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ABSTRACT

Self-attention in Transformer architectures is formulated as a function of the
pairwise contributions between target vectors and their context vectors. This con-
struction implicitly assumes ternary and higher order relationships are negligible.
It further treats the context vectors as though they can be processed individually,
as if mutually independent of one another. This model contradicts, however, our
understanding of language: that the meaning of words is influenced by complex
interdependencies. We introduce Whitened Self-Attention, a theoretically motivated
and novel enhancement that optimally accounts for inter-token correlations, and
based on several covariance modeling assumptions, we derive a computationally
feasible implementation for it. Experiments with a small GPT architecture show
that whitened self-attention reduces perplexity by 19.3%, achieves the same mean
cross-entropy loss in 37 times fewer training iterations, and, after hyperparameter
optimization, reduces training time by 91%. Our approach shows significant poten-
tial for scaling and for improving the performance and generalization of large-scale
language models. Moreover, as whitening decorrelates input sequences, it will
affect the structure of the resulting trained attention and feedforward weight matri-
ces. This will have an effect on their singular value decompositions, and should, in
turn, influence the results of the many studies on the mechanistic interpretability of
Transformers.

1 INTRODUCTION

The Transformer model Vaswani et al. (2017) is a popular and successful deep learning architecture
used in a wide array of applications areas such as NLP Kalyan et al. (2021), computer vision Khan
et al. (2022); Han et al. (2022), speech recognition Gulati et al. (2020), and computational biology
Zhang et al. (2023). That said, the core component, self-attention, is more of a heuristic than a
precisely formulated, optimally derived filter. The attention expression is usually computed in terms
of query, key, and value vectors, but in this paper we find it advantageous to formulate it in terms
of a statistical representation of target vectors, xn ∈ Rd, based on sets of weighted sums of their
context vectors, xi ∈ Rd Bahdanau et al. (2015). The causal autoregressive formulation used in GPT
architectures takes the form

Att(xn) =

n−1∑
i=0

softmax(
x⊺
nQ

⊺Kxi√
d

)V xi, (1)

for n = 1, . . . , N , where N is the size of the context window, and Q, K, and V are learned matrices.
The softmax terms in Equation 1 are positive scalars summing to one, and they function as intuitive,
although ad-hoc, estimates of the relative information each context vector, xi, contains about the
target vector, xn. As discussed in more depth in the following section, the xi would need to be
independent random vectors for this formulation to provide a minimum variance estimator Shaffer
(1991). If correlated the representation contains duplicated information and is necessarily suboptimal.
When training with very large datasets, it is conceivable that the estimator’s variance could approach
an optimal value for frequently occurring tokens, but is unlikely to do so uniformly across the
entire input vocabulary, especially rarer ones in the long tail. Whitening is a filtering process that
transforms input sequences into stochastically decorrelated, normalized outputs, and methods based
on it produce optimal, minimum variance, linear estimators Kleiner et al. (1979); Kailath (1970).
The rest of this paper develops a computationally feasible whitening operator for self-attention,
and presents experimental results demonstrating that when used to train a GPT model, whitened
self-attention significantly improves performance and computation time.
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Figure 1: Part (a) shows three vectors, −→y , −→x1, and −→x2 in R2, and illustrates that when −→x1 and −→x2 are
orthogonal, −→y can be perfectly represented by a sum of projections. Part (b) shows that when −→x1 and−→x2 are not orthogonal, the sum of projections is the biased representation of −→y shown as the blue dot.

2 WHY WHITEN?

The self-attention mechanism is a statistical method for representing target vectors as weighted
functions of their context vectors. As can be seen in the formulation provided by Equation 1, this
is a pairwise operation, meaning the representational contributions to the vector, xn, from any two
vectors, xi and xj , are made without taking into account their mutual interdependencies. Figure 1
provides a simplified explanation for why this matters. Part (a) of the figure shows that a vector−→y can be perfectly decomposed into a simple sum of its projections onto two orthogonal vectors−→x1 and −→x2. However, as shown in part (b) of the figure, when the two vectors are not orthogonal,
the sum of the projections of −→y produces the highly biased result obtained by applying the vector
parallelogram law, which in this case is the blue dot shown in the figure. Because the two vectors−→x1 and −→x2 are not orthogonal, they share components, and so the simple sum of the projections
of −→y introduces a double-counting of information. For deterministic vector space problems, this
duplication of information is eliminated using the Gram-Schmidt orthogonalization procedure Strang
(2022), a method in linear algebra for taking a set of linearly independent vectors and constructing an
orthonormal basis from them. That said, it is possible to achieve a learned orthogonalization result by
introducing it as a criterion to minimize in a regularization term Xiao et al. (2024). For stochastic
processes, a similar idea can be applied, but based on the orthogonalization of the covariance structure
of the embedding vectors Papoulis & Pillai (2002); Haykin (2002). A perfect whitening transform
makes the pairwise cross-covariance zero, linearly decorrelating them.

3 DERIVATION OF SEQUENCE WHITENING

In this section, we derive the whitening filter for the problem formulation corresponding to self-
attention for a GPT model. Given an ordered sequence of column vectors {x0, x1, . . . , xN−1}, with
xi ∈ RD, the objective is to represent the next vector, xN , given observations of the preceding
context. This is a causal autoregressive estimation problem Akaike (1969). Typically, the xi are
assumed (or modeled) as independent and identically distributed, but if the sequence is correlated
it must be whitened to obtain the optimal linear estimator. Defining the column vector X =
[x⊺

0 , x
⊺
1 , . . . , x

⊺
N−1]

⊺ ∈ RND, where the xi are zero-mean random vectors, the covariance matrix
ΛX = E{XX⊺} has a symmetric block structure

ΛX =


Λ0,0 Λ0,1 . . . Λ0,N−1

Λ1,0 Λ1,1 . . . Λ1,N−2

...
...

...
ΛN−1,0 ΛN−1,1 . . . ΛN−1,N−1

 , (2)

where Λi,j = E{xix
⊺
j }. The whitened sequence, W = [w⊺

0 , w
⊺
1 , . . . , w

⊺
N−1]

⊺ ∈ RND, is obtained

from X with the transformation W = Λ
−1/2
X X . That the wi are white, meaning their cross covariance

matrix is the identity matrix, can be verified as follows:

ΛW = E{WW ⊺} = E{Λ−1/2
X XX⊺Λ

−1/2
X } = Λ

−1/2
X ΛXΛ

−1/2
X = I. (3)
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The set of whitened vectors, {wi}, span the same subspace as the {xi} but in the mean are normalized
and, assuming they are jointly Gaussian, are independent of each other. When substituted into the
self-attention expression in Equation 1, the result is what we call whitened self-attention (WSA),

WSA(xn) =

n−1∑
i=0

softmax(
x⊺
nQ

⊺Kwi√
d

)wi. (4)

An important difference between this expression and the one for standard attention in Equation 1 is
that there is no V matrix. As will be explained in more detail in the next section, it has been absorbed
into the wi.

4 MODELING THE COVARIANCE STRUCTURE

As the matrix ΛX is ND ×ND, its inverse is computationally challenging and memory intensive.
For example, in current production-quality LLMs, ND ≈ 107, meaning this single matrix could
require roughly a petabyte of memory. Some of the computational and memory requirements can be
mitigated by modeling the structure of ΛX . It is common to model the sequences as being wide-sense
stationary, which makes the cross-covariance blocks, Λij , dependent only on their indicial separation,
|i− j| Van Trees (2004); Papoulis & Pillai (2002). Application of the condition makes the structure
of ΛX block Toeplitz:

ΛX =


Λ0 Λ1 . . . ΛN−1

Λ1 Λ0 . . . ΛN−2

...
...

...
ΛN−1 ΛN−2 . . . Λ0

 . (5)

The structure can be further simplified if we assume the covariance process can be modeled as having
compact support, meaning that the covariance is zero for values of |i− j| greater than a specified
value. For example, if Λk = 0 for k = |i − j| > 0 then ΛX is block diagonal, and the whitening
filter, Λ−1/2

X , is also block diagonal. This makes the whitened vectors wi = Λ
−1/2
0 xi, and we can

associate the V matrix in Equation 1 as being Λ
−1/2
0 . This observation clarifies why the expression

in Equation 4 need not explicitly represent V , because, by construction, it is contained in the wi.
Moreover, the association of V to Λ

−1/2
0 provides the useful interpretation that V is a zeroth-order

whitening filter, acting to decorrelate the internal components of the embedding vectors. The less
trivial case is when Λk = 0 for k > 1, making ΛX block tridiagonal,

ΛX =



Λ0 Λ1

Λ1 Λ0 Λ1

Λ1 Λ0 Λ1

. . . . . . . . .
Λ1 Λ0 Λ1

Λ1 Λ0

 . (6)

As ΛX is symmetric and positive semi-definite, it can be factored with a block Cholesky decomposi-
tion, ΛX = LL⊺, where L is a block lower triangular matrix Golub & Van Loan (2013) and ⊺ is the
transpose operator. In this case, L is block bidiagonal:

L =



L1

M2 L2

M3 L3

. . . . . .
MN−1 LN−1

MN LN

 . (7)

Replacing Λ
−1/2
X with L−1 in Equation 3 confirms that W = L−1X is white. This expression

consists of 2N − 1 blocks, but recognizing that the matrix represents a recursion, we assume the
sequence of Li and Mi will converge to steady state values, L∞ and M∞ for sufficiently large i,

3
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Brockwell & Davis (1991). The structure of L can then be simplified with the approximation that
substitutes all the matrices in Equation 7 with their steady-state terms, making it

L =



L∞
M∞ L∞

M∞ L∞
. . . . . .

M∞ L∞
M∞ L∞

 . (8)

With this form, it is a straight-forward application of block Gaussian elimination to solve for
W = L−1X , which yields the following simple recursion for the whitening filter:

w0 = L−1
∞ x0, wi = L−1

∞ (xi −M∞wi−1), i = 1, . . . , N − 1. (9)

This process is represented graphically in the lower part of Figure 2, which illustrates how each
succeeding vector input in the sequence is whitened as a transformation of the linear combination
with the previous vector output of the recursion. The elements of the matrices L−1

∞ and M∞ are
learned directly as part of training the Transformer model. L∞ itself need not be known or inverted.
These covariance modeling steps represent a series of engineering approximations that allow us to
construct a practical implementation of whitened self-attention. In the following section, we present
experimental results illustrating the performance of this whitened self-attention formulation.

5 EXPERIMENTS

To test the effect of our whitened self-attention procedure, we implemented it using Equations 4 and
9 and compared its results with those from standard attention, per Equation 1. To focus our study
primarily on the effects of the whitening filter, we opted to limit the number of layer interactions to
the minimum needed. Our experimental design was based on the small Transformer architecture
shown in Figure 2.1 It is a GPT model consisting of two Transformer decoder blocks, each containing
a two-head attention layer and a standard 4x-fanout feedforward layer. Positional information was
incorporated using RoPE Su et al. (2024). The remaining elements: layer norms, linear projections,
embedding, and unembedding layers are standard components.2

The data used in the experiments is the collected works of Charles Dickens, obtained from the Project
Gutenberg website Dickens (2018). The data were used without any additional preprocessing. The
corpus contains 13.8m characters, and we opted to use a character-based tokenization strategy Banar
et al. (2020). The advantage of this choice is that it explicitly limited the vocabulary size to the
number of unique characters in the data, which for this case is 93. Tokenization did not require ad-hoc
mapping of infrequent tokens to a special placeholder, and it precluded the need to experiment with a
hyperparameter optimization to find the appropriate vocabulary size, as would have been required
using a more sophisticated tokenization scheme such as BPE Gage (1994); Sennrich et al. (2016)
or WordPiece Schuster & Nakajima (2012). Our experimental setup specified a token embedding
dimension of 256 and a context window of length 256, which was chosen to be roughly three times
the average paragraph length in our corpus. As our comparative metric of performance, we used the
mean cross-entropy (MCE) loss applied to the validation data. The experiments used 90% of the
Dickens data for training with 10% set aside for validation.

With these details, we ran four experiments, each for 100k iterations with a batch size of 256,3
corresponding to roughly three epochs. Our baseline was the standard GPT implementation of self-
attention with RoPE, run without whitening. Given the hyperparameters described in the preceding
discussion, the model size worked out to 1.62m weights, and the MCE loss on the validation data
during optimization is shown by the blue curve in Figure 3. The final value of MCE loss for this
experiment was 1.39, corresponding to a perplexity of 4.0 (versus 93 for the untrained model). These
results are summarized in the first row of Table 1, which also provides the experiment’s total compute
time of 57 minutes.4 The green curve in Figure 3 is the result for the same experiment, using the

1Complete code and data will be released to GitHub upon publication
2See https://transformer-circuits.pub/2021/framework/.
3Except for the last experiment, which used a batch size of 128.
4All computations were performed on an Nvidia RTX 4090
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Figure 2: Decoder Transformer architecture with two blocks. Each block consists of two attention
heads (h), one feedforward layer (FFN), two layer norms (LN), and a projection (A) that combines
the outputs from the attention heads. The whitening filter, W, implements the recursion in Equation 9.
The whitened sequence passes through the attention layer, and is also passed forward through the
residual stream. The embedding layer converts the input tokens to vectors, and the unembedding
layer outputs the logits.

same hyperparameters, but with the addition of the whitened self-attention recursion block, shown in
Figure 2. Due to the two matrices, L−1

∞ and M∞, one pair used with each decoder block, the model
size increased by four times the squared embedding dimension (256) to 1.88m parameters. As can be
seen in the Figure 3, the performance of this model rapidly outstrips standard attention, dropping
to the same MCE loss in just 2,103 iterations (a factor of 48× less), and requiring only 9.6 minutes
of compute time (83% faster). The loss value continues to drop, achieving a value of 1.16 at 100k
iterations. This corresponds to a perplexity of 3.18, a 21% improvement in performance over the
result for standard attention. These results are recapped in the second row of Table 1, which also
shows the total compute time was 457 minutes.

As the whitened self-attention experiment benefited from more parameters, we ran a third experiment
for standard attention. This experiment used an equivalent model capacity of 1.88 million parameters,
achieved by increasing the token embedding dimension from 256 to 276. All other hyperparameters,
including the batch size, were held the same. The results are represented by the orange curve in
Figure 3. The final MCE loss for this trial was 1.38, an insignificant improvement over the smaller,
baseline, standard attention experiment. Due to the increased model size, the experiment required
more time, completing in 71 minutes. These results are shown in the third row of Table 1. By
comparison, the whitened self-attention experiment achieved the same level of loss in 2,362 iterations
(42 times fewer, corresponding to 86% faster), while delivering a 19.7% improvement in perplexity
at 100k iterations.

It can be seen from the second and third rows of Table 1 that the whitened self-attention model required
6.4 times more compute time per iteration than the standard attention model with an equivalent model
size, but as discussed, it achieves the same level of MCE loss in many fewer iterations and much less
compute time. This motivated a fourth experiment, rerunning the whitened self-attention model with
half the batch size. This modification has no effect on the model size, but allows the training loop to
achieve the 100k iterations in roughly half the time (and roughly half the number of epochs). The

5
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Figure 3: Mean cross entropy loss of the validation data during training. The blue curve is for
standard self-attention and the green for whitened self-attention. The orange curve is a repeat of
the standard self-attention experiment with an equivalent model parameter count. The red curve
is a repeat of whitened self-attention using half the batch size. Annotations compare whitened
self-attention computed with half batch to the standard self-attention with equivalent model capacity.

results are represented by the red curve in the Figure 3. The final MCE loss is almost identical to
the whitened experiment with the larger batch size, however, as shown in the fourth row of Table 1,
it completed in 51% of the compute time. In comparison with the equivalent capacity standard
attention experiment, it achieves the same level of MCE loss at iteration 2,721, corresponding to a
91% reduction in compute time.

Table 2 recaps the compute time comparisons of the equivalent capacity standard attention model
with the full-batch and half-batch whitened self-attention experiments. The key comparisons of the
equivalent capacity standard self-attention with the half-batch whitened self-attention are annotated on
the curves in Figure 3. Although obtained with a small corpus and a small model, these experiments
demonstrate the potential whitening has to improve the representational power of self-attention, or
alternatively to reduce the compute time for an equivalent MCE loss. The annotations on Figure 3
further show that whitening provides a spectrum of engineering options ranging between an equivalent
performance in less time to improved performance in an equivalent time. Thus, for the equivalent
compute time of 71 minutes, the half-batch whitened model delivers a 16.1% improvement in
perplexity over the standard attention with equivalent capacity.

Model MCE Compute
Experiment Size Loss Perplexity Time

Standard
Attention 1.62m 1.39 4.00 57 min

Whitened
Attention 1.88m 1.16 3.18 457 min

Equivalent
Capacity 1.88m 1.38 3.96 71 min

Whitened
Half Batch 1.88m 1.16 3.19 231 min

Table 1: Performance summary of experiments comparing standard vs. whitened self-attention at
100k iterations. Equivalent Capacity in row three refers to the standard attention experiment with
more parameters and the Whitened Half Batch in row four refers to the whitened experiment run with
a smaller batch size.
We wanted to gauge how whitened self-attention scales with changes to the sequence length and
embedding dimension, and this is shown in Table 3a. In the two leftmost columns, the table show the

6
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Batch Compute
Model Size Iters Time %Time
ECSA 256 100k 71 min 100%
WSA 256 2,103 9.6 min 17%

WSAHB 128 2,721 6.2 min 9%

Table 2: Recap of the number of iterations and compute time needed to attain an MCE loss of 1.38:
ECSA is for Equivalent Capacity Standard Attention and is the baseline, WSA is for Whitened
Self-Attention, and WSAHB is for Whitened Self-Attention Half Batch. Each model was trained
with 1.88m weights.

sequence length, and embedding dimension used, and in the two rightmost columns, the resulting
model size in millions of weights and the compute time in milliseconds per training iteration. For
comparison, Table 3b provides the same information for standard attention. The tables show that for
both whitened and standard attention, it is the embedding dimension that most affects the model size.
In both cases, doubling the embedding dimension roughly quadruples the model size, as expected due
to its the quadratic relationship to the attention matrices. Although the compute time for whitened
self-attention is roughly 10 times that of the standard model, both change linearly, in that doubling
either the sequence length of the embedding dimension roughly doubles the amount of compute time.

Sequence Embedding Model Compute
Length Dimension Size Time

256 256 1.88m 175ms
512 256 1.88m 324ms
256 512 7.44m 352ms

(a)

Sequence Embedding Model Compute
Length Dimension Size Time

256 256 1.62m 16ms
512 256 1.62m 37ms
256 512 6.39m 36ms

(b)
Table 3: Scaling comparison of (a) whitened attention and (b) standard self-attention across different
sequence lengths and embedding dimensions. Model size is shown in millions of weights, and
compute time in milliseconds per training iteration.

6 EVALUATION OF THE WHITENING PROCESS

The results of Section 5 show that our whitening process effectively accelerates learning, which,
in turn, implies it is succeeding in reducing the duplication of information, but it remains to show
that the filter is effectively whitening the input sequences. To study this question, we computed the
sample covariances of the inputs and outputs of the whitening filter. Effective whitening would mean
that the elements of the output sample covariance would concentrate a higher percentage of energy
on the main diagonal than does the input matrix. Given a batch of input sequences in the form of a
tensor x with shape B × T ×D, where B is the batch dimension, T the sequence length, and D the
embedding dimension, xbt for b ∈ {1, . . . , B} and t ∈ {1, . . . , T} is the D-dimensional vector at
sequence position t in batch item b. The sample covariance matrix, Λ̃X , can be computed over the
batch dimension from the stacked vectors, Xb = [x

⊺
b1, . . . , x

⊺
bT ]

⊺ ∈ RTD:

Λ̃X =
1

(B − 1)

B∑
b=1

(Xb − µ̃X)(Xb − µ̃X)⊺, (10)

where µ̃X is the corresponding sample mean. Using similar notation, the sample covariance for the
whitened sequences, Wb = [w

⊺
b1, . . . , w

⊺
bT ] ∈ RTD, is

Λ̃W =
1

(B − 1)

B∑
b=1

(Wb − µ̃W )(Wb − µ̃W )⊺. (11)

The covariance matrix of a perfectly whitened sequence has ones on the diagonal and zero elsewhere,
so we can define a measure of whiteness as the ratio, ΨW , of the sum of magnitudes of elements not
on the diagonal to those that are.

ΨW =
1

(TD − 1)

∑
i̸=j

|Λ̃Wij
|/
∑
i

|Λ̃Wii
|, (12)

7
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Figure 4: (a) Relative whiteness of W with respect to X as a function of training iterations for
the whitened self-attention experiment using full batch. (b) Measure of first-order stationarity as a
function of training, showing the inputs to the first decoder block have begin with and improve a
good degree of first-order stationarity, whereas the second becomes increasingly non-stationary.

where the summation indices i and j range over 1, . . . , TD, and the term (TD − 1) accounts for the
fact that there are only TD terms used in the denominator versus the TD(TD − 1) in the numerator.
The ratio would be closer to zero for whiter covariances, however, due to the approximations made
in modeling the covariance, we do not expect the filter to perfectly whiten the sequences, and so
experimentally we evaluate the measure of the relative whitening of W with respect to X . Figure 4a
shows the computation of ΨW /ΨX as a function of training iterations for the full-batch, whitened
self-attention experiment described in the Section 5. The blue curve shows the relative whitening
result for the first decoder block, and the red curve is for the second. For the first decoder block, it
shows that the training process learns to significantly whiten its input, reducing the relative whitening
ratio to a value of 0.29, an improvement of over 70%.

In contrast, after initially whitening its input to 83%, with additional iterations, the second decoder
block reverses direction, trending back to unity. To explain why the first block whitens while the
second does not, we study a key assumption used in deriving the whitening filter: that the input
sequences can be reasonably modeled as first-order autoregressive processes (Equation 6). This
can be evaluated experimentally by computing the first-order sample cross-covariance of the input
sequences across the batch dimension. For xb,t ∈ RD, the first-order sample cross-covariance can be
computed as

Λ̃t,t+1 =
1

B − 1

B∑
b=1

(xb,t − µ̃xt)(xb,t+1 − µ̃xt+1), (13)

where µ̃xt
is the corresponding sample mean. Given these statistics, a measure of first-order station-

arity can be computed as the variation of the Λ̃t,t+1 around their mean for t = 0, . . . , T − 1:

ρ =

T−1∑
t=0

||Λ̃t,t+1 − µ||F , where µ =
1

T

T−1∑
t=0

Λ̃t,t+1, (14)

and || · ||F designates the Frobenius norm. Inputs that ideally correspond to a first-order stationary
sequence would have ρ = 0. Figure 4b, illustrates the statistic in Equation 14, an estimate of
the first-order stationarity of the input sequences to each whitening filter as a function of training
iterations. The value of ρ for input sequences to the first block begins at a value of 18, reducing to
10 at the end of training. The result for the second block, however begins at 24, increasing to over
140. This experimental evidence shows that the input sequences to the second whitening filter are not
first-order stationary, explaining why the second block is unable to whiten its inputs, as illustrated by
the red curve in Figure 4a.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

7 DISCUSSION AND FUTURE RESEARCH

The trend in deep learning is to publish results based on large models and datasets, and although this
provides some reassurance about the potential for generalization, it can also obscure the relationship
between theory and experimental results. We have deliberately chosen to work with a small model and
dataset, which has allowed us to design experiments with more control and more readily interpretable
results. It has helped isolate and understand the effects of specific architectural and covariance
modeling choices, and importantly, it should make it easier for others to reproduce, verify, and build
upon our work. This paper demonstrates that whitening improves the performance of self attention
within the context of our GPT architecture. At convergence, it delivers a 20% improvement in
perplexity, and it achieves standard attention’s best result in 91% less time even though it requires
the implementation of a recursion. If these results carry over to larger LLM models it would mean
considerable savings in compute time, improvements in performance, or some combination of both.
We further show that although the loss function is applied to the output of the fully composed
model, the first-order stationary components of the input sequences undergo proper whitening.
Finally, our experiments show that the MCE loss for whitened self-attention converges in orders of
magnitude fewer iterations than that for standard attention. This suggests that standard self-attention
is fundamentally inefficient at learning and reinforces the theoretical notion that the representation
of target vectors from their context is improved when duplicative information is removed through a
process of covariance orthogonalization.

As seen from the experiments, training the half-batch whitened self-attention model required 3.25×
more time per iteration than equivalent capacity standard attention. This ratio was similar in inference,
requiring 3.1x more time in a test to generate 10,000 tokens. Thus, a legitimate concern is how these
results vary for much longer context windows and larger embedding dimensions. The inversion
of the Cholesky factor is based on a recursion whose computational complexity naturally grows
with the length of the sequence. Moreover, recursions are generally considered not well-suited for
implementation on GPUs. That said, the parallelization primitive known as the method of prefix
sums is, in principle, ideally suited to this type of problem. The whitening filter in Equation 9 can
be reformulated as an associative matrix product, and Blelloch’s algorithm Blelloch (1990); Harris
et al. (2007); Kogge & Stone (2009) and the Hillis-Steele method Hillis & Steele Jr (1986) can
be applied to inverting the Cholesky factor, computing a recursion of length N in O(logN) steps,
requiring O(N) work using O(N) processors. This has the potential to accelerate the efficiency of
the whitened self-attention model for both training and inference, but may have trade-offs with the
memory management of the matrix and batch dimensions.

The results of this paper sketch a clear roadmap for the next phase of our research. The first step
will be to focus on scaling to larger corpora, using more sophisticated tokenization strategies, and
implementing larger GPT models. Part of this task will include the implementation of Blelloch’s
prefix scan algorithm. In one of our experiments, we saw a simple change in batch dimension
significantly reduced compute time, and hyperparameter optimizations are an additional task we
foresee. Our mathematical developments highlighted the importance of covariance modeling, and
we plan to explore additional options at both the global and block levels. For covariance matrices at
the block level, matrix series truncations and approximations of various types have the potential for
reducing memory and accelerating computation. These include methods such as Neumann expansions,
Krylov subspaces Strang (2000), and diagonal plus low rank matrices Saunderson et al. (2012). At
the global covariance matrix level, extending the block tridiagonal model in Equation 6 to higher
orders, for example the pentadiagonal case, seems a promising direction of enquiry for improving
the whitening process. Finally, a great many papers have used singular-value decompositions to
study the characteristics of attention and feedforward matrices. Our results demonstrate that the
relationships between input vectors are more complex than can be captured by standard attention
alone, and it would not be surprising that SVDs of trained weight matrices based on unwhitened
inputs would be biased by their correlations. This opens a spectrum of potential research directions,
revisiting some of the key influential papers in this domain with whitened input sequences in place
of the standard ones. Examples include the analysis low-rank structures Lan et al. (2020); Wang
et al. (2020), studies on attention head specialization Voita et al. (2019); Brody et al. (2023), the
disentanglement of multi-head attention contributions Michel et al. (2019), the implementation of
test time pruning He & Lin (2025), the study of context-specific behaviors Yao et al. (2024), and the
general subject of mechanistic interpretability Bereska & Gavves (2024); Frankle & Carbin (2018);
Naim & Asher (2024); Scherlis et al. (2022).
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