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Neurons in auto-regressive language models like GPT-2 can be interpreted by an-
alyzing their activation patterns. Recent studies have shown that techniques such
as dictionary learning, a form of post-hoc sparse coding, enhance this neuron-level
interpretability. In our research, we are driven by the goal to fundamentally im-
prove neural network interpretability by embedding sparse coding directly within
the model architecture, rather than applying it as an afterthought. In our study,
we introduce a white-box transformer-like architecture named Coding RAte Trans-
formEr (crate), explicitly engineered to capture sparse, low-dimensional struc-
tures within data distributions. Our comprehensive experiments showcase sig-
nificant improvements (up to 103% relative improvement) in neuron-level inter-
pretability across a variety of evaluation metrics. Detailed investigations confirm
that this enhanced interpretability is steady across different layers irrespective of
the model size, underlining crate’s robust performance in enhancing neural net-
work interpretability. Further analysis shows that crate’s increased interpretability
comes from its enhanced ability to consistently anddistinctively activate on relevant
tokens. These findings point towards a promising direction for creating white-box
foundation models that excel in neuron-level interpretation.

1. Introduction
Representation learning aims to learn a continuous mapping, to transform a random vector in a high
dimensional space that is sampled from a dataset, to a feature vector in another (typically lower-
dimensional) space [1]. Recently, deep learning has witnessed tremendous empirical success in
modeling massive amounts of high-dimensional data, and the predominant practice has been to
learn first a task-agnostic representation by pre-training a large neural network, which is commonly
known as the foundation model [2, 3]. Among language foundation models, the transformers archi-
tecture [4] with Generative Pre-Training [3] (GPT) has recently demonstrated a strong capability
of modeling sequential data and thus predicting subsequent tokens [5, 6]. Such strong capability
has emerged significant success in downstream applications [7, 8], yet the large neural network is
known to be black-box, where the representations in the model are not independently interpretable,
introducing difficulty in designing effective paradigms for major known challenges of (visual) lan-
guage models like hallucination [9, 10], bias [11, 12], and catastrophic forgetting [13, 14].

To interpret the functions of individual modules in the language models, mechanistic interpreta-
tion was proposed to reverse-engineer such models, through identifying meaningful patterns in
the data representations and computational mechanisms of the model components [15, 16]. Re-
cent studies on auto-regressive models like GPT-2 have delved into neuron-level interpretation, where
the focus is on understanding the activations within the model’s MLP layers [17]. This approach
helps to reveal the specific roles of individual neurons, which is crucial for precise model editing
and control [16, 18]. Recent research has also proposed that sparse auto-encoder (SAE)-based dic-
tionary learning effectively promotes mono-semanticity of neurons, thus enhancing neuron-level
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1. We have obtained the three-dimensional 
AdS Carroll CS supergravity action by applying 
the method of [@Concha:2016zdb].
2. Onchidium buetschliiStantschinsky, 1907:
383--386, pl. 12, figs 10--12, pl. 13, figs 20a,
20b, 22, 35; [@B7]: 316 (as Oncidium
buetschlii)
3. from the premises stated the
conclusion may be evident to a jurist, to the 
layman it is perplexing

References to specific dates and locations, such as years, 
cities, or other geographical features. 
Score: 31.4

Instructions for creating or modifying code, such as 
comments, function definitions, and template generation. 
Score: 41.0

1. If you build the list from scratch, simply keep
the smallest item yet in an external variable,
so that the answer will be given in O(1).
2. Serializes the sortable's item ids into a form/ 
ajax submittable string. Calling this method
produces a hash that can be appended to any
url.
3. Subjects {#sec2dot2-animals-09 A total of 50
dogs were involved in the study: 20 males (

Sentences related to liquid pumping systems, specifically in 
the context of refrigeration or cooling, and pressures involved. 
Score: 50.2

1: A second conduit means couples, the outlet
of the pump means to an inlet to the expansion
valve to transmit a first portion of the
condensed liquid
2: pressure and boosting the second pressure of
the condensed liquid refrigerant by a
substantially constant increment of pressure
3. Hoffmann's description of *O. keiense* is 
consistent with *Wallaconchis ater*, except for 
the description

Phrases related to statistical analysis and experiment
design, including methods like shrinkage estimation. 
Score: 36.1

1. Additionally, using a criterion from the 
statistical experiment design, we adopt an
adaptive sample selection, together with an
adaptive shrinkage estimation method, to 
simultaneously accelerate the estimation
procedure.
2. We solve these algebraic equations
numerically by a systematic truncation
method.
3. PersonArr.push(person, person2, person3);

Sentences discussing the experience or review of a 
tabletop role-playing game, specifically Dungeons & Dragons. 
Score: 46.5

1. The publication of Dungeons & Dragons
Fourth Edition back in 2008 was highly
anticipated.
2. The Dungeons & Dragons Fourth Edition
Starter Set should have made the prospective
new player go "Wow!”.
3. Where appropriate, values are expressed as 
standard deviation (SD) or standard error of
mean (SEM) of at least triplicate experiments.
Statistical analyses were performed with

Stories about personal experiences, specifically about 
encounters with people and and seeking advice or help. 
Score: 22.5

1. I gain a great deal from objective feedback. A
couple years ago when I got my first negative 
review, I was devastated. I asked a very
successful writer friend of mine how he deals 
with critical reviews.
2. the first thing I knew about it was that I was 
being carried on the back of one of those fellow.
3. Ventriglia F (ed) Neural Modeling and Neural
Networks. Pergamon Press, Oxford Ermentrout
GB (2002)

Figure 1: Instances are systematically identified where the interpretability of crate (ours, row
1) outperforms GPT-2 (row 2). For each neuron (rounded box), we show two top activated text
excerpts (excerpt 1 and 2) and one randomly activated excerpt (excerpt 3). Results show that crate
consistently activates on and only on semantically relevant text excerpts (first two excerpts), leading
to more precise explanations predicted by agents like Mistral.

interpretability [19]. However, as a post-hoc method, sparse auto-encoders introduce non-negative
reconstruction loss, causing noise and reducing fidelity when interpreting neurons [19]. Recent
studies also highlight their scalability challenges, as neuron decomposition becomes difficult in
larger language models due to the vast number of directions [20–22].

Can we instead build sparsity directly into the language model? In this paper, we develop the
crate languagemodel, a GPT-2-size languagemodel that builds sparse coding into themodel with a
mathematically principledway. crate handles the problems introduced by sparse encoders at scale:
it (i) escapes the loss introduced in reconstructing the language model representations, enabling
loss-free steering, and (ii) escapes the unsteady process of training a sparse auto-encoder. To avoid
adding inconsistency into the language model, we develop on top of a mathematically principled
white-box model framework, named crate [23].1 After encoding the text tokens into numbers,
we apply language-domain-specific modifications to the original crate architecture and obtain the
token representations. The final representations are then used to predict the next token, while the
intermediate representations gets interpreted.

To this end, the main contribution of this work is to propose a causal language model architecture
based on the cratemodel framework that builds sparsity inherently, that achieves significantly bet-
ter neuron-level interpretability (up to 103% relative increase) than languagemodelswith theGPT-
2 architecture under a similar configuration. crate forms a family ofmodels from single-layermodel
up to a 12-layer configuration. Comparative qualitative analysis of neuron activations between crate
and GPT-2 is provided in Figure 1, alongside extensive quantitative evaluations demonstrating that
by explicitly integrating sparse coding into the language model, crate achieves markedly improved inter-
pretability across layers compared to GPT-2, applicable across a wide range of model sizes under a variety of
evaluation metrics.

1In the remaining parts of the paper, we use “crate" or “crate language model" to refer to our language
model architecture, while “original crate" denotes the architecture framework described in the literature.
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2. Related Work

Neuron-level interpretation. Recent studies have provided insights into how auto-regressive mod-
els like GPT-2 work at the level of individual neurons, named neuron-level interpretation. These stud-
ies focus on analyzing activations, which are the outputs from the activation functions within the
model’s multi-layer perceptron (MLP) blocks [17]. Neuron-level interpretation is crucial to under-
standing the mechanisms in a model, including what concepts are learned in the neurons of the
network, whether specific neurons are learning particular concepts, and how localized/distributed
and redundantly the knowledge is preserved within neurons of the network.

A higher neuron-level interpretability indicates that more neurons are interpretable or neurons are
more interpretable [24]. As interpretations of the neurons can help localize the knowledge ob-
tained in a neural network, neuron-level interpretation can be used for editing the knowledge in
models [16, 18], model pruning and distillation [25], adapting the model to different domains and
steering the output [26, 27], and debuggingmodel errors [28]. Improved neuron-level interpretabil-
ity increases reliability and performance in the applications above.

Sparse auto-encoders. To enhance interpretability, post-hoc sparse coding methods like dictionary
learning [29] are used, but these techniques result in imperfect reconstructions and thus always
introduces loss when steering themodel [19, 30]. Literature also indicates that sparse-autoencoders
are hard to scale, i.e., a dramatic drop in the number of interpretable features can be observed when
the model being interpreted becomes deeper [20]. Additionally, tuning SAE models for larger L
values involves extensive hyperparameter tuning and time-consuming training, requiring multiple
metrics (reconstruction rate, L1 loss, number of dead neurons) for reliable judgment, which can’t
be easily optimized with automatic engineering tricks [19].

Evaluation of neuron-level interpretability. Metrics now exist to evaluate neuron-level inter-
pretability in language models, examing if neurons trigger on relevant tokens in given con-
texts [19, 31]. Recent works have demonstrated that a small number of circuits in language models
are interpretable [32, 33], but comprehending each neuron, out of millions, is vital for thorough
model safety audits. Given the prohibitive cost of human evaluation on such a scale, OpenAI in-
troduced an automated metric using large language models for interpretability assessment [31],
which Anthropic later refined for sparse activations [19]. These methods align closely with human
judgment and have gained broad acceptancewithin the research community [34–37]. Thesemetrics
show that neuron-level interpretability in auto-regressivemodels is limited [24], where the popular
hypothesis is that neurons are superpositions of simpler semantics, whichmakes them fire (produce
a high activation) at multiple semantically distinct sets of tokens [38]. Metrics mentioned above are
what we use in this work.

White-box models and structured representation learning. In the domain of structured repre-
sentation learning, white-box models stand out for their ability to generate explicit, structured data
representations that adhere to specific, desirable configurations such as sparsity and piece-wise lin-
earity, as discussed by Gregor and LeCun [39] and Chan et al. [40]. Within this framework, Yu
et al. [23] introduced an innovative approach to constructing deep networks based on unrolled op-
timization. Specifically, Yu et al. [23] proposed the crate foundation model framework, utilizing an
information-theoretic objective aimed at promoting the compression and sparsity of data towards a
predefined statistical structure. Recently, empirical experiments suggest that the white-box design
of crate inherently develops segmentation capabilities from the data representations at both holistic
and component levels with supervised training in the vision domain [41], which directly motivates
us to further explore the data representations within such architecture for language models. Recent
work has also shown that the crate framework is scalable: it can be effectively scaled up to com-
parable performance as Vision Transformer (ViT) with careful engineering [42]. Furthermore, the
fine-tuning performance of the pretrained cratemodel is also proven to be comparable in both the
language domain [23] and vision domain [42].
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Figure 2: Block architecture for the crate language model, where Sλ(x) = ReLU(x − η · λ · 1).
Differences from the original architecture mentioned in Yu et al. [23] are marked bold: we (i) add
a causal mask Mask(·) and (ii) over-parameterize the ISTA block.

3. The CRATE Language Model
This section introduces the difference between our work and the original crate paper [23], thus
introducing what changes we made to the crate architecture.

First, we note that the task in this work is different: we apply the crate architecture to the next-token
prediction task in the language domain, while the original crate paper applies the architecture to
the image classification task in the vision domain. This difference immediately leads to differences
when designing the model architecture: (i) we apply a causal mask to the original crate model to
avoid the model seeing tokens after the current token, and (ii)we change the embedding layer and
heads of the original crate model to fit the language vocabulary.

Second, we’re interested in interpreting the neurons within crate on the next-token prediction task
and making direct comparisons to the GPT-2 model architecture. As neuron-level interpretation is
commonly evaluated on the hidden states in the MLP block of the GPT-2 model [19, 31], (iii) we
over-parameterize (increase the hidden dimension of) the ISTA block of the original crate model to
align with the hidden dimension of the MLP block of the GPT-2 model.

Below we show specific definitions of the modifications we made. We illustrate the architecture
in Figure 2, and show implementation details in Appendix B.

Embedding and Head. In order to apply the crate architecture to the language domain, we define
the pre-processing layer fpre that transforms language tokens into position-aware semantic embed-
dings, and define post-processing head fhead(Z) thatmaps the final representations to output token
distributions in the vocabulary space:

fpre(X) = Esem(X) +Epos, fhead(Z) = W headZ, (1)

where Esem is a semantic embedding matrix that maps input tokens xi to embedding vectors in
Rd, Epos ∈ Rd×N is a positional embedding matrix, and W head ∈ RV×d maps the (contextualized)
token representations ZL+1 to the distribution of the next token. All parameters mentioned above
are learnable.
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Figure 3: crate iteratively compresses (MSSA block) and sparsifies (ISTA block) the token represen-
tations (colored points) across its layers from 1 to L, transforming them into parsimonious represen-
tations aligned on axes (colored lines) with distinct semantic meanings.

MSSABlock. To alignwith the nextwordprediction task used inGPT-2 [3], we replace the attention
matrix in MSSA (Equation (7)) with a causally masked self-attention, defined as

softmax ((U∗
kZ)∗(U∗

kZ)) → softmax (CausalMask((U∗
kZ)∗(U∗

kZ))) ,

where CausalMask(M)ij =

{
Mij , i ≤ j

−∞, i > j.

(2)

ISTABlock. To investigate the neuron interpretability of the activationmatrixA ∈ Rh×N , we design
an overcomplete version of the original ISTA block (Equation (9)) withDℓ ∈ Rd×h where h = nd, and
n = 4 to keep a fair comparison to the GPT-2 [3] and standard transformer architecture Vaswani
et al. [4]):

At
.
= ISTA(Zℓ+1/2 | Dℓ),

Ak = ReLU(Ak−1 − η(Dℓ)∗(DℓAk−1 −Z)− η · λ · 1), A0 = 0, k ∈ [t],

Zℓ+1 = DℓAt,

(3)

where η > 0 is the step size, λ > 0 is the sparsification regularizer, and t is the number of ISTA
iterations. In practice, we set t = 2 to keep computation efficient. The ISTA block resembles the
MLP block in the GPT-2 model, but with a relocated skip connection.

Token Processing. The desired token processing procedure is illustrated in Figure 3. The process
startswith random token representations (Z1). Through successive layers, the representations (Zℓ)
are compressed to align with the axis via the MSSA block, forming Zℓ+1/2 that are semantically more
consistent among relevant tokens. This is then refined by sparse coding (the ISTA block) to produce
the representations Zℓ+1 that align on incoherent axes, leading to semantically more specified to-
ken representations. Repeated across layers, this culminates in distinct token representations ZL+1

aligned on unique semantic axes. More detailed explanation of this optimization process can be
found in Appendix B.4.

4. Empirical Experiments
We examine the next token prediction performance and neuron interpretability of crate in this sec-
tion. We detail the architecture, size, pre-training recipe (Section 4.1), performance (Section 4.2),
and neuron-level interpretability (Section 4.3) of crate compared to the standard transformer ar-
chitecture. In this section, we denoteK as the number of attention heads, d as the dimension of the
residual stream in the model, and h as the hidden (inner) dimension of the ISTA or MLP module.

4.1. Setup
Model architecture and size. The crate model is designed with various sizes L ∈ {1, 2, 3, 6, 12},
where each size matches the GPT-2 configurations for direct comparisons, as shown in Section 4.1.
Configurations for L ∈ {1, 2, 3} adhere to GPT-2 models as per Bricken et al. [19], while L ∈ {6, 12}
follow configurations from Sanh et al. [43] and Radford et al. [3], respectively. Notably, cratemain-
tains approximately 2/3 the size of GPT-2 at scale. Both models utilize the Byte-level BPE tokenizer
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with a vocabulary size of 50,257, following Radford et al. [3]. We explain the parameter size differ-
ence between crate and GPT-2 in Appendix B.1.

Model Config d K L h CRATE GPT-2
1L 128 4 1 512 6.54M 6.64M
2L 128 4 2 512 6.64M 6.83M
3L 128 4 3 512 6.74M 7.03M
S(mall) 768 12 6 3,072 55.9M 81.1M
B(ase) 768 12 12 3,072 81.2M 123.6M

Table 1: Model configuration of crate and model size comparison to GPT-2.

Datasets and optimization. We pre-train both models on the next token prediction task using the
uncopyrighted Pile dataset [44] and the Adam optimizer [45]. Following Bricken et al. [19], we
pre-train both crate and GPT-2 of smaller sizes (L ∈ {1, 2, 3}) on 100 billion tokens with a context
window of 1,024 tokens. Following the pre-training setup in Karpathy [46] and scaling law in Tou-
vron et al. [47], we pre-train using 100 billion tokens for the Small models, and 160 billion tokens for
the Base models.2 It takes about 4 days to pre-train crate-Base on 160 billion tokens with 32 A5000
GPUs.

4.2. Performance
This section demonstrates that crate, despite not outperforming GPT-2, still generates reasonable
predictions, as evidenced through quantitative and qualitative comparisons.

We observe that both training and validation loss curve of crate-Base on the Pile dataset converges
well, as presented in Figure 4 (left). Although the convergence is slower thanGPT-2, the loss curve of
crate keeps decreasing after training on 160 billion tokens, while GPT-2 already tends to converge.

We also demonstrate the zero-shot validation loss curve of crate evaluated on OpenWebText as
well as other datasets [3] in Figure 4 (right). Results show that crate effectively learns transferable
representations across a number of datasets, and achieves comparable performance to GPT-2 after
full training on the 160 billion tokens. We also demonstrate the scalability of the crate architecture
by comparing the validation loss of crate andGPT-2with respect to themodel size in Figure 5 (left).
Results show that the performance of crate is close to GPT-2 across all model sizes. However, we
do recognize that forcing sparsification in a model potentially leads to a higher compute cost on the
next-token-prediction objective, which aligns with observations in Bricken et al. [19] that enabling
monosemanticity might hurt model performance. Analysis on the sparsity of crate and GPT-2 can be
found in Appendix D.

Qualitative examples from crate and GPT-2 are demonstrated in Figure 5 (right). We conclude
that crate can make reasonable predictions, encouraging us to further look into its neuron-level
interpretability.

4.3. Interpretability
In order to quantitatively evaluate the interpretability of the neuron activations, we adopt the large
language model-based algorithm introduced in Bills et al. [31] and Bricken et al. [19], as demon-
strated inAlgorithm 1. We retrieve the sparse codeAt (activations after theReLU unlinearlity in the
ISTA block) of crate for interpretation, and compare to activations from the MLP block of GPT-2.

In practice, we adopt three evaluation metrics: two from OpenAI (top-and-random and random-
only) [31] and one from Anthropic [19]. We adopt the official implementation from Wu et al. [48],
where details on the implementation are elaborated in Appendix C. Note that the Anthropic metric
has much shorter text excerpts than the OpenAI metrics, so it is biased to sparse activations. For
all evaluations, we discard the last layer of crate and GPT-2, according to the empirical observation
that the last layer of crate is biased to the pre-training task [41].

2Practicaly, we train with a batch size of 768 for 125,000 iterations for L ∈ {1, 2, 3, 6}, and a batch size of 256
for 600,000 iterations for L = 12.
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Figure 4: Left: loss curve when pre-training crate-Base and GPT2-Base on the Pile dataset. Right: zero-shot
validation loss of crate evaluated on a variety of datasets (Pile, LAMBADA, OpenWebText and WikiText).
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Figure 5: Left: Validation loss of crate compared to GPT-2 on the Pile dataset, with respect to the model size.
Right: Qualitative examples of predictions made by crate and GPT-2. The tokens in blue are considered good.
We compare crate-Base to GPT2-Base on the next word prediction task.

CRATE achievesmarkedly improved andmore steady neuron-level interpretability across layers
compared to GPT-2, applicable across a wide range of model sizes. We show evaluation results
of the interpretability of crate and GPT-2 averaged across layers in Table 2 (left). We observe that
the interpretability of crate comprehensively outperforms GPT-2 on all metrics for L ∈ {2, 3, 6, 12}.
When averaging the mean interpretability across all metrics, crate outperforms GPT-2 up to strik-
ingly 103% relative improvement under the OpenAI Random-only metric when L = 6. We also
present the layer-wise interpretation scores in Figure 6, which demonstrates that crate achieves
higher interpretability than GPT-2 on almost all layers. For detailed distributions of the layer-wise
scores of crate-Base compared to GPT2-Base on different metrics, refer to Appendix E.

Algorithm 1 Interpretability Evaluation Algorithm [31]

1: Inputs: Input token set S (in text form) and its activation matrix A ∈ Rh×T×B at ℓ-th layer,
where T is the length of a single text excerpt, andB is the number of text excerpts in the corpus.

2: Models: Explanation model F1 , simulation model F2.
3: for i ∈ [d] do
4: S′ ∼ S,A′ ∈ Rh×T×b ∼ A : Retrieve b text excerpts of T tokens, together with the corre-

sponding activation matrices.
5: ki = F1(S

′,A′
i,∗) : Explain common patterns in the retrieved activations of i-th neuron.

6: Ã′
i,∗ = F2(ki,S

′) :Use the explanation to simulate scores given only the tokens, not including
true activations.

7: ρi = ρ(A′
i,∗, Ã

′
i,∗) : Calculate correlation between the accurate and simulated activations.

8: end for
9: Output: Averaged interpretation score over all neurons ρ = Ei∈[d](ρi).
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Mean (↑, darker green means more interpretable) Variance (↓, darker red means less steady)
Top-and-Random Random-only Anthropic Top-and-Random Random-only Anthropic
crate GPT-2 crate GPT-2 crate GPT-2 crate GPT-2 crate GPT-2 crate GPT-2

1L 3.9 8.8 4.8 8.9 10.1 14.2 0.0 0.0 0.0 0.0 0.0 0.0

2L 8.05 4.2 6.95 1.95 11.35 10.2 0.06 0.01 1.1 0.12 0.0 0.25

3L 9.1 3.57 8.43 1.37 11.23 9.2 0.26 7.51 1.2 1.93 1.14 19.21

6L 7.96 5.4 6.36 3.14 10.4 8.52 2.29 20.85 1.87 18.39 2.01 32.56

12L 6.8 6.34 5.12 2.67 8.88 8.65 7.09 11.35 2.83 7.48 18.3 24.65

Table 2: Mean and variance of the average interpretability across layers for different model sizes.
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Figure 6: Interpretation scores evaluated using the OpenAI Random-only metric, Top-and-Random metric,
and Anthropic metric, respectively. Top: interpretation scores of crate and GPT-2 for L = 12. Middle: inter-
pretation scores of crate and GPT-2 for L = 6. Bottom: interpretation scores of crate, GPT-2, and GPT-2 with
sparse auto-encoder for L ∈ {1, 2, 3}. Variance bars are normalized to 1/10 of its original size.

The variances of the average interpretation scores of crate and GPT-2 across layers are shown in Ta-
ble 2 (right). From the results we draw a solid conclusion that the interpretability of crate is much
more steady than GPT-2 across all model sizes. Figure 6 further demonstrates a clear pattern that,
for all model sizes, cratemaintains a higher interpretability than GPT-2 among almost all layers.

The built-in sparse coding approach introduces consistent and specific neuron-level behaviors.
The strong interpretability of crate on theOpenAI Top-and-Randommetric and theAnthropicmet-
ric, as shown in Figure 6, indicates its consistent behavior on relevant tokens. These two methods
contain a large portion of top-activated text excerpts, so they are valid for measuring whether the
activations are consistent with the summarized explanation [19, 31]. Additionally, the larger inter-
pretability gap of crate andGPT-2 on theOpenAI Random-onlymetric versus the Top-and-Random
metric highlights the specificity of crate in avoiding firing on irrelevant tokens. The random-only
metric usually includes highly irrelevant text excerpts, so it effectively measures the capability of
the language model to avoid activating on semantically irrelevant tokens [31].
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Qualitatively, we refer back to the interpretation examples shown in Figure 1. In this figure, we list
three neurons from crate (row 1) and GPT-2 (row 2), respectively. For each neuron, we show two
top-activated text excerpts and one random excerpt. Results show that crate is able to consistently
activate on sementically similar tokens within the most relevant text excerpts, and does not activate
on random tokens that are semantically distinguished from the top tokens. This promotes a more
precise explanation given by the explanationmodel (Mistral in the figure). On the other hand, GPT-
2 is muchworse at distinguishing tokens from different contexts, because it also has high activations
on random text excerpts where the semantic meanings deviate far from the top activations.

Comparing CRATE to GPT-2 with post-hoc sparse auto-encoders. We follow Bricken et al. [19]
and train SAEs for models with layers L ∈ {1, 2, 3}, using output activations from GPT-2 on the
Pile dataset’s training split, leading to the GPT2-SAE model. Details on the SAEs’ architecture and
training are in Appendix F.

The interpretability scores of GPT2-SAE compared to crate and GPT-2, as depicted in Figure 6, re-
veal that under the long-context OpenAI metrics, GPT2-SAEmatches GPT-2 but falls short of crate.
This is attributed to its neuron activations becoming nearly 99% sparse after sparse auto-encoding,
diminishing interpretability in long contexts. Conversely, under the Anthropic metric, GPT2-SAE
surpasses both GPT-2 and crate in interpretability, corroborating findings in Bricken et al. [19]
that post-hoc approaches enhance short-context interpretability, often a sign of mono-semanticity.
However, the interpretability of GPT2-SAE on the Anthropic metric decreases significantly when ℓ
increases, while crate remains steady, introducing concern in scalability. Further qualitative com-
parisons are can be found in Appendix G.

Besides its good performance on the Anthropic metric, the post-hoc dictionary learning approach
requires considerable manual effort. To get a taste, training a sparse auto-encoder for a single GPT-2
layer takes 4 hours when h = 512 and a day when h = 3072 on an A100 GPU.

OpenAI TaR Anthropic

ρ(crate-sae) - ρ(crate) -10.2 +34.8
ρ(gpt2-sae) - ρ(gpt-2) +6.5 +38.1
Table 3: Interpretability improvement of crate and GPT-2 after
applying SAE. Results are obtained by subtracting the interpretation
scores of the language model and the SAE model trained on that lan-
guage model.

Does crate have more optimal
representation than GPT-2 in
terms of interpretability? Al-
ternatively, we train SAE models
upon the crate model, denoted
crate-sae, and compare the in-
terpretability improvement of
crate-sae over crate to the in-
terpretability improvement of
GPT2-SAE over GPT-2. As shown in Table 3, the improvement of interpretability of crate-sae
over crate is smaller than GPT2-SAE over GPT-2 under both OpenAI and Anthropic metrics.
This suggests that crate has more optimal representations than GPT-2 in terms of interpretability.
Experimental details can be found in Appendix F.5.

Steering the CRATE model. Following Bricken et al. [19], we manually activate some neurons
and observe the logit effects (changes of the token probability of the language model head). Some
qualitative examples are shown in Figure 7. Compared to the lossy steering of the SAEmodels, crate
can be steeredwithout loss. Discussions on the lossy steering process can be found in Appendix F.6.

4.4. Ablation Study: Disentangling Interpretability from Other Factors

Despite the superior interpretability of crate, we’re interested inwhether this interpretability comes
from some side factors. Specifically, we’re interested in (i) whether it’s due to the worse perfor-
mance of crate and (ii)whether it’s because crate has less parameters.

Is the improved interpretability due to performance gap? We first investigate whether the inter-
pretability improvement is due to worse performance by comparing the interpretability of two dif-
ferent checkpoints of crate (intermediate checkpoint and full checkpoint). Results in Table 4 show
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1 2 3 4 5

CRATE-1L, Layer 0 CRATE-2L, Layer 1

“3”, “1”, “2”, “4”, “5”

“-itely”, “-inately”, “-ically”

No Intervention

+ adverbs (2)

+ whitespaces (12) “\t”,  “   ”, “===”

+ citations (24)

+ sequences (36)

“])”, “.;”, “],”

“-----”, “=====”

+ capital (41) “ETHOD”, “JECT”, “LGBT”

1 2 3 4 5 “3”, “1”, “2”, “4”, “5”

“+=”, “=”, “-+”, “=-”

No Intervention

+ tablemakers (13)

+ names (40) “-abeth”,  “Mrs”, “Dianne”, “McK”

+ hex numbers (47)

+ sequences (53)

“\x00”, “00007”, “ffff”

“---------”, “========”

Figure 7: Qualitative examples on logit effects of manually activating feature (i) in crate. Text shown on
the right side are the most positive changes in token prediction probability. The logit effects align with feature
interpretations.

that the interpretability of the intermediate checkpoint is lower than the full checkpoint, which sug-
gests that “sacrificing” performance does not necessarily introduce better interpretation scores.

Checkpoint Loss 0 1 2 3 4 5 6 7 8 9 10 Avg

79B Tokens 2.38 13.9 8.3 6.5 6.0 4.3 6.7 5.1 4.6 3.7 5.2 8.0 6.6
158B Tokens 2.29 13.6 8.2 6.7 5.4 5.0 7.2 5.1 5.1 3.6 5.5 9.4 6.8

Table 4: Validation loss and interpretability of the cratemodel at different checkpoints. The interpretation
scores are measured under the OpenAI TaR metric.

Another piece of evidence is that crate-2L has higher interpretability scores than crate-1L. As
shown in Figure 5 (left), crate-2L has much better performance than crate-1L on the next-token
prediction task. On the other hand, as shown in Table 2, the interpretability of crate-2L is also
much higher than crate-1L. Thus, a lower performance does not necessarily introduce higher inter-
pretability.

Is the interpretability gap due to number of parameters? We observe that crate-Base (81.2M)
has a similar number of parameters as GPT2-Small (81.1M). However, results in Table 2 indicate
that the interpretability of crate-Base is higher than GPT2-Small on all metrics, and their layer-wise
interpretation scores are also different in Figure 6. This evidence suggests that two models with
similar number of parameters does not necessarily have similar interpretability.

Another piece of evidence is that the interpretability of crate/GPT2-1L all the way up to
crate/GPT2-12L does not have a consistent trend of increasing/decreasing interpretability, but their
number of parameters both monotonously increases. This indicates that a model with larger num-
ber of parameters does not necessarily has better/worse interpretability.

5. Conclusion, Limitation, and Future Work
In this paper, we demonstrated that replacing the standard transformer architecture with the white-
box model crate as a foundational architecture significantly improves the interpretability. Our em-
pirical findings on the capability of crate to be consistent and distinctive on the neuron-level activa-
tions underscore the importance of the white-box design in developing better language foundation
models, fostering optimism that the introduction of built-in sparse coding approaches will catalyze
further advancements in neuron-level interpretations.

Despite these findings, we acknowledge that the performance of crate is not as good as GPT-2 on
the next-token prediction task, which is potentially due to the introduction of the ISTA operator that
introduces sparsity. This aligns with previous work suggesting that the performance might drop
when explicitly introducing sparsity [19]. Future work should investigate towards a better trade-off
between performance and interpretability of language models with built-in sparsity. It would also
be meaningful to research on more qualitative mechanisms in the white-box language model and
how to use these mechanisms for downstream edits.
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A. Preliminaries on the CRATE Architecture

This section introduces the original crate architecture introduced in Yu et al. [23].

Notations. In this paper, we denote the one-hot input tokens by X = [x1, . . . ,xN ] ∈ RV×N ,
where xi ∈ RV×1 represents the i-th one-hot token, N is the total number of input tokens, and
V is the vocabulary size. We use f ∈ F : RV×N → Rd×N to denote the mapping induced by
the model, which is a composition of L + 1 operators (layers) f = fL ◦ · · · f ℓ ◦ · · · f1 ◦ fpre,
where f ℓ : Rd×N → Rd×N (1 ≤ ℓ ≤ L) represents the mapping of the ℓ-th operator, and
fpre : X ∈ RV×N → Z1 ∈ Rd×N represents the pre-processing layer that transforms the one-
hot token representations X = [x1, . . . ,xN ] to semantic embeddings Z1 = [z1

1 , . . . ,z
1
N ]. We let Zℓ

denote the input token representations of the ℓ-th operator f ℓ for 1 ≤ ℓ ≤ L, so that zℓ
i ∈ Rd denotes

the representation of the i-th token xi before the ℓ-th layer. We denote Z = ZL+1 as the output
token representations of the last (L-th) layer.

Framework, objective, and optimization. The transformation of input data into parsimonious
(piecewise linearized and compact) representations is accomplished by adopting a local signal
model for the marginal distribution of the tokens zi. This statement suggests that the tokens can be
approximately considered to occupy a union of several (identified as K) low-dimensional spaces,
each with a dimension p ≪ d. These spaces are characterized by orthonormal bases, represented as
U[K] = (Uk)

K
k=1 where Uk ∈ Rd×p. Within the framework of this local signal model, crate aims to

optimize the sparse rate raduction objective:

max
f∈F

EZ

[
∆R(Z | U[K])− λ∥Z∥0

]
= max

f∈F
EZ

[
R(Z)− λ∥Z∥0 −Rc(Z;U[K])

]
. (4)

where λ is the sparsification regularizer and Z = f(X). The coding rate R(Z) serves as a close
estimate (followingMa et al. [49]) for the average amount of bits necessary for encoding the tokens
zi to a precision level ε using a Gaussian codebook. Additionally, Rc(Z | U[K]) represents the
theoreticalmaximumaverage amount of bits needed to encode the projection of the tokens onto each
low dimensional subspace defined in the local signal model, specificallyU∗

kzi, to the same precision
level ε utilizing a Gaussian codebook, as outlined by Yu et al. [23]. If the subspaces are adequately
incoherent from each other, the solutions that minimize the object function, viz. Equation (4), in
terms of Z, are associated with subspace configurations that are both incoherent and aligned with
the axes, as pointed out by Yu et al. [50].

A network aimed at optimizing the sparse coding rate reduction objective through unrolled opti-
mization gradually shifts the distribution of X towards the intended canonical forms, where each
iteration of the unrolled optimization process acts as a layer:

f : X
fpre

−−−−→ Z1 → · · · → Zℓ fℓ

−−→ Zℓ+1 → · · · → ZL+1 = Z. (5)

The iterative optimization framework incorporates multiple design choices, among which is a two-
step alternating minimization approach grounded in robust theoretical principles [23]. This ap-
proach delineates two distinct blocks: the MSSA and the ISTA block, collectively defining a single
crate layer:

Zℓ+1/2 .
= Zℓ + MSSA(Zℓ | U ℓ

[K]), f ℓ(Zℓ) = Zℓ+1 .
= ISTA(Zℓ+1/2 | Dℓ). (6)

Compression operator: Multi-Head Subspace Self-Attention (MSSA). Given local models U ℓ
[K],

to form the incremental transformation f ℓ optimizing Equation (4) at layer ℓ, crate first compresses
the token set Zℓ against the subspaces by minimizing the coding rate Rc( · | U ℓ

[K]). As Yu et al.
[23] show, doing this minimization locally by performing a step of gradient descent onRc( · | U ℓ

[K])

leads to the so-called multi-head subspace self-attention (MSSA) operation, defined as
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MSSA(Z | U[K])
.
=

p

(N + 1)ε2
[U1, . . . ,UK ]

 (U∗
1Z) softmax ((U∗

1Z)∗(U∗
1Z))

...
(U∗

KZ) softmax ((U∗
KZ)∗(U∗

KZ))

 , (7)

In practice, the calculation of the intermediate representationsZℓ+1/2 with the output from the MSSA
block is calculated in a weighted form:

Zℓ+1/2 ≈
(
1− κ · p

(N + 1)ε2

)
Zℓ + κ · p

(N + 1)ε2
· MSSA(Zℓ | U[K]), (8)

where κ > 0 is a learning rate hyperparameter. This block resembles to themulti-head self-attention
block of the GPT-2 model, but the query, key, and value projection matrices within a single head are
all identical in the MSSA block.

Sparsification operator: Iterative Shrinkage-Thresholding Algorithm (ISTA). The remaining
term to optimize in Equation (4) is the difference of the global coding rate R(Z) and the ℓ0 norm of
the tokens, which together encourage the representations to be both sparse and non-collapsed. Yu
et al. [23] show that local minimization of this objective in a neighborhood of the intermediate rep-
resentations Zℓ+1/2 is approximately achieved by a LASSO problem with respect to a sparsifying
orthogonal dictionary Dℓ ∈ Rd×h. Taking an iterative step towards solving this LASSO problem
gives the iterative shrinkage-thresholding algorithm (ISTA) block [23, 51]. The ReLU non-linearity
appearing in this block arises from an additional non-negativity constraint on the representations
in the LASSO program, motivated by the goal of better separating distinct modes of variability in
the token distribution:

Zℓ+1 = f ℓ(Zℓ) = ReLU(Zℓ+1/2 + ηDℓ∗(Zℓ+1/2 −DℓZℓ+1/2)− ηλ1)
.
= ISTA(Zℓ+1/2 | Dℓ). (9)

B. Details on the CRATE Architecture

B.1. Parameter Size of crate and GPT-2

crate is smaller than GPT-2 because of the architecture difference. The vanilla GPT-2 architecture
has two main parameterized blocks: Attention block and MLP block.

Parameter size of the MSSA Block. In crate, the MSSA block resembles the Attention block, but
instead of K,Q, Vmatrices, we only have onematrix. Therefore, compared to standard transformers,
crate uses 1/3 of the parameters for the multi-head attention part.

Parameter size of the ISTA block. The MLP block in vanilla GPT-2 has one parametric matrix that
transforms the input representations to the inner space (usually 4x larger), and another parametric
matrix that transforms the inner representations back to the output space (as large as the input
space). In crate, the MLP block is replaced by the overcomplete ISTA block, which transforms
the input representation to the overcomplete basis (4× larger) and transforms back with the same
parametric matrix. Therefore, compared to standard transformers, crate uses 1/2 of the parameters
for the MLP part.

B.2. Causal MSSA Block

This process can be implemented by PyTorch-like code shown in Algorithm 2.
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Algorithm 2 PyTorch-Like Code for Causal MSSA Forward Pass

1 class CausalMSSA(nn.Module):
2 def __init__(self, config):
3 super().__init__()
4 assert config.n_embd % config.n_head == 0
5 self.c_attn = nn.Linear(config.n_embd, config.n_embd, bias=False)
6 self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=True)
7 self.attn_dropout = nn.Dropout(config.dropout)
8 self.resid_dropout = nn.Dropout(config.dropout)
9 self.n_head = config.n_head

10 self.n_embd = config.n_embd
11 self.dropout = config.dropout
12 self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)

).view(1, 1, config.block_size, config.block_size)) # causal mask
13
14 def forward(self, x, enhanced_feature_id=None):
15 B, T, C = x.size()
16 qkv = qkv.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
17 att = (qkv @ qkv.transpose(-2, -1)) * (1.0 / math.sqrt(qkv.size(-1)))
18 att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
19 att = F.softmax(att, dim=-1)
20 att = self.attn_dropout(att)
21 y = att @ qkv
22 y = y.transpose(1, 2).contiguous().view(B, T, C)
23 y = self.resid_dropout(self.c_proj(y))
24 return y

B.3. Overcomplete ISTA Block

To give a better idea of how Equation (3) works, we expand the two-iteration process (t = 2). Given
Dℓ ∈ Rd×h, we expand the first ISTA step to

A0 = 0,

A1 = Sλ

(
A0 − η · (Dℓ)∗(DℓA0 − LN(Zℓ+1/2))

)
= ReLU

(
η · (Dℓ)∗LN(Zℓ+1/2)− ηλ

)
.

(10)

The second ISTA step continues the process from the initialized sparse code A1:

A2 = Sλ

(
A1 − η · (Dℓ)∗(DℓA1 − LN(Zℓ+1/2))

)
= ReLU

(
A1 − η · (Dℓ)∗(DℓA1 − LN(Zℓ+1/2))− ηλ

)
,

(11)

which can be decomposed to:

G1 = (Dℓ)∗DℓA1

G2 = (Dℓ)∗ · LN(Zℓ+1/2)

G = η · (G2 −G1)− η · λ
A2 = ReLU(A1 +G)

(12)

whereA2 is the output sparse code. At last, we convert the output sparse code from the coding rate
space back to the original representation space:

Zℓ+1 = DℓA2 (13)
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This process can be implemented by PyTorch-like code shown in Algorithm 3.

Algorithm 3 PyTorch-Like Code for Over-complete ISTA Forward Pass

1 class ISTA(nn.Module):
2 def __init__(self, config):
3 super().__init__()
4 self.weight = nn.Parameter(torch.Tensor(4 * config.n_embd, config.n_embd)) # h*d
5 with torch.no_grad():
6 init.kaiming_uniform_(self.weight)
7 self.step_size = 0.1
8 self.lambd = 0.1
9

10 def forward(self, x, enhanced_feature_id=None):
11 z_init = F.relu(self.step_size * F.linear(x, self.weight, bias=None) - self.step_size *

self.lambd) # A1
12 x1 = F.linear(z_init, self.weight.t(), bias=None)
13 grad_1 = F.linear(x1, self.weight, bias=None)
14 grad_2 = F.linear(x, self.weight, bias=None)
15 grad_update = self.step_size * (grad_2 - grad_1) - self.step_size * self.lambd
16 output_sparse_code = F.relu(z_init + grad_update) # A2
17 output = F.linear(output_sparse_code, self.weight.t(), bias=None)
18 return output

B.4. Details of Processing Tokens

This section discusses the interpretation of Figure 3.

In Figure 3, what is the space the points are drawn in? The space is the representation space (of
layer ℓ). Because the model is pretrained with next-token prediction in the language domain, the
space is specifically a semantic space. Thus, each point (token) has a semantic representation in this
high-dimensional space.

How do the layouts of the points suggest mono or poly-semanticity? First, each axis (red/yellow)
in the figure represents a neuron/feature visualized in the semantic space. We visualized the acti-
vation matrix At in Figure 8. For example, when L ∈ {1, 2, 3}, the model dimension is 128, which
means that the overcomplete basis of ISTA will have a dimension of 512, introducing 512 features.
Now if we input a sequence of 256 tokens, the activation matrix will have a shape of [512, 256].
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Figure 8: Illustration of the concepts of the activation matrix and poly-semanticity.

Poly-semanticity means that token representations in the semantic space are clustered as a broader
set of semantic meanings, i.e., each neuron has a broader set of semantic meanings. For example, in
the gray box on the top left of Figure 3, both yellow- and red-backgrounded tokens represent either
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a number or a capitalized token. This corresponds to multiple high activations in the feature, where
the tokens that activated this feature can either be a number or a capitalized token, which is shown
in Figure 8 (where pink squares represent high activations).

In the compression phase, the token representations are pushed towards the semantic axes, so that
the tokens will activate on fewer features but will gain higher activations on these features, which
is essentially an activation condensing process. In the sparsification phase, the neurons (axes) are
made further from each other, meaning that the features have less semantic overlap with each other.
In this case, the results will become the gray box on the top right side of Figure 3, indicating that
each neuron has distinct semantic meanings, like “numbers" or “capitalized tokens". Note that this
is a minimal example. In practice, tokens appear in context.

C. Details on Interpretability Evaluations

This section details the implementation details of the interpretability evaluations. In practice, we
adopt three evaluation metrics: two from OpenAI [31] and one from Anthropic [19]. As the An-
thropic metric is a closed-source follow-up of OpenAI, we start from the official implementation
provided by OpenAI [48] for both metrics. For each layer, we use randomly sampled 8, 000 text
excerpts of 1, 024 tokens each, which sums up to 8M tokens in total, from the test split of the un-
copyrighted Pile dataset, to evaluate the interpretability scores.

C.1. Parameters of Evaluation Metrics

Comprehensive parameter settings are shown in Table 5. For the OpenAI metrics, each input text
excerpt contains 64 tokens. For the OpenAI top-and-random metric, we use 5 top activated excerpts
for explanation, and a mixture of 5 top activated and 5 randomly activated excerpts for simulation.
For the OpenAI random-only metric, we only use 5 randomly activated excerpts for simulation.

For the Anthropic metric, each text excerpt contains only 8 tokens. For the explanation model, we
input 15 top activated excerpts, 5 randomly activated excerpts, and 22 excerpts from different ac-
tivation quantiles. To elaborate, we evenly divide the activation range into 11 quantiles, where we
pick 2 excerpts from each of them. For the simulation model, we input 10 top activated excerpts,
5 randomly activated excerpts, 22 quantiled excerpts, and 10 top activated out-of-context (OOC)
excerpts. Our implementation of the OOC excerpts is to cut the input text excerpt into length of
only 3 tokens.

Table 5: Evaluation parameter settings of the OpenAI and Anthropic approach.
Explanation Simulation

#Token #Top #Rand #Qua #Top #Rand #Qua #OOC

OpenAI TaR 64 5 5 5
Rand 64 5 5

Anthropic 8 15 5 2 · 11 10 5 2 · 11 10

C.2. Discussion on Focus of Different Measures

The OpenAI random-onlymetric is the easiest to interpret. As noted by Bills et al. [31], the random-
only metric considers an explanation’s ability to capture the neuron’s representation of features in
the pre-training distribution, because the simulated tokens are uniformly randomly sampled from
the validation set of the pre-train dataset. However, the random-only scoring with small sample
size risks failing to capture behavior, due to lacking both tokens with high simulated activations
and tokens with high real activations. Top-and-random scoring addresses the latter, but causes us
to penalize falsely low simulations more than falsely high simulations, and thus tends to accept
overly broad explanations.
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Table 6: Interpretability measure of GPT-2, GPT2-SAE and crateon the Pile dataset based on the OpenAI
metrics. Explanation model: Mistral-7B-instruct/GPT-3.5-turbo. Simulation model: LLaMA-2-7B.

mistral-7b-instruct ρ (Random-only) (%, ↑) ρ (Top-and-Random) (%, ↑)
Model Size Loss Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

crate-1L 6.54M 4.06 4.8 - - 3.9 - -
crate-2L 6.64M 3.55 8.0 5.8 - 7.8 8.3 -
crate-3L 6.74M 3.46 9.0 9.4 6.9 9.6 9.3 8.4

GPT-1L 6.64M 3.83 8.9 - - 8.8 - -
GPT-2L 6.83M 3.23 2.3 1.6 - 4.3 4.1 -
GPT-3L 7.03M 3.11 3.1 −0.3 1.3 7.3 0.8 2.6

GPT-1L (16x SAE) 2.9 - - 5.4 - -
GPT-2L (16x SAE) 3.5 1.8 - 7.4 4.2 -
GPT-3L (16x SAE) 3.2 2.3 1.1 9.6 5.0 4.5

GPT-3.5-turbo ρ (Random-only) (%, ↑) ρ (Top-and-Random) (%, ↑)
Model Size Loss Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

crate-1L 6.54M 4.06 4.8 - - 3.9 - -
crate-2L 6.64M 3.55 8.2 6.0 - 7.5 8.0 -
crate-3L 6.74M 3.46 9.1 9.2 6.9 9.5 9.1 8.3

GPT-1L 6.64M 3.83 9.0 - - 9.0 - -
GPT-2L 6.83M 3.23 2.2 1.6 - 4.3 4.4 -
GPT-3L 7.03M 3.11 3.0 −0.3 1.2 7.0 3.1 3.0

GPT-1L (16x SAE) 2.6 - - 4.7 - -
GPT-2L (16x SAE) 3.4 1.6 - 5.0 2.9 -
GPT-3L (16x SAE) 2.8 1.8 1.2 7.4 3.8 3.2

The Anthropic metric, on the other hand, puts more focus on the mono-semanticity of the activa-
tions, as noted by Bricken et al. [19]. For sparse features, which don’t fire on most random samples,
evaluating across a wide range of activations effectively tests the model’s ability to distinguish a
feature’s large activations from zero, and the short text excerpts make it easier for the simulation
model to identify the sparse activations.

C.3. More Accessible Evaluation

To reduce compute cost, we use Mistral-7B-instruct as the explanation model, and LLaMA-2-7B as
the simulation model. We empirically prove that these replacements does not affect the conclusions
of apple-to-apple comparison between crate and GPT-2 below.

Explanation model. In the official implementation [48], the explanation model is gpt-4.
According to ablations described in Bills et al. [31], it also makes sense to use the sligtly
cheaper model gpt-3.5-instruct. Due to the high compute cost, we use the open-source
model mistral-7b-instruct instead. We demonstrate the performance of gpt-3.5-turbo and
mistral-7b-instruct using the OpenAI random-only and top-and-random metrics in Table 6. Re-
sults show that the change of model doesn’t significantly change the scores, and doesn’t affect con-
clusions at all.

Simulation model. The official implementation of the simulation model utilizes text-davinci-003
(now named gpt-3.5-turbo-instruct), which no longer supports retrieving the logprobs through
the API, so we use LLaMA-2-70B as an equally capable replacement [47]. For more accessible eval-
uations, we use LLaMA-2-7B instead. We show the difference in interpretability caused by different
simulation model size on LLaMA-2-7B and LLaMA-2-70B in Table 7. Empirical results show that al-
though LLaMA-2-7B has overall lower scores and higher variance than LLaMA-2-70B, it doesn’t affect
essential conclusions about the apple-to-apple comparison between crate and GPT-2.
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Table 7: Interpretabilitymeasure of GPT-2 and crateon the Pile dataset based on theOpenAI Top-and-random
metric. Explanation model: GPT-3.5-turbo. Simulation model: LLaMA-2-7B/LLaMA-2-70B.

Interpretability (7B) (%, ↑) Interpretability (70B) (%, ↑)
Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

crate-1L 3.9 - - 6.4 - -
crate-2L 7.5 8.0 - 7.4 7.1 -
crate-3L 9.5 9.1 8.3 10.4 7.4 6.5

GPT-1L 9.0 - - 13.4 - -
GPT-2L 4.3 4.4 - 6.4 7.8 -
GPT-3L 7.0 3.1 3.0 10.1 3.2 6.3

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

7B crate-6L 10.5 7.4 5.8 8.0 8.1 5.7
GPT-6L 13.7 5.2 1.9 0.6 5.6 6.9

70B crate-6L 10.1 6.5 7.0 8.3 9.4 0.7
GPT-6L 14.5 6.2 2.5 0.7 3.9 4.1

D. Analysis on Activation Sparsity

We demonstrate the activation sparsity of crate compared to GPT-2 in Figure 9. One might have
the confusion about why crate is designed to be sparse but the activations evaluated is denser
than GPT-2. Note that the sparsity evaluated in standard transformer model is output from the
hidden layer of the MLP layer, which is the activation matrix A before applying to the residual stream,
as shown in Figure 10. The actual representations in standard transformers, which are after applying
the residual stream, are not sparse at all. In contrast, the sparsity evaluated in crate is the actual
representations At (including the residual stream).
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Figure 9: Layer-wise activation sparsity of crate and GPT. Left: 6L models. Right: 12L models.

Figure 10: Extracting sparse code At from crate and hidden layer output A from GPT-2.
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We also present the activation dynamics of crate andGPT-2with the progression of the pre-training
process in Figure 11. We observe a strong trend that the sparsity of crate monotonically decreases
in the early stage (trained on 1.6B tokens), which aligns with the design purpose. In the late stage
(16B, 160B tokens), the sparsities in the early sites (L < 12) significantly decreases, which also aligns
with the design purpose. On the other hand, GPT-2 never appears to have a decreasing trend of
activation sparsity over layers across thewhole pre-training stage, indicating a systematic difference
between the sparsity dynamics between crate and GPT-2. One counter-intuitive observation is that
the decreasing trend fades as the stage moves on. Our hypothesis is that crate overfits on the next
token prediction task due to the large amount of tokens trained.
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Figure 11: Layer-wise activation sparsity w.r.t. tokens trained. Left: crate language model. Right:
GPT-2.

E. Details on Interpretation Score Distributions
We visualize the distributions of layer-wise interpretation scores of crate and GPT-2 with L = 12
in Figure 12. We exclude cases where activations sampled from GPT2-Base (random-only metric)
are all zeroes, as in these cases the correlation ρwill be undefined. This results in a smaller number
counted in the GPT-2 activations in the first two rows.

F. Details on Sparse Auto-encoder

F.1. Sparse Autoencoder and Dictionary Learning

The dictionary learning model is an MLP model with a single hidden layer. It is trained as an
auto-encoder using input weights as the encoder (which maps the input activations to a higher
dimension), and output weights as the decoder. Formally, given activation a ∈ Rh sampled from
A ∈ Rh×N , the encoder W1, b1 with dimension multiplicator µ maps the activations to a hidden
representation h ∈ Rµh, whereas the decoder W2, b2 maps the representation back to the original
dimension â ∈ Rh. The dictionary learning objective can thus be expressed as

ā = a− b2 (14)
h = ReLU(W1x̄+ b1) (15)
â = W2h+ b2 (16)

L =
1

|A|
∑
a∈A

∥a− â∥22 + λ∥h∥1 (17)

F.2. Detailed Setup

We train the sparse auto-encoders on the train split of the uncopyrighted Pile dataset until conver-
gence. Following Bricken et al. [19] and Conmy [30], we adopt the resampling strategy to re-train
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Figure 12: Distribution of the interpretation scores over crate-12L and GPT2-12L. x-axis: interpre-
tation score. y-axis: count of neurons falling in the corresponding interval of interpretation score.

the dead features, and the learning rate scheduling strategy to improve recovery rate. For imple-
mentation, we mainly follow Conmy [52], with λℓ1 = 1.6 × 10−4, α = 1.2 × 10−3 for all sizes of
models. We evaluate using the average loss of randomly sampled batches on the validation split of
the uncopyrighted Pile dataset.

F.3. Loss Curve

The loss curves of training the sparse auto-encoders are shown in Figure 13. Generally, resampling
boosts the performance of the reconvery score, which aligns with the conclusions shown in Bricken
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et al. [19] and [30]. We also observe an increasing trend of performance with the increases of the
SAE multiplication factor µ and model size L.
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Figure 13: Left: The recovery scores of GPT-1L (ℓ = 0) with SAE multiplication factors µ =∈
{1, 4, 16}. Right: The reconstruction loss of SAE with µ = 16 on different sizes of GPT-2 models
L ∈ {1, 2, 3}, averaged across all layers.

F.4. Performance

The performance of sparse auto-encoders of crate and GPT-2 under a variety of settings (model
L, ℓ and sparse autoencoder width multiplication factor µ) are shown in Table 8. The percentages
of dead neurons for all layers of L ∈ {1, 2, 3} are less than 1%.

Table 8: Reconstruction loss and recovery score of the sparse autoencoders on crate and GPT-2.
µ = 16 Reconstruction Loss (↓) Recovery Score (%, ↑)

Size Loss Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2
GPT-1L 6.64M 3.83 4.35 - - 95.0 - -
GPT-2L 6.83M 3.23 3.50 3.45 - 95.2 92.2 -
GPT-3L 7.03M 3.11 3.38 3.39 3.29 94.6 94.8 92.4
crate-1L 6.54M 4.06 4.33 - - 93.6 - -
crate-2L 6.64M 3.55 4.12 3.80 - 95.7 95.7 -
crate-3L 6.74M 3.46 4.05 3.99 3.77 93.0 93.9 95.0

µ = 4 Reconstruction Loss (↓) Recovery Score (%, ↑)
Size Loss Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2

GPT-1L 6.64M 3.83 4.34 - - 93.7 - -
GPT-2L 6.83M 3.23 3.59 3.56 - 92.7 88.6 -
GPT-3L 7.03M 3.11 3.45 3.50 3.34 92.2 94.9 89.9
crate-1L 6.54M 4.06 4.39 - - 92.1 - -
crate-2L 6.64M 3.55 4.37 3.93 - 93.7 93.8 -
crate-3L 6.74M 3.46 4.03 4.11 3.81 92.6 92.6 92.6

µ = 1 Reconstruction Loss (↓) Recovery Score (%, ↑)
Size Loss Layer 0 Layer 1 Layer 2 Layer 0 Layer 1 Layer 2

GPT-1L 6.64M 3.83 4.93 - - 95.0 - -
GPT-2L 6.83M 3.23 3.89 3.75 - 89.0 82.2 -
GPT-3L 7.03M 3.11 3.63 3.61 3.58 86.9 91.0 84.9
crate-1L 6.54M 4.06 4.69 - - 86.2 - -
crate-2L 6.64M 3.55 4.68 4.29 - 90.4 88.9 -
crate-3L 6.74M 3.46 4.39 4.38 4.16 97.0 89.2 88.1
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F.5. Interpretability

In Section 4.4, we’ve demonstrated that crate has more optimal representation than GPT-2 in terms
of interpretability. Here we show the details of this experiment and layer-wise decomposition of the
interpretability comparison shown in Table 3.

As it’s hard to decide how much interpretability gain it is from crate to crate-SAE directly (as
explained in Section 4.3), we compare the interpretability improvement of crate-SAE over crate to
the interpretability improvement of GPT2-SAE over GPT-2. The interpretability of GPT2-SAE is al-
ready included in Figure 6. The interpretability of crate-SAE under the OpenAI TaR andAnthropic
metrics are shown in Table 9.

Table 9: Interpretability of crate-SAE under the OpenAI TaR and Anthropic metics.
OpenAI TaR (↑) Anthropic (↑)

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
1L 6.0 - - 17.9 - -
2L 7.7 5.2 - 21.7 12.4 -
3L 7.2 6.4 4.6 19.3 18.4 11.6

F.6. Steering the LM or SAE

In comparison to post-hoc trained SAEs, built-in sparsification processes, such as the one we pro-
posed in this paper, have the potential to be steered with perfect fidelity. As visualized in Figure 14,
post-hoc approaches like SAE require steering the model with the decomposed hidden states h,
whose encoding and decoding processes are both lossy. An imperfect reconstruction systematically
leads to distortions of the steering signal upon the hidden states, and thus affects downstream appli-
cations of the GPT2-SAE model. In contrast, crate doesn’t include any approximation that distorts
the steering signal, so the signal can be propagated without loss of fidelity. This conclusion does
not change whether the performance of GPT2-SAE outperforms crate or not.

ISTA FFN

SAE 
Encoder

SAE 
Decoder

Imperfect

Coding

Figure 14: Illustration of steering a language model directly or using SAE.

G. Further Qualitative Results on Interpretable Neurons
This section lists some further qualitative examples of tokens and their activations when L = 3,
including examples of the GPT2-SAE activations. Specifically, we demonstrate two neurons in each
model. Tokens with a deeper blue background have a higher activation. Explanations ki and scores
si are obtained by Algorithm 1.
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G.1. CRATE-3L, Layer 0, Neuron 288

OpenAI Evaluation Score: 0.44478400135318646
Explanation: information related to the regulation ofmRNA expression and its role in carbohydrate
metabolism, with a focus on CRC cells and gene signaling in the context of cancer development.
Top Activations
animal models of cart ilage degradation ([ @ b 41 - mm r - 16 - 04 - 38 41 ]). Among these
cytok ines , IL - 1 β is highly overe xp ressed in the cart ilage and in the syn ov
ial tissue , while the expression of IL - 1 receptor antagonist ([ @ b 42 - mm r -

raft s . Moreover , AC OX 1 overe xp ression atten uated the aug mentation of migration
and invasion of CRC cells by mi R - 15 b - 5 p overe xp ression . In conclusion , our
study demonstrated a functional role of the S IRT 1 / mi R - 15 b - 5 p / AC OX 1 axis

Random Activations
ed with Peter Braun , the Mor av ian \n mission ary in Ant ig ua ; and to that
correspondence he owed in part his \n interest in missionary work . But that was
not the end of the Bre thren ’s \n inf luence . At all meetings addressed by the
founders of the proposed \n Soc iety , the speaker repeatedly

ESA ) and the American Association for the Advance ment of Science ( AA AS ) have well
- developed and successful science policy fellows hips . These programs acknowledge
that scientists can play important roles in directing new laws and policies in
their field , and that their expertise is needed for effective decision - making \
[[ @ B 81 - in
Anthropic Evaluation Score: 0.2813215497394413
Explanation: Phrases related to molecular biology and gene expression, specifically in the context
of mRNA transcription and its activation or inhibition. Additionally, there are mentions of certain
proteins (IPOTENT, cytokine, IRT), cellular processes (proliferation,
Top Activations
b - 5 p overe xp ression .
cases showed EG FR overe xp ression .
, TL R 2 overe xp ression in
IL - 1 β mRNA expression in the

Random Activations
G . al bid us * T MW
had suffered from heat contact ur tic aria
" al ive ": true , \n

= _ mm _ pack us _ ep

G.2. GPT-3L, Layer 2, Neuron 289

OpenAI Evaluation Score: -0.3236237946813878
Explanation: The provided text contains multiple sections, but the activations given for Neuron 4
seem to be related to genetic and statistical data (e.g., population, CI, percent, risk association, and
recessive models). Given this, the main thing this neuron does is identify
Top Activations
in Asian population . Similarly , in Caucasian population , the rs 499 776 polymorph
ism attributes risk association in hom ozyg ote OR 0 . 70 ( 95 % CI [ 0 . 50 - 0 . 98 ]),
dominant OR 3 . 57 ( 95 % CI [ 2 . 34 - 5 . 27 ]), and recess ive models OR 0

* SE * = 0 . 04 40 , * t * = - 1 . 07 75 , * p * \ > 0 . 05 , 95 % CI (- 0 . 13 38 , 0 . 0
390 ) for the Slov ak ian villagers story \ ], therefore indicating full mediation by
exoner ations and out - group focused emotions

Random Activations
long er the vortex , it ’s the smooth current of rotating air which is next to \n
the vortex , and we use the upd raft of this air ." Taking advantage of the free
\n lift in this upd raft of air is called " wake - energy retrieval ." ... on long -
\n haul flights , fuel savings of between
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ushing . \n\n S igh called her supervisor . Sergeant Sweeney and Deputy Ray
responded \n \n and moved Don ery so that S igh could search his cell . Don ery had
been in his new \n \n cell for less than five minutes when the toilet overfl owed
and water began flowing out \n \n of

Anthropic Evaluation Score: 0.06532542667915378
Explanation: strings containing specific numbers and alphanumeric characters, such as "CI-50-.",
"e-44-", "87-̈", and "f-̈". Additionally, it activates slightly for certain words like "cost", "weeks",
"disability", and
Top Activations
95 % CI [ 0 . 50 -
95 % CI , 0 . 13 -
f \" ], [ 0 . 22 22
95 % CI [ 0 . 50 -
Random Activations
{ 8 }{ 45 }\ pi \\ \n
instead of that silly website . <|endoftext|> How
is free software ; you can redist ribute

G.3. GPT-3L-SAE-16x, Layer 2, Neuron 57

OpenAI Evaluation Score: 0.1427145260798203
Explanation: months or the word "Bank" followed by a year.
Top Activations

No . 18 - 20 609 February 21 , 2020 \n

with the compact - open top ology , is a locally compact group .’ \n author : \n - ’
Nic olas Rad u [ ˆ 1 ]’ \n date : ’ July 15 , 2016 ’ \n title : | \n A top ological
characterization of the M ouf ang \ \n property for compact polyg ons

Random Activations
of DN * db / db * mice . \ \n ( ** A ** ) Ur inary album in to creat in ine ratio . ( ** B
** ) Ser um u rea nitrogen . ( ** C ** ) Left kidney weight to body weight ratio . (
** D ** ) HE st aining . Bar =

this email : ot isd ark o 60 @ yahoo . com \n \n HE FIX THE FO LLOW ING PR OB LE MS TO ALL
\n \n AC R OSS THE GL OB E ON : \n \n 1 . Getting your lover or husband back \n \n 2 .
Spiritual bullet proof \n \n 3 . Training \n \n 4 . Money

Anthropic Evaluation Score: 0.2540425061001668
Explanation: dates and specifically, the month and day for a given year. The neuron is not activated
by the year alone, and it requires both the month and day for a complete activation.
Top Activations

February 21 , 2020
\n date : ’ July 15 , 2016
field , Missouri ( December 15 , 2014

February 5 , 1998
Random Activations
\n Can ola oil
} \n \n . c ke
uana when a draw would have clin ched

. </ p > \n \t
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