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Abstract
Decentralized optimization is critical for solving large-scale
machine learning problems over distributed networks, where
multiple nodes collaborate through local communication. In
practice, the variances of stochastic gradient estimators often
differ across nodes, yet their impact on algorithm design and
complexity remains unclear. To address this issue, we propose
D-NSS, a decentralized algorithm with node-specific sam-
pling, and establish its sample complexity depending on the
arithmetic mean of local standard deviations, achieving tighter
bounds than existing methods that rely on the worst-case or
quadratic mean. We further derive a matching sample com-
plexity lower bound under heterogeneous variance, thereby
proving the optimality of this dependence. Moreover, we ex-
tend the framework with a variance reduction technique and
develop D-NSS-VR, which under the mean-squared smooth-
ness assumption attains an improved sample complexity bound
while preserving the arithmetic-mean dependence. Finally, nu-
merical experiments validate the theoretical results and demon-
strate the effectiveness of the proposed algorithms.

Introduction
With the increasing demand for data processing and compu-
tation, distributed optimization has become an essential tool
for large-scale machine learning problems. In particular, de-
centralized optimization allows nodes to communicate with
their neighbors, improving robustness and avoiding commu-
nication bottlenecks. In this paper, we consider the following
decentralized non-convex stochastic optimization problem:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

fi(x), (1)

where fi(x) = Eξi∼Di
[F (x; ξi)] is a possibly non-convex

objective defined by the local data distribution Di at node i
and ξi is the corresponding random index.

Heterogeneity in the local data distributions Di leads to
differences in the variances of stochastic gradient estimators
across nodes. Specifically, for first-order methods applied to
problem (1), node i can only access an unbiased stochastic
gradient estimator gi(x; ξi) satisfying

Eξi

[
∥gi(x; ξi)−∇fi(x)∥2

]
≤ σ2

i , (2)
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where σi > 0 may vary significantly across nodes due to
the non-IID data distribution. However, most existing decen-
tralized optimization methods (Lian et al. 2017; Tang et al.
2018; Assran et al. 2019; Yuan et al. 2022; Lu and De Sa
2023) typically assume uniform variance across nodes, re-
sulting in complexity bounds that depend on the worst-case
standard deviation σmax. Xin et al. (Xin, Khan, and Kar
2021b,a; Xin et al. 2021) analyze node-wise noise and derive
bounds based on the quadratic mean of standard deviations,
σ̄QM :=

√
(σ2

1 + · · ·+ σ2
m)/m, but their algorithms still as-

sume identical sample sizes across nodes. Consequently, how
variance heterogeneity affects the convergence and complex-
ity of decentralized algorithms remains unclear, raising two
fundamental questions:

(i) How to design efficient decentralized algorithms under
heterogeneous variance?

(ii) What is the optimal sample complexity in this setting?

To answer these questions, we investigate the problem
from a sampling perspective and propose a more efficient de-
centralized algorithm with node-specific sampling, called D-
NSS (Decentralized Optimization with Node-Specific Sam-
pling), which achieves the sample complexity (i.e., the total
number of stochastic gradient evaluations) of

O

(
∆L σ̄2

AM

ϵ4
+

m∆L

ϵ2

)
for finding the ϵ-stationary point, where σ̄AM = 1

m

∑m
i=1 σi

denotes the arithmetic mean of standard deviations. This
dependence is tighter than the worst-case or quadratic-mean
bounds in previous works. In highly heterogeneous regimes
such σ̄QM = Θ(

√
mσ̄AM)), it yields an O(m) improvement

in sample complexity. In addition, we establish a lower bound
for decentralized optimization with heterogeneous variance,
thereby proving the optimality of D-NSS. Furthermore, under
the mean-squared smoothness assumption, we incorporate
variance reduction into the proposed scheme and develop
D-NSS-VR, which achieves a sample complexity of

O

(
∆L̄σ̄AM

ϵ3
+

σ̄2
AM

ϵ2
+

√
m∆L̄

ϵ2
+m

)
,

where ∆ denotes the initial optimality gap, L and L̄ are
smoothness constants.



Related Work
Decentralized optimization has developed rapidly over the
past decade. A classical method is decentralized gradient
descent (DGD), which performs gradient descent on local ob-
jectives followed by one round of communication. Under data
heterogeneity, DGD requires diminishing step sizes to guar-
antee convergence, which results in slow convergence rates
(Nedic and Ozdaglar 2009; Yuan, Ling, and Yin 2016). Gra-
dient tracking techniques (Di Lorenzo and Scutari 2016; Pu
and Nedić 2021; Qu and Li 2017; Scutari and Sun 2019) im-
prove convergence by enabling each node to track the global
gradient through additional communication of gradient in-
formation. Shi et al. (2015) propose EXTRA, a first-order
method that introduces a correction term to achieve exact
convergence with constant step sizes. Nedic, Olshevsky, and
Shi (2017) combine gradient tracking with inexact gradient
methods and establish the linear convergence of the DIGing
algorithm under strong convexity and smoothness over time-
varying graphs. To further improve communication efficiency,
Chebyshev-accelerated multi-step communication methods
have been developed to achieve optimal communication com-
plexity in decentralized optimization (Scaman et al. 2017;
Kovalev, Salim, and Richtárik 2020; Ye et al. 2023).

For decentralized non-convex stochastic optimization,
Lian et al. (2017) show that decentralized stochastic gradient
descent can find an ϵ-stationary point (i.e., E[∥∇f(x)∥2] ≤
ϵ2) with a sample complexity of O(ϵ−4). The same complex-
ity guarantees are obtained for primal-dual algorithms by Yi
et al. (2022). Further improvements are obtained by incorpo-
rating multi-step communication techniques, as shown in the
works of Lu and De Sa (2021, 2023) and Yuan et al. (2022),
resulting in nearly optimal sample and communication com-
plexities. When the stochastic gradients additionally satisfy
the mean-squared smoothness condition, variance reduction
methods yield improved sample complexity. Sun, Lu, and
Hong (2020) propose D-GET by integrating variance reduc-
tion with gradient tracking, while Pan, Liu, and Wang (2020)
extend the SPIDER-SFO method (Fang et al. 2018) to the de-
centralized setting. Xin, Khan, and Kar (2021a) develop GT-
HSGD, a single-loop method based on STORM (Cutkosky
and Orabona 2019), and establish a network-independent
O(ϵ−3) sample complexity.

However, most of these results rely on the assumption of
uniform variance across nodes, and their complexity bounds
depend on the worst-case variance σmax. Xin et al. (Xin,
Khan, and Kar 2021b,a; Xin et al. 2021) consider heteroge-
neous variance in decentralized stochastic optimization and
derive an upper bound that depends on the quadratic mean of
standard deviations σ̄QM, while Deng and Hu (2025) obtain
similar results in the context of manifold optimization. It
remains an open problem whether more efficient algorithms
can be designed under heterogeneous variance.

Moreover, theoretical lower bounds are essential for char-
acterizing the performance limits of algorithms. For dis-
tributed optimization, Arjevani and Shamir (2015) derive
iteration lower bounds under deterministic convex setting.
Scaman et al. (2017) analyze the lower complexity bounds for
both centralized and decentralized algorithms in the smooth
and strongly convex setting. In the non-convex case, Arjevani

et al. (2023) establish the complexity lower bound for single-
machine non-convex stochastic optimization. Lu and De Sa
(2021, 2023) extend this result to the decentralized setting,
though their analysis relies on a specific linear communi-
cation topology. Yuan et al. (2022) construct more general
network structures and prove lower bounds under broader
conditions, including the special case where the objective
satisfies the Polyak–Łojasiewicz (PL) condition. Huang and
Yuan (2022) extend the analysis to the time-varying networks.
In addition, Huang et al. (2022) and He et al. (2023) investi-
gate lower bounds under communication compression.

D-NSS Algorithm
In this section, we design D-NSS (Decentralized Optimiza-
tion with Node-Specific Sampling), a sample-efficient algo-
rithm under variance heterogeneity, and analyze its sample
and communication complexities.

Algorithm Design
The design of the algorithm is motivated by formulating each
iteration as a sample minimization problem with a target
accuracy. If each node draws Bi stochastic gradients per iter-
ation, the mean squared error of the global averaged gradient
estimator is given by

E


∥∥∥∥∥∥ 1

m

m∑
i=1

1

Bi

Bi∑
j=1

gi(x
(t); ξij)−∇f(x(t))

∥∥∥∥∥∥
2


=
1

m2

m∑
i=1

1

B2
i

Bi∑
j=1

E
[∥∥∥gi(x(t); ξij)−∇fi(x

(t))
∥∥∥2]

≤ 1

m2

m∑
i=1

σ2
i

Bi
, (3)

where the last step holds by equation (2). We desire to achieve
the estimation accuracy of ϵ2 based on equation (3). A simple
choice for batch size setting is Bi = σ2

i /(mϵ2), yielding
a total sample size of σ̄2

QM/ϵ2. Although Xin et al. (2021)
use a different choice with Bi = σ̄2

QM/(mϵ2), the total sam-
ple size per iteration remains the same. A natural question
is how to minimize the total number of samples under the
given accuracy. We formulate it as the following optimization
problem:

min
Bi

m∑
i=1

Bi s.t.
1

m2

m∑
i=1

σ2
i

Bi
≤ ϵ2, Bi > 0. (4)

It is a convex problem and its optimal solution can be char-
acterized by the KKT conditions. To handle the inequality
constraint, we introduce the Lagrange multiplier λ ≥ 0 and
define the Lagrangian as

L(B, λ) =

m∑
i=1

Bi + λ

(
m∑
i=1

σ2
i

Bi
−m2ϵ2

)
.

By the dual feasibility and first-order optimality, we have

B⋆
i =

σi

∑m
j=1 σj

m2ϵ2
, where i = 1, . . . ,m. (5)



Algorithm 1: D-NSS
Input: Initial point x0 ∈ Rd, step size η > 0, communication
matrix W , communication rounds Rt at iteration t, batch size
Bi at node i
Initialize: s−1

i = y−1
i = 0 for all i

1: for t = 0, 1, . . . , T − 1 do
2: for i = 1, . . . ,m in parallel do
3: Sample i.i.d. mini-batch St

i = {ξi,1, . . . , ξi,Bi}
4: yti =

1
Bi

∑Bi

j=1 gi(x
t
i; ξi,j)

5: sti = FastMix({st−1
i + yti − yt−1

i }mi=1,W,Rt)

6: xt+1
i = FastMix({xt

i − ηsti}mi=1,W,Rt)
7: end for
8: end for

Output: xi,out uniformly sampled from {x0
i , x

1
i , . . . , x

T
i }

Algorithm 2: FastMix({ϕi}mi=1,W,R)

Input: Initial value {ϕi}mi=1, communication matrix W , num-
ber of rounds R
Initialize: η = (1 −

√
1− λ2

2(W ))/(1 +
√
1− λ2

2(W )),
z0i = z−1

i = ϕi.
1: for r = 0, 1, . . . , R− 1 do
2: zr+1

i = (1 + η)
∑m

j=1 Wijz
r
j − ηzr−1

i

3: end for
Output: zRi

Therefore, the minimal total number of samples to achieve
an ϵ-accurate estimation is

∑m
i=1 B

⋆
i = σ̄2

AM/ϵ2, which de-
pends on the arithmetic mean of the standard deviations.

As discussed above, existing decentralized optimization
algorithms (Lian et al. 2017; Yi et al. 2022; Lu and De Sa
2021, 2023; Yuan et al. 2022; Xin et al. 2021) typically adopt
uniform sampling across nodes, which ignores substantial
variance heterogeneity and leads to suboptimal dependence
in sample complexity.

Based on the optimal sampling strategy given in equa-
tion (5), we propose D-NSS, a decentralized algorithm that
allocates node-specific batch sizes, described in Algorithm 1.
At iteration t, node i holds a local variable xt

i ∈ Rd and com-
putes a stochastic gradient estimator yti using a mini-batch of
size Bi, where Bi is determined by the local gradient noise
standard deviation σi. The local variable xt

i is then updated
using a gradient tracking variable sti, which combines yti with
information communicated from the neighboring nodes Ni.
Fast consensus is achieved through the multi-consensus step
FastMix (Algorithm 2). With this design, D-NSS attains
the theoretically optimal sample complexity and is suited for
decentralized settings with heterogeneous variance.

Complexity Analysis of D-NSS
To analyze the complexity of the D-NSS algorithm, we first
present several standard assumptions in decentralized stochas-
tic optimization.

Assumption 1. The objective function f is lower bounded,
i.e., infx∈Rd f(x) > −∞.

In addition, we denote the initial optimal function value
gap by ∆ = f(x0) − infx∈Rd f(x), where x0 is the initial
point of the algorithm. It holds ∆ < +∞ under Assump-
tion 1.
Assumption 2. For each node i, the stochastic gradient
gi(x, ξ) satisfies unbiasedness and bounded variance as

Eξ[gi(x; ξ)] = ∇fi(x) and

Eξ

[
||gi(x; ξ)−∇fi(x)||2

]
≤ σ2

i ,

where σi > 0.
Assumption 2 captures the variance heterogeneity across

nodes, which is central to the problem studied in this work.
Assumption 3. The global objective f is L-smooth, and each
local function fi is mL-smooth, i.e., for all x, y ∈ Rd, we
have

∥∇f(x)−∇f(y)∥2 ≤ L2∥x− y∥2,
and for any node i and x, y ∈ Rd, we have

∥∇fi(x)−∇fi(y)∥2 ≤ m2L2∥x− y∥2.
Remark 1. We emphasize our Assumption 3 is weaker than
the smoothness condition in existing works that requires ev-
ery fi satisfying ∥∇fi(x) − ∇fi(y)∥2 ≤ L2∥x − y∥2 (Lu
and De Sa 2021, 2023; Yuan et al. 2022; Xin et al. 2021). See
Appendix A for details.

Finally, we introduce the assumption on the communica-
tion matrix W , which is standard in the decentralized opti-
mization (Ye et al. 2023; Bai, Liu, and Luo 2024).
Assumption 4. Let W ∈ Rm×m be the communication
matrix, satisfying:

(a) W is symmetric and element-wise nonnegative, with
Wij ̸= 0 if and only if nodes i and j are connected or
i = j;

(b) 0 ⪯ W ⪯ I and W⊤1m = W1m = 1m; moreover, the
null space of (I −W ) is span(1).

Assumption 4 indicates that 1−λ2(W ) > 0, where λ2(W )
is the second largest eigenvalue of W . We define χ := 1−
λ2(W ).

Following theorem provides upper bounds on the sample
and communication complexity required by Algorithm 1 to
reach an ϵ-stationary point.
Theorem 1. Under Assumptions 1–4, consider Algorithm 1
with the following parameter choices:

η =
1

2L
, Bi =

⌈
16σi

∑m
j=1 σj

m2ϵ2

⌉
, T =

⌈
32∆L

ϵ2

⌉
,

R0 = O

(
1
√
χ
log
(m
ϵ

))
, and Rt = O

(
1
√
χ
log(m)

)
,

then the output of the algorithm is an ϵ-stationary point
satisfying E

[
∥∇f(xi,out)∥2

]
≤ ϵ2. The sample complexity

is upper bounded by

O

(
∆Lσ̄2

AM

ϵ4
+

m∆L

ϵ2

)
,

and the communication complexity is bounded by

Õ

(
∆L
√
χϵ2

)
.



In Table 1, we compare the result with representative
existing algorithms. Since all these methods achieve near-
optimal (up to a logarithmic factor) communication complex-
ity, we focus on their sample complexity. D-NSS achieves
a dependence on the arithmetic mean of standard devia-
tions σ̄AM, which is tighter than the worst-case or quadratic-
mean bounds in previous methods. Under significant vari-
ance heterogeneity, the parameters can satisfy the relation
σmax = Θ(

√
mσ̄QM) = Θ(mσ̄AM). Therefore, in such sce-

narios, our D-NSS algorithm achieves an O(m) improvement
in sample efficiency over existing methods.

Lower Bounds Under Heterogeneous Variance
In the previous section, we established upper bounds for de-
centralized non-convex stochastic optimization under hetero-
geneous variance. Although the proposed algorithm achieves
a sample complexity that depends on the arithmetic mean
σ̄AM, it remains unclear whether this dependence can be fur-
ther reduced through more refined algorithmic designs. To
address this, we investigate the lower bounds under heteroge-
neous variance. We begin by formally defining the class of
algorithms.
Definition 1 (Decentralized first-order algorithm class). A
decentralized first-order algorithm is defined over a network
of nodes and satisfies the following constraints:
• Local memory: At time t, each node i maintains a local

memory Mi,t ⊂ Rd that stores previously accessed or
generated information. The memory is updated through
either local computation or communication, i.e.,

Mi,t ⊆ Mcomp
i,t ∪Mcomm

i,t ,

where Mcomp
i,t and Mcomm

i,t represent the computational
and communication memories, respectively.

• Local computation: At time t, node i can query a local
first-order stochastic oracle to access gi(x; ξi) for any
x ∈ Mi,t−1. The computational memory is given by

Mcomp
i,t = Span ({x, gi(x; ξi) : x ∈ Mi,t−1}) .

• Local communication: At time t, node i can receive in-
formation from its neighbours N (i). The communication
memory is defined as

Mcomm
i,t = Span

 ⋃
j∈N (i)

Mj,t−τ

 ,

where τ < t denotes the communication delay parameter.
• Output value: At time t, node i must output one vector

from its local memory as its current output, i.e.,

xt
i ∈ Mi,t.

Establishing lower bounds for decentralized stochastic op-
timization under heterogeneous variance presents two key
challenges. First, existing results (Lu and De Sa 2021, 2023;
Yuan et al. 2022) rely on constructions in which all local
objectives are identical, i.e., f1 = f2 = · · · = fm. Such con-
structions are suitable for uniform-variance settings but fail to
capture the difficulties introduced by heterogeneous variance.

Algorithm Sample Complexity

DeTAG
Lu and De Sa (2023) O

(
∆Lσ2

max

ϵ4
+

m∆L

ϵ2

)
MG-DSGD

Yuan et al. (2022) O

(
∆Lσ2

max

ϵ4
+

m∆L

ϵ2

)
GT-SA

Xin et al. (2021) O

(
∆Lσ̄2

QM

ϵ4
+

m∆L

ϵ2

)
D-NSS

Theorem 1 O

(
∆Lσ̄2

AM

ϵ4
+

m∆L

ϵ2

)
Lower Bound

Theorem 2 Ω

(
∆Lσ̄2

AM

ϵ4
+

m∆L

ϵ2

)

Table 1: Comparison of sample complexity for first-order
decentralized methods in the non-convex stochastic setting
with heterogeneous variance.

Motivated by lower bounds for finite-sum problems (Zhou
and Gu 2019), we address this limitation by constructing or-
thogonal local functions that satisfy ⟨∇fi(x),∇fj(x)⟩ = 0
for all i ̸= j. Second, heterogeneous variance breaks the sym-
metry across nodes, as algorithms typically allocate different
numbers of samples to different nodes. This asymmetry in-
troduces additional challenges in the analysis that are not
addressed by existing lower bound techniques. Our construc-
tion explicitly incorporates this sample allocation asymmetry.
The detailed construction and proof are provided in the ap-
pendix.

We state the main result as follows.
Theorem 2. For any algorithm A satisfying Definition 1,
there exists a distributed objective function of the form
f(x) = 1

m

∑m
i=1 fi(x) with corresponding stochastic gradi-

ents satisfying Assumptions 1–3, such that, for sufficiently
small ϵ, the number of samples required to find an ϵ-
stationary point is at least

Ω

(
∆Lσ̄2

AM

ϵ4
+

m∆L

ϵ2

)
.

The result in Theorem 2 shows that the D-NSS algorithm
achieves the optimal sample complexity, and its dependence
on the arithmetic mean σ̄AM is tight. Moreover, since the
construction of the communication lower bound does not
involve stochastic gradients, the lower bound matches that in
Yuan et al. (2022) and is given by

Ω

(
∆L
√
χϵ2

)
.

Therefore, the D-NSS algorithm achieves nearly optimal
communication complexity (up to a logarithmic factor).

D-NSS-VR Algorithm
In non-convex stochastic optimization, the optimal sample
complexity is O(ϵ−4) under the standard bounded-variance



assumption. When the mean-squared smoothness condition
holds, this complexity can be improved to O(ϵ−3) (Arjevani
et al. 2023). A variety of variance-reduction methods, such as
SARAH, SPIDER, PAGE, and their decentralized extensions,
have been developed to attain this improved rate.

We have established a complexity bound that depends on
the arithmetic mean σ̄AM in the general setting. In contrast,
decentralized variance-reduction methods involve more in-
tricate structures, such as recursive gradient updates, nested
inner–outer loops, and synchronization of local information,
which require more delicate parameter tuning. Whether a
similar dependence on σ̄AM can be preserved within such a
framework remains an open question.

In this section, we address this question by extending the
sampling strategy to the variance-reduced setting. We propose
D-NSS-VR (Decentralized Node-Specific Sampling with
Variance Reduction), a decentralized algorithm that incor-
porates node-specific sampling into a SARAH-type variance
reduction framework (Nguyen et al. 2017). We show that
D-NSS-VR also achieves sample complexity that depends on
the arithmetic mean σ̄AM.

Algorithm Design
The core idea of variance reduction is to construct gradient
estimates recursively using historical information and small
mini-batches in most iterations, thereby significantly reduc-
ing sample usage while maintaining estimation accuracy.

As presented in Algorithm 3, D-NSS-VR integrates node-
specific sampling with recursive gradient updates. During the
large-batch update phase, the algorithm follows the design of
D-NSS by allocating to each node i a batch size Bi propor-
tional to its local noise level σi. This estimate serves as the
initialization for subsequent recursive updates. In the inner
update phase, a fixed mini-batch size b is employed across
all nodes to construct variance-reduced gradient estimates
recursively, as specified in line 15 of Algorithm 3, which
further improves the sample complexity.

Moreover, inspired by the PAGE method (Li et al. 2021),
the algorithm employs a probabilistic update scheme in place
of a fixed inner–outer loop, making the overall framework
simpler and more unified from an analytical perspective. At
the implementation level, D-NSS-VR also introduces a skip
variable wt

i , which allows each node to reuse the previous
gradient estimate in certain iterations, thereby reducing com-
putational overhead. In particular, as the noise level tends to
zero, the algorithm reduces to a variance reduction method
as in the finite-sum setting.

Complexity Analysis of D-NSS-VR
The convergence analysis of variance reduction methods re-
lies on the following mean-squared smoothness assumption.
Assumption 5 (Mean-Squared Smoothness). There exists a
constant L̄ > 0 such that for any x, y ∈ Rd,

1

m

m∑
i=1

Eξi ∥gi(x, ξi)− gi(y, ξi)∥2 ≤ L̄2∥x− y∥2.

Assumption 5 is weaker than that in previous works (Pan,
Liu, and Wang 2020; Sun, Lu, and Hong 2020; Xin, Khan,

Algorithm 3: D-NSS-VR
Input: Initial point x0 ∈ Rd, step size η > 0, com-
munication matrix W , communication rounds Rt at itera-
tion t, batch sizes Bi and b, probability parameters p, q ∈
(0, 1]

1: For all i, sample large batch S0
i = {ξi,1, . . . , ξi,Bi}

2: y0i =
1

Bi

Bi∑
j=1

gi(x
0
i ; ξi,j);

3: s0i = FastMix({y0i }mi=1,W,R0);
4: x1

i = FastMix({x0
i − ηs0i }mi=1,W,R0)

5: for t = 1, 2, . . . , T − 1 do
6: Sample ζt ∼ Bernoulli(p)
7: for i = 1, . . . ,m in parallel do
8: if ζt = 1 then
9: Sample large batch St

i = {ξi,1, . . . , ξi,Bi}

10: yti =
1

Bi

Bi∑
j=1

gi(x
t
i; ξi,j)

11: else
12: Sample ωt

i ∼ Bernoulli(q)
13: if ωt

i = 1 then
14: Sample mini-batch St

i = {ξi,1, . . . , ξi,b}

15: yti = yt−1
i +

ωt
i

bq

b∑
j=1

(
gi(x

t
i; ξi,j)

−gi(x
t−1
i ; ξi,j)

)
16: else
17: yti = yt−1

i
18: end if
19: end if
20: sti = FastMix({st−1

i + yti − yt−1
i }mi=1,W,Rt)

21: xt+1
i = FastMix({xt

i − ηsti}mi=1,W,Rt)
22: end for
23: end for
Output: xi,out uniformly sampled from {x0

i , x
1
i , . . . , x

T
i }

and Kar 2021a; Xin et al. 2021), which require mean-squared
smoothness of the stochastic gradient for each local func-
tion. Moreover, this assumption also implies that the global
objective function f is L̄-smooth.

The following theorem provides upper bounds on the sam-
pling and communication complexity of Algorithm 3 for
finding an ϵ-stationary point.
Theorem 3. Under Assumptions 1, 2, 4, and 5, consider
Algorithm 3 with the following parameter choices:

η =
1

48L̄
, Bi = max

{⌈
32σi

∑m
j=1 σj

m2ϵ2

⌉
, 1

}
,

b =

⌈√∑m
i=1 Bi

m

⌉
, q =

√∑m
i=1 Bi

bm
,

p =
bq

bq +
∑m

i=1 Bi/m
, T =

⌈
384∆L̄

ϵ2
+

2

p

⌉
,

R0 = O

(
1
√
χ
log
(m
ϵ

))
, and Rt = O

(
1
√
χ
logm

)
,



Algorithm Sample Complexity Communication Rounds

GT-HSGD
Xin, Khan, and Kar (2021a) O

(
(∆L̄+ σ̄2

QM)3/2

ϵ3

)
O

(
(∆L̄+ σ̄2

QM)3/2

ϵ3

)
GT-SR-O

Xin et al. (2021) O

(
∆L̄σ̄QM

ϵ3
+

σ̄2
QM

ϵ2
+

m∆L̄

ϵ2
+m

)
Õ

(
∆L̄
√
χϵ2

+
σ̄QM√
χϵ

)
D-NSS-VR
Theorem 3 O

(
∆L̄σ̄AM

ϵ3
+

σ̄2
AM

ϵ2
+

√
m∆L̄

ϵ2
+m

)
Õ

(
∆L̄
√
χϵ2

+
σ̄AM√
χϵ

)
Lower Bound

Theorem 4 Ω

(
∆L̄σ̄2/3

ϵ3
+

σ̄2
AM

ϵ2
+

√
m∆L̄

ϵ2
+m

)
Ω

(
∆L̄
√
χϵ2

)

Table 2: Comparison of sample and communication complexity for decentralized variance reduction methods under mean-squared
smoothness and heterogeneous variance.

then the output xi,out of the algorithm is an ϵ-stationary point
satisfying E

[
∥∇f(xi,out)∥2

]
≤ ϵ2. The sample complexity

is upper bounded by

O

(
∆L̄σ̄AM

ϵ3
+

σ̄2
AM

ϵ2
+
√
m
∆L̄

ϵ2
+m

)
,

and the communication complexity is bounded by

Õ

(
∆L̄
√
χϵ2

+
σ̄AM√
χϵ

)
.

Theorem 3 shows that the variance reduction method can
also achieve a dependence on the arithmetic mean of standard
deviations. As shown in Table 2, we compare the sample
and communication complexity of D-NSS-VR with state-
of-the-art decentralized variance reduction methods (Xin,
Khan, and Kar 2021a; Xin et al. 2021). D-NSS-VR exhibits
better dependence on the variance parameters, yielding an
O(

√
m) improvement in sample complexity under strong

heterogeneity. Moreover, when all variances σi → 0, the
sample complexity of D-NSS-VR matches that of variance
reduction method for the finite-sum problem (Li et al. 2021),
which is not achieved by the compared methods.

Lower Bounds with Mean-Squared Smoothness
We establish the following lower bound on the sample com-
plexity for variance reduction algorithms.

Theorem 4. For any algorithm A satisfying Definition 1,
there exists a distributed objective function of the form
f(x) = 1

m

∑m
i=1 fi(x) with corresponding stochastic gradi-

ents satisfying Assumptions 1, 2, and 5, such that, for suffi-
ciently small ϵ, the number of stochastic gradient samples
required to find an ϵ-stationary point is at least

Ω

(
∆L̄σ̄2/3

ϵ3
+

σ̄2
AM

ϵ2
+

√
m∆L̄

ϵ2
+m

)
,

where σ̄2/3 = ((σ
2/3
1 + · · ·+ σ

2/3
m )/m)3/2.

Under mean-squared smoothness assumption, the commu-
nication lower bound remains

Ω

(
∆L̄
√
χϵ2

)
,

as its construction does not rely on the stochastic gradients
(Yuan et al. 2022).
Remark 2. Theorems 3 and 4 show that while several terms
in the upper bounds match the corresponding lower bounds, a
gap remains in the leading term. Due to the inherent difficulty
of constructing lower bounds, particularly under the mean-
squared smoothness assumption, closing this gap is left as
an open problem for future work. Although the upper and
lower bounds do not fully match, our result demonstrates that
the complexity of variance reduction methods can depend
on σ̄AM. Finally, the communication complexity is nearly
optimal in the small-ϵ regime.

Numerical Experiments
In this section, we validate the convergence of the proposed al-
gorithms through numerical experiments on multiple datasets
and compare them with existing methods. Specifically, we
consider a widely used regularized logistic regression prob-
lem for binary classification in the decentralized setting (Xin,
Khan, and Kar 2021a; Luo et al. 2022; Gao et al. 2023):

fi(x) =
1

Ni

Ni∑
j=1

log
(
1 + exp

(
−bija

⊤
ijx
))
+r

d∑
k=1

[x]2k
1 + [x]2k

,

where aij ∈ Rd is the feature vector of the j-th sample at
node i, bij ∈ {±1} is the corresponding binary label, and
r > 0 is the regularization parameter, which is set to 10−4 in
our experiments. Each node i holds Ni local samples, which
may vary across nodes. To explicitly model heterogeneous
variance across nodes, Gaussian noise with node-specific
variances is added to the stochastic gradients.

We conduct numerical experiments on three real-world
datasets: a9a, w8a, and MNIST. The datasets a9a (N =
32, 561, d = 123) and w8a (N = 49, 749, d = 300) can
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Figure 1: Performance comparison of decentralized algorithms in terms of the number of samples on datasets a9a, w8a, and
mnist. The lines represent averages over 5 runs, and the shaded regions denote the standard deviations.
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Figure 2: Performance comparison of decentralized variance reduction algorithms in terms of the number of samples on datasets
a9a, w8a, and mnist. The lines represent averages over 5 runs, and the shaded regions denote the standard deviations.

be downloaded from the LIBSVM repository (Chang and
Lin 2011). For the MNIST dataset (LeCun et al. 2002), the
digits 4 and 5 are utilized for the classification task, with
N = 11, 263 and d = 784. We set the number of nodes m =
20. Regarding the communication network, a random graph
with χ = 0.41 is used and Metropolis-Hastings weights
(Xiao, Boyd, and Lall 2005) are applied to construct the
communication matrix W .

We first compare D-NSS (Algorithm 1) with three baseline
algorithms: DeTAG (Lu and De Sa 2023), MG-DSGD (Yuan
et al. 2022), and GT-SA (Xin et al. 2021). For each baseline,
the batch sizes and step sizes are tuned to achieve their best
empirical performance. In D-NSS, each σi is estimated by
computing the variance on a small batch (50 on each node)
of stochastic gradients and broadcast at initialization. The ad-
ditional cost of this variance estimation and communication
is negligible compared with the overall cost. The experimen-
tal results are presented in Figure 1. It can be observed that
the proposed D-NSS consistently outperforms the baseline
methods across all three datasets, which demonstrates the
effectiveness of the node-specific sampling strategy.

For the variance-reduced method D-NSS-VR (Algo-
rithm 3), we compare it with the state-of-the-art variance-
reduced algorithms GT-HSGD (Xin, Khan, and Kar 2021a)
and GT-SR-O (Xin et al. 2021). The results are presented in
Figure 2. It can be observed that D-NSS-VR also consistently

achieves the best performance across all three datasets. Al-
though the incorporation of randomness (lines 6 and 12 in
Algorithm 3) increases the variance, the combination with
the node-specific sampling strategy leads to a significant
advantage in practical performance.

Conclusion

This work studies decentralized non-convex stochastic opti-
mization under heterogeneous variance. We propose D-NSS,
a node-specific sampling algorithm that allocates samples ac-
cording to local noise levels, and establish a sample complex-
ity bound depending on the arithmetic mean of local standard
deviations. A matching lower bound is derived, demonstrat-
ing the optimality of the proposed approach. Furthermore,
by incorporating variance reduction, we develop D-NSS-VR,
which achieves improved sample complexity under mean-
squared smoothness while maintaining the arithmetic-mean
dependence. Numerical experiments on multiple datasets val-
idate our theoretical results and demonstrate the practical
advantages of the proposed algorithms. Future work includes
closing the remaining gap in the lower bound for variance re-
duction methods and investigating the performance of higher-
order algorithms under heterogeneous variance.
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