.2 83.8 86.2 76.2 78.5 64.8 78.7 78.2

Table 10: ROC AUC results for the different metrics on the TRUE test set. We exclude VitaminC from the average
calculation as SCZS was trained on VitaminC. The highest score in each row (excluding the Ensemble) is in bold
and the aforementioned SC results are in strikethrough.

Ensemble Q2 ANLI SCZS BLEURT QuestEval FactCC BARTscore BERTscore

FRANK 83.0 81.5 82.0 79.0 76.6 73.0 72.1 80.7 75.6
BEGIN 76.8 74.1 76.8 78.9 74.3 73.4 62.09 74.8 78.1
DialFact 80.9 78.1 68.4 74.2 67.1 69.0 52.5 58.6 60.2
PAWS 84.8 84.1 82.1 82.3 62.9 64.8 60.7 70.9 69.8
VitaminC 92.1 77.5 83.9 94.2 59.0 63.3 55.5 59.8 58.0
Avg. w/o VitC 81.4 79.4 77.3 78.6 70.2 70.0 62.1 71.3 70.9

Table 11: Accuracy results for the different metrics on the TRUE test set. Thresholds were tuned on the corre-
sponding development sets. We exclude VitaminC from the average calculation as SCZS was trained on VitaminC.
The highest score in each row (excluding the Ensemble) is in bold and the aforementioned SC results are in
strikethrough.
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