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Abstract Accurate probability estimates are crucial in classification, yet widely used calibration meth- 5

ods like Platt and temperature scaling fail to generalize across diverse datasets. We introduce 6

SmartCal, an AutoML framework that automatically selects the optimal post-hoc calibration 7

strategy from a pool of 12 methods. Using a large-scale knowledge base of 172 datasets in 8

multiple modalities and 13 classifiers, we show that no single calibrator is universally supe- 9

rior. SmartCal employs a meta-model trained on the meta-features of the calibration splits 10

and classifier output to recommend the best calibration method for new tasks. Additionally, 11

Bayesian optimization refines this selection process, outperforming standard baselines and 12

random search. Experiments demonstrate that SmartCal systematically improves the calibra- 13

tion over existing approaches such as Beta Calibration and Temperature Scaling. This tool is 14

freely available with a unified interface, simplifying the calibration process for researchers 15

and practitioners. 16

1 Introduction 17

Accurate probability estimates are central to numerous real-world classification tasks, where reliable 18

confidence scores inform decision-making in domains such as medical diagnosis, fraud detection, 19

and autonomous vehicles (Vaicenavicius et al., 2019). A well-calibrated classifier should produce 20

predicted probabilities that match the true likelihood of each class, enabling users to threshold 21

scores for cost-sensitive classification, adapt to changing class priors, or simply trust the model’s 22

reported confidence (Cohen & Goldszmidt, 2004). In high-risk medical settings, an overconfi- 23

dent classifier may endanger patient safety by downplaying a rare but severe condition (Huang, 24

Li, Macheret, Gabriel, & Ohno-Machado, 2020), while underconfident fraud detection systems 25

can lead to unnecessary scrutiny of legitimate transactions (Leevy, Hancock, Khoshgoftaar, & 26

Abdollah Zadeh, 2023). 27

Miscalibration often occurs when machine learning algorithms, especially complex models, 28

systematically misjudge their own predictive probabilities (Pleiss, Raghavan, Wu, Kleinberg, & 29

Weinberger, 2017). Post-hoc calibration techniques address this issue by converting raw classi- 30

fier outputs into more reliable probabilities. Popular approaches include Platt scaling, isotonic 31

regression, temperature scaling, beta calibration, and binning methods (Silva Filho et al., 2023). 32

Each relies on a pre-trained classifier and fits a separate calibration map using dedicated validation 33

data. However, these methods differ in assumptions, complexity, and dataset suitability (Huang et 34

al., 2020; Vaicenavicius et al., 2019), posing a challenge for practitioners uncertain about which 35

technique is best for their scenario (Widmann, Lindsten, & Zachariah, 2019). 36

Although prior work suggests that calibration effectiveness depends on factors like data distri- 37

bution and model confidence, no single method consistently outperforms all others (Tao, Zhu, Guo, 38

Dong, & Xu, 2023). In a large-scale study across 172 datasets (167 tabular, 3 image, 2 language) 39

and 12 calibration techniques, we found that performance varied widely with respect to feature 40

distribution, sample size, and class imbalance. Crucially, no single algorithm dominated across all 41

settings, underscoring the context-dependent nature of calibration. 42
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To address this variability, we propose SmartCal, an AutoML-based framework for classifier 43

calibration. Central to SmartCal is a meta-model trained on the aforementioned large-scale knowl- 44

edge base, which leverages dataset meta-features and uncalibrated classifier predictions to identify 45

a short list of potentially optimal calibration algorithms. We further augment this recommendation 46

process with a Bayesian optimization step that fine-tunes hyperparameters, more efficiently explor- 47

ing the calibration space than naive alternatives like random selection. An open-source package 48

provides a unified interface for the included algorithms, easing adoption by practitioners unfamiliar 49

with calibration subtleties. 50

The contributions of this paper are summarized as follows: 51

• We introduce SmartCal, an AutoML framework for class probability calibration, based on a 52

meta-model trained over a broad collection of datasets of different modalities and base classifiers. 53

• We provide a comprehensive, user-friendly package integrating twelve diverse post-hoc cali- 54

bration algorithms under a single interface, accompanied by an open-source code release and 55

reproducible results.
1

56

• We present large-scale empirical evidence showing that each calibration method excels under 57

specific conditions, motivating the need for an automated selection strategy. 58

• We demonstrate that SmartCal outperforms random search and baseline calibration methods in 59

multiple experimental setups, validating its effectiveness in real-world scenarios. 60

2 Related Work 61

Post-processing calibration methods adjust probability outputs after a model is trained, aligning pre- 62

dicted probabilities with observed outcomes (Silva Filho et al., 2023). In contrast, some approaches 63

incorporate calibration into the training objective (Kumar, Sarawagi, & Jain, 2018; Thulasidasan, 64

Chennupati, Bilmes, Bhattacharya, & Michalak, 2019; Maher & Kull, 2021), but we do not explore 65

these here. 66

Calibration Algorithms.. Non-parametric techniques like Empirical Binning (Naeini, Cooper, & 67

Hauskrecht, 2015) partition predicted scores into bins and replace each bin’s outputwith its empirical 68

positive rate. Isotonic Calibration (Naeini &Cooper, 2016) similarly learns a non-decreasing function 69

for mapping scores to probabilities. Both can be extended to multi-class tasks by applying them 70

class-wise. Parametric methods, such as Platt Scaling (Platt et al., 1999) and Beta Calibration 71

(Kull, Silva Filho, & Flach, 2017), fit transformations from logits to probabilities and can handle 72

multi-class predictions on a per-class basis. Temperature Scaling (Guo, Pleiss, Sun, & Weinberger, 73

2017) is notably simple, using a scalar multiplier on logits, whereas Vector and Matrix Scaling 74

(Guo et al., 2017) add per-class or matrix-level parameters. Dirichlet Calibration (Kull et al., 75

2019) generalizes these concepts for richer multi-class mappings, and further specialized methods 76

include Multi-Class Uncertainty Calibration (Patel, Beluch, Yang, Pfeiffer, & Zhang, 2020), Mix-n- 77

Match Calibration (Zhang, Kailkhura, & Han, 2020), Meta-Calibration (Ma & Blaschko, 2021), and 78

Probability Calibration Trees (Leathart, Frank, Holmes, & Pfahringer, 2017). Despite this diversity, 79

no single strategy dominates across all settings, with success often hinging on dataset-specific traits 80

like class imbalance or label distribution (Mortier, Bengs, Hüllermeier, Luca, & Waegeman, 2023). 81

Automated Machine Learning (AutoML).. AutoML frameworks (e.g., Auto-sklearn (Feurer, 82

Eggensperger, Falkner, Lindauer, & Hutter, 2022), TPOT (Olson & Moore, 2016), Auto- 83

Gluon (Erickson et al., 2020), TabPFN (Hollmann et al., 2025), or LLM-driven pipelines (Hollmann, 84

Müller, & Hutter, 2023)) have reduced the burden of model selection, hyperparameter tuning, and 85

1https://anonymous.4open.science/r/SmartCal/README.md
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feature engineering (Singh & Joshi, 2022). However, they rarely incorporate calibration, leaving 86

probability refinement as a manual step despite its importance for reliable decision-making (Cohen 87

& Goldszmidt, 2004). This gap highlights the need for an AutoML-driven calibration approach. 88

Rather than relying on fixed heuristics or user intuition, an automated system can adaptively select 89

the best calibration method based on dataset properties and classifier behavior. Our work addresses 90

this challenge by introducing SmartCal. 91

3 Problem Formulation 92

We consider a classification model𝑀 trained on a dataset 𝐷train and a set of post-hoc calibration 93

algorithmsC = {𝐶 (1) ,𝐶 (2) , . . .}, each with hyperparameters 𝜆 ∈ Λ. Let𝐷cal be a held-out calibration 94

set used to learn or tune a calibration map, and let 𝐷test be a disjoint test set on which we measure 95

final performance. Our goal is to find a calibration algorithm𝐶
(𝑖 )
𝜆

that minimizes a chosen calibration 96

error metric (𝐸) on 𝐷test, subject to a constrained budget 𝑁 for hyperparameter search. Formally, 97

we seek 98

𝐶
(𝑖 )∗
𝜆

= arg min

𝐶∈C, 𝜆∈Λ
E

(
(𝐶𝜆, 𝑀), 𝐷test

)
, (1)

where (𝐶𝜆, 𝑀) denotes the calibrated model obtained by applying calibrator 𝐶 with configura- 99

tion 𝜆 to the classifier𝑀 . The proposed SmartCal framework automates this process by learning 100

a meta-model to recommend promising calibrators based on dataset meta-features and classifier 101

outputs, then refining hyperparameters within the available budget 𝑁 . 102

4 Methodology 103

In this section, we start by motivating the need for automated calibration tools by studying the 104

diversity of best calibration methods (Section 4.1). Then, our proposed approach for automatically 105

selecting and tuning post-hoc calibration algorithms is detailed. The workflow is divided into an 106

offline phase (Section 4.2), where a large-scale knowledge base is constructed, and an online phase 107

(Section 4.3), where the system exploits this knowledge base to provide calibration recommendations 108

and hyperparameter tuning for new data. 109

4.1 Motivation for SmartCal: Diversity of Best Calibration Methods 110

In our large-scale study, we gathered the “best” post-hoc calibrator for each (dataset, classifier) 111

pair according to a chosen calibration metric. Figure 1 illustrates the frequency with which 112

each calibration algorithm emerged as the top performer. Although some methods appear more 113

frequently than others, all except one algorithm achieve leading performance in at least a few cases. 114

This pattern strongly suggests that no single calibration method uniformly outperforms the others 115

across diverse data domains and base classifiers. 116

Relying on a single, standard calibrator may result in suboptimal performance across various 117

problem instances. Hence, an automated selection approach is necessary to navigate the diverse 118

range of algorithms and identify which one is most likely to excel in a particular scenario. Our 119

proposed SmartCal framework addresses this gap by leveraging meta-features of the dataset and 120

classifier outputs, supported by a knowledge base that accounts for the heterogeneous success 121

patterns of distinct calibration methods. 122

4.2 Offline Phase: Building the Knowledge Base 123

Dataset Collection and Preparation. We gathered an extensive suite of public classification datasets 124

from Kaggle
2
, open UCI (Asuncion, Newman, et al., 2007) and OpenML (Vanschoren, Van Rijn, 125

2https://www.kaggle.com/
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Figure 1: Distribution of top-ranked calibration algorithms demonstrating the absence of a universal

“one-fits-all” approach. A histogram of the frequency of each calibrator having the best

performance according to ECE in the knowledge base is shown on Left. A heatmap for the

ratio of a calibration algorithm outperforms another one in the knowledge base is on the

Right.

Bischl, & Torgo, 2014), covering tabular, language, and image domains. The datasets were selected, 126

covering a wide range of sizes and count of classes. Each dataset was split into three partitions: 127

a training set (for training the base classifier), a calibration set (for fitting post-hoc calibration 128

algorithms), and a held-out test set (for final performance assessment) with percentages 60%, 20%, 129

and 20%, respectively. Detailed information about these datasets, including their size, number of 130

classes, and feature dimensions, is provided in Appendix A.2. 131

Classification Algorithms. On every dataset, we trained multiple classifiers according to domain 132

relevance. All classification models are detailed in Appendix A.3. These classifiers produced raw 133

(uncalibrated) probability estimates, which serve as the inputs for subsequent calibration. 134

Table 1: Number of numerical and categorical hyperparameters

for each calibration algorithm.

Calibration Algorithm # Numerical # Categorical
Empirical Binning 1 0

Isotonic Calibration 0 0

Beta Calibration 0 1

Temperature Scaling 3 0

Vector Scaling 2 0

Matrix Scaling 2 0

Dirichlet Calibration 2 0

Meta-Calibration 2 1

Platt Scaling 1 1

Histogram-based Calibrator 1 1

Adaptive Temperature Scaling 4 1

Mix-n-Match Calibration 0 2

Calibration Algorithms and Opti- 135

mization Technique. We integrated 136

twelve post-hoc calibration algo- 137

rithms, described in Table 1 with the 138

count of their hyper-parameters, and 139

detailed in Appendix A.4, including 140

widely used methods (Platt scaling, 141

Temperature scaling, Isotonic regres- 142

sion, Beta calibration, various bin- 143

ning approaches) and more special- 144

ized algorithms for multi-class cali- 145

bration (Vector/Matrix/Dirichlet scal- 146

ing). Each algorithm had its own hy- 147

perparameter search space. Using 148

the calibration set for each dataset- 149

classifier pair, we performed a grid 150

search to identify the hyperparame- 151

ter configurations that optimize calibration performance (Section 4.2.1). 152

4.2.1 Calibration Metrics and Knowledge Base Construction. After fitting each calibrator’s grid- 153

search configuration, we assessed calibration quality using five metrics summarized in Table 2. 154
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Figure 2: Meta-learning methodology: The meta-model is trained over a constructed knowledge base

of the post-hoc calibrators performance over different classification algorithms.

These metrics capture different perspectives on how well predicted probabilities match observed 155

frequencies (Arrieta-Ibarra, Gujral, Tannen, Tygert, & Xu, 2022). 156

Table 2: Calibration Metrics Used in the Evaluation.

Metric Description
Max Calibration The maximum, over probability bins, of the absolute difference between the average

Error (MCE) predicted probability and the empirical frequency of the positive class.

Expected Calibration The average absolute difference between predicted probabilities and observed

Error (ECE) frequencies across all bins, providing a global measure of calibration.

Confidence Calibration A variant of calibration error focusing on the predicted confidence (the maximum

Error (Conf ECE) predicted probability), often relevant for single-label tasks.

Brier Score A proper scoring rule that sums the squared difference between predicted probabilities

and actual outcomes. Lower values indicate better calibration and accuracy combined.

Log Loss Penalizes overconfident incorrect predictions more heavily. A widely used metric in

probabilistic classification.

For each dataset-classifier pair, we identified the best calibration algorithm (and its hyperpa- 157

rameters) according to each of the metrics in Table 2, thus establishing multiple “winners” if using 158

different metrics. We recorded these results in a knowledge base along with the meta-features of 159

the calibration set, described next. 160

Meta-Feature Extraction. We extracted a set of meta-features from the calibration set, summarizing 161

dataset properties (e.g., number of classes, class imbalance, distribution statistics) and classifier 162

output behaviors (e.g., average predicted probability, entropy measures). Table 3 lists the meta- 163

features used, along with the aggregation functions to convert raw measurements into stable 164

scalars. 165

4.2.2 Meta-Model Training. We partitioned the knowledge base into a training set (80%) and a validation 166

set (20%) in order to learn and evaluate our meta-model. Each entry in the knowledge base 167

indicates which calibration algorithm performed best under specific conditions (dataset meta- 168

features, classifier type, etc.). Instead of fitting a single multi-class model, we opted for a set of 169

one-vs-all logistic regression classifiers, one for each potential “best” calibration method. During 170

inference, each logistic regression model outputs a probability that its associated calibrator is the 171

top performer for a given instance of meta-features. If one or more models produce probabilities 172

exceeding a chosen threshold 𝑇 , we include those corresponding calibrators in the recommended 173

set. Lowering 𝑇 encourages exploration by allowing more calibrators to be suggested, whereas 174

raising 𝑇 yields a more selective recommendation. 175

On the 20% validation split of the knowledge base, the final combined meta-model achieved an 176

F1-score of 82.7% when𝑇 = 0.4. This threshold provided a practical balance between recommending 177
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Table 3: Overview of the meta-features used in knowledge base construction.

Meta-feature Details (Aggregations if any)
Calibration evaluation metric

Classification model

Classes count

Num. of instances in calibration set

Class imbalance ratio

Classifier predictions entropy

Classifier confidences Mean, Median, Std, Var, Skewness, Kurtosis, Min, Max

Classification performance Acc, Micro/Macro F1, Precision, Recall

Classifier calibration performance ECE, MCE, Confidence ECE

Wasserstein distance between predicted probabilities distributions and actual

KL Divergence probability distributions in the calibration set.

Jensen Shannon Aggregated with Mean, Median, Std, Var, Entropy, Skewness,

Bhattacharyya Kurtosis, Min, Max

multiple potentially strong calibrators (exploration) and focusing on the few most likely to be 178

optimal (exploitation). 179

4.3 Online Phase: Algorithm Recommendation and Tuning 180

In the online phase, our system operates on new datasets or tasks for which it aims to produce 181

high-quality probability estimates via post-hoc calibration. The process illustrated in Figure 3 begins 182

by extracting the same meta-features that were used during the offline phase. These meta-features 183

describe key properties of the new calibration set, such as the shape and distribution of predicted 184

probabilities, class imbalance, and dataset-specific statistics. Once the meta-features are collected, 185

they are fed into the meta-model trained previously, which outputs a ranked list of recommended 186

calibration algorithms. This recommendation is crucial for focusing subsequent efforts on the 187

methods most likely to perform well in the current setting. 188

After receiving the ranked list of calibration algorithms, the system devotes a computational 189

budget𝑁 iterations to tuning the top candidates. During this tuning stage, a focused hyperparameter 190

optimization approach—commonly Bayesian optimization (Snoek, Larochelle, & Adams, 2012) is 191

applied. Rather than exhaustively searching over all algorithms and parameter settings, the search 192

targets the most promising methods and systematically explores their hyperparameter space. This 193

targeted approach ensures an efficient balance between the exploitation of known good regions 194

in the hyperparameter space and the exploration of less-tested configurations that may yield 195

additional gains. Upon completing the optimization within the allocated time, the system selects 196

the calibration algorithm and hyperparameter set, yielding the best results on a validation subset 197

of the new calibration data. At this point, the chosen calibrator can be applied to the final test set 198

or deployed in production. The resulting calibrated model benefits from the broader knowledge 199

encapsulated in the offline-constructed database, combined with local fine-tuning informed by the 200

current dataset’s characteristics. Hence, the online phase substantially reduces the computational 201

burden compared to a full grid search over all calibration algorithms space. At the same time, it 202

leverages the historical experience encoded in the knowledge base, guiding the search for those 203

approaches most likely to perform well. 204

5 Empirical Evaluation 205

This section presents our experimental setup, followed by a thorough evaluation of the proposed 206

SmartCal framework from two angles. First, we compare the performance of the meta-model’s 207

algorithm recommendation against random algorithm selection. Second, we contrast the end-to-end 208
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Figure 3: Online pipeline of the proposed methodology. The meta-model will be used to recommend

post-hoc calibrators to be used with the trained classifier.

SmartCal pipeline (which includes meta-model recommendation plus hyperparameter tuning) with 209

a brute-force random search over all calibration algorithms and parameter settings. We include a 210

statistical analysis of the outcomes based on Wilcoxon signed-rank tests and provide a concluding 211

discussion of key findings. 212

5.1 Experimental Setup 213

We evaluated SmartCal using 30 benchmark datasets spanning tabular, language, and image domains, 214

all distinct from those used to build the knowledge base. Appendix A.2 provides full dataset details, 215

while Appendix A.3 describes the domain-relevant classification models employed. Following 216

the online phase outlined in Section 4.3, we extracted meta-features, obtained the meta-model’s 217

recommendations, and performed a constrained hyperparameter search on these recommended 218

algorithms. All experiments were run on a machine with 4 vCPUs, 16 GB of memory, and Red Hat 219

OS (Version 9.4) on an Intel Xeon(R) Gold 6138 CPU @ 2 GHz. 220

Calibration was evaluated on each dataset’s test split using ECE, ensuring no overlap with 221

the calibration sets. This protocol reflects true generalization and avoids overfitting to a single 222

partition. We first compared the meta-model’s ability to pick the best calibrator against a random 223

selector, highlighting how effectively SmartCal identifies the most suitable algorithm for each 224

dataset-classifier pair. Next, we benchmarked the entire SmartCal pipeline—meta-model plus 225

hyperparameter tuning—against a random search baseline spanning all calibration algorithms 226

and hyperparameters, as well as two commonly used methods: Temperature scaling and Beta 227

calibration. This approach offers a broad view of SmartCal’s practical advantages and limitations. 228

5.2 Comparison of Meta-Model Recommendation vs. Random Algorithm Selection 229

We compared the meta-model’s ability to select the lowest-ECE (best) calibrator on each (dataset, 230

classifier) pair against a random selector. Figure 4 (left) summarizes three outcomes for their 231

predictions: Meta-Model Correct (only the meta-model chooses the best calibrator), Random 232

Correct (only random selection succeeds), and Tie (both select the same calibrator, correctly or 233

incorrectly). The meta-model proves correct in the majority of cases, showing a marked advantage 234

over random guessing for single-calibrator selection. We then examined whether the best calibrator 235

lies within the meta-model’s top-𝐾 recommendations. For each (dataset, classifier), the meta- 236

model produced 𝐾 suggestions, while the random selector provided 𝐾 randomly chosen calibrators. 237

Figure 4 (right plots the fraction of scenarios in which the true best calibrator is included, with 238

𝐾 ranging from 1 to 7. The meta-model consistently achieves higher success rates than random 239

selection at all 𝐾 levels. A Wilcoxon signed-rank test on the paired results (meta-model vs. random 240

selector) confirms that the meta-model’s improvements are statistically significant (𝑝 < 0.01). This 241

finding reflects the reliability of leveraging dataset meta-features and prior knowledge to guide 242

calibration algorithm selection. 243

5.3 End-to-End SmartCal vs. Baselines 244

We compared our complete SmartCal pipeline (meta-model recommendation + hyperparameter 245

tuning) against three baselines on 30 benchmarking datasets (each paired with multiple classifiers), 246
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Figure 4: Comparison of meta-model vs. random selector. Left: Pie chart illustrating meta-model

predictions correctness. Right: Bar chart of top-𝐾 inclusion from 𝐾 = 1 to 7. The meta-model

consistently outperforms random selection.

using Expected Calibration Error (ECE) as the key metric. The experiments were repeated thrice 247

with different random seeds of dataset splits and average results with standard deviation are 248

reported. The baselines include (i) Random Search across all calibration algorithms and their 249

hyperparameter spaces (for 𝑁 = 10 and 𝑁 = 30 iterations), (ii) Temperature Scaling, and (iii) Beta 250

calibration. 251

Table 4 summarizes the average ECE over all (dataset, classifier) combinations, along with 252

standard deviations. The first two columns show the results for Random Search under two different 253

iteration budgets (𝑁 = 10 and 𝑁 = 30). The last two columns compare the Temperature scaling 254

and Beta calibration methods, each used with its default hyperparameters or minimal tuning, to 255

the proposed SmartCal approach. 256

Table 4: Average ECE and standard deviations across combinations of 30 benchmark datasets and 13

classifiers. Smaller is better.

SmartCal(10) RS (10) SmartCal(30) RS (30) Temp. Beta
Avg. ECE 0.0533 ± 0.112 0.0517 ± 0.115 0.0587 ± 0.084 0.0721 ± 0.070 0.1765 ± 0.107

Avg. Rank 5.23 ± 1.44 6.31 ± 2.09 5.78 ± 1.87 6.84 ± 2.18 7.22 ± 2.46

We observe that SmartCal yields the lowest mean ECE compared to all baselines, indicating 257

more reliable calibration on average. Random Search with 𝑁 = 30 performs closer to SmartCal 258

than with 𝑁 = 10, but still exhibits higher variability and slightly worse average ECE. Temperature 259

scaling and Beta calibration, though simpler to deploy, show higher average miscalibration and 260

cannot match the adaptiveness of SmartCal. 261

Overall, the proposed framework outperforms both fixed strategies (Temperature scaling and 262

Beta calibration) and unstructured exploration (Random Search). The improvement is especially 263

evident under small iteration budgets, where SmartCal makes more efficient use of limited trials. 264

Complete per-dataset performance tables and additional plots are provided in Appendix X for 265

reference, including detailed ECE values across each classifier–dataset combination. 266

5.4 Statistical Analysis 267

We ran a Friedman test followed by a Nemenyi post-hoc analysis (Demšar, 2006) on the average 268

ranks of : SmartCal (10 vs. 30 iterations), Random Search (10 vs. 30 iterations), Temperature Scaling 269

(TempScaling), and Beta Calibration (BetaCal). Figure 5 displays the critical difference (CD) diagram, 270
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where lower rank values denote better calibration performance; methods whose intervals do not 271

overlap the CD bar differ significantly at the chosen level. 272

As shown, both SmartCal variants achieve lower ranks than the baselines, especially with more 273

iterations (SmartCal30). RandomSearch30 lies between SmartCal and the simpler fixed strategies, 274

while RandomSearch10, TempScaling, and BetaCal occupy higher ranks. These findings reinforce 275

our earlier observations that a meta-model–driven approach, combined with time-constrained 276

hyperparameter tuning, yields more reliable calibration than either random or single-method 277

baselines. 278

Figure 5: Critical difference diagram from the Friedman/Nemenyi analysis, comparing average ranks

of SmartCal, Random Search, Temperature Scaling, and Beta Calibration. Lower ranks are

better; overlapping intervals indicate no significant difference.

6 Conclusion, Limitations and Future Work 279

We presented SmartCal, an automated framework that learns when and how to apply different 280

post-hoc calibration algorithms. By constructing a large-scale knowledge base through extensive 281

experimentation and training a meta-model on dataset meta-features, SmartCal offers reliable 282

algorithm recommendations and targeted hyperparameter tuning under a constrained budget. 283

Empirical results showed that this data-driven approach substantially outperforms random search 284

and other baselines, underscoring the value of informed calibrator selection. 285

Despite these positive outcomes, our work has a few limitations. First, SmartCal depends on an 286

offline knowledge base that may not fully represent novel data distributions or emerging calibration 287

algorithms. Second, our current study focuses mainly on standard supervised classification tasks, 288

limiting the generality of our findings to other settings, such as structured outputs or multi-label 289

tasks. Finally, some meta-features may not capture all intricacies of real-world datasets, which can 290

lead to occasional mismatches between recommendation and actual performance. 291

Future work may extend SmartCal to specialized domains that require unique calibration 292

metrics or meta-features. Enhancing meta-model interpretability could also clarify why certain 293

calibrators are chosen. Additionally, integrating incremental updates to the knowledge base would 294

help SmartCal adapt to new data and evolving calibration methods. Finally, exploring robustness 295

to domain shifts and out-of-distribution samples could broaden the real-world applicability of the 296

framework. 297

7 Broader Impact Statement 298

After careful reflection, the authors have determined that this work presents no notable negative 299

impacts to society or the environment. 300
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