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ABSTRACT

We study instrumental variable regression (IVaR) under differential privacy con-
straints. Classical IVaR methods (like two-stage least squares regression) rely on
solving moment equations that directly use sensitive covariates and instruments,
creating significant risks of privacy leakage and posing challenges in designing al-
gorithms that are both statistically efficient and differentially private. We propose
a noisy two-state gradient descent algorithm that ensures p-zero-concentrated dif-
ferential privacy by injecting carefully calibrated noise into the gradient updates.
Our analysis establishes finite-sample convergence rates for the proposed method,
showing that the algorithm achieves consistency while preserving privacy. In par-
ticular, we derive precise bounds quantifying the trade-off among privacy param-
eters, sample size, and iteration-complexity. To the best of our knowledge, this
is the first work to provide both privacy guarantees and provable convergence
rates for instrumental variable regression in linear models. We further validate our
theoretical findings with experiments on both synthetic and real datasets, demon-
strating that our method offers practical accuracy-privacy trade-offs.

1 INTRODUCTION

Instrumental variable regression (IVaR) is a key tool in causal inference, designed to recover struc-
tural parameters when standard estimators fail due to endogeneity. In many observational settings,
covariates are influenced by unobserved confounders, causing naive methods (such as the ordinary
least squares (OLS) in the context of linear regression) to produce biased and inconsistent esti-
mates. IVaR circumvents this by leveraging instruments, which are variables that are predictive of
the endogenous regressors but independent of hidden confounders, to enable consistent estimation
of causal effects (Hausman, 2001; Wooldridge), 2010; |Angrist & Krueger, [2001). This perspective
is increasingly important in machine learning, for example in recommendation systems where user
exposure is confounded by prior preferences (Si et al., |2022)), or in reinforcement learning where
actions and rewards are jointly influenced by unobserved context (Xu et al2023)). In such settings,
IVaR provides a principled way to disentangle causal effects from spurious correlations, enabling
more reliable decision making.

However, many applications of IVaR involve sensitive data, such as individual health records, fi-
nancial transactions, or user interactions, where protecting privacy is of paramount importance. In
such settings, releasing model estimates or even intermediate statistics can leak information about
individuals in the dataset. Differential privacy (DP) (Dwork et al.,[2006) provides a mathematically
rigorous framework to ensure that an algorithm’s output does not reveal sensitive information about
any single data point. Despite the importance of IVaR in causal inference, to the best of our knowl-
edge, there are no prior works addressing the problem of performing I'VaR under differential privacy.
This gap motivates the central question of this paper:

Can we design differentially private algorithms for instrumental variable models
that achieve statistically efficient convergence rates?

Our work focuses on answering this question in the context of linear regression models. To situate
our contributions, we briefly review existing work on DP methods for OLS regression, with addi-
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tional discussion in Section [I.T] Several predominant approaches have emerged in the literature:
(i) perturbion methods, where the empirical covariance and cross-covariance matrices are privatized
before solving the normal equations; (ii) consensus-based methods, including propose-test-release
and exponential mechanism approaches, which directly privatize the estimator through carefully de-
signed randomized output rules; and (iii) gradient perturbation methods, where iterative optimization
algorithms are made private by clipping gradients and injecting calibrated Gaussian noise. While all
three approaches ensure differential privacy, gradient perturbation combined with clipping has been
shown to yield the sharpest statistical rates in OLS regression, particularly in high-dimensional and
finite-sample regimes (Bassily et al., 2014} |Brown et al., 2024a).

Given the centrality of IVaR in causal inference, it is natural to explore whether the aforementioned
techniques can be adapted to this setting. Unlike OLS, however, IVaR is based on moment condi-
tions involving both covariates and instruments, making it less straightforward to design private al-
gorithms. In particular, sufficient-statistics perturbation and consensus-based methods have not been
explored, and their adaptation is non-trivial due to the inherent ill-posedness of IVaR under weak
instruments and the sensitivity of the moment equations. Motivated by the success of gradient-based
DP methods in OLS, we focus on extending the noisy gradient descent framework to IVaR, carefully
analyzing the interplay between contraction rate, privacy guarantees, and sample size. Specifically,
we make the following contributions in this work:

We introduce DP-2S-GD (Algorithm [T, the first differentially private algorithm for instrumental
variable regression, based on noisy gradient descent with gradient clipping.

We establish finite-sample convergence rates for DP—2S-GD (Theorem 3.1)), explicitly characteriz-
ing the trade-off between privacy, contraction rate, and sample size. The main technical challenge is
to carefully control the interaction between privacy-induced noise and the contraction of the gradient
dynamics across iterations, with the privacy guarantee ensured by Proposition 3.1}

We validate our theoretical analysis with experiments on synthetic and real-world datasets, demon-
strating practical accuracy-privacy trade-offs (Section ).

1.1 RELATED WORK

Differential Privacy for Regression. One can group private regression methods into the follow-
ing broad families. (1) Output/objective perturbation (private empirical risk minimization (ERM)):
add noise to the final estimator (output perturbation) or inject a random linear/quadratic term into
a strongly convex loss before optimizing (objective perturbation); these one-shot mechanisms give
(e,9)-DP guarantees and excess-risk bounds for convex ERM (Chaudhuri et al.| (201 1); [Kifer et al.
(2012); Bassily et al.| (2014)). Recent refinements, e.g. [Redberg et al.| (2023)), leverage subsam-
pling and tighter accounting to improve accuracy. (2) Sufficient-statistics (matrix) perturbation:
release noisy surrogates of (XTX,XTy) (or related second-moment structures) and then solve
the (regularized) normal equations; this route enables OLS-specific inference but can suffer un-
der ill-conditioning because noise is injected at the Gram-matrix level (Dwork et al.| (2014); Sheffet
(2017)). For quantitative analysis on this approach, we refer to [Tsfadia et al.|(2022). Further de-
velopments in this direction include Bernstein & Sheldon| (2019) and [Ferrando & Sheldon| (2024).
(3) Exponential mechanism: privately selects an output by randomly choosing among candidates
with probabilities that grow exponentially with their quality score, with parameters controlling how
strongly it favors the higher-scoring options. This mechanism is frequently applied in constructing
algorithm to privately select a regression model from a pool of non-private OLS fits on subsets of
the data (Ramsay & Chenourif (2021}, Cumings-Menon! (2022), |Amin et al.| (2022))). (4) Gradient
perturbation (DP-(S)GD): clip per-example (mini-batch or full) gradients and add Gaussian noise at
each step, tracking privacy with bounded log moment generating function of privacy loss random
variable Wang et al.| (2019), Rényi DP, and subsampled-RDP-which yields tight composition for
many small releases and scales well to large n, p without forming X TX. (Abadi et al.| (2016); [Bun
& Steinke| (2016); [Mironov| (2017); [Wang et al.| (2019)).

We favor gradient perturbation for multi-stage estimators like IVaR because it (i) composes tightly
across many noisy steps using modern privacy accountants, (ii) avoids spectrum-dependent blow-ups
from noising X " X (Sheffet| (2017)) and (iii) yields strong convergence rates while fitting standard
training pipelines (including using minibatches, streaming, early stopping) and enabling modular,
stage-wise design, which is preferable for practice (Bassily et al.|(2014), Abadi et al.|(2016))). How-
ever, there are some prior works (e.g. [Varshney et al.[(2022), Liu et al.|(2023))) indicating that private
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first-order gradient methods still suffer on ill-conditioned data. And there exist DP techniques for
estimating X ' X that reduce or avoid spectrum blow-ups, e.g., via carefully calibrated noise or reg-
ularization (e.g. Brown et al.|(2023), Kamath et al.|(2019)). |Brown et al.|(2024b) indicates that fully
sufficient-statistics pipeline (including inversion) may require larger sample sizes than gradient-
based approaches to reach comparable accuracy in high dimensions, especially in the presence of
weak instruments or near-singular covariance. Hence, the gradient perturbation should be viewed as
complementary to the sufficient statistics perturbation, but not as a universal replacement.

Instrumental Variable Regression (IVaR) has been extensively studied in econometrics An-
grist & Krueger| (2001); |Angrist & Pischke| (2009). Classical methods such as two-stage least
squares (2SLS) admit closed-form solutions but face limitations in modern applications: they do
not scale well to high-dimensional or streaming data, cannot easily incorporate regularization, and
are restricted to linear models. This has motivated optimization-based approaches, including con-
vex—concave formulations of nonlinear I'V Muandet et al.| (2020)), stochastic optimization methods
for scalable and online estimation |Della Vecchia & Basu| (2023)); |(Chen et al.| (2024); [Fonseca et al.
(2024), and bi-level gradient descent algorithms with convergence guarantees [Liang et al|(2025).
Extensions to nonlinear IV include kernel-based methods [Singh et al.|(2019) and DeeplV |Hartford
et al.| (2017). Despite these advances, prior work assumes unrestricted access to the data and does
not provide end-to-end differential privacy guarantees, which are increasingly critical in sensitive
domains such as healthcare, finance, and online platforms. To our knowledge, no existing method
offers DP guarantees with finite-sample convergence rates for linear [IV/2SLS that explicitly account
for instrument strength, sample size, dimension, and iteration complexity.

Notations: Throughout this paper, unless otherwise specified, we use lower-case letters to denote
random variable or individual data samples, and upper-case letters to denote datasets, i.e. collections
of samples. Bolded letters represent vectors and matrices, whereas unbolded letters represent scalars.

2 PRELIMINARIES

2.1 PRIVACY NOTIONS

We first review widely used notions of privacy in the literature. Two datasets D and D’ are said
to be neighbors if they differ in exactly one entry. The concept of neighboring datasets allows us
to formally quantify the level of differential privacy. The two most common notions are (g,0)-
differential privacy and zero-concentrated differential privacy (zCDP).

Definition 2.1 ((¢, §)-Differential Privacy (Dwork et al., 2006)). A randomized mechanism M sat-
isfies (e, §)-differential privacy if for all neighboring datasets D, D’ and all measurable sets S, we
have Pr[M (D) € S] < e* Pr[M(D’) € S] + 4. Here € > 0 controls the multiplicative privacy loss,
while ¢ € [0, 1] allows for a small probability of arbitrary deviation.

Definition 2.2 (Zero-Concentrated Differential Privacy (zCDP) (Dwork & Rothblum), 2016; |Bun
& Steinke, 2016)). A randomized mechanism M satisfies p-zero-concentrated differential privacy
(p-zCDP) if for all neighboring datasets D, D’ and all & > 1, we have the D, (M (D) || M(D")) <
pa, where D, (P||Q) denotes the Rényi divergence (see Appendix [A| for the definition) of order «
between distributions P and Q.

While (e, §)-DP is the most widely used notion of privacy, it can be too coarse for analyzing iterative
mechanisms, as composition accumulates ¢ and 0 linearly. In contrast, zero-concentrated differential
privacy (zCDP) characterizes privacy loss through Rényi divergences, which ensures that the privacy
loss random variable enjoys a sub-Gaussian concentration property. This yields two key benefits:
(1) tighter composition, since zCDP parameters add under composition, and (ii) smooth conversion,
since p-zCDP implies (£, 0)-DP with e = p+ 24/plog(1/6); see Bun & Steinke (2016, Proposition
1.3). As a result, we choose zCDP for technical convenience since it provides simple additive
composition rule and leaner formulas in our context where we compose a large number of identical
Gaussian mechanisms across both stages in 2SLS algorithm.

2.2 IVAR MODEL AND ASSUMPTIONS

Endogeneity is a central challenge in linear regression. Suppose we aim to estimate the causal effect
of the regressor x € R” on the outcome y € R. However, there exists an unobserved confounder u
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that affects both x and y, thereby violating the standard exogeneity assumption that x is uncorrelated
with the noise. As a result, the OLS estimator becomes biased and inconsistent. Instrumental
variable regression (IVaR) is a widely adopted method to handle endogeneity by including z € RY,
an instrumental variable (IV), to the model (Angrist & Krueger, 2001):

y=B"x+e, x=0"z+e, (1)

where the error terms €1 and €5 are correlated due to the common confounder u; see Figurefor an
illustration. Given the dataset (Z, X,Y) = {(z;, x;, yi)}z;lﬂ the objective of the IVaR model is to
solve the following bi-level optimization problem:

3 = arg min {L(,B) = %Zn: (yz — ,BTéTzi)z }, s.t. © = argmin{% z": Ix; — @szHQ}.
i=1 j=1

BeRP @cRaxp
(2)

Optimization problem [ admits a closed-form solution. A classical approach to solve equation 2] is
the two-stage least squares (2SLS) estimator; see Definition[2.3]

Definition 2.3 (2SLS estimator). Given observational data (Z,X,Y) = {(z;, x;, ;) }_,, the 2SLS
estimator 3og_ g is obtained through two consecutive OLS regressions:

i. First stage: Regress X on Z to obtain €)
©=(2"2)"'2"X.
ii. Second stage: Regress Y on X := ZO to obtain:
Bosis = (©0'Z2'20)7'0TZ7Y.

In the following sections, we will use ,é to denote the 2SLS estimator for simplicity. We impose the
following standard assumptions for IVaR model.

Assumption 1 (IVaR Assumptions). A random variable z € R is a valid IV, if it satisfies:

(i) Fully identification: g > p (without loss of generality, we assume data Z, X are full rank).
(ii) Correlation to «: Corr(z,x) # 0.
(iii) Exclusion to y: Corr(z,e;) = 0.

In Assumption condition (i) ensures the existence of the unique solution ,é in equation condition
(ii) guarantees that the instrument explains nontrivial variation in the endogenous regressor x, and
condition (iii) ensures that the instrument affects the outcome y only through x. These conditions
are crucial for eliminating endogeneity and achieving consistent estimation for 3. See |Stock &
Watson| (2011, Chapter 12) for a detailed discussion. We further impose the following assumptions
to establish non-asymptotic rates.

Assumption 2. We assume the following conditions hold:

(i) z is a mean-zero isotropic sub-Gaussian random vector. That is, E[z] = 0, E[zz '] = I,
2 2 2
and for some o, > 0, E[e"(=)] < exp{“ =M} vy e R, v € RY.
(i) €7, €2 are mean-zero sub-Gaussian. Thatis, E[e;] = 0, E[e2] = 0, and for some 01, 02 > 0,

Efeve1] < exp{uz’f }, and E[e®{€2V)] < exp{%},‘du eR,veRP

Assumption 2| provides the minimal conditions required to leverage concentration results from high-
dimensional random design analysis (Vershynin, 2018). Specifically, with condition (i), we have the

. g . .. . . T
high-probability concentration bound for the empirical covariance matrix % (see Lemma .
Z'€ ,nq Z &2

Condition (ii) further ensures high-probability concentration of the cross terms
(see Lemma|D.3), where (€1, €2) = {(€1,i, €2,;) }1— denotes the sample realization of errors. With
these conditions, we derive high-probability concentration bound for the sample covariance matrix

"Throughout this paper, we assume each entry of the dataset is independently and identically distributed
(i.i.d.).
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Exclusion: No direct z— vy path
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Figure 1: ITVaR model: Instrument z is correlated with the endogenous regressor x and influences
the outcome ¥ only indirectly through x, while an unobserved confounder u affects both x and y.

of X := ZO (see Lemma , and finally establish the non-asymptotic error bound || 3 — B|| (see
Lemma|D.7).

Privacy in IVaR may be required at different levels depending on the application. In some cases,
protecting only the causal effect 3 is sufficient, for instance when the first-stage compliance relation
©® is public, secondary, or not sensitive. In other cases, privacy must also extend to the first-stage
parameter ®, such as when instruments involve sensitive behavioral data, proprietary mechanisms,
or institutional policies. To ensure end-to-end privacy in the IVaR model, we adopt the framework
of zCDP. We allocate two privacy parameters: p; for the first-stage parameter estimates {G)(t)}tT:l,
and p; for the second-stage parameter estimates {3(Y)}7_,. By the composition property of zCDP,
the overall procedure satisfies (p1 + p2)-zCDP.

3 ALGORITHM AND THEORETICAL GUARANTEES

We begin with a baseline two-stage gradient descent algorithm, denoted as 2S-GD, for solving
the IVaR problem equation 2] The detailed procedure is deferred to Appendix [A] Algorithm [2]
The method alternates between two coupled updates at each iteration: (i) updating the first-stage
projection matrix ©®), which maps instruments Z to covariates X, and (ii) updating the second-
stage regression parameter 3(*) based on the predicted covariates. This iterative procedure can be
viewed as a gradient-based analogue of the classical two-stage least squares estimator.

In this section, we propose a differentially private two-stage gradient descent algorithm, termed
DP-2S~-GD, to solve the IVaR problem equation 2] while ensuring rigorous privacy guarantees. The
algorithm is summarized in Algorithm[I] Compared with 2S—-GD, DP-2S~-GD incorporates two key
modifications: (i) per-sample clipping is applied to gradients in both stages to bound the sensitivity
of each update, ensuring that no single datapoint can disproportionately affect the results, and (ii)
Gaussian perturbations are injected into both the ®- and B-updates at every iteration, with noise
scales calibrated to the target privacy budgets p; and po.

The privacy analysis proceeds by treating the two stages as separate Gaussian mechanisms with
sensitivity controlled by clipping parameters ; and 5. By the properties of zero-concentrated
differential privacy, the choice of noise scales A1, Ay uniquely determines the effective privacy losses
p1, p2, which compose additively across iterations. Consequently, for any pre-specified privacy
budgets (p1, p2), one can calibrate (A1, A2) to ensure that DP—2S—-GD achieves the desired privacy
guarantees. We next establish formal theoretical results, including both privacy accounting and
utility bounds for the resulting estimators.

Proposition 3.1. If we set \y = 2%,//)—71 and Ay = 2%, /plz, Algorithm |l| is p-zCDP, where
2 2
P1291+P2=%(%+%)-

The proof of Proposition [3.1]is provided in Appendix
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Algorithm 1 DP-2S-GD

1: Input: Data Z € R"*?, X € R"*P, Y € R", target privacy budgets p1, po > 0, step sizes
1, a > 0, number of iterations T’
Parameters: Noise scales A\;, A2 > 0, clipping thresholds v;,v2 > 0
Initialize 3(©) = op, 0 = 0,5,
fort =0,1,. —1do

Draw =) w1th vec(EM) ~ N(0,031, ® 1)

Draw v ~ N(0, \31,,)

O+ — @1 _ 1 15" CLIP,, (z;(z] @) —x)) + nE®

B+l = gt _ o 21:1 CLIP., (@(t)T i(z ZT@(t)g(t) — yl)) + av®
end for
return {©V},, {8},

A A AN A

—

Remark 3.1. Proposition [3.1] highlights several tradeoffs among the parameters. To preserve the
same privacy levels p1, p2, the noise scales A1, Ao must increase with larger clipping thresholds
Y1, Y2, or with larger number of iterations 7". Conversely, a larger sample size n allows for smaller
noise scales while maintaining the same privacy guarantees.

Theorem 3.1. For any fixed ® € R2*P and 3 € RP, consider the Algorithmwith fixed step sizes
satisfying

2 4
0<n< ——— 0<a<7 (3)

(1+6())* 29(7) +2(7)’

under Assumption 2| with parameters

271 272 T \/7 2
— —_— p— p— 4
\/pl - \/p27 M=% =c (\/?H T+10g(nT)) , “4)

and number of iterations

< LQ_E7 %)
~p(Va+VT)°
where € > 0 is a small constant. If
(va+v7)’
n > c;max { pg(t + log(pg))?, — === ¢, (6)
! { vmin{py, p2}
for any fixed T, with probability 1 — coe™", we have
- T q+ T + log(pg
18T - Bl < k(r)E + M\f VP 8( )) )

ny/ min{py, pa} vn

where 0 < k(7) < 1 is the contraction rate, 6(1) > 0 is a numerically small term, and (), ~(T)

are the high-probability upper/lower bounds on the eigenvalues of @. The specific definitions
of 6(7),7(7),7(7), and k(T) are deferred to equation

The proof of Theorem [3.1]is presented in Appendix [C| We now offer several remarks regarding
this theorem. In the presentation of Theorem@ all constants ¢y, c1, co and scaling factors hidden
in ”<” are independent of major parameters n, p,q, T, p1, p2, 7. These constants only depend on
problem-specific parameters 3,0, 0,, 01, 02.

Remark 3.2. Consider the population optimization problem ming £(8) = E [(y — z' ©3)?], and
the (deterministic) two-stage gradient descent algorithm:

et —@® — yupE [z(zTQ(t) - XT)} , BHY = 81 _ apE [@TZ(ZTQ,B(t) - y)} .
It can be easily shown that under Assumption 2] the sufficient condition for learning rates to guar-
antee monotonic convergence are

2

0<negp <2, 0<agp<-—75-
le|?
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We note that in our learning rate condition equation [3} we introduce &(7) and 1(7) to account for
the randomness in data. If we have infinite samples, the condition equation 3] becomes

4
0<n<?2, O<a< .
! 2[0P +2,,(0)
Comparing to ngp and agp, notice that we have the same 7 condition. However, the a condition
is slightly tighter to control the randomness introduced by the first-stage estimates @(*).

min

Remark 3.3. From equation the optimal contraction rate *(7) is achieved when the learning
rates are set as

* _ 2 * — 2
e = (T 0P 4 (L0 0 = 50 4 () ®

In this case, we have

* ’_Y(T) * o (1 + 5(7—))2 B (1 B 5(7_))2 * _ * *
D=5 2w o0 = s+ A= amp ™ 7 =m0 0]

We emphasize that although 73, and o, minimize the contraction rate, they are approximate
optimal step sizes, as the scaling constants in the bound equation [7] vary with different choices of

step sizes. See Appendix [G.I|for empirical results.

Remark 3.4. From Proposition[3.1] the choice of A1, A in equation[d] guarantees that Algorithm|[T]is
p-zCDP. The parameters v, and o are selected so that, with high probability, the clipping operation
does not alter the gradients; see Lemma@ for details.

K/BTf

Remark 3.5. The error bound equation [7| consists of three dominant terms. The first term (7) T
characterizes the convergence of the gradient descent algorithm, which decays exponentially with
VP(/a+vT)®
ny/min{p1,pz}

which grows with v/T due to the parameter choices in equation@that ensure privacy. The third term
V/Pa(7+10g(pg)) 5

T. The second term VT captures the cumulative effect of the injected Gaussian noise,

represents the inherent statistical error in estimating 3 via noiseless gradient descent,

which decreases with larger sample size n. This decomposition highlights the trade-offs between
convergence phase and privacy requirement, while also accounting for the structural statistical ac-
curacy attainable from gradient descent.

Remark 3.6. The condition for 7" in equation || is necessary to control the noise scale \; in
Proposition 3.1} since the derivation of equation @ relies on the high-probability concentration of
[©(T) —@||. With limited sample size n, if p; is small, i.e. we want high privacy on @1, ... &),
we can only set a moderate number of iterations 7', otherwise the bound equation [7] doesn’t hold.
See Section [] for experiments.

Remark 3.7. For given sample size n, the dominating terms for each 7" range are:

log (pq(T-irlgg:(pq))2 )
log (ﬁ) ’
180 —8| < { /g (T +1og(pg)) " IOg(W) T < nmin{pi, po}q(1 4 log(pg))?
vn 7 log(ﬁ) a (Va+v7)° ’
3 : 2 2—e¢
VIIE VD o ninlpnpalal +logpa)® oo
ny/min{p1, p2} (Va+V7) p(a+ V)
Hence, the optimum number of iterations 7 is sub-linear but super-logarithmic to n. Figure 2|quali-

tatively illustrates the trend of the error bound equation[7]as a function of T'. This is consistent with
our experimental observations in Section 4]

k(T)2, if T <

Corollary 3.1. Consider running Algorithm[I\with p1 = oo and ps = oo (i.e. no privacy provided).
For any T > 0, the bound equation[/|is dominated by

VPq(T + log(pg))
\/ﬁ b

which is exactly the convergence rate of the 25-GD algorithm )

18T — Bl S K(r)F + )



Under review as a conference paper at ICLR 2026

Error vs. Iterations

contraction plateau v’?—growth

187 - Bl

|

KT

/pg (x + log(pg))
vn

s =
VPG +VT) VT
Ny min{ey. p2}

T

Figure 2: Qualitative trend of the error bound equation [7|as a function of 7.

Remark 3.8. We note that the error rate equation (9| has an additional ,/p factor compared to the

error rate of 25 LS estimator ||3 — 3|| (see Lemma D.7|for the precise statement). This observation
is further confirmed by simulations in Appendix |G.3] We believe, a fundamentally different modifi-
cation of the algorithm may be required to algorithmically match the rate of convergence of 25L.S

estimator |3 — B]| exactly even in the no-privacy setting.

Remark 3.9. In practice, the intermediate estimates {©®)}7_, are not always required to be re-
leased, so in some settings it suffices to ensure privacy only for {3(*)}7_,. In Algorithm 1| setting
p1 = oo implies that no noise Z*) needs to be injected in the first stage, and we can simply re-
turn {ﬂ(t)}thl under privacy budget po. Under this regime, the error bound equation [7| continues
to hold, except that the condition on T in equation [3is no longer required. See Appendix [F]] for
further details.

4 EXPERIMENTS

We conduct experiments using both synthetic data and real data to validate our theoretical findings.
For all experiments, we set 7 = 5, and step sizes 7 = T ¢ = moam- As a practical

guideline, p = 0.1 is considered as strong privacy, p = 1 is considered as moderate privacy, and
p = 10 is considered as weak privac

4.1 SYNTHETIC DATA SIMULATIONS

We generate synthetic data according to the IVaR model in equation [I| To simulate the correlation
between €1 and €5, we include a confounder u € R”, and sete; = ® ' u; + €, and e = quu + €y,
and generate each entry of the dataset (Z,X,Y) = {(z;,x;,y:)}}_; according to the following
model: x; = ©Tz; + ®'u; + €, andy; = B'x; + ¢'u; + €,4, where the ground-truth
parameters are 3 € RP, ©@ € R?”*P, & € R"*P, ¢ € R". These parameters are drawn as follows:
B~ N(0,I,), ® ~ 51,5, + E with E;; ~ N(0,1). ®;; ~ N(0,1), and ¢ ~ N(0,1,). For each
simulation, we then sample z; ~ N(0,1,), u; ~ N (0,1,), €, ; ~ N(0,1,), and ¢, ; ~ N(0,1).

Figure [3] compares the performance of Algorithm [I] across different sample sizes n under varying
privacy allocations. We fix the total privacy budget at p = p; + p2 = 10, set the number of
iterations to 7' = 20, and examine three regimes: (i) p1 = 1,p3 = 9, (il)) p1 = 5,p2 = 5, and
(iii) p1 = 9,p2 = 1. In Figure 3(a), with p = ¢ = r = 5, all points lie in the plateau region
of Figure , so the error decreases at the rate ﬁ In contrast, Figure |3(b) sets p = ¢ = r = 50.
Here, T' = 20 violates condition equation[5] leading to significantly larger errors compared to Figure
Bla). The impact of T is further investigated in Figure ] from which we observe that, with limited
sample size n, if we enforce high privacy guarantee on {Q(t)}thl (i.e. with small p;), the error

*The corresponding (¢, §)-DP values using the conversion formula e = p+2+/plog(1/5) (with § = 107°):
p=0.1% (66) =(225107%), p=1% (¢,6) = (7.79,107%), and p = 10 & (¢,0) = (31.47,1077).
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(a) (b)

Figure 3: Comparison of Algorithm s performance versus n. We set 7' = 20, (a) p = ¢ = 5, (b)
p = ¢ = 50. Note that the T" condition equation [4] is not satisfied in (b). We set the total budget
p = 10 and compare three regimes: (i) p1 = 1,p2 = 9, (ii) p1 = 5, p2 = 5, (iii)) p1 = 9,p2 = 1.
The curves are averaged over 100 runs, with vertical bars representing the standard errors.

Algorithm 1 Error vs T (n=1000, p=5, g=5) Algorithm 1 Error vs T (n=1000, p=5, q=5)
0.8+ =& p1=0.1, p2=100 0.35 —— =100, p2=0.1
p1=1, p2=100 p1=100, p2=1
0.7 4 =& p1=10, p2=100 0.30 —&— p1=100, p2=10

-M- 2SLS (baseline) ~M- 2SLS (baseline)

1B = Buruell
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Iterations T Iterations T

(a) (b)

Figure 4: Comparison of Algorithm s performance versus number of iterations 7. We fix n =
1000, p = q = 5, (a) keep p2 large and vary p1, (b) keep p; large and vary p». The curves are
averaged over 100 runs, with vertical bars representing the standard errors.

grows significantly after certain T is reached. This cutoff aligns with the condition on 7" specified
in equation In contrast, when privacy is required only for {3®)}7_, (i.e., with small py), the error
behavior closely matches the theoretical predictions illustrated in Figure[2]

4.2 REAL-DATA EXPERIMENTS

We further evaluate our algorithm on the Angrist dataset (Angrist & Evans|,[1998)), which has been
widely applied in the I'VaR literature. This study examines the causal effect of children bearing on
female labor supply, leveraging the gender composition of the first two children as an instrumen

The endogenous regressor x is the number of children bearing, the outcome y is the mother’s labor
supply measured in number of working weeks per year, and the instrument z is a binary variable
indicating whether the first two children are of the same gender. The original dataset contains
394, 835 samples. For illustration purpose, we randomly draw a subset of 20, 000 samples and keep
n = 8065 effective observations with number of children > 2. We center all variables z, x, y and run
Algorithm [T] with 7' = 20 iterations. Figure [5]presents the results over 1000 independent runs with
privacy budgets p; = 1,p2 = 1. As shown in Figure the estimated 3(7) concentrates around

3Research shows that parents whose first two children are of the same sex are significantly more likely
to have an additional child (Westoft & Parke, [1972). At the same time, the sex composition of the first two
children can be treated as randomly assigned and is not directly related to the mother’s labor supply.
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Distribution of final estimates across 1000 runs
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Figure 5: Results on the Angrist dataset with 7" = 20,p; = 1,p2 = 1. (a) Boxplot of estimated

BT, over 1000 runs. (b) Learning paths of parameters 3*), @) over 1000 runs. The shaded area
represents the standard error.

—4.3, indicating that having an additional child reduces the mother’s labor supply by approximately
4.3 weeks per year. This estimate is consistent with the 2SLS benchmark.

From Figure 5b] we observe that Algorithm [T] converges in expectation after about 15 iterations.
The dispersion of the estimates is determined by the privacy budgets: increasing p; and po yield
estimates that are more tightly concentrated around the 2SLS benchmark, while smaller budgets
result in greater variability. Additional experiments are provided in Appendix [G.4]

5 CONCLUSION

We have introduced DP -2 S~-GD, a differentially private two-stage gradient descent method for [IVaR
problem. The algorithm achieves (p; + p2)-zCDP by injecting carefully calibrated Gaussian noise.
We have established finite-sample convergence guarantees that capture the trade-offs among opti-
mization dynamics, privacy constraints, and statistical error. Our theoretical analysis shows that
setting the number of iterations 7" to be sub-linear yet super-logarithmic in n minimizes the estima-
tion error, a result that is corroborated by our experiments. We have further illustrated the practical
utility of our method through an application to the Angrist dataset. On the other hand, we note that,
regardless of the privacy constraint, the convergence ¢ of the two-stage gradient descent estimator to /6
is slower by a ,/p compared to the convergence of ,6 to the true parameter (3 (see Remark . Im-
proving this rate (via algorithmic modifications) and establishing lower-bounds for privacy-accuracy
tradeoffs for the IVaR problem are interesting future directions.

10
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6 REPRODUCIBILITY STATEMENT

All theoretical results are proved in the Appendix, and code for reproducing all experiments is
provided in the supplementary material. LLM was used to polish writing and for finding related
work.
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A ADDITIONAL DEFINITIONS

Definition A.1 (Rényi Divergence). Let P and () be probability distributions on a measurable space
(X, F), with P absolutely continuous with respect to (). For o > 1, the Rényi divergence of order
« between P and @ is defined as

Du(PQ) = e [ (G50)) a0

This family of divergences interpolates between several well-known measures: (i) As a — 1,
D, (P||Q) — Dx1(P]||Q), the Kullback-Leibler divergence, and (ii) As o — oo, Do (P||Q) —
log sup,.c x % (z), the log of the essential supremum of the likelihood ratio.

Definition A.2 (2S-GD). We introduce the baseline two-stage gradient descent algorithm without
privacy constraints, denoted as 2S—GD, in Algorithm

Algorithm 2 2S-GD

Input: Data Z € R"*?, X € R"*P, Y € R"
Parameters: Step sizes 1, « > 0, number of iterations T’
Initialize B©) = 0, ) =0,
fort:O,l,...,T—ldo
e+l — @(t _ Zn ( T@(t) _ XzT)
B+l = g o' Z @(t)T i(z ;@(t)ﬁ(t) — ;)
end for
return {©"}],, {81},

A A S

B PROOF OF PROPOSITION[3.1]

Proof. At iteration ¢ we are releasing two Gaussian-mechanisms on sums of clipped per-sample
gradients (each clipped to norm not larger than ; and 72), one with noise scale A; (for ®) and one
with noise scale A\ (for 3). By the standard zCDP analysis:

* O-update: Sensitivity of the summed (clipped) gradients is Ay = 2’“ , and we add noise

nE with vec(E) ~ N (O7 NI, ® Ip). By property of Gaussian mechamsm this step satis-
2
fies p1 = ;5-2CDP

2'y§
2)\%

* (B-update: Similarly, Ay = 272 , this step is po =
By linear composition each iteration costs
2 (v,
Pperit = P1 + p2 = n<)\%+>\2 .

Over T iterations the overall mechanism satisfies p = ( —%) -zCDP. O

C PROOF OF THEOREM

We first re-state the result with additional details. Before the full proof, we would like to provide an
outline of the proof to facilitate readers’ understanding. Conceptually, the proof has three ingredi-
ents:

(1) Two-stage coupling: We control a pair of noisy recursions (0()), __and (8()), . where

the second-stage gradient at time ¢ depends on the noisy first stage 1terate o, ThlS cou-
pling does not appear in standard DP-SGD analyses.

14
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@)

3

Noise propagation under many DP compositions: Since we add Gaussian noise at every
step and stage, the privacy accountant composes over all iterations. To obtain a meaningful
error bound for the final iterate ﬂ(T), we need to separate the contributions of optimiza-
tion, sampling, and privacy. This is what leads to the explicit H(T)T/ 2 and /T-scaling
privacy term in Theorem [3.I] and explains the “too many iterations hurt” phenomenon in
our experiments.

Dimension- and instrument-explicit rates: The proof keeps explicit dependence on (p, q)
and instrument strength (through minimal singular values of Z ' X), and separates the final
error into optimization, sampling, and privacy terms. This is more delicate than in OLS,
where the design matrix appears only once.

New elements specific to our setting are given in following points:

®

(i)

(iii)

In our algorithm there are two gradient-descent loops, and the gradient of the second stage
depends on the current, noisy first-stage iterate ©(*). The main novel technical step is to
derive a joint recursion where the second-stage error is expressed in terms of (a) the first-
stage parameter error and (b) the DP noise injected in both stages. This is what allows us
to write the final bound in Theorem 31} Prior DP-OLS and DP-SGD proofs only handle
a single recursion and do not have to control how DP noise from one stage deforms the
design matrix for another stage.

Separation of sampling vs. privacy vs. optimization contributions. Existing DP-SGD
results usually give a single error term that blends statistical and privacy effects. Our bound
is structured so that: the last term /pg(7 + log(pq))/+/n is exactly the non-private 2SLS
sampling error, the middle term is purely due to DP noise and iteration count, and the first
term is purely optimization error of the noiseless 2S-GD algorithm. Achieving this clean
decomposition required carefully isolating deterministic approximation error (from using
GD instead of the closed-form 2SLS solution) from stochastic sampling error and from
privacy noise.

zCDP analysis tailored to a two-stage algorithm. Finally, although using zCDP itself is
standard, our accounting is tailored to the two-budget structure (p1, p2) and the clipping
parameters of each stage. We prove that the total zCDP parameter is

T (4% %
= =0 = (<L s
P p1+ P2 (n2 ()\% + )\3

and propagate this through the perturbation analysis above (Proposition [3.I] and Lemma
[D-1). This is again specific to the IV/2SLS setting: prior DP-OLS work does not have to
reason about how to split privacy budget across two statistically coupled stages.

The whole proof of Theorem [3.1]is decomposed into several supporting lemmas in Appendix [D] to
handle all these ingredients.

Theorem For any fixed ® € R?*P and B8 € RP, consider the Algorithm with step sizes
satisfying

4
I<a< —

O<n< %5(r) + ()

2
(1+06(7))*

under Assumption 2] with parameters

2 T 2 T 2
)\1:%\/7, Agzﬂ — M =Y2=Co (\/&‘F T‘HOg(”T)) )
n P1 n P2

and number of iterations

where €

€

< pin®~
~ WAV
> 0 is a small constant. If
3
+ VT
n > ¢ max < pg(7 +log(pq))?, M ;
vmin{py, p2}
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for any fixed 7, with probability 1 — coe™7, we have

(1) _ 3|l < p(r)3 VPV +VT)? JT 4 VP (T+10g(PQ))
L e e Ty NG
where
. Goot(Va+ V7)

A7) = (1= 6(7)* (omin(©®) = (7))*,  A(7) := (1+ (7)) (|1® + ¥(7))*,
h(r) = €00-02y/Pq (T +10g(2pg))
V(1= o(r >>2 | 10

“ﬁ(T)ZZmax{l_ 7()”1_ (27 }

K@(T)Z:maX{‘l—’I](l—(S )1— (14+46(r ‘}

k(1) = max{kg(T), ke (T)}.

Proof. Denote eg) = ©O® — © and eg) = B — 3. We have
egﬂ) - e(@t)) _ ZZT 70 _ ) +nE®

el) + %ZT (X . Zé) +pE®

ey =ef) — YebgT (Z@u)ﬁ(w _ Y) T+ av®
n
I

= (1-207z7z0")ef) + 2 [GWZTY - 00727 200] + ap
n
= (1 - %@WzTZG@) e + g@“WzT (Y - ze)“)B) +av®
- (I - %G(t)TZTZG(“) ely) — %Q(t)TZT (z (@<t> - é) B) % (@“WzT (Z@,@ Y)) +av®

= [I - aH“)} ey — 20Tz Zel)f - 20T ZTr + av,
n n
(12)
where H®) := 1@ TZTZO® andr := ZOB — Y. We first show that H(*) is close to the target
H:= %@TZTZ(':). We define the event
Err = {||e(®k)|| —je® — @) <e VI <k < T}.

Conditioning on the event E7, 7, we then have

N 1 N A
IHY —H|| = ~|eWTzTze® —eTZ2'Z0|
n

1 A A N
= —|e®WTzTze" - )+ (e" -0)'z2'ze|
n

1 A
~(le“1+ ez z|e

IN
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T

5 AW/
< 2lefl+2)l le, VT <t <T.

From Lemma we have with probability at least 1 — 2e™7,

i
122 < 04562,

so that
[H® —H|| < (2|8 +&)(14 (7)), VIh<t<T.

Suppose y(7),7(7) are some high probability bounds such that Amin (H) > () >0, Amax (H) <
(7). From Lemma|D.6] we can take

0002/ (T + log(2pq))>2
Vi (1—4(r))? 7
00.02,/pq (T + log(QPQ))>2
Vi (1=6(r))?

(7)== (1= 6(7))? (omm(@) -

(1) = (1 +6(r))? <9| +

If ¢ satisfies the following condition:

7(7)
2(2/|©] +€)(1 + 8(r))2’
i.e. we choose
(1)
e <1187 + 5 Gl (13)
\/ 2(1+4())2

by Weyl’s inequality, we then have

)\min (H(t)> Z Amin(I:I) — ||H(t) _ I:I” 2 ¥

Amax (H(t)) < Amax () + [HO — H|| < 5(r) + %

This in turn implies that on E7 7, when 0 < o < we have

4
25(T)+(7)”

11— aHO || < max {1 = aAuin(HO)], 1= apax(HO)[ |
(14)

o a2y(T) + (7
< max{|1 - il )| 1 — W|} =kg(T) <1,
hence the error recursion equation [12]satisfies
1 « ~ «
e ™Il < rp(r)lleg | + 1002 Zeg ] + 0T Z x| + V],
and
T-1
T — Tt « —1— k) A
Il < ma(r)" Tl + 10 3 ma(r) T (1O 2T 2B + |02 x| ) + 1wl
k=T B
g aIIZTZHIIﬁII oy, oz’
< ra(r)T P + AAZ WAL 5= g1k 4 A2 - Z N e
k= T() k= T(]
+ vl
1—rp(7)
T-1
< T—Ty 11 .(T0) 146 211 A T—1-k| gk 04||ZT1“|| T 1-k ) g (k)
< ra(r) T + a1+ SPIB S a1 K@ e + AL S 1e®
k=To k=Ty
vl
]._K?B(T) ' (15)

17
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Under event E7, 7, we have the uniform bound:

@ < (18] +e, VIh<k<T,
e <e, VI, <k<T.

Besides, from Lemma and Lemma|D.7| we have when n = Q(pq(7 +log(pq))?),
are bounded by some constants with high probability:

1Bl <1, Jel st
From Lemma D8] we have
I1Z x| < v/pq (7 +log(pa)) -
Since v ~ N (0, A3L,,), we have with probability 1 —e™7,
Il < A2 (VP + V7).

Then from equation [T3]

T-1

_ b . . o al|ZTe (18 +e) =
oS < ra(r)T =Tl + (1 + 812 1B1(10] +2) 3 wg(ryT-1-+ 1 AZHIUOITE) o~

k=T k=T,
vl
1—rp(7)
< oy (1), @(L+3()2Blle(1®] +2) | allZ x| (| + <) o
< rp()T ) + ek y 221 T
rp(T) n(1—rp(7)) rp(7)
1y (T Pq(7 4 log(pq))
< kp(r)T T0\|e(50)||+6(1+6)+\/> NG (1+e)+ X (vVp+ V7).
(16)
It remains to bound ||e(T0 |. Denote L(*) := T—aH® t =0,1,...,Ty— 1. Note that from Lemma
T° YIL® || can be bounded by a constant for any Ty < T'. From equatlon. we have
To—1 o Toml To—1 To—1 Tp—1
(To) H L®e (o) Z H L® [(_)(k)TZTZeg)B+®(k)TZTr:| +O‘Z H L® k)
k=0 t=k+1 k=0 t=k+1
Then
To—1 T To—1 Tp—1
T 0y, l®l+:¢) ||Z z)|8l .
eIl < (H ||L<t>||> el + = > IT 1m®neg’]
=0 k=0 t=k+1
To—1 Tp—1
(||@H+E |1Z x|
> 11 HL“H+ ()ll V||
k=0 t=k+1
A O +o)|Z7Z|| 8] =" (18] +¢)||Z7r
<118l + (el | 18l Z el + (el n)ll [P (VB +v7)
log(pq))
< (k) \/>( 7+ log
N1+(1+6)T00Sg%a%_1l\e | + 7 (1+e)To+ A2 (VD + V7).
(17)

Now, it remains to determine the values of €, Ty, T, and the bound for maxo<p<7,—1 ||e@) II.

18
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From Lemma [D.4} where we take \; := 2%, / pll, with probability at least 1 — 3e™7, we have

Eryr = {Ileg)ll < ¢e,VTy < k < T} hold{’} where
A A
e i= ko () ™[10] + ——— (b + v/2p (log(p) + 7))
A 2nm
=reM™ IOl + = — (vra+ V2 (log(n) 7))

< ke ()™ + u(7),

(18)

where
5(r) = Coff?(\/\/flﬁ+ ﬁ)’

re(r) := max {[1 —n(1 = 6(r))*|, |1 —n(1 +6(r))*|},

() == M (\/Fq+ Vp(log(p) +7 )
—3e 7,
Vg + v/ 2p (log(p) + T))

Similarly, we have with probability at least 1

A A
el < 0] + ——— (
1— Ii@(’l’)2
(19)

ma
0<h<Ty—
=c+(1-ne(n™) O]
S 1+ p(r).
Next, we need to pick T, T, such that condition equation [13]is satisfied
2 7(7) _
e<y/llOl2+ - ©] =< (20)
+4(7))?
This can be done by setting
A €
ko (1) 0] < .
21

9 _
—=m (\F—i-\/ (log(p +T)§E,
ny/1— ke(T 2
}oowe set 1 = ci(\/q +

where from Lemma when n > (\/Z]—f— ﬁ)‘?max{\/lﬁ, \/%2 ,

7+ log(nT))?. We take
(1) .
To > |lo )= lo ” ERGIHER 1 = to(n) (22)
0 = |108sg(r) 2||@|| Cre(T) B) =to(n),
2—e
pin
< 23
S Re (23)

where € > 0 is a small constant to guarantee equation 21| converges to 0 as n — oo, and

R(r) = (Va+ V1)’ (vpa + v/pllog(p) + 7)) o

S VPV + V)’

Plugging T" and ~; into u(7), we have
u(r) = A (va + v/p (log(p) + 7))

*A rigorous analysis requires setting 7 := T + log(T') to account for the union bound. However, under
condition equation l log(T") grows slower than any positive power of n, thus we omit this term. Similar

argument applies to later analysis.
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=2 (vra+ Vo lloel) + 1)
R(T) \/T

<

~ T)l n

So when T satisfies condition equation 21| and n satisfies condition equation @ we have p(7) < 1,
and the bounds equation[T8gquation[I9|can be bounded by constants:

<1 W< 2
st e ed)l S 25)
[14+ min(@?
In equation 22} we have to(n) — log;_, * . So tg(n) is upper bounded by a

constant integer Cy. With T = C, plug in equation [25]into equation[I7] we have

71 1 0T 1671+ PR L4 T (B )
<140y (1 L VPaT ir/%og(pq))) o (V)

S1+X(Vp+VT).
(26)

We further take T} := max{Z.C5}. Note that from equation (16| the bound of ||e(BT) || will always
decrease after T' > T, := C5. Hence, the bound equation still holds for TO:

1S S 1422 (VB+ V7). @7
Plug in equation 27]into equation[I6] we have the final bound:
(T Pa(7 +log(pq))
167115 mor)™ eVl + e(1 + &) + YL LERLD (14 ¢) 4 0o (V5 + V)
T VP4(T +1og(pg))
gmﬁ(r)5(1+A2(\/ﬁ+ﬁ))+( o(mF +u(r)) + Y21 7 + X (VP +V7)
7+ lo
< wa(r) +re(n)F -+ () + 2 (5 + v7) + YU LRI,
(28)
where p(1) < RO VT, = 22 /T From Lemma we take 72 =
~ Vo n\ b2 0
Cy (\[ + /7 + log(nT) ) Continue on equation we have
R T R T 7+ lo
||eEaT)|| 5%(7)% +H®(T)% + (7—)£+ (T)£+ VPa( g(pQ))’

(i) (ii4) (iv)
which concludes the proof. The error bound equation @] consists of four terms: (i) the effect of
= O — @, (iii) the error from additive
noise v¥), and (iv) the random residual error from r := Z(:-)[i -Y. O

shrinkage factor xg(7), (ii) the estimation error from eg

D SUPPORTING LEMMAS

In this section, we collect the supporting lemmas that were used in the proof of the main theorem.
Throughout the proof, we suppose that Assumption [T and Assumption [2] hold. Unless otherwise
specified, we assume the learning rates «, 7 satisfy condition equation [3| with parameters chosen
according to equation 4] and sample size n satisfies condition equation [6|

20
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Lemma D.1 (No clipping condition). Under Assumption |2} if
2
1 2 (Va+ /7 +log(nl))
2
72 2 (\/§+ VT + 1og(nT)) ;

learning rates cv, 7) satisfy condition equation 3| and n satisfies following condition
VT
min(p1, p2)

w-a (i vy

T

then the Algorithmclips no gradients with probability at least 1 — ce™".

The proof of Lemma[D.T]is in Appendix

Lemma D.2 (High probability bound of sub-Gaussian random matrices). Suppose Z is an n X ¢
matrix whose rows Z; are independent mean-zero sub-Gaussian isotropic random vectors with sub-
Gaussian norm || Z;||y, < o9 foralli =1,...,n. Then, for any 7 > 0, we have with probability at
least 1 — 2e™ 7,

V(1= 6(7)) < omin(Z) < omax(Z) < v (1+6(7)),

where §(7) := W. Whenn > C¢o? (\/q+ ﬁ)Q, we further have

n(1 = 6()) < Amin (272) < Mnax (Z72) < n(1+8(7))%,

where Cj is a universal constant, opin(+), Omax(-) denote the minimum and maximum singular
values of a matrix, Amin(+), Amax(-) denote the minimum and maximum eigenvalues of a matrix,
respectively.

The proof of Lemma[D.2]is in Appendix[E.2]

Lemma D.3 (High probability bound for the product of sub-Gaussian random matrices). Let Z be
an n X ¢ matrix whose rows Z; are independent mean-zero sub-Gaussian random vectors with sub-
Gaussian norm ||Z;||y, < 0, foralli =1,...,n. Let £ be an n x p matrix whose rows €5 ; are
independent mean-zero sub-Gaussian random vectors with sub-Gaussian norm || €2 ;||4, < o2 for
all? =1,...,n. Then, for any 7 > 0, we have with probability at least 1 — e~ 7,

|ZTE,|| < coo.02y/npg (T + log(2pq)) -

The proof of Lemma[D.3]is in Appendix
Lemma D.4 (High probability bound of additive noise). Let eg) = (I — %ZT Z)t eg) + N1,

where N(®) = 22:0 n (I — %ZTZ)t% =@, and E) are generated from Algorithm Suppose
the learning rate 7 satisfies the following condition:

2
0<n< ——s,
(1+4(7))
where 0(7) := w When n > Ciot (\/q+ ﬁ)2 with probability at least 1 — 3e™7,
we have
A
INO| < ——2— (/pg+ /2p (log(p) + 7)) .
V1—=kg(T)
and
0 nA1
el < wio(7)1el) | + ——=== (Vi + v/2p (og(®) + 7))
1 —rg(7)

(1 . Co‘ﬁ(ﬁ"'ﬁ) )2

where ke (7) := max { ’1 -7 ,

177](1+ Cooi(\\//g-i'ﬁ))Z‘} < 1.
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The proof of Lemma[D.4]is in Appendix [E.4]

Lemma D.5. Let ¥ := © — © = (ZTZ)'ZT £,. When n > C20%(,/ + /7)?, we have with

probability at least 1 — 3e™",

00 .02+/Pq (T + log(2pq))
V(L =6(r))*

2
where 6(7) := w, Co, cp are absolute constants.

el <

)

The proof of Lemma [D.5]is in Appendix [E.3]

Lemma D.6. Suppose Assumption [2| holds. Let H := 1©TZTZO. When n > Cipg(r +
log(pq))?, the following inequalities hold with probability at least 1 — 3e~":

c00.02/Dq (T + log(2pq))>2
V(1 —o(n)
co0200 /BT (7 + 1og<2pq>>>2
V(1= 8(r)°

)‘min(I:I) > (1- 5(7))2 (Jmin(Q) -

Amax(FI) < (14 6(7))? <II®II +

The proof of Lemma [D.6]is in Appendix [E.6]

Lemma D.7. Suppose Assumptionholds. When n > Cypq(7 + log(pq))?, we have the following
inequality holds with probability at least 1 — 4e™7:

Jilr o))

||B—ﬂ||§0< =

The proof of Lemma[D.7]is in Appendix

Lemma D.8. Letr := ZOB—Y. For any fixed 7, when n > C1pq(7 +1log(pq))?, with probability
atleast 1 — 3e™ 7, we have

I1Z" x|l < O (vrpa (7 + log(pg))) -

The proof of Lemma [D.§]is in Appendix [E.§]

Lemma D.9. Let LY := I — 20" TZTZO®. We have with probability 1 — é~7, for any
0<Ty<T

To—1

[T I <1
t=0

The proof of Lemma[D.9]is in Appendix

E PROOF OF SUPPORTING LEMMAS

E.1 PRrOOF oF LEMMA [D.]]

Proof. Consider non-clipping version of Algorihm Denote eg) =0®_Oand eg) =B — [:}
Fort=0,...,T — 1, we have

ef =l - 127 (20 - X) + 12"

(et () ez

22
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and
et —el) - @Of)zT <Z(a<t>5<t> - Y) +av®
= (1- O‘ 727260) el + 2 [007Z2TY ~ 02201 5] + av®
n n
— (1-20"7z7z6") ef) + 202" (Y - 2013) + av®
n
- (I _ et Wsze(f)) ey —2enTzT (z (®<t> - é) ﬁ) _@ (@szT (ZG)B - Y)) +av®
n n n
= L0e)) - %®<t>Tszeg)é - %@Wz% +av®,
(31)
where L) := (I - 2@WTZTZOW), r := ZOB Y. By iteratively applying recursion formulas
equation quation until ¢ = 0, with ®©) = 0., and B©) = 0,,, we have

00 —6-(1-1277 ) ®+Zn( 77z )f_l_i5<i>7

t 1 t—1 t—1 t—1
80 — HL(z IT L {@u 727703+ 00777 } +3a I L9w®
1=0 j=1+1 =0 j=i+1

The gradients at step ¢ are given by

9P (1) =2 (2 @ —x] ).
2(t) =07z (27081 —y,).

Bound on g2 (t):
We have
||g1®(t)H = ||z (z; © —xj—|—z?@—zj@)”
= ||ziz; ((—)(t)—(-'))—z (X:—Z:@)H
< |\ziz, ((-)(t)—Q)HJerZ (x; —zj@)”
< ||zl (é—(—)—(l 1777, ) ®+Z (1-1z7z ) g0 | 4 |l (<7 — 2T O)|
< ziz;—<A —@—(I ”sz) (é @))H 2.2 (I—ZZTZ)fS“
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2
< |z

(1- 127z | el

i1 t—1-j
(i) = ||> nmiz) (I - QZTZ) =0)
n
j=0

t—1

< 1z (I—ZZTZ)t =)
§=0
=1 t—1—j .
<nllzl*y H (1-2z7z) =0,
i=0 "
(iv) = [|z; (x; — 2/ ©) || = ||zi€a,

< |lzill ezl -

T

Under sub-Gaussian assumption on z; and €2, we have with probability at least 1 — e™7,
Izi|l < o-(va+ V1),
le2,ill S o2 (VP +VT)-
From Lemma we have when 0 < n < W and n > C3o2(,/q + /7)?, with probability
atleast1 — 2e™7,

IT-21277| < ke(r) < 1.
n
From Lemma when n > C2 03(\/6 + /7)2, we have with probability at least 1 — 3¢~ 7,
&-of 1.

Additionally, by standard concentration results in random matrix theory, with probability 1 — e™7,

we have
2] 0 (v V).
To sum up, we have
(i) S o2(Va+ V1),
(i1) S o2(Va+V1)?,
(ii)) S o2 (Va+ V1)’ (VP + Va+ V7)),
(iv)  0202(\/7 + V7) (VB + V7).
With \; = 2% \/pli , we take 7/ = 7 + log(nT') and plug everything back in the final bound, we

have with probability at least 1 — e~ 7,

Hgle(t)H < 0502(\/6 + /7 +log(nT))? (1 + M (\/13 +Ve+ T+ 1og(nT)))
< o20a(v/q + /T +log(nT))? (1 + 11\/2 (\/]3+ Vi+VT+ log(nT)>> :

We want to choose appropriate 7, such that ||g2(¢)|| < 71 with high probability, for all i =

1,...,n,t=0,...,T — 1. Therefore, the condition for v, is

0202(/G + /T +log(nT))?
| _ o (a /D) VE (Vp+ va+ /7 7 1os(T)) (32)
> (Va+ rrlogeD)

">
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which is subject to the condition

nﬂ((ﬁ+ﬁ)2\/p?1(\/ﬁ+ﬁ+ﬁ)>

:Q((\/&+\E)3\/z>7

where we ignore the /log(nT) term since it grows slower than any positive power of n. Finally,
taking the union bound overi = 1,...,nandt = 0,...,7T — 1 completes the proof.

Bound on gf (t):

2
From equation [32} if we take v; = (\/a +/T+ log(nT)> , with probability at least 1 — ce™",

g )| < 71,¥i =1,...,nandt = 0,...,T — 1. Now we analyze the gradient giﬁ(t). Under
model

yi =B x;i + e
T, =0"z + e
we have
(1) =0Tz (270180 — 27018 + 2] OV - ;)
— 072 (270" - 27008 +2[0VB - BT(O7z; + €2:) — €1,)
=072/ 01 (81— B) + OV, (2] 08 - 2]08) - OV 2 (8T esi + 1)

=0Tz 0" <,@(t) - ,3) +0WTgz] (Q(t) - ('-)) B—0WTg (ﬂ—regi + €15)

) (i) (34¢)

(33)
Note that
t—1 t—1 t—1 ) t—1 t—1
8W _g— _ H Lhg_ 2 Z H L) {@(NZTZQ%)B n @(iWZTr} n ZO‘ H LG,
=0 n i=0 j=i+1 i=0 j=i+1
t—1 o t—1 t—1 _
= J[L® (ﬁ“’) - B) -3 11 @ [@“)TZTZe(@”ﬁ + @mTzTr} +an®),
i=0 i=0 j=i+1

where () := 3" T]Z1,, LYv(). Similar to equation 27| we take Tj) := max{%,Cy}. When
t < Ty, we have

189 — B <1+ 00, (34)

When Ty < ¢t < T, the error begins to shrink with ¢, so the bound equation [3_1] holds uniformly for
allt =1,...,7. It remains to determine the bound for [|(")||. Note that since () ~ N/(0, A3I2),
we have with probability 1 —e™ 7,

D] < A (\/]3+ \/TJrTg(T)> NVi=0,...,T—1.

Case 1: t < Tj. In this case, we have

t—1 t—1
1ZON=1>" T L@@
i=0 j=i+1
To—1 To—1 ‘ _
< T 9@y
i=0 j=i+1
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To—1 To—1
S (vo+v/rHiogM) Y T IL9)
i=0 j=i+1
S ATy (VB + /7 +log(T))
where the last line follows from the fact that HTE il |LY)|| can be bounded by constant, following
from Lemma[D.9
Case 2: t > T;,. We have
t—1 t—1 To—1 t—1
o — Z H L@@ — Z H LO @ Z H L@@
=0 j=i+1 =0 j=i+1 i=Tp j=1+1

For any j > Ty, we have |[LU)|| < rg(7) < 1. Hence, we have

To—1 t—1 t—1 t—1
1@ < Z H LOLO| & Z H L@

i=0 j=i+1 i=Ty j=i+1
To—1 To—1

SZHL“HL‘] f T
i=0 j=i+1 7'=To =Ty j=1+1
To—1 To—1 t—1 ¢—1

< Z H LOLO| & Z H L@, ®
i=0 j=i+1 i=To j=i+1

t—1

<)\2To(f+\/T+Tg) Z )tll)\2(f+\/w>
< AT (\/m \/TJrlOg(T))

So we have the following uniform bound:

189 = Bl S 1+ XTo (v + /7 + log(T))

< VT _
R N (\/]5+\/T+log(T)),Vt 1,...,T

where we ignore the error from ||3 — 3| as it diminishes with n, according to Lemma Besides,
according to equation [25] we have

e o 1.
Then we have with probability 1 — e~ ", foranyt = 1,...,T,i=1,...,n,
(i) = HQ(t)TZiZiT@(t) (ﬂ(t) — ﬂ) H

o? (\/a—l- T+ log(nT))2 <1 + VT (\/;5—1— T+ log(T))> ,

n./p2

@) =|[o"aal (&~ )]
S o2(\/q+ /1 +log(nT))?

(Z’LZ) = HG)(t)Tzi (ﬁ—rﬁgi =+ 611') ‘

< 0.0 T+ log(nT) (Vg + VT),
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where the last inequality follows from the term (3 €3; + €1;) is zero-mean sub-Gaussian with pa-

rameter & := \/05||3||2 + o}. Plug in (i)-(iii) and equation [34| into equation , we have the
dominating term

el (vis V7 RR) (14 277 (v vrTRD) ).
/P2

In order to guarantee the no-clipping condition, we can take -3 such that

o (Va+ \/Wf (”Zf\/g (vo+ \/HTg(T)D <.

Solving for 74, we have

Ug(\/(j + /7 +log(nT))?

2 Z 2 ’
o2 (/q++/T+log(nT) VT (35)
1-— ( N ) <\/ﬁ+ \/T—&—log(T))
which is subject to the condition
2 VT
=0 (Va+v7) —= (Vp+ VT
(o v L (wms v
s VT
+
~o (i ).
where we ignore the 4/log(nT’) term since it grows slower than any positive power of 7. O

E.2 PROOF oF LEMMA[D.2]

Proof. The first inequality chain follows directly from the standard concentration inequality for sub-
Gaussian random matrices (see (Vershynin, 2018)), Theorem 4.6.1). The second inequality chain

follows from the fact that 03(Z) = /X\(Z T Z) fori =1,...,q. O

E.3 PROOF OF LEMMA[D.3]

Proof. We have the (j, k)-th entry of ZT £, is given by
ZT82 Zzugmk,
the sub-exponential norm of this term can be bounded by
1(Z7&2) oy = || Z Z; i€, k¢ < 0202V/n.

Thus we have the tail bound for each (7, k):
P (| (ZTSQ)jk | > 7') < 2¢ c0ozoaVm,
Taking the union bound over j = 1,...,pand k =1, ..., g, we have
T [ S—
P ||ZT52|| >7) <P <||ZT£2|max > > < 2pge covzo2VnVPa,
( ) =

Equivalently, with probability at least 1 — e~7, we have

|ZT &5 < coo.02y/mpg (T + log(2pq)) -
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E.4 PROOF OF LEMMA[D.4]

Proof. From Lemma | when n > Clo? (Jq+ T ) with probability at least 1 — 2e~7, we

have
T
Amin (an) Z (1 - 6(7-))2 )

s (22) < (14500,

where §(7) = w. When 0 < 7 < W, we can bound the spectral radius of
I - 21777 with probablhty atleast 1 —2e™ "

p (I - gZTZ) < ke(T) = max{‘l —n(1=6(r))°

Jr=na+amr]} <1,

where p(-) denotes the spectral radius of a matrix. If we define the event E, ) = {Z :

p(I—2Z"Z) < ke(r)}, then conditional on event E, (), we have the following holds for
eachcolumn k =1,2,...,p:

N(f Zn( nZT ) i:.gf) ~N 0,7]2)\% {I_ (I_ ZZTZ>2] {I— (I— ZZTZ)Q(t—H)] |

where

A standard result following Lemma 1 of (Laurent & Massart, 2000) gives the following bound holds
with probability at least 1 — 1 e T

INOJ < \Jtr(S) + /2015 (0g(p) + 7)
< \alSxl + /2150 (log(p) + 7)
nA
< s (Vi VR e 1)

Taking the union bound over each column k£ = 1, . .., p, we have the following holds with probabil-
ity at least 1 — e™", conditional on E (1)

IN®| <

177/\12() (\/1?71 + v/2p (log(p) + T)) ,
— ke(T

and

1661 < b ()1l + L (v + V20 (oap) + 7))
RelT

Finally, uncondition on E, (- and take the union bound over the event E,. () gives the desired
result. J
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E.5 PROOF OF LEMMA [D.3

Proof. We have
1|l =127 2)"' 2" Es|
_lz7&) (36)
= onin(2)
From Lemma we have when n > Cgaﬁ(\/ﬁ + +/7)?, with probability at least 1 — 2¢~7, we
have

02in(Z) = Amin (Z7Z) > n(1 —06(7))?, (37)
For the numerator, from Lemma we have with probability at least 1 —e™ 7,
1ZT &5 < coo-00/npq (7 +1og(2pg)) - (38)

Finally, plug in equation [37] and equation [38] into equation [36] we have with probability at least
1—-3e™7,

1o < €00:02y/MPq (T +108(2pq)) _ c00-09+/Pq (T + log(2pq))

n(1—4(r)* Vi (1=6(r))?

O
E.6 PROOF OF LEMMA[D.6
Proof. We decompose © := @ + ¥, where ¥ := (ZTZ) ' ZTE,. We have
N 1
Amin(H) = >\min (TL(® + \II)TZTZ(@ + ‘I’))
> i (=) hain (O + ) T(© + 1)) &9
AV

== Amin(T)amin(G + ‘I’)

It remains to give a high probability bound for 02, (Z) and 02, (© + ¥). For the first term, from

Lemma we have when n > Cgo?(,/q + \/7)%, with probability at least 1 — 2¢~", we have

Z'Z
i) = doin (22 ) 2 (1= 072 (@0)
n
where (1) := W. For the second term, we apply Werl’s inquality:
Omin (@ + ¥) > 01,in (O) — || T]. 41

From Lemma we have with probability at least 1 — 3e™7,
€00:02+/Pq (T + log(2pq))
] <

Vi (1= 6(r))”
Note that the RHS of equation 41| should be greater than 0, which requires n =
Q (pq(7 + log(pg))?). Plug in equation 40equation quation into equation (39, we have:

Aumin(H) = (1= 6(7))* (0min(©) — | 2))?

 €00:02,/pq (T + log(2pq)) ) ’ . (43)
Vi (1=6(r)’

: (42)

Z (1 - 6(7-))2 (Umin(e))
Similarly, we have
B 1
Amax(H) = Amax ((@ +9)'Z2'Z(0 + q:))
n

)\max(¥)/\max (®@+¥) (©+WT))

< (1 +8(n)* (el +12])?

00.02+/Pq (T + log(2pq))>2
V(1 =6(r))? ’

IN

(44)

< (1+6(r)) <||@|| +
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which completes the proof. O

E.7 PROOF OF LEMMA [D.7]

Proof. We have

B-pB= ( 2 TZTZ(:))A 0'z2'Y-p
= (X'2(2'2)7'2"X) ' X'2(2'2)7'Z2"Y - 8
= (X'2(2'2)7'2"X) " X'2(2'2)"'Z" €,
= %(ﬂ)—lez(zTZ)—lszl.
So that
13— 8l < %Il(ﬂ)*lllHXTZH||(ZTZ)71||||ZT51|| (45)

From Lemma and Lemma whenn > C1pq(7+log(pq))?, with probability at least 1—3e~",
we have the following bounds:

1

Iz'z) " s~ I~ S (46)

Similar to equation we have with probability at least 1 —e™ ",
1Z7 &1l < coozo1y/ng (T +1og(29)) = O (v/ng (7 +1og(q))) - (47)

It remains to derive a bound for || X T Z||. We have

X'Z=(20)"2+E&,Z

=0'2'72+£]7,
where from Lemma we have with probability at least 1 — 2e77,
1Z7Z] < n(1+6(r))%,
and from equation with probability at least 1 —e™ 7,
1ZT &2l < coo.02/npg (T + log(2pg)) = O (/ipq (r + log(pg))) ,

so we have with probability at least 1 — 3e™7,

IXTZ] < n(1+8(r)?©] + coo-02/npg (7 +log(2pg)) = O (n + /npg (7 + 10g(m))()4~8)

From equation with equation quation quation when n > C’gaﬁ(\/@ + /7)2, with
probability at least 1 — 4e™7,

16— Bl < Vg (7 +10g(q)) (n + /npq (T + log(pq)))

n2
_ Va(r+log(e) | avp(T +10g(9))(7 + log(pg))
NG n '
When n = Q (pg(7 + log(pq))?), the above expression can be further simplified to
; log(q))
— < M 49
16— ) s YEEL 9)
which concludes the proof. O
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E.8 PROOF OF LEMMA[D.38]
Proof. We can decompose r as:
r=7Z083-Y =203 (Z0 + £,)3 - &,

=708 -208-E,8- &,

—ZOB-7ZOB+7ZOB3 - 7208 — £,8 - &

:z(é-@)ﬁ+ze(ﬁ—ﬁ) _&,8- &,
and

AR YA/ (é—@)B+sze (B—ﬁ) —ZT (E,8+ &) (50)

It suffices to bound ||ZTZ||, [|© — ©], |8 — 8|, and |ZT (€28 + £1) ||. From Lemma [D.2] we
have with probability at least 1 — 2e™7,

I1Z7Z] < n(1+68(r)° $n.

From Lemma[D.3] we can take
‘(:) B ®H < coozoﬁ(i-;i?)g§QPQ)) _0 (\/pT](T \J;ﬁlog(pq))) .
From Lemma [D.7}
s s 10 )

For the error Eorq1 1= €28 + €1, note that Eyprq; = 27;:1 E2,iB; + €1, is zero-mean sub-

Gaussian with parameter 6 := \/Ug 18117 + 0%, and hence the sub-exponential norm of Z " Eivral
can be bounded by

H(ZTEtotal)k”z’[;l = || ZzivkEtOtal,inqpl < Uz&\/ﬁ
i=1
Thus we have the tail bound:
P (|(ZTEtotal)k| > T) < 2¢ " ooz,

Taking the union bound over k = 1, ..., ¢, we have
T o
P(|Z" Brotall| > 7) <P (|ZTEtomz||oo > ﬂ) < 2q¢” TV

Equivalently, with probability at least 1 — e~ 7,
I1Z " Etotat]| < c00-5/nq (7 +log(24)) = O (v/nq (7 + log(q))) -
Plugging these bounds into equation we have with probability at least 1 — 3e™7,

1Z7 x| < 1Z7Zl15 (18Il + 05) + 1ZT ZI[[©1]165 + |2 Brotall
=1Z"Z[([®] +56)05 + I ZT Z[[1B]66 + |27 Eroral

o VP4 (T +1log(pq))\ /4 (7 +log(q)) n\/IT(J(THog(pq)) o
< (1+ Tosil)) YIS o8 T -+ og)
S V/npq (1 + log(pg)) -

O
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E.9 PROOF OF LEMMA[D.9|
Proof. We have
L) = 1- 2e® Tz ze"|
n
" “ “ AN\ T
-2 (@<t> - @+@) AV (@<t> - @+@) [
n
. N T
— -2 (el +0)272(ed +0) |
a A\ 2
<1+ 2027z (leg) | + Ol
2
Si+ (le@i+1),

where e — ©®) — @. Note that from Lemma with parameters choice equation@and sample

size condition equation EI, we have Heg) I £ 1,vt = 0,1,...,[Cz] — 1. So that there exists a
constant cr,, such that [|[L®)| < ¢z,Vt =0,1,...,[Cy] — 1, where Cy is the upper bound of t,(n)
in equation 22| Besides, when 0 < o < m, from equation we have |L®)| < 1,Vt =
[Ca],...,Tp — 1. Therefore, we have

To—1

[T IO <d™ <,

t=0
which concludes the proof. O

F ADDITIONAL DISCUSSIONS

F.1 PRIVACY FOR 3 ONLY

In Algorithm[1] the privacy parameter p is with respectto @1, ..., @) g1 . 3(T) However,
in some applications, we may only care about the privacy of the major estimator 3V, ..., (™).
We note that in Algorithm [1} one can modify the output to only include 3V, ..., 3(T) while still
maintaining the privacy guarantees. We have the following lemma:

Lemma F.1. For p; € (0,00] and A\; € [0, 00) Algorithmﬁ]is p-zCDP for output 1), ..., B(T),

2T’y2
where p 1= py = 2A§'

Suppose that p; = o0, i.e. we remove =, the additive noise of the first stage. One can show that we
can get a slightly tighter bound for equation [/} However, for any fixed ps, we observe that there is
no improvement on the rate of convergence than Theorem [3.1]

Consider the following algorithm:

Algorithm 3 DP-2S-GD-3

1: Input: Data Z € R"*?, X € R"*P, Y € R"
2: Parameters: Clipping threshold v2 > 0, noise scale A\ > 0, step sizes o, > 0, number of
iterations T, initial estimates 3(*) = 0,, ®©) =0,
fort=0,1,..., 7 —1do
Draw v ~ N(0, \31,).
e+l — @) — Z ( T(_)(t)
Bt = gty _ a Z CLIP {@(t)T ( Z_T@(t)g(t) — yl)} + ar®
end for
return 3V, ... B(T)

A A

We have the following theorem:
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Theorem F.1. For any fixed ® € R?*P and B € RP, consider the Algorithm [3| with step sizes
satisfying

2
P aEsmr T Bm e

under Assumption 2| with parameters

_2 /T 2v [T 2
n =2 —, M =72 =C (\/§+ VT + 10g(nT)) ;
o n \l p2

(Q}f)},

n > ¢, max {pq(T +log(pq))?,

or any fixed T, with probability 1 — coe™7, we have
for any fi P 1y

(T) _ G|l < ()3 VPV +VT)? V/Pa(7 +log(pq))
16 = Bl § w(r)F 4 YETLVIE ey SO 080),

where the definitions of k(7), ¥(7), v(7) and (1) are the same as in Theorem

Proof. The proof follows from similar approach as in the proof of Theorem [3.1] However, in equa-
tion[TT] we can simplify as follows:

() _ (1_1777)"" 6O
el = (I—;Z z) el
So in equation [T8] we take
e =re(r)"[O] < re(n)™,
and in equation [T9}

<ot
pcax lleg | <O 1.

Thus, to satisfy condition equation[20] we only need

re(r)0] <,

where € := \/||@||2 + % — ||®||. Comparing this with equation , we can see that there

is no constraint on 7. We only need to take
Ty > to(n),

where to(n) is defined in equatlonu We still take partition point Tp := max{Z 5, Ca}, similar to
equation 27 we have

1Sl S 1+ 22 (VB + V7).

Further, from equation [I6] we have

Vpa(r J\r/%og(pq)) (142)+ 2 (VP + v7)

S "ﬁﬁ(T)% (1+X(VP+VT)) + re(r)? + vha( j%og(pq))

) (5,

leg” I < ma(r)™ Tl + £(1+ ) +

+)\2(\/]5+\ﬁ)

T T
2 2

S #p(1)% + re(r)

(G
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2
where Ay = 2%, /plz, and 75 = ¢y (\/a +\/T+ log(nT)) . Plug in )5 into equation we have
t RO VT i +log(pg))

M) < T
e S kB(T)2 +Re(T)2 +
A i v 52

i (i1)
@ (444) (3v)

Comparing equation[52] with equation[29] we observe that the error term in (ii) is reduced due to the
absence of noise in @'Y update. When T' = O(n), this improvement is insignificant as the order of
the bound equation [52]is dominated by (iv). However, in Theorem [F] since there is no restriction
on T, equation [52] holds for all T'. O

We conduct experiments to compare the performance of Algorithm [T]and Algorithm [3] under the
same setup as in Sectiond] We fix n = 1000 and p = ¢ = r = 5. For Algorithm[I] we set p; = 1
and vary py € {0.1, 1,10}, while running both algorithms for a range of iterations. The results
are shown in Figure@ We observe that when T = O(n), the two algorithms exhibit comparable
performance. However, when T grows larger, Algorithm [T]diverges, whereas Algorithm3|continues
to maintain a stable error trajectory.

Algorithm 1 Error vs T (n=1000, p=5, q=5) Algorithm 3 Error vs T (n=1000, p=5, q=5)

—+ o=l —+

25 1 pr=1, pa=1 0.8 I
pi=1

n- 2 ]

baseline)

20

15

187 = Buael
s w 5
1

N

18 = Brel

s

2

v oy g e

* " 0.2

L

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 3000
Iterations T Iterations T

(@) (b)

Figure 6: Comparison of Algorithmand Algorithm [3] We fix n = 1000,p = ¢ = r = 5, and
vary p2 € {0.1,1,10}. (a) Error curve for Algorithm 1} where we set p; = 1. (b) Error curve for
Algorithm[3] All the curves are averaged over 100 runs, with vertical bars representing the standard
errors.

F.2 COMPARISON BETWEEN GRADIENT PERTURBATION AND FRIENDLYCORE APPROACH
FOR SUFFICIENT STATISTICS PERTURBATION

In this section, we provide a brief comparison between our two-stage gradient perturbation approach
and a computationally friendly sufficient statistics approach proposed in Tsfadia et al.| (2022). The
FriendlyCore paper [T'sfadia et al.| (2022) proposes a general DP meta-framework for aggregation
tasks (e.g., averaging, clustering, covariance estimation) on data in a metric space. The key idea
is: Given a data set D = (z1,...,,) in a metric space and a “friendship” predicate f(z,y) that
encodes when two points are close / well-behaved, FriendlyCore is a DP procedure that extracts a
subset C' C D (the “core”) with two properties:

e Structural niceness: C'is f-friendly (e.g., all points in C'lie in a ball of radius r, or satisfy a
separation condition useful for clustering). Outliers that violate the predicate are removed.

* Stability and DP: For neighboring datasets D, D’, the cores C, C" differ only on a small
number of points, and FriendlyCore itself is (¢, §)-DP or p-zCDP. This lets you plug C' into
any friendly-instance DP algorithm without re-doing a worst-case sensitivity analysis.

Section 5 of [Tsfadia et al.|(2022)) shows how to use this framework for private averaging, clustering,
and covariance estimation. For averaging, Algorithm 5.1 "FC Avg” does:
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* Split the privacy budget as p; = 0.1p, p2 = 0.9p.
* Run FriendlyCore on D with a predicate that enforces an effective diameter 7 (all but a few
outliers lie in a ball of radius r ).

* On the core C, run FriendlyAvg, which is essentially a Gaussian-mechanism mean estima-
tor tuned for zCDP .

Algorithm 5.1 from [T'sfadia et al.| (2022) can be used as a building block to make a DP version
of this 2SLS analysis: (i) The 2SLS estimator depends on sample means of sufficient statistics:
17772, 1 727X, LZTY. Stack and vectorize these matrices into a vector in R? with d &~ pg+p*+p.
Each data point contributes a vector of this form; call these contributions ;. (ii) Under the sub-
Gaussian design, each z; has bounded effective diameter r = @(\/&) with high probability. Using
that r, Algorithm 5.1 (FC Avg) gives a p-zCDP estimate of the mean of the sufficient-statistics vector

with error
o(is) =0 () -2 )

(iii) Lemma s proof shows that B is a smooth function of those sample covariances. If we
replace the non-private moment estimates in Lemma [D.7] by the FC Avg privatized moments, the
Lipschitz dependence of B on the moments converts the FC Avg error into an additional term in
the error bound, scaling like at the order of % . %. Hence, when pq < n, the error bound would

be better than the rate in Theorem [3.1} At the same time, this FriendlyCore-based estimator has a
different set of algorithmic and statistical trade-offs than our proposed DP-2S-GD:

* Black-box vs. algorithm-aware. The FriendlyCore construction treats 2SLS as a black-
box function of moments and privately estimates those moments. In contrast, DP-2S-GD
directly privatizes the gradient-based two-stage algorithm itself. This allows us to study
how privacy noise interacts with the optimization dynamics and to derive the explicit pri-
vacy-iteration trade-off in Theorem [3.1] (e.g., the “too many iterations hurt” behavior in
Figure[2), which is invisible in a one-shot subsample—aggregate scheme.

* Subsampling vs. single-pass. FriendlyCore’s guarantees rely on repeated subsampling to
identify a “core” and then averaging on that core. This increases computational cost and, in
finite samples, effectively reduces the sample size available to each subsample. DP-2S-GD
uses the entire dataset at every step, with per-sample gradient clipping and a simple zCDP
accountant, which is attractive in large-scale or streaming settings.

In the remaining part of this section, we illustrate why Lipschitz dependence of B holds. Let

1 1 1
Y.,=-27"'2Z, Y., =-2Z"X, Y., =—-Z"y
n n n

denote the empirical second moments and define the “moment vector”

s = (2.2, 200, 22y)-
From these moments we form the usual 2SLS normal equations

G(s) B(s) = h(s), G(s):=X"PzX, h(s):=X"Pyy,
where Pz = Z(Z"Z)~'ZT and hence
G(s) =% 2080,  h(s) =%, 5%,
with ;. = 2] . Thus the 2SLS estimator can be written as
9(s) = Basis(s) = G(s) " h(s).
Consider two sets of moments s, s3 with corresponding
Gi=G(s;), hi:=h(s;)), Bi:=g(s:)=G; 'hi (i=12).
We have
Br—Pa =Gy 'h1 — Gy hy
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=Gy (h — ha) + (GT' = G5 Mhs
= G;l(hl — hg) + GII(GQ — Gl)Ggth,

where in the last equality we used the identity
Gl =Gy =GN Gy — GG
Taking norms and using submultiplicativity,
1By = Ball < IGT [ Ihx = hall + IGTH G2 = GullIGZ | 2] (53)

Assume (as in Assumption [2) that the population Gram matrix is well conditioned, so that on a
high-probability event

Anin(Gi) > X >0 = |G <A i=1,2,
and that the moments are uniformly bounded so that ||hs]] < C}. Moreover, G(s) and h(s) are
smooth (in fact, rational) functions of the entries of (., X, X., ), and in a neighbourhood of the
true moments there exist constants C¢, C, > 0 such that

G2 — G1|| < Cgl[s2 — s1ll, e — h1]l < Chl|s2 — s1]|-

Plugging these bounds into equation [53]yields
1 1
181 = Ball < +=Chlls1 — s2ll + 15 CaChlls1 — s2l| = Li|s1 — s2f|,
% 2

where

Cn  CeCh
L:=—
o TR

depends only on the population moments (instrument strength and boundedness) and not on n.
Hence the 2SLS map g : s — [hss(s) is Lipschitz in the sample moments:

l9(s1) = g(s2)|| < Llis1 — s2l|.

G ADDITIONAL EXPERIMENTS

G.1 TUNING STEP SIZE

In this section, we empirically examine how the step sizes « and 7 affect the convergence of Algo-
rithm [} Using the same setup as in Section [f.1] we fix n = 2000 and p = ¢ = r = 5, and run
Algorithm [T] for 7" = 20 iterations, with p; = po = 5. In each plot, we vary one of 7, o over its
admissible range given by equation 3] while fixing the other step size at a sub-optimal level (close to
its upper bound). The results, shown in Figure[7} indicate that as long as 1) and « lie within the theo-
retically justified region, the convergence behavior is fairly insensitive to the exact step-size choice.
As noted in Remark 3.2} our theoretical upper bound for « is slightly conservative due to the need
to control the randomness introduced by the first-stage estimates @ (%),
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Figure 7: Convergence behavior under different step sizes 7, «. The (theoretical) upper bounds
Tmax and aumax are given by equation (3} The (approximate) optimal 77, and o, are calculated
according to equation [§] (a) Varying 1 while fixing & = amax. (b) Varying a while fixing n =
0.9mmax. All the curves are averaged over 100 runs, with vertical bars representing the standard
erTors.

G.2 EFFECT OF CLIPPING THRESHOLD

In this section, we empirically examine how the clipping thresholds v; and v, influence the utility
of Algorithm [I] Using the same setup as in Section[4.1] we fix n = 2000 and p = ¢ = r = 5, and
run Algorithm [I|for 7" = 20 iterations under privacy budgets p; = po = 5. For simplicity, we set
71 = 72 = 7 and vary 7 over the range [1, 1000]. The results are reported in Figure

We observe that when 7 is set too small, the per-sample gradients are frequently clipped, causing
the updates to be severely distorted and resulting in larger estimation error. As +y increases, clipping
becomes less frequent and the estimation error decreases. However, once v exceeds a certain level,
the sensitivity of the gradients grows, which requires injecting larger noise to satisfy the target
privacy budget. This increased noise leads to larger fluctuations in the final estimates. Consequently,
the most effective choice of + is the smallest value that ensures gradient clipping does not occur with
high probability.

Algorithm 1 Error vs y (n=2000, T=20, p, =5, p, =5)

25 -~ 25LS (baseline)
—&— Algorithm 1

2.0

0.5

100 10* 102 10°
Clipping threshold y (with y1 =y, =y)

Figure 8: Effect of clipping threshold v on the utility of Algorithm We fix n = 2000,p = ¢ =
r=>5,T = 20,p1 = po = 5, and set y; = 5 = . The error curve is averaged over 100 runs, with
vertical bars representing the standard errors.

G.3 CONVERGENCE RATE COMPARISON

In this section, we empirically compare the convergence rate of 2S—-GD (Algorithm [2) and the
standard 2SLS estimator. The experiment setup is exactly the same as in Section We set
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p = q = r = 20, and vary n from 500 to 5000. For the 2S-GD estimator, we run 7" = 100
iterations so that it converges sufficiently. The results are shown in Figure [9] We observe that the
convergence rate of 2S-GD is slower than that of 2SLS.

25-GD vs 2SLS (p=20, q=20)

—— 187 -8l
0.7 o
-h- BBl

Error norm
o
IS

1000 2000 3000 4000 5000
Sample size n

Figure 9: Comparison of the convergence rates of 2S-GD and 2SLS. The error curves |37 — 8|

(for 25-GD) and ||3 — B]| (for 2SLS) are averaged over 100 runs, with vertical bars representing
the standard errors.

G.4 ADDITIONAL EXPERIMENTS ON ANGRIST DATASET

We provide additional experimental results on the Angrist dataset with different privacy parameters
p1, p2. We consider two settings of privacy parameters: (i) p; = 0.1, po = 0.1; (ii) p1 = 10, ps =
10. The results are shown in Figures@and@ We observe that when p1, ps are small, the estimates
of B(T) have larger variance. When p1, py are larger, the estimates of 3(T) are more concentrated

around the expected value. In both settings, the estimates of 3(*) converge in expectation within
T = 20 iterations.

Average B path

Distribution of final estimates across 1000 runs s
@
° -== 2SLS %
o oLs g
1 o
§ Z =51 — E[BY] across runs
g 5 - ﬁZSLS
g 0.0 25 5.0 7.5 10.0 125 15.0 175
= Iteration t
H 0
(U
= Average O path
2
B T
% £
3 s
“ 10 o
]
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-15 o 0.01 - éOLS
8
00 25 50 75 100 125 150 175
BM Iteration t
(@) (b)

Figure 10: Results on the Angrist dataset with 7' = 20, p; = 0.1, p2 = 0.1. (a) Boxplot of estimated

BT, over 1000 runs. (b) Learning paths of parameters 3*), @) over 1000 runs. The shaded area
represents the standard error.
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Figure 11: Results on the Angrist dataset with 7" = 20, p; = 10, p2 = 10. (a) Boxplot of estimated

BT, over 1000 runs. (b) Learning paths of parameters 3*), @) over 1000 runs. The shaded area
represents the standard error.

G.5 EXPERIMENTS ON CARD DATASET

The Card dataset is a widely used empirical dataset in labor economics for studying the
causal effect of education on earnings. In this study, the endogenous regressor is individuals’ years
of schooling (educ), and the outcome variable is log earnings (Iwage). There are several instru-
ments available, most notably the college-proximity indicators (nearc2 and nearc4), which capture
whether an individual grew up near a two-year or four-year college. Additional instruments include
parental education—father’s and mother’s years of schooling (fatheduc and motheduc)—which
provide further exogenous variation in educational attainment.

There are 2191 samples in total. We consider the following covariates: Z =[nearc2, nearc4, fathe-
duc, motheduc], X =[educ], Y =[lwage]. We standardize each column of Z to have zero mean
and unit variance. We run Algorithm with privacy parameters p1, p2 € {0.1,1,10}, and number
of iterations 7' = 15. We report the boxplot of final estimates and the learning path for 3(). The
results are shown in Figure We observe that as p1, p increase, the estimates of 3(7) become

more concentrated. In all settings, the estimates of 3() converge in expectation within 7 = 10
iterations.
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Figure 12: Experimental results on the Card dataset with 7" = 15. Each column shows the boxplot
of final estimates (top) and learning path (bottom). (a)p; = p2 = 0.1. (b)p1 = p2 = 1. (¢)p1 =
p2 = 10. The shaded area in the learning path represents the standard error.
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